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Abstract

Contrary to the classic framework of passive strategies, if investors exploit return pre-

dictability through active strategies then there is a tension between the mean-variance fron-

tiers that drive empirical work and the mean-variance preferences that are used in finance

theory. We show that standard preferences choose portfolios on a frontier that has not been

studied in the literature, develop new betas and Sharpe ratios to construct portfolio efficiency

tests, and highlight some concerns with current empirical work. An empirical application to

active strategies on stock portfolios sorted by size and book-to-market confirms the relevance

of our theoretical results.
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1 Introduction

The mean-variance analysis developed by Markowitz (1952) is regarded as the cornerstone of

modern investment theory and continues to be widely used in economics and finance. Its appli-

cations cover key issues such as portfolio choice, asset pricing tests and performance evaluation.

On the other hand, the predictability of asset returns is an empirical fact, therefore investors

are better off designing active portfolio strategies based on their conditioning information. See

e.g. Cochrane (2001) for a summary of the empirical evidence on mean predictability.

The seminal paper of Hansen and Richard (1987) developed the theoretical framework to

study mean-variance efficiency of active strategies. They analyzed a frontier based on conditional

moments and a frontier based on their unconditional counterparts, named the conditional and

unconditional return frontiers (CRF and URF) respectively. They showed that active returns

on the URF are also on the CRF, but not vicerversa. Their main goal was to clarify the

tension between the conditional implications of asset pricing theory and the use of unconditional

moments in empirical work, as they can be easily estimated with sample averages. For instance,

the CAPM implies that the market portfolio should be on the CRF, but not necessarily on the

URF. However, many papers have used the URF to guide portfolio choice. See e.g. Ferson and

Siegel (2001) for the case of mean predictability and Ferson and Siegel (2007) for a portfolio

efficiency test on the URF. Other papers such as Brandt and Santa-Clara (2006) and Bansal,

Dahlquist, and Harvey (2004) approximate portfolios on this frontier through passive strategies

of managed portfolios.

Understanding portfolio efficiency requires understanding the connection between mean-

variance frontiers and preferences. The main contribution of this paper is the analysis of this

connection and its implications for portfolio efficiency tests. Such a connection is trivial in the

Markowitz set-up without conditioning information, but it becomes much more complex when

we take into account that investors design active strategies. In fact, different mean-variance

preferences may disagree on the relevant test of portfolio efficiency. We show that standard

preferences choose portfolios on a frontier that has not been studied in the literature, develop

new betas and Sharpe ratios to construct portfolio efficiency tests, and highlight some concerns

with current empirical work.

In the classic Markowitz set-up based on passive strategies, any family of mean-variance

preferences can be chosen to explore the whole efficient mean-variance frontier. For instance,
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the passive returns p that maximize E (p)− (b/2)E
(
p2
)
for each real number b lie on the mean-

variance frontier, and each of those optimal returns also maximizes E (p)− (θ/2)V ar (p) for the

corresponding real number1 θ. As a result, the specific family of mean-variance preferences does

not matter and all of them agree on the relevant test of portfolio efficiency, which relies on beta-

pricing: A passive return pβ different from the minimum variance one is on the frontier if and

only if, for some real number Eβ called the zero-beta return, we find E (p)−Eβ = β [E (pβ)−Eβ]

for every passive return p, where β = Cov (p, pβ) /V ar (pβ). Gibbons, Ross, and Shanken (1989)

is a well known reference on testing portfolio efficiency in the Markowitz set-up.

From now on, we will take into account that investors design active strategies given an

information set G1 instead. Ferson and Siegel (2001) show that the URF can be rationalized

by quadratic utility E (p|G1) − (b/2)E
(
p2|G1

)
, but not by e.g. CARA utility plus normality

of returns conditional on a signal, which implies preferences E (p|G1)− (θ/2)V ar (p|G1). This

fact represents a tension between the empirical work based on the URF and the theoretical

literature that uses mean-variance preferences. For instance, Dybvig and Ross (1985) use mean-

variance preferences of the second type to study the complexity of performance evaluation of an

informed manager by an uninformed agent. Areas such as market microstructure and rational

expectations equilibria often rely on those preferences too,2 see Brunnermeier (2001) for a

survey of asset pricing theory under asymmetric information or Easly and O’Hara (2004) as a

recent reference.

For this reason, we characterise the subset of the CRF where E (p|G1) − (θ/2)V ar (p|G1)

choose portfolios. This subset can be represented by a frontier based on unconditional moments

that has not been studied in the literature. We will refer to it as the residual frontier (RRF)

because it focuses on E [V ar (p|G1)] instead of the total variance V ar (p) as the URF does.

Similarly, portfolio efficiency tests from the perspective of those standard preferences should

rely on a new type of beta, which we call the residual beta.

We show that the URF and RRF are different subsets of the CRF (see Figure 1 as an

illustration), apart from a few cases that are far from plausible. Therefore, we find an important

novelty with respect to the classic Markowitz set-up in the sense that there is not a single relevant

beta anymore. We can think of conditional, unconditional, and residual betas associated with the

1Actually both parameters are linked to risk aversion and hence assumed to be strictly positive.
2They are also used in continuous time asset allocation. See Basak and Chabakauri (2008) and the references

therein.
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CRF, URF, and RRF respectively. As Figure 1 illustrates, the conditional beta can be used to

test if a portfolio is on the CRF. This test is compatible with general mean-variance preferences,

not only the two types commented above, and hence it is not as powerful as possible if we think

of particular preferences. In that sense, a residual beta can be used to test the location of a

portfolio on the RRF or equivalently the subset of the CRF defined by standard mean-variance

preferences in finance theory. On the other hand, empirical work relies often on unconditional

betas and hence it is actually testing if a portfolio lies on the URF, which has a weak justification

in terms of preferences.

Conditional
Frontier

(CRF)
Unconditional

Frontier

(URF)

Residual 
Frontier

(RRF)

Figure 1: The Unconditional and Residual Frontiers represented as different subsets of the

Conditional Frontier.

We also analyze the presence of a safe asset and find additional concerns with the URF. In

the classic Markowitz set-up, there is a linear frontier, a unique risk-return trade off defined by

the Sharpe ratio on the frontier, and a unique zero-beta return in beta-pricing given by the safe

asset itself. We show that in general the URF does not satisfy any of these properties and hence

the use of unconditional Sharpe ratios and Jensen’s alphas in empirical work may be misleading

because of a null hypothesis that is not well defined. On the other hand, the RRF satisfies the

classic properties, which simplifies the construction of efficiency tests. In fact, we can use both

unconditional and residual Sharpe ratios to test the location of a portfolio on the RRF.

Finally, a standard empirical application of active strategies confirms the quantitative rele-

vance of the theoretical results outlined above. Importantly, we do not need to rely on too many

assets, neither too many predictors or a complex model of conditional moments. We consider

six portfolios of US stocks sorted by size and book-to-market in the spirit of Fama and French
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(1993). The information set is constructed with three standard predictors of stock returns (the

dividend yield, the term spread, and the default spread), and the connection between predictors

and conditional moments follows simple linear predictive regressions.

The corresponding URF and RRF have quite different properties. Their plots show that,

from the perspective of one frontier, the other may look as inefficient as passive strategies. The

unconditional Sharpe ratio on the URF changes considerably and can be lower than the single

value 0.94 on the RRF, or even lower than the ratios from passive strategies. For instance, as

we move from an expected return of 6% to 10% on the URF, its unconditional Sharpe ratio

changes from 0.38 to 0.97, while it changes from 0.73 to 0.92 on the passive frontier. In terms

of the unconditional Jensen’s alpha, as we move from an expected return of 6% to 10% on the

URF, the alphas change from an average of 9% to 2% across the original six portfolios. Hence

the alphas with respect to the URF can be very high compared to the average risk premium of

10%, and higher than they are on the RRF, where the average alpha is 2%.

The rest of the paper is organized as follows. We introduce the general theoretical set-up of

active strategies and a simple binomial example in Section 2, while Section 3 reviews the CRF

and URF. Next, we study the link between mean-variance preferences and frontiers in Section

4, where we develop the RRF and its asset pricing implications, and discuss its connection to

the URF. We analyze the presence of a riskless asset, and the use of Sharpe ratios and Jensen’s

alpha, in Section 5. Finally, we develop an empirical application in Section 6, and present our

conclusions in Section 7. Proofs are gathered in the appendix.

2 Active Portfolio Strategies

Let us introduce active strategies with a simple binomial example. We start from a 2 × 1

vector x that represents annual gross returns, or unit cost investments, on two risky assets. We

consider an investor that observes a signal at date 1 that may take two values, revealing one

of two possible expected return vectors and two possible covariance matrices. That is, we can

understand the investor’s information set as containing a binomial random variable z that can

take the following two values: If z = 1 then the relevant mean and variances are given by the

real numbers

E (x|z = 1) =



 1.20

1.15



 , V ar (x|z = 1) =



 0.0204 0

0 0.0006



 ,
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while if z = 2 then those real numbers become

E (x|z = 2) =



 1.1

1.02



 , V ar (x|z = 2) =



 0.036 0.0024

0.0024 0.012



 .

Those numbers try to capture a simple situation where the investor chooses an optimal

portfolio of stocks and hedge funds, which are represented by the first and second entry of x

respectively. The signal realization z = 1 represents a "bull market", i.e. high return and low

risk, where the hedge funds show low correlation with stocks and a high ratio of mean over

standard deviation. The signal realization z = 2 represents a "bear market", i.e. low return and

high risk, where the hedge funds show higher correlation with stocks and perform poorly. We

assign a probability of 0.8 to a "bull market", and hence the unconditional moments are

E (x) =



 1.18

1.12



 , V ar (x) =



 0.0251 0.0026

0.0026 0.012



 .

There are three important dates in this economy: 0, 1 and 2. We identify 0 as the decision

date, 1 as the trading date and 2 as the payoff date. Investors design portfolio strategies at

0 that may depend on the information that they will observe at 1, when trading takes place,

and they finally receive payoffs at 2. The key feature of a binomial set-up is that any portfolio

strategy can be easily represented by two real 2× 1 vectors w (z = 1) and w (z = 2) and, as a

result, the payoff space is indeed finite dimensional from the point of view of date 0. We say that

a portfolio strategy is passive if the two vectors w (z = 1) and w (z = 2) are equal; otherwise,

we say that it is active.

We will illustrate the next sections with this simple example for pedagogical reasons. How-

ever, our results will not depend on that structure and will cover also situations where the payoff

space at date 2 is infinite dimensional from the perspective of date 0. Even though investors

only have access to a finite set of primitive asset payoffs, say N risky assets whose random

payoffs x = (x1, . . . , xN)
′ are defined on an underlying probability space, they can use any piece

of information known at date 1 in designing their investment strategies.

Let G1 denote the investors’ information at date 1, typically containing signals observed at 1

that are informative about future asset payoffs. We denote the set of all random variables that

are measurable with respect to G1 by I1. The first two conditional moments of the primitive

payoffs and their conditional costs are denoted by

E (x|G1) , E
(
xx

′|G1
)
, C (x|G1) , (1)
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respectively, all of which belong to I1.

Investors can condition their portfolios weights on the information they know they will

have at the time of trading, which is given by G1. Consequently, they can construct active

portfolio strategies with weights w1 ∈ I1 that will deliver payoffs p = x
′
w1, and we will refer

to the corresponding payoff space as the active payoff space Pa. Although we allow asset prices

C (x|G1) to depend on the values of the signals, there are two important examples of payoffs

whose costs are non-random: gross returns, which are payoffs with unit prices, and arbitrage

portfolios, or zero-cost payoffs.3 They will be relevant in the analysis that follows and hence

we will define the corresponding two subsets of Pa,

Ra = {p ∈ Pa : C (p|G1) = 1} ,

Aa = {p ∈ Pa : C (p|G1) = 0} .

If an investor is endowed with some positive wealth, which we can normalize to 1 without

loss of generality, then she will only be interested in portfolio strategies that cost 1 at date 1

for every possible value of the signals in G1. Therefore, the mean-variance frontiers that we will

study are constructed from returns in Ra.

3 Mean-Variance Frontiers

This section briefly reviews the two frontiers that Hansen and Richard (1987) studied.

3.1 The Conditional Return Frontier

The Conditional Return Mean-Variance Frontier (CRF) is defined as the active returns with

minimum conditional variance V ar (p|G1) for a given profile of conditional expected returns

E (p|G1). That is, the set of active returns that solve the optimization problem

min
p∈Ra

E
(
p2|G1

)
s.t. E (p|G1) = ν1 ∈ I1, (2)

which can be represented as

pC (ν1) = R∗a + ω1 (ν1)A
+
a , ω1 (ν1) =

ν1 −E (R∗a|G1)

E
(
A+a |G1

) , (3)

where R∗a is the return with minimum conditional second moment, i.e. the solution to problem

min
p∈Ra

E
(
p2|G1

)
,

3We assume that the vector C (x|G1 ) has at least one entry different from 0 a.s. so that it is possible to
construct returns.
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and A+a represents the conditional mean of arbitrage portfolios with an uncentred second moment

in the sense that it is the unique arbitrage portfolio that satisfies

E
(
A+a p|G1

)
= E (p|G1) , ∀p ∈ Aa.

The following lemma provides an alternative representation of the CRF. It is the active

counterpart of the representation that Chamberlain and Rothschild (1983) developed for the

passive mean-variance frontier. Its proof in the Appendix shows the relationship4 between

(R∗a, A
+
a ) and (R

∗∗
a , A

++
a ).

Lemma 1 The CRF returns (3) can also be represented as

pC (ν1) = R∗∗a +w1 (ν1)A
++
a , w1 (ν1) =

ν1 −E (R∗∗a |G1)

E
(
A++a |G1

) , (4)

where R∗∗a is the return with minimum conditional variance, i.e. the solution to problem

min
p∈Ra

V ar (p|G1) ,

and A++a represents the conditional mean of arbitrage portfolios with a centred second moment
in the sense that it is the unique arbitrage portfolio that satisfies

E (p|G1) = Cov(A++a , p|G1), ∀p ∈ Aa.

The CRF is a hyperbola on the [V ar1/2 (p|G1) , E (p|G1)] space for a particular value of the

conditioning variables in G1. Figure 2 shows the CRF at both values of z for the binomial exam-

ple described in Section 2, where each return on the CRF is associated with two pairs of volatility

and expected return, [V ar1/2 (p|z = 1) , E (p|z = 1)] and [V ar1/2 (p|z = 2) , E (p|z = 2)]. For in-

stance, R∗∗a is located at the minimum volatility of each hyperbola. Two CRF points are shown

on Figure 2 instead. They coincide in [V ar1/2 (p|z = 1) , E (p|z = 1)], but take different values

in terms of [V ar1/2 (p|z = 2) , E (p|z = 2)]. One point is labelled as URF and the other as RRF

for reasons that will be explained later.

4We can relate these important returns and arbitrage portfolios to the concept of mean and cost representing
portfolios following Hansen and Richard (1987) and Chamberlain and Rothschild (1983).
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Figure 2: The Conditional Frontier on space [V ar1/2 (p|z) , E (p|z)] at both signal values z = 1

and z = 2. Two points on the frontier are shown, one belongs to the Unconditional Frontier

(URF) and the other to the Residual Frontier (RRF).

Portfolio efficiency tests are often based on the beta-pricing implications of the mean-variance

frontier. The beta-pricing of the CRF is based on the conditional beta of a return p ∈ Ra with

respect to a return pβ ∈ Ra

β
1
=
Cov (p, pβ|G1)

V ar (pβ|G1)
,

and can be expressed as follows: A return pβ ∈ Ra different from R∗∗a is on the CRF if and only

if

E (p|G1)−E1 = β
1
[E (pβ |G1)−E1] , ∀p ∈ Ra,

for some E1 ∈ I1. That random variable is interpreted as the conditional mean of the corre-

sponding zero-beta return.5

Note two difficulties in the implementation of the previous beta-pricing equation. First, it is

fully based on conditional moments. Second, given a return pβ, we should check that equation

for every p ∈ Ra, which may be a daunting task.

5Each return p1 on the CRF, apart from R∗∗a , has a unique zero-beta counterpart p2 on the CRF, i.e. a return
such that Cov (p1, p2|G1 ) = 0. Moreover, such a return has a similar geometry to the case of passive strategies in
the sense that the return p1 is the solution to

max
p∈Ra

E (p|G1 )− E (p2|G1 )

V ar1/2 (p|G1 )
,

which represents the tangency from E (p2|G1 ) to the CRF on the [V ar1/2 (p|G1 ) , E (p|G1 )] space for a particular
value of the conditioning variables in G1 .
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3.2 The Unconditional Return Frontier

Most empirical work tries to avoid the use of conditional moments as required in the previous

conditional beta-pricing equation. See e.g. chapter 8 in Cochrane (2001). Conditional moments

require the choice of which are the relevant variables in G1 and the specific equations that define

(1), and both decisions are subject to misspecification. This is not the case with unconditional

moments, which can be easily estimated by sample averages. In addition, in many practical

situations the observer of the agents’ decisions only has access to an information set that is much

coarser than the agents’ information set. The performance evaluation of a portfolio manager is

a typical example of the use of unconditional moments by an outside evaluator who may not

have access to the proprietary strategies followed by the manager.

If we define the unconditional beta of a return p ∈ Ra with respect to a return pβ ∈ Ra as

βU =
Cov (p, pβ)

V ar (pβ)

then the usual beta-pricing equation in empirical work is actually

E (p)−Eβ = βU [E (pβ)−Eβ] , ∀p ∈ Ra,

for some Eβ ∈ R. This equation is similar to the classic set-up of passive strategies as commented

in the Introduction, since it is fully based on unconditional moments. Nevertheless, there is an

important difference because the relevant return space is every p ∈ Ra, not only passive returns.

Hansen and Richard (1987) show that a return pβ ∈ Ra different from the minimum (un-

conditional) variance one satisfies the unconditional beta-pricing above if and only if pβ lies on

the Unconditional Return Mean-Variance Frontier (URF). This frontier is defined as the active

returns with minimum unconditional variance V ar (p) for each level of unconditional expected

return E (p). Hence, the URF will be given by the set of active returns that solve the problem

min
p∈Ra

E
(
p2
)

s.t. E (p) = ν ∈ R, (5)

which can be represented as

pU (ν) = R∗a + ωU (ν)A
+
a , ωU (ν) =

ν −E (R∗a)

E
(
A+a
) . (6)

The URF is a hyperbola on the [V ar1/2 (p) , E (p)] space, like the two curves in Figure 2

were on a different space. The URF should not be confused with the classic Markowitz frontier,

which is constructed with passive strategies. The passive frontier would be located to the right

of the URF on the [V ar1/2 (p) , E (p)] space.
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4 Mean-Variance Preferences

This section studies portfolio efficiency from the perspective of specific mean-variance prefer-

ences and their link to specific frontiers. In a set-up of conditioning information, general mean-

variance preferences are represented by U
(
E (p|G1) , V ar

1/2 (p|G1)
)
for some function U (·) that

may depend on G1 too and satisfies some standard properties: strictly increasing in the first

argument, strictly decreasing in the second argument, and strictly concave in both.6 These

preferences choose portfolios on the CRF: If we plot the corresponding indifference curves on

Figure 2 then a tangency with the "bull" and "bear" hyperbolas defines the optimal profile ν1

for a given U (·), which satisfies ν1 ≥ E (R∗∗a |G1).

4.1 Preferences Underlying the Conditional and Unconditional Frontiers

It will be convenient to map mean-variance preferences, or equivalently the CRF problem

(2), into simple criteria based on possibly random risk-return trade-offs.

Proposition 1 The following mean-variance criteria choose portfolios on the CRF:

1. The optimal portfolio of problem

max
p∈Ra

E (p|G1)−
θ1
2
V ar (p|G1) ,

given some strictly positive θ1 ∈ I1 is equal to (4) if we choose a profile ν1 ∈ I1 such that

w1 (ν1) =
1

θ1
.

2. The optimal portfolio of problem

max
p∈Ra

E (p|G1)−
b1
2
E
(
p2|G1

)
,

given some strictly positive b1 ∈ I1 is equal to (3) if we choose a profile ν1 ∈ I1 such that

ω1 (ν1) =
1

b1
.

Ferson and Siegel (2001) show that the optimal portfolio of an agent with quadratic utility

E
[
p− (b/2) p2|G1

]
for some strictly positive b ∈ R is actually a return on the URF. In our

set-up, Proposition 1 shows that the solution of problem

max
p∈Ra

E (p|G1)−
b

2
E
(
p2|G1

)
(7)

6The justification of mean-variance preferences was linked to elliptical distributions by Chamberlain (1983)
and Owen and Rabinovitch (1983) in the context of passive strategies and unconditional moments.
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is equal to the solution of problem (5) if we choose a ν ∈ R such that

ωU (ν) =
1

b
,

that is, the active return

R∗a +
1

b
A+a .

This link of the URF to specific preferences clarifies that while returns on the URF always

lie on the CRF, the converse is not generally true. Similarly, the actual difference between

problems (5) and (2) is the mean constraint, not the criterion to minimize. The first problem

only constrains E (p) while the latter constrains the whole profile E (p|G1). A CRF portfolio

will also be located on the URF if and only if we choose the conditional mean profile as

ν1 = ωU (ν)E
(
A+a |G1

)
+E (R∗a|G1) ,

which we can interpreted as the optimal mean profile given E (p) = ν, so that

ω1 (ν1) = ωU (ν) .

In the context of Figure 2, the URF focuses on particular pairs (E (p|z = 1) , E (p|z = 2)) in

the sense that, given a value of E (p|z = 1), there is only one value of E (p|z = 2) on the URF.

However, all possible pairs are on the CRF.

We can rationalize the URF by means of quadratic utility but such preferences are not used

in finance theory. They are not a plausible description of investor behavior because they have

decreasing marginal utility and increasing absolute risk aversion.

4.2 Standard Preferences and the Residual Return Frontier

When conditioning information is taken into account, probably the most common mean-

variance preferences in finance theory are given by

max
p∈Ra

E (p|G1)−
θ

2
V ar (p|G1) . (8)

for some strictly positive θ ∈ R. This criterion is often justified by CARA utility E [− exp (−θp) |G1]

plus conditional normality of p, but none of the following results require CARA utility and/or

normality.

Given Proposition 1, we can easily characterize the specific subset of the CRF where the

choices of this criterion are located.
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Corollary 1 The optimal portfolio that solves problem (8) is

R∗∗a +
1

θ
A++a .

Now we will study the mean-variance frontier where only these returns are located because

this is the key feature to develop an efficiency test. We can decompose the unconditional variance

of a portfolio payoff as

V ar (p) = E [V ar (p|G1)] + V ar [E (p|G1)] ,

and we will refer to the first component as the residual variance because it can be interpreted

as follows. If we consider the residual of a portfolio payoff as p̃ = p−E (p|G1) then we find

V ar (p̃) = E
(
p̃2
)
= E [V ar (p|G1)] .

We define the Residual Return Mean-Variance Frontier (RRF) as the active returns that

minimize the residual variance E [V ar (p|G1)] for a given target of expected return E (p). Thus,

the RRF will be given by the set of active returns that solve the problem

min
p∈Ra

E [V ar (p|G1)] s.t. E (p) = ν ∈ R. (9)

The next proposition shows the link between this non-standard frontier and standard mean-

variance preferences.

Proposition 2 The optimal portfolio that solves problem (9) can be represented as

pR (ν) = R∗∗a + ωR (ν)A
++
a , ωR (ν) =

ν −E (R∗∗a )

E
(
A++a

) , (10)

and it is also the solution of the portfolio problem (8) if we choose a ν ∈ R such that

ωR (ν) =
1

θ
.

The RRF is a hyperbola on the [E1/2 [V ar (p|G1)] , E (p)] space and the minimum residual

variance is given by R∗∗a . Figure 3 illustrates the RRF for the binomial example described in

Section 2.
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Figure 3: The Residual Frontier on space [E1/2 [V ar (p|G1)] , E (p)]. The location of R∗∗a is

shown, jointly with the geometry of the zero-residual beta return p2 associated to a return p1

on the frontier.

On the other hand, R∗a is located on the CRF, but not on the RRF. The actual difference

between problems (9) and (2) is the mean constraint, not the criterion to minimize. Given

Lemma 1 and Proposition 2, we can easily characterize the connection between the RRF and

the CRF.

Corollary 2 The returns on the RRF are also on the CRF. A CRF portfolio will also be located
on the RRF if and only if we choose the conditional mean profile as

ν1 = ωR (ν)E
(
A++a |G1

)
+E (R∗∗a |G1) ,

so that
w1 (ν1) = ωR (ν) .

In the binomial example of Figure 2, given a value of E (p|z = 1), there is only one value of

E (p|z = 2) on the RRF. Note also that a standard mean-variance agent chooses ωR (ν) ≥ 0 or

equivalently ν ≥ E (R∗∗a ), which defines the efficient part of the RRF. Corollary 2 shows that

ν ≥ E (R∗∗a ) implies ν1 ≥ E (R∗∗a |G1), therefore returns on the efficient part of the RRF are also

located on the efficient part of the CRF. However, this is not necessarily the case with efficient

returns in the URF sense.

Our remaining task is the particular beta-pricing associated to the RRF. Let us define the

residual beta of a return p ∈ Ra with respect to a return pβ ∈ Ra as

βR =
E [Cov (p, pβ|G1)]

E
[
V ar

(
pβ |G1

)] .

13



Each return pR on the RRF, apart from R∗∗a , has a unique zero-beta counterpart on the

RRF.7 Specifically, two returns on the RRF, say p1 = R∗∗a + ω1A
++
a and p2 = R∗∗a + ω2A

++
a ,

satisfy

E [Cov (p1, p2|G1)] = 0

if and only if (ω1, ω2) are related by E [V ar (R
∗∗
a |G1)]+ω1ω2E (A

++
a ) = 0. Moreover, the return

p1 is the solution to

max
p∈Ra

E (p)−E (p2)

E1/2 [V ar (p|G1)]
,

which represents the tangency from E (p2) to the RRF on the [E1/2 [V ar (p|G1)] , E (p)] space.

See Figure 3 for a particular p1.

The following proposition can be interpreted as the RRF counterpart of the results in Roll

(1977) for passive strategies and Hansen and Richard (1987) for the URF.

Proposition 3 A return pβ ∈ Ra different from R∗∗a is on the RRF if and only if

E (p)−Eβ = βR [E (pβ)−Eβ] , ∀p ∈ Ra,

for some Eβ ∈ R.

This proposition defines the null hypothesis of a portfolio efficiency test that is relevant for

the standard mean-variance preferences defined by (8). This equation is standard in the sense

of using unconditional means E (p) and E (pβ), which can be estimated by historical averages,

but it is not in the sense of using a new type of beta βR. As in the case of conditional and

unconditional betas, the beta-pricing equation should be satisfied for every p ∈ Ra since we are

considering active returns.

Contrary to the classic Markowitz set-up, where all mean-variance preferences agree on a

single beta, we find three different betas to test portfolio efficiency. A conditional beta tests

if a particular portfolio is on the CRF or equivalently if it may be optimal for general mean-

variance preferences. Therefore we think of the whole square in Figure 1 or any random θ1 or

b1 in Proposition 1. However, we can increase the test power if we have specific preferences

in mind and hence specific subsets of the CRF. In particular, we have studied the RRF and

URF, represented by subsets in Figure 1, or any constant θ1 = θ (RRF) or b1 = b (URF) in

Proposition 1. The RRF and URF have specific associated betas, βR and βU respectively.

7The return R∗∗a cannot have a zero-beta counterpart because

Cov (p,R∗∗a |G1 ) = V ar (R
∗∗

a |G1 ) , ∀p ∈ Ra.
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This difference in betas is relevant because the next section shows that, apart from a few

implausible cases, the RRF and URF are different objects. In general a portfolio that is on the

RRF cannot be on the URF, therefore residual and unconditional beta-pricing are incompatible.

Testing portfolio efficiency from the URF perspective, which is the usual context of empiri-

cal work, is actually relevant for quadratic utility but not for more standard mean-variance

preferences.

4.3 Relationship between the Residual and Unconditional Frontiers

Both the RRF and the URF are subsets of the CRF, but we still need to study if those subsets

share any element. In the very special case of all expected returns being equal then A+a = 0 and

the CRF collapses to the singleton R∗a = R∗∗a . Therefore the RRF and URF collapse to that

point too. In the binomial example of Figure 2, we would find a single mean-volatility pair in a

"bull market" and another one in a "bear market". This situation can be associated with the

equilibrium of an economy with a risk-neutral agent or simply a single payoff in x.

In general the RRF and URF cannot share a point.8 Each frontier gives the best return for

different criteria V ar (p) and E [V ar (p|G1)] and hence the other frontier will be located to the

right on the corresponding space as Figure 4 shows.
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Figure 4: The Residual and Unconditional Frontiers (RRF and URF) on spaces

[E1/2 [V ar (p|G1)] , E (p)] and [V ar
1/2 (p) , E (p)].

8For instance, both R∗∗a and R∗a belong to the CRF. However, R∗∗a belongs to the RRF but not to the URF,
while R∗a is located on the URF but not on the RRF.
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The next proposition characterizes the special case where the RRF and URF are tangent

when A+a 
= 0.

Proposition 4 Let us assume A+a 
= 0. The RRF and the URF are tangent if and only if there
are two real numbers (a, b) such that

E (R∗a|G1) = a+ bE
(
A+a |G1

)
,

in which case the shared element has a constant conditional mean.

Unconditional two-fund spanning holds in both frontiers, in the sense that we can use an

unconditional combination of two elements on one frontier to replicate the remaining elements

of that frontier. Hence the RRF and URF will be equal if the previous condition is satisfied at

two points at the same time, which translates into the following result.

Corollary 3 Let us assume A+a 
= 0. The RRF and URF are equal if and only if

E (R∗a|G1) ∈ R, E
(
A+a |G1

)
∈ R,

in which case every element on those frontiers has a constant conditional mean.

In this special case, returns on the RRF and URF have constant conditional means and hence

unconditional and residual variances (and betas) are equal. The hyperbolas that represent the

CRF on the [V ar1/2 (p|G1) , E (p|G1)] space for a each value of the conditioning variables in G1,

e.g. the "bull" and "bear" hyperbolas in Figure 2, share the same location of the minimum

and the same asymptotes. This situation is far from plausible and does not depend exclusively

on asset payoffs having constant conditional means because the conditional covariance matrices

also matter in the construction of active strategies.

5 Frontiers with a Safe Asset

The existence of a safe asset may simplify the study of portfolio efficiency with a single

optimal risk-return trade-off defined by an optimal Sharpe ratio. We will describe its implications

for the different frontiers that we studied so far, with a special emphasis on Sharpe ratios and

Jensen’s alphas given their relevance in portfolio efficiency tests.

In our binomial example of "bull" and "bear" markets, we introduce a conditionally riskless

asset with a return R0 defined by the real numbers

R0 (z = 1) = 1.07, R0 (z = 2) = 1.02,

which imply the unconditional moments

E (R0) = 1.06, V ar (R0) = 0.0004.
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Regarding our general theoretical framework, imagine that investors have access to a set

of assets that includes not only the original risky asset payoffs9 in x, but also the safe payoff

x0 = 1, with cost C (x0|G1) ∈ I1. In this context, Qa ⊃ Pa will denote the corresponding

enlarged payoff space constructed by active strategies on both x and x0, and we will denote by

Sa ⊃ Ra the subset of returns in Qa. In this set-up, the conditionally safe return is given by

R0 =
1

C (x0|G1)
∈ I1,

and sometimes we will work with the excess return of a gross return p ∈ Sa, which is defined as

e = p−R0.

5.1 The Conditional Frontier

The elements of the CRF solve the same problem as (2), except that p is allowed to belong

to the enlarged set Sa. Therefore, equation (3) also defines the CRF after the introduction of a

safe payoff if we translate R∗a and A+a to the new space Qa. We denote the counterpart of A+a

by B+a and we can show that R∗a becomes R0 (1−B+a ), therefore the CRF on Sa is

pC (ν1) = R0 + (ω1 (ν1)−R0)B
+
a , ω1 (ν1)−R0 =

ν1 −R0

E
(
B+a |G1

) .

We also have an equivalent representation along the lines of equation (4). The minimum

conditional variance return is trivially R0 and there is a well defined arbitrage portfolio B++a

that plays the same role as A++a in the new space of arbitrage portfolios, Using those objects,

we can express the CRF as

pC (ν1) = R0 +w1 (ν1)B
++
a , w1 (ν1) =

ν1 −R0

E
(
B++a |G1

) .

The elements of the CRF lie along two straight lines on the [V ar1/2 (p|G1) , E (p|G1)] space

for each possible value of the signals in G1, and those two lines intersect on the vertical axis at

R0. Figure 5 illustrates these features with our binomial example. We can also see that there is

a tangency between the CRF on Sa and the CRF on Ra. In general there is a conditional mean

profile ν1 such that the weight of the CRF on the conditionally safe payoff x0 will be identically

0 for every possible signal realization, which implies that it will be equal to the CRF on Ra at

that point.

9So far we assumed implicitely the smallest eigenvalue of V ar (x|G1 ) is uniformly bounded away from 0 a.s.,
which implies that none of the primitive assets is either conditionally riskless or redundant.
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Lemma 2 If E (R∗∗a |G1) 
= R0 then there is a tangency portfolio between the CRF with and
without a safe asset given by

R∗∗a +

[
V ar (R∗∗a |G1)

E (R∗∗a |G1)−R0

]
A++a = R∗a +

[
E
(
R∗2a |G1

)
−R0E (R∗a|G1)

E (R∗a|G1) +R0E
(
A+a |G1

)
−R0

]

A+a . (11)

The risky component of the elements of the CRF on Sa is conditionally proportional to this

element of the CRF on Ra.
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Figure 5: Conditional Frontier with and without a safe asset on space [V ar1/2 (p|z) , E (p|z)] at

both signal values z = 1 and z = 2. The location of the safe return R0 is shown.

There is a single optimal risk-return trade-off on the [V ar1/2 (p|G1) , E (p|G1)] space for each

signal value in the sense that conditional Sharpe ratios of risky returns p ∈ Sa defined as

SR1 =
E (e|G1)

V ar1/2 (e|G1)

reach their maximum value for risky returns on the efficient side of the CRF. Those excess

returns are given by w1 (ν1)B
++
a and hence

max
p∈Sa

SR2
1
= E

(
B++a |G1

)
,

a result that we can use it to test portfolio efficiency. In our binomial example, this random

variable takes two values given by the slopes of the straight lines in Figure 5.

Regarding conditional beta-pricing, now there is a unique zero-beta return given by the safe

asset itself. In particular, a return pβ ∈ Sa different from R0 is on the CRF if and only if

E (p|G1)−R0 = β
1
[E (pβ |G1)−R0] , ∀p ∈ Sa.
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That pricing equation can also be expressed in terms of excess returns and we can define the

conditional version of Jensen’s alpha as

α1 = E (e|G1)−
Cov (e, eβ|G1)

V ar (eβ|G1)
E (eβ |G1) ,

which is equal to zero for every return on the CRF.

5.2 The Residual Frontier

Equation (10) also defines the RRF on Sa if we translate R
∗∗
a and A++a to the new space,

pR (ν) = R0 + ωR (ν)B
++
a , ωR (ν) =

ν −E (R0)

E
(
B++a

) .

The RRF becomes two straight lines on the [E1/2 [V ar (p|G1)] , E (p)] space with zero residual

variance minimum at ν = E (R0), as Figure 6 shows. However, contrary to conventional wisdom

on mean-variance frontiers with a safe asset, in general there is no tangency portfolio as we

can see in Figure 6. The risky component of the elements of the RRF on Sa is conditionally

proportional to the tangency portfolio of the CRF on Ra (11), which does not belong to the

RRF on Ra in general because its weight on A++a is random.10
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Figure 6: The Residual Frontier with and without a safe asset on space

[E1/2 [V ar (p|G1)] , E (p)]. The location of the safe return R0 is shown.

10We can follow the proof of Corollary 3 to show that there is a tangency if and only if

E (R∗∗a |G1 )−R0
V ar (R∗∗a |G1 )

∈ R,

in which case we can span the RRF on Sa by means of passive strategies in the safe asset and the tangency
portfolio.
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Regarding Sharpe ratios and Jensen’s alpha, we find standard properties on the RRF if we use

their residual versions. There is a single optimal risk-return trade-off on the [E1/2 [V ar (p|G1)] , E (p)]

space in the sense that residual Sharpe ratios of risky returns p ∈ Sa defined as

SRR =
E (e)

E1/2 [V ar (e|G1)]

reach their maximum value for risky returns on the efficient side of the RRF. Those excess

returns are given by ωR (ν)B
++
a and hence

max
p∈Sa

SR2R = E
(
B++a

)
.

We can rely on SRR to construct a simple test of portfolio efficiency. This Sharpe ratio has

not been used in empirical work so far even though it is the relevant one for preferences like (8).

We also find the following relationship between SRR on the RRF and SR1 on the CRF

max
p∈Sa

SR2R = E

[
max
p∈Sa

SR2
1

]
.

Residual beta-pricing has a unique zero-beta return given by the safe asset itself, as the

following corollary states.

Corollary 4 A return pβ ∈ Sa different from R0 is on the RRF if and only if

E (p)−E (R0) = βR [E (pβ)−E (R0)] , ∀p ∈ Sa.

That pricing equation can also be expressed in terms of excess returns and we can define the

residual version of Jensen’s alpha as

αR = E (e)−
E [Cov (e, eβ |G1)]

E [V ar (eβ|G1)]
E (eβ) ,

which is equal to zero for every return on the RRF.

5.3 The Unconditional Frontier

The elements of the URF solve the same problem as (5), except that p is allowed to belong

to the enlarged set Sa. The solution (6) is still valid with the proper translation of R∗a and A
+
a

to the new space Qa

pU (ν) = R0 + (ωU (ν)−R0)B
+
a , ωU (ν) =

ν −E [R0 (1−B+a )]

E
(
B+a
) .

20



Peñaranda and Sentana (2008) point out two facts about the URF that contradict conven-

tional wisdom on mean-variance frontiers with a safe asset. First, as Figure 6 illustrated with

the RRF, in general there is no tangency portfolio. The risky component of the elements of the

URF on Sa is again conditionally proportional to an element on the original CRF on Ra (11)

that does not belong to the URF on Ra in general because its weight on A+a is random.11

Second, there is an important difference with respect to the RRF. The elements of the URF

do not lie along two straight lines on the [V ar1/2 (p) , E (p)] space if R0 is random. In fact,

Hansen and Richard (1987) show that R0 is not on the URF in that case. Figure 7 compares

the RRF and the URF in this context.

1.02

1.08

1.14

0 0.02 0.04

SD

M
E

A
N

RRF

URF

1.02

1.08

1.14

0 0.02 0.04

RESIDUAL SD

M
E

A
N

RRF

URF

Figure 7: The Residual and Unconditional Frontiers (RRF and URF) with a safe asset on

spaces [E1/2 [V ar (p|G1)] , E (p)] and [V ar
1/2 (p) , E (p)].

Now let us consider Sharpe ratios and Jensen’s alpha. The unconditional Sharpe ratio of a

risky return p ∈ Sa, defined as

SRU =
E (e)

V ar1/2 (e)
,

is not unique on the URF, where excess returns are given by (ωU (ν)−R0)B
+
a , and hence SRU is

not useful to test if a portfolio is on the URF. Moreover, the unconditional beta-pricing equation

11We can follow the proof of Corollary 3 to show that there is a tangency if and only if

E
(
R∗2a |G1

)
−R0E (R

∗
a|G1 )

E (R∗a|G1 ) +R0E
(
A+a |G1

)
−R0

∈ R.

Nevertheless, we cannot represent the URF on Sa with passive strategies in the safe asset and the tangency
portfolio unless R0 ∈ R.
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is the same as if there was not a safe asset in the sense that the zero-beta return will depend

on the chosen element of the URF. An unconditionally risky safe asset is not the proper zero-

beta return in unconditional beta-pricing. Therefore, we can define the unconditional version of

Jensen’s alpha as

αU = E (e)−
Cov (e, eβ)

V ar (eβ)
E (eβ) ,

but it is not equal to zero for returns on the URF, and its value also depends on the particular

eβ.

Empirical work tends to use unconditional Sharpe ratios and Jensen’s alpha because they do

not require a model of conditional moments as commented before. Unfortunately, they simply

do not work as conventional wisdom suggests when testing the location of a return on the URF.

The null hypothesis is not well defined for both Sharpe ratios (not unique on the URF) and

Jensen’s alpha (not zero on the URF).

On the other hand, the RRF has better properties in terms of those measures because the

excess returns eβ on the RRF are simply ωR (ν)B
++
a . There is a unique unconditional Sharpe

ratio on the RRF equal to E (B++a ) /V ar1/2 (B++a ) even though it is not a straight line on the

[V ar1/2 (p) , E (p)] space. As a result, we can use both unconditional and residual Sharpe ratios

to test the location of a portfolio on the RRF. In addition, unconditional alphas on the RRF

are not zero but they do not depend on eβ , only on the particular e that we are pricing.

There are more properties to comment such as SRR and αR on the URF, but we leave them

for the empirical application. We finally emphasize that all these different properties of the URF

and RRF are compatible with both having the same maximum SR1 and zero α1 at every signal

value because they belong to the CRF.

5.4 A Safe Asset with Constant Return

The empirical work on efficiency tests has focused on properties that are compatible with

a nonrandom R0. This may be due to the fact that Treasury-Bills’ historical variance is much

lower than e.g. stocks’ historical variance. Nevertheless, the empirical application will show that

the relevant properties are the ones that we have described above not the ones derived from a

constant return.

In any case, before turning to the empirical application, we will describe the frontiers when

R0 ∈ R or equivalently the safe asset is unconditionally riskless because C (x0|G1) is nonrandom.
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In our binomial example we simply define a constant return equal to the mean of the previous

safe asset, R0 = 1.06.

The CRF would have a single intersection on the vertical axis of Figure 5, and Figure 6

would be similar in the sense that there is no tangency portfolio on the RRF irrespective of

whether R0 is random or not. There is not a tangency portfolio on the URF either, but it will

indeed consist of two straight lines that intersect on the vertical axis at R0. Figure 8 illustrates

this case for our binomial example. A constant R0 is a necessary but not sufficient condition

for the URF and RRF to be equal. Note that the translation of Corollary 3 to the safe asset

context shows that the URF and RRF on Sa are equal if and only if both R0 and E (B+a |G1)

are constant.
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Figure 8: The Residual and Unconditional Frontiers (RRF and URF) with a constant return

on spaces [E1/2 [V ar (p|G1)] , E (p)] and [V ar
1/2 (p) , E (p)].

The properties of the RRF are similar to the general case of a random R0, but the properties

of the URF change drastically. Now excess returns on the URF are unconditionally proportional

to B+a . There is a single optimal SRU for risky returns on the efficient side of the URF given

by E (B+a ) / (1−E (B+a )), and we can rely on SRU to test portfolio efficiency. Therefore, in the

case of an unconditionally riskless asset, we can find a relationship between SRU on the URF

and SR1 on the CRF

1

1 +maxp∈Sa SR
2
U

= E

[
1

1 +maxp∈Sa SR
2
1

]
,
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which was already developed by Jagannathan (1996). Here we emphasize that such a rela-

tionship, where both sides are equal to 1 − E (B+a ), does not hold in the realistic context of a

nonconstant return. Regarding Jensen’s alpha, there is a unique zero-beta return on the URF,

the safe asset itself. Now a return pβ ∈ Sa different from R0 is on the URF if and only if its αU

is zero.

6 Empirical Application

Our results have been illustrated so far with a simple binomial example for pedagogical

reasons. Now, by means of a standard empirical application, we will confirm that the quantitative

relevance of our results does not depend on the binomial feature neither on the chosen numbers.

Moreover, we do not need to rely on too many assets, neither too many predictors or a complex

model of conditional moments. We will think of our sample estimates as population parameters,

or simply calibrated parameters, since our goal is not inference but a plausible illustration of

the right null hypothesis in efficiency tests.

The vector x is constructed with six gross returns whose nonrandom C (x|G1) is equal to

a vector of ones from six portfolios of US stocks sorted by size (small and large) and book-to-

market (high, medium and low). We will refer to those six portfolios as SL, SM, SH, BL, BM

and BH. We use data from 1953 to 2007 from Ken French’s web page; see Fama and French

(1993) for further details.

The main difference with our binomial example is that we will use continuous signals and

hence, from the perspective of date 0, the payoff space at date 2 will be infinite dimensional.

Similarly, the counterpart of Figure 2 would contain infinite hyperbolas since there is a different

one for each signal value. The new information set is constructed with three standard predictors

of stock returns: the dividend yield, the term spread, and the default spread. See e.g. Ferson

and Siegel (2007) and the references therein.

We model conditional moments following the standard approach in e.g. Ferson and Siegel

(2001), linear predictive regressions whereE (x|G1) is linear in the three predictors and V ar (x|G1)

is constant. In what follows, we will use overlapping annual gross returns from our monthly data.

We think of a one-year investment horizon to have enough return predictability and hence rele-

vant active strategies. The R2 of the six predictive regressions range from 9 to 14%, which are

typical values with annual data.
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Figure 9 shows the RRF and URF in this set-up,12 jointly with the passive frontier (dashed

line). The latter frontier is defined like the URF in (5) but constrained to passive strategies

and hence it represents the classic Markowitz frontier. Interestingly, from the point of view of

unconditional variance, the RRF looks as suboptimal as the passive frontier.

Figure 9: Empirical Residual and Unconditional Frontiers (RRF and URF) on spaces

[E1/2 [V ar (p|G1)] , E (p)] and [V ar
1/2 (p) , E (p)]. The dashed line represents the passive

frontier.

This is also the case when we add the safe asset to our empirical application, see Figure 10.

The safe return has a sample mean of 5.2%, with a volatility of 2.8%. Compared to the six risky

returns of our primitive portfolios, whose average mean is 15.3% and average volatility is 20.1%,

the safe return volatility is very low. Nevertheless, it really makes a difference with respect to

12Corollary 3 showed that the RRF and URF are equal if and only if E (R∗a|G1 ) and E
(
A+a |G1

)
are constant.

In this data set, E (R∗a|G1 ) has mean 0.672 and standard deviation 0.202, while E
(
A+a |G1

)
has mean 0.410 and

standard deviation 0.183.
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a zero volatility as we will see. The shape of the URF is far from the conventional property of

straight lines that intersect the y-axis, while the RRF has this property on its own space.

Figure 10: Empirical Residual and Unconditional Frontiers (RRF and URF) with a safe asset

on spaces [E1/2 [V ar (p|G1)] , E (p)] and [V ar
1/2 (p) , E (p)]. The dashed line represents the

passive frontier.

Now let us turn to the computation of Sharpe ratios and Jensen’s alpha. Table 1 shows that

the SRU on the URF changes considerably, and can be lower than the value 0.94 on the RRF,

which is unique even though the RRF is not a straight line on the [V ar1/2 (p) , E (p)] space. For

instance, the return on the URF with mean 6% has an unconditional Sharpe ratio of 0.38, while

the return with mean 10% has a ratio of 0.97. In addition, passive strategies can give a higher

Sharpe ratios than the URF, and these ratios are different to the RRF even though the passive

frontier and the RRF look similar on the [V ar1/2 (p) , E (p)] space. Specifically, the SRU on the

passive frontier is 0.73, 0.92, and 0.93 for return means 6, 10, and 20% respectively. Regarding
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the SRR, it takes values 0.80, 1.00, and 1.01 on the passive frontier for the same mean returns.

The RRF provides the unique optimal value of SRR.

Table 1: Empirical Residual and Unconditional Sharpe ratios on the Residual and

Unconditional Frontiers (RRF and URF).

The URF ratios depend on the particular return mean, which is shown in parenthesis.

SRR SRU

RRF 1.197 0.942

URF(6%) 0.565 0.380

URF(10%) 1.096 0.970

URF(20%) 1.128 1.053

Table 2 shows the unconditional and residual alphas of the six primitive portfolios with

respect to returns on the RRF and URF. We could apply the beta-pricing equations to any

active return but we focus on the primitive risky assets to simplify the analysis.

Table 2: Empirical Residual and Unconditional Jensen’s alphas on the Residual and

Unconditional Frontiers (RRF and URF).

The alphas are computed for each of the six primitive portfolios, whose risk premia are 7.3, 12.5, 14.8,

7.0, 8.4, and 11.0% respectively. The URF alphas depend on the particular return mean, which is

shown in parenthesis.

αR (%) αU (%)

SL SM SH BL BM BH SL SM SH BL BM BH

RRF 0 0 0 0 0 0 1.7 2.2 2.8 1.8 1.7 2.5

URF(6%) 6.2 10.1 11.8 5.0 6.0 8.3 7.1 11.4 13.3 5.8 6.9 9.5

URF(10%) 0.7 1.3 1.3 0.0 0.3 0.5 2.1 2.6 3.0 0.9 1.0 1.8

URF(20%) -0.0 0.3 0.2 -0.3 -0.1 -0.2 0.5 0.5 0.5 0.0 0.0 0.2

The URF shows a nonzero αU that can be very high, even higher than on the RRF (where

alpha is independent of the particular point on the frontier), but decreases with the mean of the

particular portfolio on the URF. In particular, moving from an expected return of 6% to 10%

on the URF changes the average alpha across the six portfolios from 9 to 2%, while the average

risk premia on these portfolios is 10% and the average αU for the RRF is 2%. Regarding the
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αR, the URF shows again different values for a given asset depending on the particular point

on the frontier, while αR on the RRF is zero for every active return with respect to any point

on the frontier.

Obviously, the "mispricing" in terms of αU on the URF is only due to using the safe asset as

the wrong zero-beta, but this is not taken into account in the usual null hypothesis of portfolio

efficiency tests. The conventional wisdom is actually based on properties that hold with an

unrealistic constant return. To compare both set-ups, Tables 3 and 4 replicate Tables 1 and 2

under the assumption of a constant return of 5.2%. Now all the frontiers in Figure 10 would

turn into straight lines that touch the y-axis at R0 in both spaces.

Table 3: Empirical Sharpe ratios on the Residual and Unconditional Frontiers (RRF and URF)

with an artificially constant return.

SRR SRU

RRF 1.195 0.929

URF 1.121 1.057

The properties of the URF change drastically with a constant return, while the RRF is not

so sensitive to the presence of such an asset. The URF has a unique SRU , which is higher than

the unique value on the RRF; and a unique SRR, which is lower than the RRF. For comparison,

the passive frontier has a unique SRU equal to 0.94, slightly better than the RRF, while its

unique SRR is equal to 1.01. Finally, Table 4 shows a zero αU and a unique nonzero αR (for

each asset that is priced) on the URF.

Table 4: Empirical Residual and Unconditional Jensen’s alphas on the Residual and

Unconditional Frontiers (RRF and URF) with an artificially constant return.

The alphas are computed for each of the six primitive portfolios, whose risk premia are 7.3, 12.5, 14.8,

7.0, 8.4, and 11.0% respectively.

αR (%) αU (%)

SL SM SH BL BM BH SL SM SH BL BM BH

RRF 0 0 0 0 0 0 1.5 2.2 2.8 1.9 1.8 2.6

URF -0.1 0.2 0.1 -0.3 -0.1 -0.3 0 0 0 0 0 0
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7 Conclusion

The trivial connection between mean-variance frontiers and preferences in the classic Markowitz

set-up becomes much more complex when investors design active strategies. This paper studies

the tension between the frontiers that drive empirical work and the preferences that are used in

finance theory, and its implications for efficiency tests. Our results can be considered as both a

guideline for future empirical work and an accurate interpretation of the current evidence.

We distinguish two subsets of the conditional frontier (CRF), the unconditional and the

residual frontiers (URF and RRF), as illustrated in Figure 1. The URF is the main focus of

empirical work but has a weak connection to mean-variance preferences. The RRF has not been

studied in the literature but it is where standard mean-variance preferences choose portfolios.

We show that both subsets of the CRF do not share any active return unless returns satisfy a

few implausible cases.

In the classic Markowitz set-up there is a single beta and Sharpe ratio to use in efficiency

tests, but return predictability implies that different mean-variance preferences may disagree

on the relevant test of portfolio efficiency. An unconditional beta or Sharpe ratio are not the

relevant tests for standard mean-variance preferences, whose specific tests are based on their

residual counterparts, while the power of a conditional test may be too low since all mean-

variance preferences are compatible with it.

When there is a safe asset, we also highlight that conventional features with passive strategies

such as a unique Sharpe ratio and a zero alpha on the frontier do not necessarily hold on the

URF. Hence the use of unconditional Sharpe ratios and Jensen’s alphas in empirical work may be

misleading. On the other hand, the RRF has the classic properties that simplify the construction

of efficiency tests.

A standard empirical application to US stocks confirms the quantitative relevance of our

theoretical concerns. The corresponding URF and RRF have quite different properties, and

their plots show that, from the perspective of one frontier, the other may look as inefficient as

passive strategies. Moreover, the unconditional Sharpe ratio on the URF changes considerably

and can be lower than its unique value on the RRF. The unconditional Jensen’s alphas can be

very high on the URF, even higher than on the RRF.

Finally, we did not study the translation of beta-pricing results to stochastic discount factors

because the duality between portfolio and stochastic discount factor frontiers is developed in
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Peñaranda and Sentana (2007).13 An interesting avenue of further research is the application

of the RRF framework to the analysis of factor mimicking portfolios, as Ferson, Siegel, and

Xu (2006) have computed such portfolios in the URF set-up. The analysis of other families of

mean-variance preferences whose corresponding subsets of the CRF have interesting properties

(like the RRF and URF), and more general preferences that include higher order moments, are

additional topics of further research.

13 In addition, Basu and Stremme (2006) relate the pricing of portfolios with general cost to Sharpe ratios on
frontiers with general cost.
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Appendix

Proofs

Lemma 1:

The connection between (R∗a, A
+
a ) and (R

∗∗
a , A

++
a ) is given by

R∗∗a = R∗a +E (R∗a|G1)A
++
a , A++a =

1

1−E
(
A+a |G1

)A+a .

Note that R∗∗a − R∗a and A++a are conditionally proportional to A+a . The factor of propor-

tionality is well defined because the safe asset does not belong to Aa. Equivalently, we can

write

R∗a = R∗∗a −E (R∗∗a |G1)A
+
a , A+a =

1

1 +E
(
A++a |G1

)A++a .

Finally, the lemma is a straightforward implication of the relationships above,

R∗∗a +w1 (ν1)A
++
a =

[

R∗a +
E (R∗a|G1)

1−E
(
A+a |G1

)A+a

]

+w1 (ν1)

[
1

1−E
(
A+a |G1

)A+a

]

= R∗a +

[
E (R∗a|G1) +w1 (ν1)

1−E
(
A+a |G1

)

]

A+a = R∗a + ω1 (ν1)A
+
a ,

which shows the link between w1 (ν1) in (4) and ω1 (ν1) in (3). �

Proposition 1:

This proof and others below are based on orthogonal projections. We assume that the diagonal

elements of E (xx′|G1) are uniformly bounded with probability one (a.s.), so that all the elements

of x belong to L2, which is the collection of all random variables defined on the underlying

probability space with bounded (unconditional) second moments.

The first point of the proposition is based on the decomposition of any p ∈ Ra along the

lines of Chamberlain and Rothschild (1983) framework for passive strategies. We will use the

covariance projection based on Cov (x, y|G1) as the inner product between random variables x

and y, and V ar1/2(x|G1) as its corresponding norm. A priori, this may not be a proper norm in

the sense that V ar(x|G1) = 0 implies p = E (p|G1) but not necessarily p = 0. However, if there

is not a safe asset, i.e. there is no p such that p = E (p|G1) 
= 0, then V ar(x|G1) = 0 implies

p = 0. Moreover, even if there was a safe asset, this inner product would define a proper norm

in Aa if there are no arbitrage opportunities because a safe asset cannot belong to Aa.

Therefore we can decompose p−R∗∗a ∈ Aa into two components that belong to Aa

p−R∗∗a = λ1A
++
a + u, λ1 =

Cov (A++a , p−R∗∗a |G1)

V ar
(
A++a |G1

) =
E (p−R∗∗a |G1)

E
(
A++a |G1

) ,
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where the former component is its conditional covariance projection onto the conditional span

of A++a , and the latter one is the corresponding residual. The residual satisfies E (u|G1) = 0

because Cov (A++a , u|G1) = 0.

We can characterize any p ∈ Ra by its corresponding pair (λ1, u). The optimal portfolio

maximizes

max
(λ1 ,u)

E (p|G1)−
θ1
2
V ar (p|G1) ,

a criterion that we can express now as

[
E (R∗∗a |G1) + λ1E

(
A++a |G1

)]
−
θ1
2

[
V ar (R∗∗a |G1) + λ2

1
V ar

(
A++a |G1

)
+ V ar (u|G1)

]
,

because Cov (R∗∗a , p|G1) = 0 for every p ∈ Aa. As a result, the optimal portfolio chooses a u

such that V ar (u|G1) = 0, and hence u = E (u|G1) = 0, and a λ1 such that

max
λ1

(
λ1 −

θ1
2
λ2
1

)
E
(
A++a |G1

)

since E (A++a |G1) = V ar (A++a |G1). The optimal λ1 is θ−1
1

and the optimal return can be

expressed as

R∗∗a +
1

θ1
A++a ,

which completes the proof of the first part of the proposition.

The second point of the proposition is based on a different decomposition developed by

Hansen and Richard (1987). They introduced a conditional analogue to a standard Hilbert

space based on the mean square inner product E(xy|G1), and the associated mean square norm

E1/2(x2|G1). Their decomposition is

p = R∗a + η
1
A+a + u, η

1
=
E (A+a (p−R∗a) |G1)

E
(
A+2a |G1

) =
E (p−R∗a|G1)

E
(
A+a |G1

) ,

where u satisfies E (u|G1) = 0 because E (A
+
a u|G1) = 0. The optimal portfolio maximizes

[
E (R∗a|G1) + η

1
E
(
A+a |G1

)]
−
b1
2

[
E
(
R∗2a |G1

)
+ η2

1
E
(
A+2a |G1

)
+E

(
u2|G1

)]

and hence the optimal u is such that E
(
u2|G1

)
= 0, or equivalently u = 0, and the optimal η

1

is b−1
1

given that E
(
A+2a |G1

)
= E (A+a |G1). We can express the optimal return as

R∗a +
1

b1
A+a ,

which completes the proof the second part of the proposition. �
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Proposition 2:

This proof relies on the residual inner product E [Cov(x, y|G1)] between random variables x

and y and its corresponding norm as E1/2 [V ar(x|G1)]. For any p ∈ Ra, we can decompose

p−R∗∗a ∈ Aa into two components that belong to Aa

p−R∗∗a = λA++a + u, λ =
E [Cov (A++a , p−R∗∗a |G1)]

E
[
V ar

(
A++a |G1

)] =
E (p−R∗∗a )

E
(
A++a

) ,

where the former component is its residual projection onto the unconditional span of A++a , and

the latter component is simply the residual of this projection. Hence E (u) = 0 because u

satisfies E [Cov (A++a , u|G1)] = 0.

We can characterize any p ∈ Ra by its corresponding pair (λ, u) with moments

E (p) = E (R∗∗a ) + λE
(
A++a

)
,

E [V ar (p|G1)] = E [V ar (R∗∗a |G1)] + λ2E
[
V ar

(
A++a |G1

)]
+E [V ar (u|G1)] .

Therefore we can choose λ to satisfy the mean constraint of problem (9)

λ =
ν −E (R∗∗a )

E
(
A++a

) = ωR (ν) ,

and simultaneously we can minimise the criterion of problem (9) by choosing a u such that

E [V ar (u|G1)] = 0. Equivalently, the optimal residual is u = E (u|G1) = 0 because a safe asset

cannot belong to Aa under lack of arbitrage opportunities.

In sum, we found that returns

R∗∗a + ωR (ν)A
++
a

are optimal in the RRF sense. Finally, the first part of Proposition 1 implies that choosing

ωR (ν) = θ−1 we solve problem (8). �

Proposition 3:

This proof follows the argument that Hansen and Richard (1987) develop for the CRF. To prove

necessity, let us start with two returns on the RRF different from R∗∗a , say p1 = R∗∗a + ω1A++a

and p2 = R∗∗a + ω2A
++
a , such that E [Cov (p1, p2|G1)] = 0. That is, one return is the zero-beta

counterpart of the other.

The proof of Proposition 2 shows that any return p ∈ Ra can be expressed as

p = pR + u
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where pR is on the RRF, and u satisfies E (u) = 0 and has zero residual covariance with any

return on the RRF. Moreover, by unconditional two-fund spanning on the RRF, we can write

pR = λp1 + (1− λ) p2

for some λ ∈ R, and hence

E (p) = E (pR) = E (p2) + λ [E (p1)−E (p2)] .

In addition,

E [Cov (p, p1|G1)] = E [Cov (pR, p1|G1)] = λE [V ar (p
1
|G1)] ,

or equivalently

λ =
E [Cov (p, p1|G1)]

E [V ar (p
1
|G1)]

.

Therefore, we obtain the desired result by choosing pβ = p1, Eβ = E (p2), and βR = λ.

Now we turn to prove sufficiency. Let us assume there is some pβ ∈ Ra that satisfies

E (p)−Eβ = βR [E (pβ)−Eβ] , ∀p ∈ Ra.

We can again decompose such a return as

pβ = pR + u

where pR is on the RRF, and u satisfies E (u) = 0 and has zero residual covariance with any

return on the RRF. Obviously, pR itself should satisfy the residual beta-pricing

E (pR)−Eβ =
E [Cov (pR, pβ|G1)]

E [V ar (pβ|G1)]
[E (pβ)−Eβ] ,

which implies

E [Cov (pR, pβ|G1)]

E [V ar (pβ|G1)]
= 1

because E (pβ) = E (pR).

The previous decomposition of pβ also implies

E [V ar (pβ|G1)] = E [V ar (pR|G1)] +E [V ar (u|G1)] ,

and putting both implications together, u must satisfy E [V ar (u|G1)] = 0, or equivalently

u = E (u|G1). This translates into u = 0 because a safe asset cannot belong to Aa under lack

of arbitrage opportunities. �
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Proposition 4:

If we start from the RRF and use the relationships developed in the proof of Lemma 1,

R∗∗a + ωR (ν)A
++
a =

[

R∗a +
E (R∗a|G1)

1−E
(
A+a |G1

)A+a

]

+ ωR (ν)

[
1

1−E
(
A+a |G1

)A+a

]

= R∗a +

[
E (R∗a|G1) + ωR (ν)

1−E
(
A+a |G1

)

]

A+a ,

then we can see that the RRF has a random weight on A+a . However, the URF returns R∗a +

ωU (ν)A
+
a require a nonrandom weight on A+a , and hence both frontiers share a point if and

only if

E (R∗a|G1) + ωR (ν)

1−E
(
A+a |G1

) = ωU (ν) .

This expression can be rewritten as

E (R∗a|G1) = a+ bE
(
A+a |G1

)
,

where a = ωU (ν)−ωR (ν) and b = −ωU (ν). In fact, a is equal to the constant conditional mean

of the shared element. �

Lemma 2:

The arbitrage portfolio B++a belongs to the conditional span of A++a and R∗∗a − R0, which are

orthogonal under the covariance inner product,

B++a = A++a + γ
1
(R∗∗a −R0) , γ

1
=
E (R∗∗a |G1)−R0
V ar (R∗∗a |G1)

.

Using that relationship, the CRF on Sa can be expressed as

R0 +w1 (ν1)B
++
a = R0 +w1 (ν1)

[
A++a + γ

1
(R∗∗a −R0)

]

= [1−w1 (ν1)γ1]R0 +w1 (ν1)
[
γ1R

∗∗
a +A++a

]
,

which separates the riskless and risky components of the CRF. We have γ
1

= 0 under the

assumption E (R∗∗a |G1) 
= R0, and hence we can choose w1 (ν1) = γ−1
1

to skip the riskless

component,

R∗∗a +
1

γ
1

A++a = R∗∗a +

[
V ar (R∗∗a |G1)

E (R∗∗a |G1)−R0

]
A++a .

If we had γ
1
= 0 then the cost of the risky component of the CRF on Sa, given by

w1 (ν1) [γ1R
∗∗
a +A++a ] = w1 (ν1)A++a , would be zero at every ν1. In that case, we cannot

find a common point with the CRF on Ra because its cost must be 1 by definition.
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We can use a similar argument to obtain the second expression in (11). The arbitrage

portfolio B+a belongs to the conditional span of A+a and (R∗a −R0)+R0A
+
a , which are orthogonal

under the inner product defined by uncentred second moments,

B+a = A+a + δ1
[
(R∗a −R0) +R0A

+
a

]
, δ1 =

E [(R∗a −R0) +R0A
+
a |G1]

E
[(
(R∗a −R0) +R0A

+
a

)2
|G1

] .

Therefore the CRF on Sa can be expressed as

R0 + (ω1 (ν1)−R0)B
+
a = R0 + (ω1 (ν1)−R0)

[
A+a + δ1

[
(R∗a −R0) +R0A

+
a

]]

= [1− (ω1 (ν1)−R0) δ1]R0 + (ω1 (ν1)−R0)
[
δ1R

∗
a + (1 + δ1R0)A

+
a

]
,

and choosing ω1 (ν1)−R0 = δ−1
1

we obtain

R∗a +

[
1 + δ1R0

δ1

]
A+a = R∗a +

[
E
(
R∗2a |G1

)
−R0E (R

∗
a|G1)

E (R∗a|G1) +R0E
(
A+a |G1

)
−R0

]

A+a ,

which completes the proof. �
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