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Abstract

We propose an integrated preferred-habitat model of bond and currency markets across two
countries. Prices are determined by arbitrageurs trading with investors with preferences for
specific assets. Risk premia vary over time in response to shocks to short rates and to bond and
currency demand. This variation generates empirically documented violations of Expectations
Hypothesis and Uncovered Interest Parity. Large-scale asset purchases in one country cause that
country’s currency to depreciate, bond yields in that country to drop, and yields in the other
country to drop by a smaller amount. A short-rate cut in one country has the same qualitative
effects, although our estimated model reveals that the spillovers to the other country’s term

structure are significantly smaller.
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1 Introduction

This paper proposes an integrated preferred-habitat model of bond and currency markets. Our
model features two countries and three types of investors: bond investors, specialized in specific
maturity segments of the domestic or foreign bond market; currency investors; and risk-averse global
rate arbitrageurs with a limited amount of capital. Because these global rate arbitrageurs operate
on both on the domestic and foreign bond market, and in currency markets, bond and currency risk
premia are linked in equilibrium. Crucially, changes in demand and supply of bonds or currency
must be absorbed in equilibrium by global rate arbitrageurs, with resulting—and joint—changes

in risk premia, expected returns, long term yields and exchange rates.

Our model provides new and important insights on the international transmission of conven-
tional and unconventional monetary policy. It also offers a potential resolution to several long-
standing puzzles in the finance literature, such as the Uncovered Interest Parity (UIP) puzzle or
deviations from the Expectation Hypothesis (EH). Under UIP, domestic and foreign bonds are
perfect substitutes, and the expected rate of depreciation of the nominal exchange rate offsets the
difference between domestic and foreign nominal yields. Under the EH, bonds of various maturities

are perfect substitutes and the shape of the yield curve reflects expectations about future short

rates.

Consider the standard international macro model with perfect capital mobility and floating
exchange rates. In that model, up to constant risk premia, both UIP and the EH hold. This
has powerful implications for the transmission of monetary policy, both along the yield curve,
and across countries. First, the yield curve in each country only depends on expectations of the
local policy rate, which is controlled by local monetary authorities. This immediately implies that
nonconventional policies, such as Quantitative Easing (QE), whereby the central bank purchases
long-dated bonds while keeping short rates unchanged, have no effect on the yield curve. Second,
this also implies that each country’s yield curve is fully insulated from other countries’ monetary
policy. This insulation obtains because, according to UIP, the expected rate of depreciation of the
exchange rate provides all the necessary adjustment. This result is nothing more than a slightly
broader statement of the well-known Friedman-Obstfeld-Taylor Trilemma: with flexible exchange
rates and perfect capital mobility, a floating exchange rate provides local monetary policy autonomy,

not just in setting policy rates, but also in shaping the local yield curve.

Four broad empirical observations cast doubts on the validity of this standard model. First,

a large empirical literature documents strong and systematic patterns in the structure of currency



returns, in violation of UIP (see Fama (1984) and the subsequent literature): high interest rate
countries typically earn high expected returns on short term deposits, an indication that currency
risk premia are time-varying. These deviations from UIP form the basis for currency carry trade
(CCT) strategies that borrow in currencies with low short interest rates and invest in currencies

with high short interest rates.

Second, a similarly large empirical literature documents strong and systematic deviations from
the EH. Two seminal papers in this literature, Fama and Bliss (1987) and Campbell and Shiller
(1991), establish that the slope of the term structure has predictive power for excess bond returns
and for future change in yields, an indication that bond risk premia are time-varying. These
deviations form the basis for bond carry trade (BCT) strategies that borrow in maturities with a

low interest rate and invest in maturities with a higher interest rate.

Third, while the empirical literature on currency and bond returns largely followed parallel but
separate tracks, recent papers establish that the foreign exchange and bond risk premia are deeply
connected. For instance, Chernov and Creal (2020) as well as Lloyd and Marin (2020) find that
yield curve slope differentials matter for the predictability of the currency carry trade (CCT)—
investment strategies that borrow in low interest rate currencies and invest in high ones—while
Lustig, Stathopoulos, and Verdelhan (2019) find that the profitability of the currency carry trade
declines when the trade is carried out with long-term bonds rather than short term ones. This last
result indicate that bond and currency risk premia tend to offset each other as the maturity of the

bond instruments increases.

Lastly, since the 2008 Global Financial Crisis, monetary authorities around the world have
experimented with various forms of ‘Unconventional Monetary Policies’” (UMP) including but not
limited to Quantitative Easing (QE), Forward Guidance, yield curve control or negative interest
rates. A growing body of evidence, surveyed in Bhattarai and Neely (2018) suggests that central
banks’ asset purchases announcements had a significant impact not only on domestic yields, but

also on exchange rates and foreign yields (see also Neely (2015) and Bauer and Neely (2014)).

The challenge is to build a tractable asset pricing framework that is consistent with these four
broad facts. As Lustig, Stathopoulos, and Verdelhan (2019) observe, leading representative no-
arbitrage models of international finance typically have a hard time reproducing these empirical
patterns. For instance, these authors observe that no-arbitrage models cannot replicate both the
strong evidence of deviations from UIP at the short end of the maturity structure, and its absence

when using longer term instruments, since both arise from the same pricing equation. Similarly,



Engel (2016) observes that standard representative agent models cannot explain simultaneously
the UIP puzzle—which through the lens of these models implies that high interest rate currencies
are more risky—and the fact that high interest rate currencies tend to be stronger than implied by
future interest-rate differentials under UIP—which through the lens of these models suggests that

the high interest rate currencies are less risky.

Our paper develops such a framework. It builds on the recent and promising line of research that
recognizes the importance of financial intermediaries and of the limits to arbitrage across partially
segmented financial markets. At the theoretical level, this relaxes the hypothetical representative-
agent’s arbitrage condition and focuses instead on the risk-return tradeoff of the relevant global
investors. Gabaix and Maggiori (2015) present a stylized model of currency markets along those
lines, reviving an important older literature on portfolio balance models (Kouri, 1982). These
models naturally generate deviations from UIP as arbitrageurs need to be compensated for their
currency exposure. Similarly, Vayanos and Vila (2021) present a preferred-habitat model of seg-
mentation along the yield curve in a closed economy. That model naturally generate deviations
from the EH as arbitrageurs need to be compensated for their bond exposure. Our model proposes
an integrated analysis of global rate markets which delivers sharp predictions on the co-movements
between bond and currency risk premia. The model is particularly useful to investigate how ‘local
shocks’ to the supply of or demand for specific maturities can propagate along the domestic and

foreign term structure.

At the institutional level, market segmentation seems a very plausible assumption: the marginal
investor in currency markets is much more likely to be a specialized investor such as a large macro
global hedge fund, the trading desk of a multinational corporation, a sovereign wealth fund, or
the fixed-income desk of a global broker-dealer, rather than the representative household trying to

diversify the risks to the marginal utility of its consumption stream.

In each country, a monetary authority sets short term policy rate exogenously. Further, local
investors are situated along the domestic and foreign term structure. These investors are specialized
in a given currency and maturity segment. In addition, there are specialized investors in the cur-
rency market. These investors are price elastic and their demand for bonds and currency constitute
another source of exogenous variation. Lastly ‘global rates market’ risk averse arbitrageurs can
invest limited capital in all fixed-income instruments, foreign and domestic. Because these global
arbitrageurs operate both on the term structure in each country, and in currency markets, term

premia and currency risk premia are linked in equilibria.



Our framework allows us to answer a number of specific questions. First, we can characterize
the time series behavior of term premia and currency risk premia, given the underlying policy
and demand shocks. Our model recovers deviations from UIP and also very naturally the Lustig,
Stathopoulos, and Verdelhan (2019) term structure of currency risk premia. In our model, as the
maturity of the bond increases, the short term excess return decreases to zero. The reason is
precisely that long term bond and currency risk premia are linked: as arbitrageurs become more
exposed to domestic policy shocks, domestic long term bonds and foreign currency are equally
undesirable: their premia increase by similar amounts, which account for the decline in the term

structure of currency risk premia.

Second, our framework allows us to explore how shocks to the policy rate in one country
transmit to the domestic term structure, the currency, and the foreign term structure. We now
provide the core intuition for our results. Consider first the case of a decrease in the domestic
policy rate and the impact on the domestic yield curve. This makes domestic long term bonds
more desirable, increasing the price of domestic long term bonds. This leads price-elastic domestic
bond investors to retrench. In equilibrium, global arbitrageurs must increase their holdings of
domestic long term bonds. This requires a higher expected return, hence the yield on foreign
bonds does not decline all the way to the level implied by the EH: the required rent that accrues
to global arbitrageurs attenuates the transmission of monetary policy along the domestic yield
curve, compared to the standard case. Consider now the impact on the exchange rate. The lower
domestic policy rate makes foreign currency more desirable, appreciating the foreign currency. This
leads price-elastic currency traders to retrench. In equilibrium, global arbitrageurs must increase
their foreign currency holdings. This requires a higher expected currency return, hence the foreign
currency does not appreciate all the way to the level implied by UIP. Finally, consider the impact
on the foreign yield curve. A larger exposure to foreign currency makes global rate arbitrageurs
more exposed to the risk of a decline in foreign interest rates (and the associated depreciation of the
foreign currency). Foreign long term bonds provide a natural hedge since their price increases when
the foreign short rate declines. Hence, in response to a decline in the domestic policy rate, global
rate arbitrageurs will increase their demand for foreign long term bonds. This will decrease the
yield on foreign bonds and flatten the foreign yield curve. Hence, the transmission of conventional
monetary policy to the domestic economy is weakened, and spills over to the foreign yield curve,
even when exchange rates are flexible: the required rents that accrue to global rate arbitrageurs
connect domestic, foreign and currency markets. To the extent that long rates matter for economic

activity, as in Ray (2019), the Friedman-Obstfeld-Taylor Trilemma fails.



Our framework also allows us to investigate how non-conventional policies such as Quantita-
tive Easing, Forward Guidance or Foreign Exchange intervention transmit, both domestically and
abroad. Consider first the case of a purchase of domestic long term bonds by the domestic central
bank. This increase in demand leads to an increase in price of those bonds and decline in their yield.
Global arbitrageurs respond by reducing their demand for these long term bonds. This reduction
in their holdings of domestic long term bonds make them less exposed to the risk of a rise in the
domestic interest rate. Therefore, they become more willing to hold assets exposed to that risk.
Foreign currency and foreign long term bonds are two such assets. Hence the model predicts that a
domestic asset purchase will depreciate the domestic currency and lower foreign yields—flattening

the foreign yield curve.

We illustrate the above mechanisms analytically in the case where the short rates in each coun-
try are the only risk factors and are mutually independent. We complement our analytical results
with a quantitative exercise, where we allow for three additional risk factors corresponding to bond
and currency demand, and for correlation between short rates. We estimate the model parameters
using second moments of yields and exchange rates in the US and the Eurozone. As a test for the
estimated model, we compute the coefficients of common return predictability regressions for bonds
and currencies. These coefficients are untargeted in our calibration. The model replicates key prop-
erties of these coeflicients, with the fit being somewhat better for bonds than for currencies. We
next use the model to evaluate the effects of conventional and non-conventional monetary policies.
We find that conventional and non-conventional policies are comparable in terms of their effects on
the exchange rate. Non-conventional policies, however, have sizeable international spillover effects

on the term structure, while such effects are small for conventional policies.

Greenwood, Hanson, Stein, and Sunderam (2019) develop independently a model similar to
ours, with arbitrageurs trading bonds and currency across two countries. They find, as we do, that
bond and currency carry trades are profitable, and that an increase in bond demand in one country
causes the currency of that country to depreciate and bond prices in both countries to rise. They
also introduce segmented arbitrage, e.g., some arbitrageurs can only trade bonds in one country,
and some can trade only currency. Their model is set up in discrete time and assumes only a
short and a long bond. By contrast, ours is set up in continuous time and derives the entire term
structure of interest rates in each country. This allows us to compare the predictability of bond

and currency movements across different horizons, and to perform a quantitative exercise.

Our paper connects four strands of literature. First, there is an abundant empirical literature

on bond and currency ‘puzzles.’” (Add citations...) Second, a more recent empirical literature



emphasizes the role of quantities in asset pricing. (Koijen and Yogo (2019), ...)

Third, from a modeling perspective, we build on recent models of market segmentation in
currency markets and bond markets. (Kouri (1982), Gabaix and Maggiori (2015), Vayanos and
Vila (2021)). Itskhoki and Mukhin (2017) present such a model where financial arbitrageurs also
need to absorb liquidity demand arising from noise traders, as in Jeanne and Rose (2002). These
liquidity demand shocks translate, in equilibrium, into ‘UIP shocks’, i.e. deviations from the UIP
condition. Quantitatively, Itskhoki and Mukhin (2017) conclude that these UIP shocks account for
more than 90% of the fluctuations in the nominal and real exchange rate, but very little of the
fluctuations in output, thus potentially explaining the well-known disconnect between exchange
rate movements and traditional macroeconomic fundamentals such as monetary policy, output
growth, or external imbalances (see Meese and Rogoff (1983) and the literature on the ‘exchange

rate disconnect puzzle’).

Fourth, our paper explores how both conventional and unconventional monetary policy trans-
mit, both domestically and internationally. Ray (2019) embeds such a segmented asset market
structure into a New Keynesian model and explores how non-conventional policies, such as QE or
forward guidance can be deployed effectively. References on international transmission of monetary

policy (Gali Monacelli, Corsetti, Itskhokin-Mukhin)

2 Model

Time is continuous and goes from zero to infinity. There are two countries, Home (H) and Foreign
(F). We define the exchange rate as the units of home currency that one unit of foreign currency can

buy, and denote it by e; at time ¢t. An increase in e; corresponds to a home currency depreciation.

In each country j = H, F', a continuum of zero-coupon government bonds can be traded. The

bonds’ maturities lie in the interval (0,7), where T can be finite or infinite. The country-j bond

with maturity 7 at time ¢ pays off one unit of country j’s currency at time ¢+ 7. We denote by Pj(tT )
the time-t price of that bond, expressed in units of country j’s currency, and by yj(»T) the bond’s

yield. The yield is the spot rate for maturity 7, and is related to the price through

(7)
yj(;r) _ _log<P]t > ' (2.1)

T



The country-j and time-¢ short rate i;; is the limit of the yield y§? when 7 goes to zero. We take
ij¢ as exogenous, and describe its dynamics later in this section (Equation 2.9). An exogenous i,
can be interpreted as the result of actions that the central bank in country j takes when targeting

the short nominal rate by elastically supplying liquidity.

There are three types of agents: arbitrageurs, bond investors and currency traders. Arbi-
trageurs are competitive and maximize a mean-variance objective over instantaneous changes in
wealth. We express their wealth in units of the home currency, thus assuming that the home cur-
rency is the riskless asset for them. We allow arbitrage to be global or segmented. When arbitrage
is global, arbitrageurs can invest in the currencies and bonds of both countries. When instead
arbitrage is segmented, arbitrageurs can invest in the currency of the home country (the riskless
asset), and in a single additional asset class: foreign currency for some arbitrageurs, home bonds for
others, and foreign bonds for the remainder. We assume that the arbitrageurs investing in foreign
bonds have a zero net position in foreign-currency instruments: they hedge their bond position
with an equally sized position in the foreign short rate. Segmented arbitrage is a useful benchmark,
as the interactions between bond and currency markets that global arbitrage generates are not

present.
In the case of global arbitrage, we denote by W; the arbitrageurs’ time-t wealth, by Wy and
Wy their net position in home and foreign-currency instruments, respectively, and by th) dt and

th)dT their position in the home and foreign bonds with maturities in [7, 7 4 d7], respectively, all
expressed in units of the home currency. The position of arbitrageurs in the bonds with maturities
in [r,7 + dr] is of order dr in equilibrium because preferred-habitat demand for those bonds is

assumed to be of the same order.

The arbitrageurs’ budget constraint is

(r—dt)

T T P
Wivar = <WHt - / th)d7> (1 +ipmedl) + / th) H’?j)dt dr
0 0 Py
T T P(T*dt)e
+ (WFt - / Xl(;?dT) (1 + ippdt) 22 4 / X}?%”dtdr (2.2)
0 €t 0 PFt et

The first term in the right-hand side of (2.2) corresponds to a position in the home short rate, the
second term to a position in home bonds, the third term to a position in the foreign short rate,
and the fourth term to a position in foreign bonds. In the third term, Wg; — fOT th)dT units of

the home currency are converted at time ¢ to units of the foreign currency by dividing by e;. They



earn the foreign short rate between time ¢ and ¢+ dt, and are converted back at time ¢ + dt¢ to units

of the home currency by multiplying by e;1 4. In the fourth term, X}(,ft) units of the home currency

are converted at time ¢ to units of the foreign currency by dividing by e;, and then to units of the

(1)

foreign bond with maturity 7 by dividing by PF; , the price of the bond in foreign currency. They

are converted back at time t + dt to units of the home currency by multiplying by P}Tt:gt)eHdt.
Subtracting Wy = Wyt + Wy from both sides of (2.2) and rearranging, we find

d
th :Wtiﬂtdt + WFt (f + (iFt - th)dt>
t

T dP(T) T d P(T)
+ / Xy | =2 = ipedt | dr + / x{) %—@—mdt dr. (2.3)
0 Py 0 Pp/ e €t

If arbitrageurs invest all their wealth in the home short rate, then the instantaneous change dW;
in their wealth is Wyipdt, the first term in the right-hand side of (2.3). Relative to that case,
arbitrageurs can earn an additional return from investing in three sets of assets: foreign currency,
home bonds, and foreign bonds. The returns from these investments correspond to the second,

third and fourth term, respectively, in the right-hand side of (2.3).

The optimization problem of a global arbitrageur is

max [Et(th) - gVart(th) , (2.4)

WFtv{XJ(':)}TE(O,T),j:H,F

where ¢ > 0 is a coeflicient that characterizes the trade-off between mean and variance. The
coefficient a can capture innate risk aversion or, in reduced form, constraints such as Value at Risk.
By possibly redefining a, we assume that global arbitrageurs are in measure one. Arbitrageurs with

the objective (2.4) can be interpreted as overlapping generations living over infinitesimal periods.

In the case of segmented arbitrage, the budget constraint of any given arbitrageur is derived
from (2.3) by setting two of the terms to zero. For an arbitrageur who can invest only in foreign

currency, the third and fourth terms are zero (th) = Xl(;t) = 0); for an arbitrageur who can invest

only in home bonds, the second and fourth terms are zero (Wg; = X}? = 0); and for an arbitrageur

who can invest only in foreign bonds, with a zero net position in foreign-currency instruments, the
second and third terms are zero (Wp; = ng = 0). The optimization problem is derived from

(2.4) by restricting the choice variables accordingly. We denote by ae, ap and ap, respectively,



the risk-aversion coefficient of an arbitrageur who can invest in foreign currency, home bonds and

foreign bonds. By possibly redefining (ae, ap,ar), we assume that each type of arbitrageur is in

measure one.

Bond investors have preferences (“habitats”) for specific countries and maturities. For example,
pension funds in the home country prefer long-maturity home bonds because these match their
pension liabilities, which are long term and denominated in home currency. At the other end of
the maturity spectrum, home money-market funds are required by their mandates to hold short-
maturity home bonds. For tractability, we assume that preferences take an extreme form, where

investors demand only the bond closest to their preferred characteristics. That is, investors with
preferences for country j and maturity 7 at time ¢ hold a position Z ](tT ) in the country-j bond with
maturity 7 and hold no other bond. We assume that maturity preferences cover the interval (0,7,
and investors with preferences for country j and maturities in [7,7 + d7] are in measure dr. We
express the position Z ](; ) in units of the home currency, and assume that it is affine and decreasing

in the logarithm of the bond price:
25 = —a;(7) 10g<Pj(Z)) -7, (2.5)

The slope coefficient oj(7) > 0 is constant over time but can depend on country j and maturity 7.

The intercept coefficient BJ(-:) can depend on ¢, 7 and j. For simplicity, we refer to a;(7) and ﬁj(-z)

as demand slope and demand intercept, respectively. The actual intercept is —B](-T).

The demand intercept ﬁj(;) takes the form

B = ¢(r) + 0;(7)Bje, (2.6)

where ((;(7),0;(7)) are constant over time but can depend on country j and maturity 7, and 3j; is
independent of 7 but can depend on country j and time ¢. We refer to 8j; as a demand risk factor,
and describe its dynamics later in this section (Equation 2.9). ? provide an optimizing foundation
for the demand specification (2.5)-(2.6) in a setting where investors form overlapping generations
consuming at the end of their life, are infinitely risk-averse, and can invest in bonds and in a private

opportunity with exogenous return.

We assume that currency traders generate a downward-sloping demand for foreign currency as

a function of the exchange rate e;. These agents can be interpreted as exporters and importers, or



as central banks intervening on currency markets. For example, when e; is low, the central bank
in the home country may want to increase its holdings of foreign currency, perhaps to stabilize the
currency. Similarly, when e; is low, the flow demand for foreign currency arising from exporters
and importers may increase, as in Gabaix and Maggiori (2015), and this may push up the stock
demand for foreign currency. For tractability, we assume that the stock demand of currency traders,
expressed in units of the home currency, is affine and decreasing in the logarithm of the exchange

rate:
Zu = —orlog(er) — (Ca + B, 27)

where a. > 0 is a slope coefficient, (.; is a deterministic term, 6. is a constant, and ~; is a demand
risk factor. We describe the dynamics of «; and motivate the deterministic term (. later in this

section.

The demand (2.7) for foreign currency is expressed in the spot market. We allow for additional
currency demand in the forward market. Indeed, according to BIS (2019), spot transactions ac-
counted for only one-third of total trading volume in the currency market over recent years, with
forward and swap transactions accounting for most of the remainder. We assume that the de-
mand of currency traders, expressed in units of the home currency, for the foreign-currency forward

contract with maturity 7 is

Z) = —(Co(r) + 0 (7)), (2.8)

where ((c(7),0.(7)) are functions of 7.

Under Covered Interest Parity (CIP), the demand Z (tT ) for the foreign-currency forward contract

€

with maturity 7 is equivalent to the combination of (i) a demand ZétT ) for foreign currency in the

spot market, (ii) a demand Zg ) for the foreign bond with maturity 7, and (iii) a demand —Zg ) for
the home bond with maturity 7. Hence, the equilibrium with the forward market is equivalent to
one without it but with the demands (i)-(iii) added to (2.5) and (2.7). We use that equivalence to
study the effects of currency demand in the forward market. CIP holds only under global arbitrage
since it is only then that a common set of agents can trade all the instruments involved in CIP
arbitrage. Accordingly, we allow for currency demand in the forward market only under global

arbitrage.

The 5 x 1 vector q; = (imt, irt, Bre, Bre, i) | follows the process

10



where ¢ is a constant 5 x 1 vector, (I',X) are constant 5 X 5 matrices, By is a 5 x 1 vector
(Bimt, Birt, Bart, Bart, th)T of independent Brownian motions, and T denotes transpose. Equa-
tion (2.9) nests the case where the factors (ig¢, e, Brt, Brt, 7¢) are mutually independent, and the
case where they are correlated. Independence arises when the matrices (I', X) are diagonal. When
instead ¥ is non-diagonal, shocks to the factors are correlated, and when I' is non-diagonal, the
drift (instantaneous expected change) of each factor depends on all other factors. We assume that
the eigenvalues of I' have negative real parts so that ¢, is stationary. Equation (2.9) implies that
the long-run mean of a stationary ¢; is §. We set the long-run means of the demand factors to zero
(g3 = g4 = @5 = 0). This is without loss of generality since we can redefine {(;(7)}j=m r and (¢ to
include a non-zero long-run mean. We set the supply of each bond and of foreign currency to zero

by redefining demand to be net of supply.

Key to the tractability of our model is that all demand functions are expressed in terms of the
same numeraire, which is the riskless asset for arbitrageurs. The numeraire can be the currency
of one of the two countries, and we take it to be the home currency. One limiting feature of this
assumption is that the home currency must be the riskless asset for all arbitrageurs, even foreign
ones. Our assumption also precludes that exchange-rate movements holding foreign bond yields

constant affect foreign bond demand in home currency terms.

Our model can be given both a nominal and a real interpretation. Our presentation so far
focuses on the nominal interpretation: bonds pay in currency units, the exchange rate is the price
of one currency relative to the other, preferences of arbitrageurs concern their nominal wealth,
preferences of bond investors concern their nominal consumption, and the demand of currency
traders is a function of the nominal exchange rate. A difficulty with the nominal interpretation is
that the demand of currency traders such as exporters and importers is better viewed as a function
of the real rather than the nominal exchange rate. To put it differently, while it is reasonable for the
real exchange rate to be stationary, we want to allow for a non-stationary nominal exchange rate.
To make the nominal interpretation compatible with a real currency demand, we can replace the
nominal exchange rate e; in (5.1) by the real exchange rate. This amounts to keeping e; inside the
logarithm and adding ae(log(prt) —log(pat)) to (e, where pj; is the price level in country j = H, F.
Hence, under the nominal interpretation, we can take (. to be ac(log(pr:) — log(pmt)). This
interpretation is valid as long as we ignore inflation risk, i.e. as long as we treat log(pr¢) — log(pme)
as a deterministic process. More generally, the term (.; captures all deterministic forces that lead

to a non-stationary nominal exchange rate.

11



An alternative interpretation of our model is real: bonds pay in units of goods with a real price

Pj(tT ), the exchange rate e; is the real exchange rate defined as the price of goods in one country
relative to the other, preferences of arbitrageurs concern their real wealth, preferences of bond
investors concern their real consumption, and the demand of currency traders depends on the real

exchange rate. Under the real interpretation, we can take (.; to be a constant, (..

In what follows, we present the nominal interpretation of the model in the special case where
the inflation rate is constant in each country: (o4 = (o + ae(mp — mp)t, where m; is the constant

inflation rate in country j and (. is a constant.

3 Segmented Arbitrage

In this section we study the case of segmented arbitrage, where foreign currency, home bonds, and
foreign bonds are traded by three disjoint sets of arbitrageurs. For simplicity, we assume that
the home and foreign short rates (igy,ip¢) are independent, that demand for bonds and foreign
currency does not vary stochastically and hence the demand factors (B¢, Bre, v¢) are equal to their
mean of zero in steady state, that one-off shocks to the demand factors do not affect the short
rates or other demand factors, and that all currency demand is expressed in the spot market. This
amounts to taking the matrices (I', ¥) in (2.9) to be diagonal and to setting Y33 = X454 = X55 =
Ce(T) = 0c(1) = 0. Setting (I'11,T2.2,q1,82, 211, 222) = (Kif, KiF, il iF, Oif, OiF), We can write

the dynamics of the country-j short rate as

dijt = Hz’j(gj — ijt)dt + Uideijt- (3.1)

3.1 Equilibrium

We conjecture that the equilibrium exchange rate is a log-affine function of the home short rate, the
foreign short rate and a linear time trend, and that equilibrium bond yields in country j = H, F'

are affine functions of that country’s short rate. That is, there exist three scalars ({Aije}j=#,r, Ce)

and four functions {A4;;(7),C;(7)}j=m,F that depend only on 7, such that

loger = — [Airelat — Aireirt + Ce + (mp — TR )], (3.2)
log P = — [Aij(7)ije + C;(r)] . (3.3)

12



When arbitrage is segmented, the exchange rate, the yields of home bonds, and the yields of
foreign bonds are determined independently, and they reflect the risk aversion of the corresponding

arbitrageurs. Our conjectured solution (3.2)-(3.3) implies that the real exchange rate (e;prt)/pHt =

erexp((mp — 7)) (pro/pro) and bond prices Pj(tT ) are stationary while the nominal exchange rate

exhibits a trend exp((7g — 7p)t).

3.1.1 Exchange Rate

We determine the exchange rate by deriving the arbitrageurs’ first-order condition and combining
it with market clearing. Applying Ito’s Lemma to (3.2), and using the dynamics (3.1) of i, we

find that the instantaneous return on foreign currency is

de
f = petdt — AieoindBip + Aipeo;pdBiry, (3.4)
t
where
_ = . = . 1 9 2 1.9
Het = _AiHeHiH(ZH — ZHt) + Az’Fe"‘fiF(ZF — ZFt) — (7TF — 7TH) + §AiHeUiH + §AiFeUiF (3.5)

is the expected return. Substituting the return (3.4) into the budget constraint of the subset of

arbitrageurs who can invest in foreign currency (and whose budget constraint is derived from (2.3)

by setting Xg) = Xl(th) =0), we find
AWy = Wiipe + Wee (ptet +ire — ime)| dt — Wre (AigeoindBigs — AireoirdBiry) -
The optimization problem of these arbitrageurs is
. . a
max Wt (pet +irt — tHt) — EeWIQ«“t (AZeoin + A?Feafp)} ;
Ft
and their first-order condition is
. . 2 2 2 2
Met + 1t — tHt — aeWFt (AZHBUZH + AZFBJZF) . (36)

Equation (3.6) describes the arbitrageurs’ risk-return trade-off when investing in the currency carry
trade (CCT). We term CCT the trade of borrowing short-term in the home country, exchanging

the borrowed amount in the foreign currency, investing it short-term in the foreign country, and
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exchanging it back in the home currency.! The CCT’s return is de—eti + (ipt — ige)dt, equal to the

return on foreign currency plus that on the foreign-home short-rate differential.

If arbitrageurs invest an extra unit of home currency in the CCT, then their expected return
increases by the CCT’s expected return pie; +ip; —ig¢. This is the left-hand side of (3.6). The right-
hand side is the increase in the the arbitrageurs’ portfolio risk, times their risk-aversion coefficient
ae. The increase in portfolio risk is equal to the variance of the CCT’s return, times the arbitrageurs’

wealth Wg; invested in foreign currency.

We next combine the arbitrageurs’ first-order condition (3.6) with market clearing in foreign

currency. Market clearing requires that the time-t positions of arbitrageurs and currency traders

sum to zero:
Wrt + Zey = 0. (3.7)
Using (3.7), we can write (3.6) as
fret + ipt — iy = —cZet (Afyo0i + Alpeoir)
= ae o log(er) + Ce + ae(mp — mu)t) (Alyeoiy + Afpeoip)
= e [Ce — e (Aipeim — Aireir + Ceo)] (Algeoiy + Alpeoin) (3-8)
where the second step follows from (2.7) and 7 = 0, and the third step follows from (3.2). Substi-
tuting pe; from (3.5) into (3.8), we can write the latter equation as
— Aiprerin (i — ime) + Airekir(ip — iF) — (Tp — ) + %Afgeff?g + %A?FSUZ-QF +ipt —imt
= ac [Ce — e (Aincins — Aircip + Ceo)] (Afgeoiy + Afpeoir) - (3.9)

Equation (3.9) is affine in (igy,ip). Identifying the linear terms in (ig¢,ip;) and the constant

terms yields three equations for the three scalars ({Ajje}j=m.r, Ce).

Proposition 3.1. When arbitrage is segmented, the exchange rate e; is given by (3.2), with

({Aije}j=m,F, Ce) equal to the unique solution of the system
KijAije — 1 = —acaeAje (07 Alpre + 0ip Alpe) | (3.10)

1
*U?FA?FC (3-11)

3 r 1
— KirtgAife + KiripAire — (Tp — Th) + iaizHAzzHe + 7

= ae (G — eCe) (07 Alye + 07 Alre) -

IFor simplicity, we deviate from market terminology, according to which the CCT borrows in the currency with
the low interest rate.
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In the special case where arbitrageurs are risk neutral (a. = 0), (3.6) implies that Uncovered
Interest Parity (UIP) holds: pe = gy — ipe. In addition, for the solution to be of the form
conjectured in (3.2), Proposition 3.1 requires that the unconditional mean of the two countries’

2 o2

real interest rates, i; — 7, be equated, up to a convexity adjustment term equal to 2:15’ + 55
1H iF
2 2
- o; o; -
ip —mp+ a2 =Gy — g, (3.12)
265y 2K5p

This is quite intuitive: if these unconditional real interest rates were different and arbitrageurs
were risk neutral, then the real exchange rate would appreciate or depreciate forever, violating the
conjectured stationarity in (3.2). From (3.10), the sensitivity of the nominal exchange rate to short
rate shocks is AZUjép = 1/k;j. When arbitrageurs are risk neutral, the response of the exchange rate
to the short rate only depends on the persistence of the short rate process. The more persistent

the process is (a lower k;;), the larger is the nominal exchange rate response.

When arbitrageurs are risk-averse, UIP does not hold, even in the limit when risk-aversion goes
to (but is not equal to) zero. In that case, the real exchange rate remains stationary as conjectured
in (3.2), regardless of the unconditional mean of the two countries’ real interest rates. The reason is
that any permanent difference in real interest rates is absorbed in equilibrium by a an adjustment
in currency risk premia. The currency of the country with permanently higher real interest rate is
permanently stronger. This reduces the demand from currency traders, and requires an offsetting
adjustment in risk premia, but no trend appreciation of the currency. In the limit a, — 0, the

position of arbitrageurs in the CCT becomes arbitrarily large.
The following corollary summarizes these results.
Corollary 3.1. Suppose that arbitrage is segmented.

e When currency arbitrageurs are risk-neutral (a. = 0), UIP holds: the expected return on

foreign currency is uG'" = ipgy —irs. The sensitivity of the exchange rate to short-rate shocks
is AUVIP = L Stationarity of the real exchange rate requires that (8.12) holds

ije Kij "’

e When the risk aversion of currency arbitrageurs goes to zero (a. — 0), the expected return

on foreign currency does not converge to uS't, but the sensitivity of the exchange rate to

UIP

short-rate shocks converges to Aij6 . The real exchange rate is stationary and satisfies (3.2),

even if (3.12) is not satisfied.
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3.1.2 Bond Yields

The determination of bond yields parallels that of the exchange rate. Applying Ito’s Lemma to
(3.3) for j = H, using the dynamics (3.1) of ij for j = H, and noting that ¢ + 7 stays constant
when taking the derivative, we find that the time-¢ instantaneous return on the home bond with

maturity 7 is

()
P T
% = pgldt — Aigr (7)o dBimy, (3.13)
Py
where
T . . . 1
M%Z = Al (T)ig + Cy(r) — A (T)kim (ig — ime) + < Ain ()00 (3.14)

2

is the expected return. Likewise, (3.1) and (3.3) for j = F, combined with (3.2), imply that the
time-t instantaneous return on the foreign bond with maturity 7, expressed in home-currency terms,

minus the instantaneous return on foreign currency, is

d(Pe)  de

=G — = pSDdt — Aip(T)oipdBipy, (3.15)
Ft €t t

where
T . - . 1
Hi = Aip(T)ip+ Ci(r) = A (Drir (ip = ip) + A () (Aip(r) = 24ipc) ofp - (3.16)

and A;pe is solved for in Proposition 3.1. We next substitute the return (3.13) into the budget

constraint of the subset of arbitrageurs who can invest in home bonds (and whose budget constraint

is derived from (2.3) by setting Wp; = XI(;? = 0). We do the same for (3.15) and the subset of

arbitrageurs who can invest in foreign bonds and have a zero net exposure in foreign-currency

instruments (and whose budget constraint is derived from (2.3) by setting Wg; = th) = 0). For
the arbitrageurs investing in the bonds of country j = H, F’, we find

T T
Cth = |:Wtth + / X](Z-) (,U,g:) — ijt) dT:| dt — / XJ(Z)AZJ (T)Uideijt-
0 0

The optimization problem of these arbitrageurs is
T 2
Jnax [/ XJ(.tT) (,u,gz)—zjt dT—(/ XT)A ) UZ-Q]-],
{th }TE(O,T) 0
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and their first-order condition, which follows from point-wise differentiation, is

,u§t) ijt = ajA </ d7'> (3.17)

Equation (3.17) describes the arbitrageurs’ risk-return trade-off when investing in the bond
carry trade (BCT) in country j. We term BCT in country j the trade of borrowing short-term in

that country and investing the borrowed amount in that country’s bonds.? The return on the BCT

(7)
in the home country and for maturity 7 is d}f{jf — ig¢dt, equal to the return on the home bond
Ht

with maturity 7 minus that on the home short rate. The return on the BCT in the foreign country,

: . dP) . ..
expressed in home-currency terms, is % — de—e; — ip¢dt. This is equal to the return on the

foreign bond with maturity 7, expressed in home-currency terms, minus that on foreign currency,

minus that on the foreign short rate.

If arbitrageurs invest an extra unit of home currency in the BCT for country j and maturity

7, then their expected return increases by the BCT’s expected return ,ug-? —ij¢. This is the left-
hand side of (3.17). The right-hand side is the increase in the arbitrageurs’ portfolio risk, times
their risk-aversion coefficient a;. The increase in portfolio risk is equal to the covariance between
the return on the BCT in country j and for maturity 7, and the return on the BCT portfolio of
arbitrageurs in country j and across all maturities. Since these returns depend only on the country

J short rate i, their covariance is the product of their sensitivities to i;; times the instantaneous

variance 0?- of i;;. Equations (3.13) and (3.15) imply that the return sensitivities to ¢j; are —A;;(7)

and — fo X](tT A;j(T), respectively.

We next combine the arbitrageurs’ first-order condition (3.17) with market clearing for country
7 bonds. Market clearing requires that the time-¢ positions of arbitrageurs and bond investors sum

to zero:

x4z =o. (3.18)

2For simplicity, we deviate from market terminology, according to which the BCT borrows at maturities with a
low interest rate.
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Using (3.18), we can write (3.17) as
W) — iy = —aAgy(r) < /0 L )A@-j(f)d7> o3
= a;44(r) ( / oy o8 (P + (0)] Aij(T)dr) o3
= a;Ai;(T) </0T [65(7) = (1) (Aij(T)ije + C5(7))] Aij(T)dT> 7 (3.19)

where the second step follows from (2.5) and $j; = 0, and the third step follows from (3.3).

Substituting ,ugz from (3.14) into (3.19) for j = H, we find an equation affine in ip;. Identifying

the linear terms in iy, and the constant terms yields two ordinary differential equations (ODEs) for
the two functions (A;g(7), Cru(7)). Repeating this process for the foreign bond, yields two ODEs
for (A;p(7),Crr(7)). These ODEs are linear, with the complication that the linear coefficients

depend on integrals involving these functions.

Proposition 3.2. When arbitrage is segmented, bond prices P](tT ) in country j = H, F are given

by (3.3), with (Ai;(71),Cri(7)) equal to the unique solution of the system
2 g 2
Ay(r) + RijAsg(7) — 1 = —aj03 Ay (7) /0 oy (7) Ay (r) 2, (3.20)
- 1
C;(T) — Iﬁ]iijAij(T) + 50’%14@']'(7') (A”(T) — 2AiFel{j:F})
) T

= a0 (r) [ 1) = ay(n)Cy ()] Ay(r)a, (321)

with the initial conditions A;;(0) = C;(0) = 0.

In the special case where arbitrageurs are risk-neutral, the Expectations Hypothesis (EH) holds.

Corollary 3.2. When arbitrage is segmented and bond arbitrageurs in country j are risk-neutral

(r)EH
t

(aj = 0), the EH holds in country j. The expected return on country-j bonds is I = ij¢, and

the sensitivity of these bonds to shocks to the country-j short rate is AgH(T) = % The same

results hold when the risk aversion of bond arbitrageurs in country j goes to zero (a; — 0).
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3.2 Short-Rate Shocks, Carry Trades and Risk Premia

We next determine how bond yields and the exchange rate respond to short-rate shocks, and what

the implications are for the profitability of carry trades and risk premia.

3.2.1 Bonds

Proposition 3.3. Suppose that arbitrage is segmented. Following a drop in the short rate in
country j, bond yields drop in that country (Ai;(7) > 0) and do not change in the other country.
When additionally bond arbitrageurs in country j are risk-averse (aj > 0) and the demand of bond

investors in that country is price-elastic (co;j(T) > 0 in a positive-measure set of (0,T)):

e Bond yields do not drop all the way to the value implied by the EH: A;;(T) < AZH(T)

(i)
o The expected return of the BCT rises: i < 0.

When the short rate in country j drops, bond prices in that country rise (and bond yields drop)
because of a standard discounting effect. Prices do not rise all the way to the value implied by the

EH, however. Indeed, if prices remain the same as before the shock, then the drop in the short

rate renders the BCT in country j more profitable, raising its expected return ug) — 1j¢. Hence,

bond arbitrageurs in country j seek to invest in the BCT, increasing their bond holdings X ](Z ),

. . (m)
This puts upward pressure on bond prices P,

it When the demand by bond investors in country

j is price-elastic, their holdings Z](Z ) decreases as bond prices rise and that of bond arbitrageurs

X j(tT ) increases in equilibrium. But according to (3.17), bond arbitrageurs need to be compensated

for their larger bond position with a higher risk premium. Hence, as in ? for the case of a closed

economy, the BCT’s expected return ug) — 4;¢ remains higher than before the shock. Bond prices

adjust all the way to their EH value when bond arbitrageurs in country j are risk neutral, since
they do not require such compensation. They also adjust to their EH value when the demand by

bond investors in country j is price-elastic, because arbitrageurs’ activity causes prices to rise until

: : (m)
there is no change in X it

Proposition 3.3 implies that the slope of the term structure in country j predicts positively the
BCT’s future return in that country. Indeed, slope and future return vary over time only because

of the country j short rate i;;, and are both high when i;; is low. A positive relationship between
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the slope of the term structure and the BCT’s future return is documented in Fama and Bliss
(1987, FB), but is inconsistent with the EH according to which the BCT’s expected return should
be zero. Campbell and Shiller (1991, CS) document a related violation of the EH: the slope of the

term structure in country j predicts negatively changes in future long rates in that country.

3.2.2 Foreign Currency

Proposition 3.4. Suppose that arbitrage is segmented. Following a drop in the home short rate
or a rise in the foreign short rate, the foreign currency appreciates (Aige > 0, Aipe > 0). When
additionally currency arbitrageurs are risk-averse (ae > 0) and the demand of currency traders is
price-elastic (ce > 0),

o The foreign currency does not appreciate all the way to the level implied by UIP: A;pre < AiUf{f,

1P
Aipe < AiUFe .

e The expected return of the CCT rises: %ﬁ_mt) <0 and %ﬁ:’i_w > 0.

When the home short rate drops or the foreign short rate rises, the foreign currency appreciates.
These movements are in the direction implied by UIP. The foreign currency does not appreciate
all the way to the value implied by UIP, however. Indeed, if the exchange rate remains the same
as before the shock, then the drop in if: or rise in ip; render the CCT more profitable, raising
its expected return pe; + iy — tg. Hence, currency arbitrageurs seek to increase their holdings
Wy of the foreign currency. When the demand by currency traders is price-elastic, both the
exchange rate e; and arbitrageurs’ foreign-currency holdings Wg; increase in equilibrium. Risk-
averse arbitrageurs, however, do not trade all the way to the point where e; reaches its UIP value.
Instead, in a spirit similar to Gabaix and Maggiori (2015), the CCT’s expected return pie;+ip¢ —imt
remains higher than before the shock to compensate arbitrageurs for the risk generated by their
larger foreign-currency position. The exchange rate adjusts all the way to its UIP value when

currency arbitrageurs are risk-neutral or when the demand by currency traders is price-inelastic.

Proposition 3.4 implies that the difference between the foreign and the home short rate predicts
positively the CCT’s future return. This is consistent with the evidence in Bilson (1981) and Fama
(1984), who document that following an increase in the foreign-minus-home short-rate differential,
the expected return on the foreign currency typically increases. Moreover, even in samples where

it decreases, it does so less than implied by UIP. Hence, the CCT becomes more profitable.

20



3.3 Demand Shocks

We next determine how bond yields and the exchange rate respond to changes in the demand
for bonds and foreign currency. Since we assume no demand risk in this section, we take the
demand changes to be unanticipated and one-off. Demand changes by bond investors in country j
correspond to shocks to the demand factor ;. Demand changes by currency traders correspond to
shocks to the demand factor ;. Following the shocks, the demand factors revert deterministically
to their mean of zero. The effects of unanticipated and one-off shocks are the limit of those under

anticipated and recurring shocks (Section 5) when the shocks’ variance goes to zero.

Without loss of generality, we take 6. to be positive, which means that an increase in ~,
corresponds to a drop in demand for foreign currency. We take 6;(7) to be positive for all 7, which

means that an increase in §j; corresponds to a drop in demand for the bonds of country j.

Proposition 3.5. Suppose that arbitrage is segmented, 6. > 0 and 0;(1) > 0 for all 7.

o An unanticipated one-off drop in investor demand for the bonds of country j (increase in ;)
raises bond yields in country j if bond arbitrageurs in that country are risk-averse (aj > 0).

It has no effect on bond yields in the other country and on the exchange rate.

o An unanticipated one-off drop in currency traders’ demand for foreign currency (increase in
Ye) causes the foreign currency to depreciate if currency traders are risk-averse (ae > 0). It

has no effect on bond yields.

When arbitrage is segmented, changes to the demand for an asset class—foreign currency, home
bonds, foreign bonds—affect that asset class only. When, for example, the demand for bonds in
country j drops, these bonds become cheaper and their yields increase, while foreign currency and

bonds in the other country are unaffected.

3.4 International Transmission and the Trilemma with Segmented Arbitrage

We next summarize the main implications of the model with segmented arbitrage for the domestic
and international transmission of monetary policy. Consider a conventional monetary policy eas-
ing at home, such as a drop in the home short rate ¢g;. That drop propagates along the home
term structure, although less than implied by EH (Proposition 3.3). Moreover, the home currency
depreciates, although less than implied by UIP (Proposition 3.4). Propagation is imperfect (com-

pared to EH and UIP) because bond and foreign-currency arbitrageurs must be compensated for
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the change in their portfolio holdings. The drop in the home short rate does not affect the foreign
term structure (Proposition 3.3), and hence has no effect on foreign monetary conditions. In that

sense, the model with segmented arbitrage features full insulation.

Consider next a quantitative easing at home, where the Central Bank unexpectedly increases its
holdings of home bonds of some maturities 7 > 0. Through the lens of the model, this corresponds
to an increase in the demand for home bonds, i.e. 8j; < 0. This policy decreases home bond yields
(Proposition 3.5). It does not effect the foreign term structure, and hence has no effect on foreign

monetary conditions. Once again, the model with segmented arbitrage features full insulation.

To understand why insulation arises, it is useful to frame the discussion in terms of the classic
Friedman-Obstfeld-Taylor open-economy Trilemma. According to the Trilemma, a country that
wants to maintain domestic monetary autonomy must either let its currency float, or impose cap-
ital controls. From that perspective, our finding that foreign monetary policy is insulated from
home monetary policy may appear unsurprising at first glance. After all, we are assuming that
the exchange rate is floating and that there are restrictions on capital flows since home-bond arbi-
trageurs cannot hold foreign bonds and vice-versa. According to the Trilemma, each one of these
assumptions in isolation would be sufficient to ensure monetary policy insulation. As the next
section will demonstrate, however, this is not the case in our framework. When arbitrageurs are
global, they transmit monetary impulses from one country’s term structure to the other, even when
exchange rates are floating. In other words, while floating exchange rates keep short rates insulated,
insulation of the term structure arises entirely from the assumption that the home and foreign bond

markets are segmented.

In the model with segmented arbitrage, foreign-currency arbitrageurs can invest only in the
home and the foreign short rate, which are pinned down, respectively, by the home and foreign
central bank. Hence, unanticipated shocks to the demand for home bonds affect home bond yields
but not the exchange rate (Proposition 3.5). One relevant implication is that unanticipated QE has
no effect on the exchange rate. Hence in the segmented model, conventional monetary policy and
QE transmit differently to the domestic economy: in the case of conventional policy, a monetary
easing lowers bond yields and depreciates the currency, while in the case of unanticipated QE, a
monetary easing lowers bond yields but leaves the exchange rate unchanged. This result no longer
holds in Section 5, where shocks to bond demand affect both the term structure and the exchange

rate.
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4 Global Arbitrage

The remainder of the paper studies the case of global arbitrage. In this section we maintain the
other assumptions of Section 3, i.e., independent short rates, no stochastic variation in the demand
factors, one-off shocks to the demand factors that do not affect the short rates or other demand

factors, and currency demand only in the spot market. We relax these assumptions in Section 5.

4.1 Equilibrium

We conjecture that the equilibrium exchange rate takes the same form (3.2) as in Section 3. In
contrast to Section 3, we allow bond yields in each country j = H, F' to also depend on the other
country’s short rate because of potential spillovers, which we show occur in equilibrium. Thus, we

replace (3.3) by
]Og P](;r) = — [Aijj(T)ijt + Aijj/(T)ij’t + CJ(T)} (41)
for j' # j and six functions ({A;;;/(7)}; 7=m,7, {Cj(T)}j=n,r) that depend only on 7.

Proceeding as in Section 3, we find that the first-order condition of global arbitrageurs is
pet +irt — it = AigeNint — AireNiFt, (4.2)

:UJ;? — 5y = Agji(T) Nije + Aijyr (T) Nijie, (4.3)

where 7,7/ = H,F, j # j' and

T
Nije = aod; | WreAge(—1)16=m + Y /0 X5) Ay (rydr | (4.4)
§'=H,F

The left-hand side of (4.2) and (4.3) is the increase in the arbitrageurs’ expected return if they invest
one unit of home currency in the CCT and in the country j BCT, respectively. The right-hand side
is the increase in the arbitrageurs’ portfolio risk, times their risk-aversion coefficient a. Portfolio
risk increases by the covariance between the corresponding trade (CCT or country j BCT) and
the arbitrageurs’ portfolio. To compute the covariance, we multiply the sensitivity of the trade’s
return to the short rate in country j, times the sensitivity A;j; of the arbitrageurs’ portfolio return

to the same factor, times the factor’s variance Ufj. We then sum over j = H, F. In the terminology

of no-arbitrage models, the sensitivity A;j; is the price of the risk factor ¢j;. The key difference

23



between (4.2) and (4.3), and their counterparts (3.6) and (3.17) is that the same factor prices \;j
apply to all trades (CCT, home BCT, foreign BCT). It is through the equalization of factor prices

that global arbitrage connects bond and currency markets. Using market clearing to substitute
(Wpge, {X J(tT )}j: a,r in (4.4), and proceeding as in Section 3, we characterize the exchange rate and

bond prices by a system of scalar equations and ODEs.
Proposition 4.1. When arbitrage is global, the exchange rate e; is given by (3.2) and bond prices
Pj(tT) in country j = H, F are given by (4.1), with ({Aije}j=n,r,Ce) solving
KijAije — 1 = aa?j/_\ijinje — aafj,Xijj/AU/e, (4.5)
= = Lo 19 L 5 o
— KigigAige + KipipAipe — (TP — TH) + §UiHAz‘He + 50irAire (4.6)

2 3 2 3
=ao;gAincAine — aoipNirc Aire,

and (Aj;(T), Aijjr (1), C;(T)) solving

3(T) + Kij Aggi (1) = 1 = a0 Aijj Agg (7) + a0y Nijjr iy (1), (4.7)
A;jj’ (T) + Krj’Aijj’ (T) = aa?jj\rj/injj (T) + aggjlj\rj/j/Aijj/(T), (48)

- - 1
Ci(T) = Kijij Aiji(T) — Kopjrige Ay (T) + gafinjj(T) (Aijj(1) — 2Aipel iz py)

1 , ,
+ 500 A (7) (Aijy (7) + 241 =py) = aoihijo i (7) + a0y Nijio Ay (7), (4.9)

with the initial conditions A;j;(0) = A;;;(0) = C;(0) = 0, where j' # j and

T

Nijj = = Z / Oék(T)Aikj(T)ZdT-i'OéeA?je ) (4.10)
k=H,F70

B T

Aijjr = — Z / o (7) A (T) Aty (T)dT — e AjjeAijre | (4.11)
k=H,F”0

B T

Nje= > / (Gh() = ar(T)Ck (7)) Aigj (T)dr + (Ce = @eCe) Agje(=1)1=r7. (4.12)

k=H,F "0

Equations (4.7) and (4.8) form a system of two linear ODEs in (A;;;(7), A;j;:(7)), with the
complication that the coefficients of (A;;;(7), Ai;j(7)) depend on integrals involving these functions,

on integrals involving the functions obtained by inverting j and j’ # j, and on (A;ge, Aire). We
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solve the system taking ;\ijj, Xijj/ = S\ij/j and Xij/j/ as given. We do the same for the system
obtained by inverting j and j’, and for the linear scalar system (4.5) in (A;pge, Aire). We then
substitute back into the definitions of S\Z-jj, S\ijj/ = S\Z-j/j and S\ij/j/ to derive a non-linear system of
three equations in these three unknowns. The properties that we show in the remainder of this

section hold for any solution of this system.

In the special case where arbitrageurs are risk-neutral and the parameters (1., ip — i) satisfy
(3.12), UIP and EH hold. When instead (1.,ir — i) are unrestricted and arbitrageurs are risk-
averse, UIP and EH do not hold, even in the limit when risk-aversion goes to zero. Recall that in
that limit, UIP fails but EH holds under segmented arbitrage. Under global arbitrage, failure of
UIP causes failure of EH because the risk premia in the currency market, which do not converge

to zero, spill over to the bond market.

Corollary 4.1. When arbitrage is global, the results in Corollaries 3.1 and 3.2 continue to hold.

The only exception is that when arbitrageur risk aversion goes to zero (a — 0) and (3.12) does not

(r)EH

hold, the expected return on country-j bonds does not converge to It

4.2 Short-Rate Shocks, Carry Trades and Risk Premia

Proposition 4.2. Suppose that arbitrage is global.
o The effects of short-rate shocks on the exchange rate and on the CCT’s expected return have
the same properties as in Proposition 3.4.
o The effects of shocks to the country-j short rate ij; on bond yields in country j and on the
BCT’s expected return have the same properties as in Proposition 3.3, except that the price-

elasticity condition can hold for currency traders or bond investors (e > 0 or a;(7) > 0).

o When arbitrageurs are risk-averse (a > 0) and the demand by currency traders is price-elastic
(e > 0), a drop in ij causes bond yields in country j' # j to drop (Aj;(T) > 0) and the
1o} (.7,—)7 b1
BCT’s expected return to drop (w >0).
Jt
o The effect of ij; on bond yields is smaller in country j' than in country j (A;;(T) > Aj;(7)).
The response of the exchange rate to short-rate shocks is similar under global and segmented

arbitrage: the exchange rate moves in the direction implied by UIP, and there is under-reaction

when arbitrageurs are risk-averse (¢ > 0) and the demand by currency traders is price-elastic
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(e > 0). Global and segmented arbitrage differ in how bond yields respond to shocks. Under
segmented arbitrage, a shock to the short rate ¢j; in country j affects bond yields in that country
only. By contrast, under global arbitrage, and provided that ac. > 0, the shock affects bond yields
in both countries, even though the short rate i;4 in country j* # j does not change. When i

drops, bond yields in both countries drop.

Since short-rate shocks are transmitted across countries, monetary policy in one country has a
direct effect on the other country’s interest rates. When the central bank in country j lowers the

short rate ij, interest rates for longer maturities in country j' drop. This is so even though the

central bank in country j' leaves the short rate ¢, unchanged.

Short-rate shocks are transmitted across countries because global arbitrageurs engage in the
CCT and use the bond market to hedge. Recall that under both segmented and global arbitrage,
a drop in the home short rate ip; raises the profitability of the CCT, making it more attractive to
arbitrageurs. When the demand by currency traders is price-elastic, the arbitrageurs’ equilibrium
investment in the CCT increases. Because arbitrageurs hold more foreign-currency instruments
(higher Wgy), they become more exposed to the risk that the foreign short rate iz, drops and the
foreign currency depreciates. Global arbitrageurs hedge that risk by buying foreign bonds because
their price rises when ip; drops. The arbitrageurs’ activity pushes the prices of foreign bonds up

and their yields down.

An additional consequence of hedging by global arbitrageurs is greater under-reaction of home
bonds to the home short rate. When ip; drops, arbitrageurs invest more in the CCT, and hence
become more exposed to a rise in ig¢. Investing in home bonds, whose prices drop when 7z rises,
adds to that risk. Hence, global arbitrageurs are less eager than segmented arbitrageurs to buy
home bonds following a drop in if¢, and the expected return of the home BCT increases more
than under segmented arbitrage. In particular, when the demand by home bond investors is price-
inelastic (and that by currency traders is elastic), a drop in iy raises the home BCT’s expected

return under global arbitrage but leaves it unaffected under segmented arbitrage.

We next turn to variants of the CCT studied in the empirical literature. We show that these
trades can be viewed as combinations of the BCT and the (basic) CCT, and that Proposition 4.2

can shed light on empirical findings concerning these trades.

One variant is a hybrid CCT in which the trading horizon is short but the trading instruments

are long-term. Borrowing in the home country and investing in the foreign country is done with
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the respective 7-year bonds, and the positions are held for a short horizon dt. The return of the

hybrid CCT in home-currency units is

d(PSer)  dP) a(ps;) apry;)
( & ) &= <det+(ipt—th)dt) + % _ |~ A —indt )
Py et Py “ Py et “ Py

(4.13)

Hence, the hybrid CCT can be viewed as a combination of (i) the basic CCT, (ii) a long position
in the foreign BCT, and (iii) a short position in the home BCT.

A second variant is a long-horizon CCT, in which borrowing in the home country and investing
in the foreign country is done with the respective T-year bonds, and the positions are held until

the bonds’ maturity. The return of the long-horizon CCT in home-currency units and log terms is

t+1
log ( 625;37 ) — log (%) = / <log <€s+ds) + ipsds — iHSds>
Pp/e Py, t €s
t+7 t+7
+ (w}? —/ iFst> - <Ty§;2 —/ z’Hsds> , (4.14)
t t

where the equality follows from (2.1). Hence, the long-horizon CCT can be viewed as the combi-

nation of (i) a sequence of basic CCTs, (ii) a long position in a long-horizon foreign BCT, and (iii)
a short position in a long-horizon home BCT. The long-horizon BCT in country j involves buying

bonds in country j and financing that position by borrowing short-term and rolling over.

Proposition 4.3. Suppose that arbitrage is global, arbitrageurs are risk-averse (a > 0), and the

demand by currency traders or by bond investors is price-elastic (ae >0 or a;(1) > 0).

e The hybrid CCT’s and the long-horizon CCT’s expected returns rise following a drop in the
home short rate iy or a rise in the foreign short rate ip¢, provided that the maturity T of
the bonds involved in these trades lies in an interval (0,7*). The threshold T* is infinite when

countries are symmetric.

o The sensitivity of the hybrid CCT’s expected return to (g, ipy) is smaller than for the basic
CCT. The sensitivity of the long-horizon CCT’s expected return to (igy,ipt) is smaller than

for the corresponding sequence of basic CCTs.

e The sensitivity of the hybrid CCT’s and the long-horizon CCT’s expected returns to (igt,ipt)
goes to zero when the maturity T of the bonds involved in these trades goes to infinity. The

expected return of the hybrid CCT also goes to zero.
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Short-rate shocks move the expected returns of the hybrid CCT and the long-horizon CCT
in the same direction as for the basic CCT, except possibly when the maturity 7 of the bonds
involved in these trades is very long. The effects of short-rate shocks on the hybrid CCT and the
long-horizon CCT are smaller than for the corresponding basic CCTs because the shocks’ effects
through the BCTs work in the opposite direction. Consider, for example, a drop in the home short
rate. Proposition 4.2 implies that the expected return of the basic CCT increases, but so does the
expected return of the home BCT, which enters as a short position in the hybrid CCT and the
long-horizon CCT.

When the maturity 7 of the bonds involved in the hybrid CCT and the long-horizon CCT is
very long, the effects of short-rate shocks through the BCTs offset almost fully those through the
basic CCTs. As a consequence, short-rate shocks have almost no effect on the expected return of
the hybrid CCT and the long-horizon CCT. These results are consistent with Lustig, Stathopoulos,
and Verdelhan (2019), who document that short rates lose their predictive power for the return of
the hybrid CCT, while they predict strongly the return of the basic CCT. They are also consistent
with Chinn and Meredith (2004), who document that UIP cannot be rejected over long horizons.

Short rate shocks lose their predictive power for the hybrid and the long-horizon CCT because
the risk of these trades arises from long-horizon exchange-rate movements, which are unrelated
to current short-rate shocks. Indeed, an arbitrageur entering in the long-horizon CCT at time ¢
receives a fixed amount of foreign currency and pays a fixed amount of home currency at time
t + 7. Mean-reverting short-rate shocks do not affect the risk borne by the arbitrageur when 7 is
large. The same is true for the hybrid CCT because that trade is identical to the long-horizon CCT

except that it is unwound at time ¢ + dt.

Under segmented arbitrage, the hybrid and the long-horizon CCT cannot be performed by any
agent in the model as they require trading bonds and foreign currency simultaneously. Yet, we can
compute these trades’ expected returns, and show the second result in Proposition 4.2. The first
and third result do not hold, however, because the effects of short-rate shocks on the BCTs and the
basic CCT are driven by the risk aversion of different arbitrageurs, and are hence disconnected. In
particular, the expected returns of the hybrid CCT and the long-horizon CCT may not approach

zero when the maturity 7 of the bonds involved in these trades is very long.
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4.3 Demand Shocks

Under global arbitrage, shocks to the demand for an asset class—foreign currency, home bonds,
foreign bonds—affect all three asset classes. This is in contrast to segmented arbitrage, where only

the asset class for which demand changes is affected (Proposition 3.5).

Proposition 4.4. Suppose that arbitrage is global, arbitrageurs are risk-averse (a > 0), the func-
tions (ag(7),ar(T)) are non-increasing, and the function 6;(T) is positive. A drop in investor

demand for the bonds of country j (increase in Bj;):
o Raises bond yields in country j.

e Raises bond yields in country j' # j when the demand by currency traders is price-elastic

(ae >0).

o Causes the foreign currency to depreciate if j = H, and to appreciate if j = F.

A drop in investor demand for home bonds depresses their prices, as in Proposition 3.5. Ad-
ditionally, prices for foreign bonds drop and the foreign currency depreciates. The latter (cross)
effects are driven by hedging of global arbitrageurs. Indeed, arbitrageurs accommodate the drop
in demand for home bonds by holding more such bonds. Hence, they become more exposed to
a rise in the home short rate ig; and less willing to hold assets that lose value when ig; rises.
Foreign currency is such an asset, and hence it depreciates. Foreign bonds is another such asset
(Proposition 4.2 shows that a rise in iy drives foreign bond prices down when the demand by
currency traders is price-elastic), and hence their prices drop. A drop in demand for foreign bonds

has symmetric effects.

Proposition 4.5. Suppose that arbitrage is global, arbitrageurs are risk-averse (a > 0), the func-
tions (ap(7),p (7)) are non-increasing, and 6. > 0. A drop in currency traders’ demand for

foreign currency (increase in vt ):
e (Causes the foreign currency to depreciate.
e Raises bond yields in the home country.

e Lowers bond yields in the foreign country.

A drop in currency traders’ demand for foreign currency causes it to depreciate, as in Proposi-
tion 3.5. Additionally, hedging by global arbitrageurs causes home bond prices to drop and foreign

bond prices to rise. Indeed, arbitrageurs accommodate the drop in demand for foreign currency by
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holding more of it. Hence, they become more exposed to a rise in the home short rate iz and to a
decline in the foreign short rate ip¢. This makes them less willing to hold home bonds, which lose

value when g, rises, and more willing to hold foreign bonds, which gain value when ¢p; drops.

4.4 International Transmission and the Trilemma with Global Arbitrage

We next summarize the main implications of the model with global arbitrage for the domestic and
international transmission of monetary policy. Consider a conventional monetary policy easing at
home, such as a drop in the home short rate if;. That drop propagates imperfectly along the home
term structure and depreciates the home currency (Proposition 4.2). These effects are as in the
case of segmented arbitrage. Unlike in that case, yields on foreign bonds decrease, even though the
foreign short rate remains unchanged. Hence, foreign monetary conditions are affected by domestic
monetary conditions. In that sense, the model with global arbitrage and floating exchange rates

features imperfect insulation.

Consider next a quantitative easing at home, where the Central Bank increases its holdings of
domestic bonds of some maturities 7 > 0. Through the lens of the model, this corresponds to an
increase in the demand for domestic bonds, i.e. 3;; < 0. This policy decreases home bond yields
(Proposition 4.4). This effect is as in the case of segmented arbitrage. Unlike that case, yields on
foreign bonds decrease and the home currency depreciates. Hence, foreign monetary conditions are
affected by domestic monetary conditions. Once again, the model with global arbitrage features
imperfect insulation. For both types of policies, monetary conditions co-move positively: easing at

home eases abroad and vice versa.

To understand why insulation fails, we can go back to our Trilemma analysis. According to the
Trilemma, a country without restrictions on capital mobility should be able to maintain domestic
monetary autonomy—interpreted as controlling the yield curve—Dby letting the exchange rate float.
This is no longer the case under global arbitrage. The reason is that global rate arbitrageurs
rebalance their entire portfolio in response to shocks. When global arbitrageurs are risk-averse,
portfolio rebalancing requires adjustments in expected returns. In turn, this triggers movements in

bond prices and the exchange rate.

For example, a lower home short rate induces global arbitrageurs to increase their holdings
of domestic bonds (BCT) and of foreign currency (CCT). It also induces them to increase their
holdings of foreign long term bonds (BCT), to hedge their larger holdings of foreign currency. This

pushes down bond yields everywhere and depreciates the home currency.
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The global arbitrage model implies additionally that sterilized foreign exchange interventions
affect not only the exchange rate but also the home and foreign yield curves. A sterilized foreign
exchange intervention designed to support the home currency can be interpreted as a drop in the
demand for foreign currency (an increase in ;), while holding the short rate unchanged. This
depreciates the foreign currency while tightening domestic monetary conditions and easing foreign

monetary conditions (Proposition 4.5).

Insulation of monetary policy is restored if global investors are risk-neutral. In that case,
expected returns satisfy both EH and UIP. Under EH, all bonds in a given country have the same
instantaneous expected return, equal to that country’s short rate. Under UIP, the foreign currency
has instantaneous expected return equal to the difference between the home and the foreign short
rate. Hence, the exchange rate adjusts so that bonds of all maturities in both countries have the

same expected return: insulation is restored.

5 Global Arbitrage and Demand Risk

We now turn to the most general version of the model, allowing for stochastic demand by bond
investors and currency traders. There are five risk factors: the home and foreign short rates

(it,iF¢), the demand factors for home and foreign bonds (Sp¢, Brt), and the demand factor for

currency ;. The vector of state variables ¢; = (iz¢,%r¢, B, Bre,ve) | satisfies (2.9). We allow for
a general correlation structure between the five factors (non-diagonal matrices I' and ¥), and for

currency demand in both the spot and the forward market, with appropriate substitutions.

5.1 Equilibrium

We conjecture and verify that the equilibrium exchange rate and bond yields are log-affine func-

tions of ¢;. That is, there exist six scalars ({Aije, Agje}j=H,F, Aye,Ce) and twelve functions

({Aijj’ (T), Aﬁjj’(T)}j,j’:H,F7 {A’Yj(T)}j:ITLF) {Cj(T)}j:H,F) that depend only on 7, such that

loge; = — [Az—qt+ce+(7TF_7rH)t} : (5.1)
tog P = — [4;(r) T+ C5()] (52)

where Ac = (Aipe, —Aire, Agtre, —Apre, Ave) T and A;(7) = (Ayu (1), Aijr(7), Agjn (1), Agjr(T),
AVJ(T))T-
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Proceeding as in Sections 3 and 4, the first-order condition of the optimization problem of

global arbitrageurs is
fet +ipe — i = Al A, (5.3)

uy) — iz = A;(r) T A, (5.4)

where j = H,F, pey = E(des/e;) and Mg) = Et(dlD](tT)/lDJ(Z)) At = (Nime, NiFts At AgFe Aye)

and

T
A=aSST [ Wrdc+ Y / X\ Aj(r)dr | . (5.5)
j=H,F "0

The expected return of the CCT in (5.3), and of the country j BCT in (5.4), are computed by
multiplying the sensitivity of each trade’s return to each risk factor times the factor’s price, and
summing over factors. We denote by (€;u, €ir, Egn, Egr, ) the five 5 x 1 vectors that correspond

to the five consecutive columns of the 5 x 5 identity matrix. Using market clearing to substitute
(W, {X ](tT ) }j=m.F) in (5.5), and proceeding as in Sections 3 and 4, we characterize the exchange

rate and bond prices by a system of scalar equations and ODEs in the following proposition.

Proposition 5.1. When arbitrage is global and demand for currency and bonds is stochastic ac-
cording to (2.9), the exchange rate e; is given by (5.1) and bond prices PJ(Z) in country j = H, F
are giwven by (5.2), with (Ae, Ce) solving

MAe — &g+ Eir =0, (5.6)

1
— ATG— (mp — ) + 5AjzzTAe = Al \c, (5.7)

and (A;(7),C;(1)) solving

A;(T) + MAj(T) — Sij =0, (5.8)

C;-(T) — Aj(r)TFq + %Aj(T)TEZT (Aj(T) + 2A81{]~:F}) = Aj(T)T/\C, (5.9)
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with the initial conditions A;(0) = C;(0) =0, and

T
M=TT—a| S [ (0;(r)€p; +0c(7)E(~1) =1 — aj(7) A (7)) Aj(r) T dr
0
j=H,F

T
- (9,387 + / Oc(T)EdT — aeAe> Al exT, (5.10)
0

T
de=am= | 3 [0+ G010 — 0y (r)Cy () Ay )i

j=H,F

+ <Ce + /OT Ce(T)dT — aeCe> A - (5.11)

Equation (5.8) is a linear ODE system in the 5 x 1 vector A;(7). We solve it taking the 5 x 5
matrix M as given, and do the same for the linear scalar system (5.6) in A.. We then substitute
({A;(7)}j=m,F, Ac) in (5.10) and derive M as a solution to a non-linear scalar system. Because the
non-linear system is high-dimensional, it can no longer be solved analytically and must instead be

solved numerically, as described in Appendix B.

5.2 Estimation and Data

We next lay out explicitly the model parameters required to solve the model numerically, and
describe our estimation strategy. First, we parametrize the functions {a;(7)};—pg,r that describe
the slope of preferred-habitat demand as function of maturity, and {6;(7)};—m,r that describe how
shocks to the demand factors affect the demand intercept as function of maturity. The analytical
results in the previous sections place only weak restrictions on these functions, but solving the model

numerically requires a more explicit characterization. We assume the exponential specification:
a;(1) = ajjo exp(—a;17), (5.12)
0;(1) = 007 exp(—0;17), (5.13)

for positive scalars (oo, o1, 650, 051). The exponential specification simplifies the estimation of the

model, while also being sufficiently flexible. The function 6;(7) is positive and hump-shaped with

a peak at maturity 1/6;;. Thus, shifts to the demand factor §j; shift the demand for bonds of all

maturities in the same direction, with the effects being more pronounced at a specific maturity. The
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function o (7)7, which describes the demand slope when demand is expressed as function of yield
rather than price, has the same functional form as 6;(7), with a peak at 1/aj1. When a;1 = 61,
the term structure in the absence of arbitrageurs is flat, and shocks to ;; generate parallel shifts.

We set the maximum maturity 7" to infinity.

Next, we impose some structure on the dynamics matrix I' and correlation matrix ¥ in (2.9).
First, we consider as our baseline a simple diagonal I" matrix. Second, we allow the innovations to
the short rates (ig,ipt) to be correlated: ¥;, ;. # 0. This allows to capture the dynamics in the
short rates which are observed in the data. Third, since the data does not offer as tight guidance on
the demand factors (B¢, Bre, 7t), which are not observable, we assume that they follow mutually
independent processes, also independent from the short rate processes. These restrictions simplify
the estimation of the model and the interpretation of the results, while allowing us to capture some
key features of the data. Allowing for correlation between the demand factors, and between these
factors and the short rates, could improve the fit even further and is an important extension of our

research. With the imposed restrictions, I' and 3 take the following form:

iy, 0 0 0 0 Sy Sigip 00 0
0 Iy 0 0 0 Sigip Sip 00 0

r=|o 0 TIg O O0],%=| 0 0 g, 0 0 (5.14)
0 0 0 Tg O 0 0 0 % O
o 0 0 0 T, 0 0 0o 0 %,

Finally, we do not estimate the long-run mean ¢ of the vector of state variables ¢, the intercepts
({¢j(1)}j=m,F,C), and the inflation differential 7p — 7. These parameters concern long-run
averages rather than responses to shocks. We estimate our model using second moments of yields
(implied by responses to shocks), and use it to determine other second moments and responses to

shocks.

The above assumptions leave us with 22 parameters to estimate: eight bond demand parameters
({ajo, 1} j=m,F, {050,051} j=H,F), two currency demand parameters (o, 0e), five elements of I, six
elements of ¥, and the arbitrageurs’ risk-aversion coefficient a. Our estimation approach does not
identify four of these moments: the three volatility parameters ({33 ;};=# F,>+.) of the demand
shocks, because they affect second moments only through their products with ({6;(7)};=m,r, 0e),
and the risk-aversion coefficient a because it affects second moments only through its products
with ({ajo(7),80(7)}j=H,F, e, 8c). The intuition in the case of a is that volatility of yields can be

large if demand shocks are modest and arbitrageurs highly risk-averse, or if shocks are large and
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arbitrageur risk aversion is low. We bring in additional information later in this section to identify
a. Finally, we impose ap1 = 01 = ap1 = 0p1, an additional three restrictions. As noted above,
when a1 = 0;1, the term structure in the absence of arbitrageurs is flat and bond demand shocks

generate parallel shifts.

We estimate the 15 (=22-4-3) remaining parameters via Generalized Method of Moments, by
targeting a large set of unconditional second moments of yields and exchange rates as well as bond
turnover by maturity. We take the home country to be the United States and the foreign country
to be the Eurozone, where we use data on German bunds for the foreign yield curve. We focus
on these two countries mainly for data reasons: we require the availability of a long history of
zero-coupon yield curve data and bond trading volume data by maturity. We use monthly yield
data starting in 06/1986, for which long-term zero coupon yields are consistently available for US

Treasuries and German bunds (for maturities up to 20 years). Our zero-coupon yield data for the

US is from Gurkaynak, Sack, and Wright (2007), and the German yields are from the Bundesbank.?
As in previous sections, the units of time ¢ and maturity 7 are years, so consecutive months are

separated by a time equal to 1/12.

A first set of target moments concern the one-year yields. We include them to obtain informa-
tion on the dynamics of the short rates. These moments are: the standard deviation of one-year

yields y(-l) and of their annual change Ay(-l) (1) (1)

it it =Yji1 — Y » and the correlation between the home

and foreign annual change in one-year yields;

A second set of moments concern the exchange rate. We include them to obtain information on
the dynamics of the currency demand factor ;. These moments are: the standard deviation of the

annual (log) exchange rate change Aloge; = loge;1 — logey; the correlation between A loge; and

the two-year change in the exchange rate A?loge; = loge; o — loges; and the correlation between

the change in one-year yields Aygz — Aygt) and A log e;.

A third set of moments concern yields across all maturities up to twenty years. We include
them to obtain information on the dynamics of the demand factors (Sp¢, Sr¢) and how movements

in the demand factors are transmitted to yields. We include the standard deviation of yields y(-T)

It
. (m— 0 _ )
and of their annual change Ay’ = Yitr1 — Yje

) ; and the correlation between the annual changes

Ay]m in one-year yields and Ay](-:) in all other yields.

3https://www.bundesbank.de/en/statistics/money-and-capital-markets/interest-rates-and-yields /term-structure-
of-interest-rates
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A final set of moments concern trading volume. We include them to obtain information on
the functions {(o;(7),0;(7)}j=m,F that describe the demand of preferred-habitat investors. We
include the trading volume for short-term bonds (with maturities between 0 and 3 years for the

US), relative to the total US bond trading volume.

Overall, we have 94 6 x N target moments where Ny refers to the number of maturities. We
observe maturities up to twenty years (in annual increments), so there are Ny = 20 maturities and
129 (=9 + 6 x 20) target moments. We refer to the 9 moments that do not depend on maturity as

scalar. Appendix Section D describes in more detail our data sources and moment calculations.

Collecting the 15 parameters into a vector p, we estimate the model by choosing p to minimize

the weighted sum of square residuals:
N
L(p) = wn(titn — mn(p))?, (5.15)
n=1

where {m,, },, represents the moments from the data, and {m,(p)}, the model-implied counterparts
as a function of the calibration parameters. The terms w, represent the weights placed on each
target moment. We set the weight to one for scalar moments, and to 1/Np for moments that are

a function of maturity.

5.3 Model Fit

5.3.1 Target Moments and Estimated Parameters

Table 1 compares the nine scalar moments in the data and in the model. Figure 1 does the same
for the six moments that depend on maturity. In the figure, the red circles are the moments in the

data and the blue solid lines are the model-implied counterparts. Both the table and the figure

report moments in terms of standard deviations (o(x) = y/Var(z)) and correlations (p(x,y) =

Cov(z,y)

————=2_) instead of the targeted variances and covariances. The model does reasonably well
Var(z)Var(y)

in fitting the large set of moments, both across maturities and across countries.

Table 2 reports the estimated parameters. The estimated bond demand slope and intercept

coefficients ajo and 6jo are relatively similar in the US and the Eurozone. The innovations to the

short rates are positively correlated in the US and the Eurozone (X = 0.404). The currency

THF

demand elasticity (a. = 0.082) is quite comparable to the elasticity of US bond demand to yields,
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Figure 1: Maturity-Dependent Moments in the Data and the Model

Note: The red circles represent the moments in the data, and the solid lines represent
their model-implied counterparts. Bond maturity is on the z-axis.

37



Target Data  Model

a(y) 2.611  2.67
oy 2.757  2.838
o(Ay)) 1271 1.245
o(Ayy)) 1.106  1.076
p(AYS) Ay%y)) 0.345  0.335
o(Alogey) 10.27  10.27

p(Aloges, A?loge;) 0.656  0.615
p(AyY) —y)), Aloge;) -0.114  -0.126
Voly(r < 3) 0.361  0.427

Table 1: Scalar Moments in the Data and the Model

Notes: The table reports the scalar moments targeted in the estimation and their estimated counterpart. The table

reports the standard deviation o(z) = y/Var(z) and the correlation p(z,y) = % instead of the targeted
ar(z)Var(y

variance Var(z) and covariance Cov(z,y).

Table 2: Estimation Results

Parameter Value
acro 0.013
a¥g,0mo  0.356
acro 0.024
a25F9F0 0.419

ac 0.082
OINCE 1.537
ad 0.343
Ly, 0.115
i 0.075
s, 0.074
|y 0.056
s, 0.672
Yiy 1.386
Yip 1.101
Yigip 0.404

Note: The table reports the GMM estimates of the model according to (5.15). We set § = a1; = 61;.

averaged across maturities ([;~ oy (7)dr = 242 = 0.110). Finally, the estimates indicate that the

currency factor is less persistent (I',, = 0.672) than the short rates and the demand factors.



5.3.2 Return Predictability Regressions

We next examine the implications of our estimated model for the predictability of bond and currency
returns. We do so by computing common regressions run in the asset pricing literature, and
comparing the empirical coefficients in our US/Eurozone sample to the coefficients implied by our
model. The regression coefficients are not targeted moments in our estimation. Hence, comparing
the empirical coefficients to the model-implied ones is akin to an “out-of-sample” exercise. The

calculations of the model-implied regression coefficients are in Appendix C.

Figure 2 reports empirical and model-implied coefficients for the Fama and Bliss (1987, FB)
(top row) and Campbell and Shiller (1991, CS) (bottom row) regressions for the US (left column)
and the Eurozone (right column). Under the Expectation Hypothesis, the FB coefficient should
be zero and the CS coefficient should be one, as indicated by the dashed lines. The empirical
coefficients, indicated by the red circles and the two-standard-error confidence intervals around
them, are consistent with the findings of FB and CS. The EH is rejected and the deviations from

EH are increasing with maturity.
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Figure 2: Term Structure Regression Coefficients

The model-implied coefficients in Figure 2 are indicated by the blue lines. The model broadly

reproduces the empirical patterns. The FB coefficients are positive, increasing in maturity, and
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near or above one for long maturities. The CS coefficients are below one, decreasing in maturity,
and negative for long maturities. The main discrepancy between the model and the data is that

the deviations from the EH are not large enough for long maturities.

The model generates a positive FB coeflicient through two mechanisms working in the same
direction. The first mechanism is the under-reaction (relative to the EH) of bond yields to short-
rate shocks. This mechanism is introduced by short-rate risk and is explained in Sections 3 and 4.
The second mechanism is the over-reaction (relative to the EH, under which there is no reaction)
of yields to demand shocks. This mechanism is introduced by demand risk. Suppose that demand
by preferred-habitat investors in country j drops. Bond prices in that country then drop so that
arbitrageurs are induced to buy the bonds. As a consequence, the term structure is steeply upward

sloping and bonds offer large expected returns, generating a positive FB coefficient.

In addition to raising the FB coefficient, demand risk renders it increasing with maturity.
Indeed, since bonds of longer maturities are riskier, their expected returns are impacted more
heavily by demand shocks. The slope of the term structure is also impacted more heavily by
demand shocks when it is calculated based on longer maturities, but the effect is not increasing as
rapidly with maturity as with expected returns. This is because the effect on yields incorporates how
demand shocks affect future expected returns, and that effect is weaker than for current expected

returns because demand shocks mean-revert.

Figure 3 reports empirical and model-implied coefficients for various types of UIP regressions.
The top left panel concerns the hybrid UIP regression of Lustig, Stathopoulos, and Verdelhan
(2019, LSV), in which the return of the hybrid CCT constructed using bonds with maturity 7 is
regressed on the foreign-minus-home short-rate differential. This regression nests as a special case,
for small 7, the standard UIP regression of Bilson (1981) and Fama (1984). Under the UIP, the
LSV coefficient should be zero. The empirical coeflicients are positive and statistically significant
for short maturities, consistent with Bilson (1981) and Fama (1984). They decline with maturity
and become statistically insignificant for long maturities. This is consistent with LSV, although
LSV’s coefficients, computed over multiple currency pairs rather than over only dollar/euro, are

closer to zero. The model-implied coefficients are positive and decline with maturity.

The top right panel in Figure 3 concerns the long-horizon UIP regression of Chinn and Meredith
(2004, CM), in which the realized rate of foreign currency depreciation over horizon 7 is regressed
on the foreign-minus-home 7-year yield differential. Under the UIP, the CM coefficient should be

one. The empirical coefficient is not statistically different from zero at short maturities, although
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confidence intervals are large because we use only one currency pair. As horizon increases, the
regression coefficient converges to one, consistent with CM (and UIP). While the model-implied
coefficients converge to one as maturity increases, they do so slowly. The model thus generates

significant departures from UIP even at relatively long horizons.

The bottom two graphs concern regressions run in Chernov and Creal (2020) and Lloyd and
Marin (2020), whereby the realized rate of foreign currency depreciation over horizon 7 is regressed
on the foreign-minus-home 7-year yield differential (level — same regressor as in CM), and the
foreign-minus-home slope differential (slope). Under UIP, the level coefficient should be one and
the slope coefficient should be zero. As with the CM regression, the coefficients using only one
currency pair are imprecisely estimated, but the point estimates are consistent with the literature.
In particular, the slope coefficient is positive, meaning that for a given yield differential, the CCT

is less profitable when the foreign-minus-home slope differential is larger.

The model generates a positive slope coefficient, although smaller than its empirical counter-
part. The intuition why the coefficient is positive is as follows. Suppose that the demand for
foreign bonds by preferred-habitat investors is low. This pushes up foreign bond yields, raising the
foreign-minus-home slope differential and causing the foreign currency to appreciate (Proposition
4.4). Hence, the future expected return on foreign currency declines. As found in the data, this
predictability of slope is primarily only over short and medium maturities. For long maturities, the

effects go away and UIP holds.

Overall, the model generates sizeable deviations from UIP, although the fit is not as good as
for the bond predictability regressions. Nevertheless, the model replicates the key patterns shown
in the absence of demand risk in Sections 3 and 4: UIP violations; LSV coefficient that declines

with maturity; CM coeflicient that rises to one as maturity increases.

5.4 Monetary Policy

We next explore the implications of our estimated model for the domestic and international trans-
mission of monetary policy. We start with conventional monetary policy, and consider a cut to the
short rate by the central bank. We assume that the cut is unanticipated and occurs at time zero.

We set the size of the cut to 25 basis points (bps).

4With only one currency pair, the Lloyd and Marin (2020) regression results are never strongly significant, except
at very long horizons where one may be concerned about the strong serial correlation due to overlapping observations.
Our standard-errors are Newey-West corrected but with few genuine non-overlapping observations, they may still be
artificially low.

41



Hybrid UIP Long-Horizon UIP

3k
3 |
2
2+ o [} °
© 0 0 o o ° e °
© 0o o o °
o o [ S e e
© o0 o ° o
1r © 0 0 0 o
0 Fe
[ e
Model -1 r
© Data
-1 — — — - Risk-Neutral
-2
5 10 15 20 2 4 6 8 10
Maturity Maturity/Time Horizon
Long-Horizon UIP (level) Long-Horizon UIP (slope)
6 8 r
5 |
6 F
a |
® o
o
3+ 4 re o
o o
2 | O ° . .
° O P
[ ——__ ___ __ (e} [}
o
L o
0 [ e L o= =g °
2 8 10 2 8 10
Maturity/Time Horizon Maturity/Time Horizon

Figure 3: Generalized UIP Regression Coefficients

Figure 4 shows how a short-rate cut in the US (top row) or the Eurozone (bottom row) affects
the term structures in the two countries at the time of impact (left column) and the exchange rate
over time (right column). In the left column, the US term structure response is shown in blue,

while the Eurozone response is shown in red.

The short-rate cut affects the term structure in the country where it originates, but has essen-
tially no effect on the other country’s term structure. Its effect on the exchange rate is modest and
significantly smaller than under UIP. The dollar depreciates by 18bps (0.18%) following a US rate
cut, and appreciates by 18bps following an ECB rate cut. Under UIP, by contrast, the dollar would
depreciate by 25/I';y=217bps (2.17%) following a US rate cut, and appreciate by 25/I"; 7=333bps
following an ECB rate cut. Our estimated model generates a small effect of the short-rate cut on
the exchange rate because it attributes about half of exchange-rate volatility to the currency de-
mand factor. Currency demand risk dissuades arbitrageurs from taking large positions in currency

in response to short-rate changes.

We next turn to non-conventional monetary policy, and consider large-scale purchases of bonds
by each of the central banks. We assume that the purchases are unanticipated, occur at time zero,
and are unwound over time. We describe the net amount purchased by the central bank (purchases

at time zero minus subsequent unwinding) by the same exponential specification as the demand
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Figure 4: Conventional Monetary Policy — Short Rate Shock

intercept:

HﬁE(T) = H%ET exp <7¢9§21E7') exp <7I€]QE7§) .

GﬁE characterizes the

The parameter G%E characterizes the size of the purchases. The parameter

breakdown of purchases across maturities. We assume that both parameters are the same in the
two countries to render the results more comparable. For the same reason, we assume that the
parameter K,?E, which describes the rate at which purchases are unwound, is the same across

countries.

Omitting the subscript j, we set (G?E, k9F) to (0.2,0.2). Thus, purchases in the cross-section
are maximized at the five-year maturity (1 /Q?E = 5), and their half life in the time-series is

3.47 years (log(2)/k9F = 3.47). We pick values for ng based on the size of time-zero purchases

aggregated across maturities, which is

02"

/000 06QE7' exp(—ﬁlQET> dr =
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We assume that purchases represent 10% of US GDP. Using US GDP as the numeraire, we thus

set

Oire o = 10% x 0.22 = 0.004.

To determine the effects of QE, we need to calibrate one remaining parameter, the arbitrageurs’
risk-aversion coefficient a. The effects of a on moments of yields and exchange rates cannot be
identified separately from the effects of the size of demand shocks (which is why our estimation
determines a only up to its products with demand slope and intercept). To determine, however, the
effects of a demand shock of a given size, we need a value for a. Since a corresponds to a coefficient
of absolute risk aversion, it is equal to /W, where ~ is the arbitrageurs’ coefficient of relative risk
aversion and W is their wealth. We set v = 2, in line with common estimates. An estimate for
W can be derived by identifying arbitrageurs with hedge funds. The assets of hedge funds in the
fixed-income, macro and balanced categories in 2020 were about 5% of US GDP in that year.® We
take 5% as a lower bound for W since arbitrageurs can include additional agents such as global
banks and multinational corporations, and use 20% as an upper bound. The implied bounds for a

are 2/5% = 40 and 2/20% = 10.

Figure 5 shows how QE purchases in the US (top row) or the Eurozone (bottom row) affect
the term structures in both countries at the time of impact (left column) and the exchange rate
over time (right column) when a = 40. In the left panels, the US term structure response is shown
in blue, while the Eurozone response is shown in red. When a = 10, the effects are one-quarter of

those in Figure 5.

QE purchases have pronounced effects on the term structure in the country where they origi-
nate. They reduce the ten-year yield by 50-60bps, and have even larger effects for longer maturities.
These magnitudes are comparable to estimates in the literature: according to a summary of these
estimates in Wiliams (2014), QE purchases of 10% of GDP reduce the ten-year yield by 35-65 basis
points. Figure 5 indicates that QE has sizeable effects on the term structure of the other country
as well: the effect on the ten-year yield is 30-40% of that in the country where QE originates,
with the percentage rising for longer maturities. Our analysis reveals that conventional and non-
conventional policy differ sharply in their international spillovers: non-existent for the former, and

sizeable for the latter.

The effects of QE on the exchange rate are somewhat larger than those of conventional policy.

Shttps://www.barclayhedge.com/solutions/assets—under-management/hedge-fund-assets-under-management/
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Figure 5: QE Shock Spillovers

QE in the US causes the Euro to appreciate by about 0.5%, while QE in the Eurozone causes the
Euro to depreciate by about 0.25%.

6 Conclusion

We propose an integrated preferred-habitat model of bond and currency markets across two coun-
tries. Prices are determined by arbitrageurs trading with investors with preferences for specific
assets. Risk premia vary over time in response to shocks to short rates and to bond and currency
demand. This variation generates empirically documented violations of Expectations Hypothesis
and Uncovered Interest Parity. Large-scale asset purchases in one country cause that country’s
currency to depreciate, bond yields in that country to drop, and yields in the other country to drop
by a smaller amount. A short-rate cut in one country has the same qualitative effects, although our
estimated model reveals that the spillovers to the other country’s term structure are significantly

smaller.
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Appendix

A Proofs

Proof of Proposition 3.1: Equation (3.10) follows by identifying the linear terms in (igy, i) in

(3.9). Equation (3.11) follows by identifying the constant terms.

To show that the system of (3.10) and (3.11) has a unique solution for ({Ajje}j—m,r, Ce), We
start with the system of two equations in {A;jc};—pm r obtained by writing (3.10) for j = H and

j = F. A solution to the latter system must be positive, as can be seen by writing (3.10) as
[“ij + Qelre (UEHA?He + O-Z'QFA?Fe)] Ajje = 1. (A.1)

Since Ajje > 0, the right-hand side of (3.10) is negative. Therefore, the left-hand side is negative

as well, which implies A;je < ’% Dividing (3.10) written for j = H by (3.10) written for j = F,
ij
we find
1 —kigAige  Aife Aire
1 —kirAire  Aire e 1y (ki — KiF)AiFe (4.2)

1

Equation (A.2) determines A;p. as an increasing function of A;p. € [0, W}’ equal to zero for

A;re = 0, and equal to ﬁ for A;pe = ﬁ Substituting A;pe as a function of A;p. in (A.1)
written for j = F, we find an equation in the single unknown A;p.. The left-hand side of that

equation is increasing in A;pe, is equal to zero for A;p. = 0, and is equal to a value larger than

one for A;p, = K%p Hence, that equation has a unique solution A;p.. Given that solution, (A.2)

determines A;pe uniquely, and (3.11) determines C, uniquely. [

Proof of Corollary 3.1: When a. = 0, (3.10) implies A;je = K—t] Substituting into (3.11), we

find (3.12). Substituting into (3.8), we find pier = igt — ipy.

When a. goes to zero, (3.10) implies that A;j. converges to % When, in addition, (3.12) does

not hold, (3.11) implies that C, converges to plus or minus infinity at the rate é, and (3.8) implies

that e does not converge to iy — ipy. |
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Proof of Proposition 3.2: Substituting pgy and gy from (3.14) and (3.16), respectively, into
(3.19), we find

A (T)ije + Cf(1) — Aij ()i (5 — ije) + %Az‘j(ﬂ (Aij (1) = 24ipel(j—py) 05 — ijt
T
— a;Ai(7) ( [ 160 = o) (s i + €5 Aimdf) o2 (A3)

Equation (3.20) follows by identifying the linear terms in i;; in (A.3). Equation (3.21) follows by
identifying the constant terms. The initial conditions A;;(0) = C;(0) = 0 follow because the price

of a bond with zero maturity is its face value, which is one.

Solving (3.20) with the initial condition A4;;(0) = 0, we find

1—e "
Ay(7) = ——, (A.4)
KX
ij
with
T
H;Fj = Kij + CLjJZZj /0 Oéj(T)Aij(T>2d7‘. <A5)
Substituting A;;(7) from (A.4) into (A.5), we find the equation
T —rr\ 2
1 — e Fi
Rij = Rij + ajff?j/ a;(7) (eJ) dr =0 (A.6)
0 Kij

in the single unknown £7;. The left-hand side of (A.6) is increasing in k};, is negative for ki = Kij,

1]7

and goes to infinity when /{ . goes to infinity. Hence, (A.6) has a unique solution /@fj > K;j. Given

K7, (A4) determines A;;(7) uniquely.

Solving (3.21) with the initial condition C(7) = 0, we find
1 T
= Kiji / Aij (T 2033‘/ Ayj(r)%dr, (A.7)
0
with
= = o [T 2
K,;Kj’ij = Kijij + a;jog; /0 KJ(T) - O(j(T)Cj(T)} Aij(T)dT + UiinFel{j:F}- (AS)
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Substituting C;(7) from (A.7) into (A.8), we find

= T T r
- Kijtj + ajazzj fo G(m)Aij(T)dT + U%AiFel{j:F} + %ajafj fo a;(7) (fo Aij<7'/)2d7'/) Ay (m)dr
7 * T T
Kij [1 + ajafj fO a;(T) (f() Aij(T’)dT’) Aij(T)dT}

(A.9)

Given E;k-, (A.7) determines C;(7) uniquely. [

Proof of Corollary 3.2: When a; = 0, (3.20) with the initial condition A;;(0) = 0 implies

Aii(1) = 1=e "7 Qubstituting into (3.19), we find ,ug) = i;;. The same results hold when a; — 0.

Kij

K4

Proof of Proposition 3.3: Equations (A.4) and «;; > x;; imply A;;(7) < Piiﬂ Differentiating

(3.19) with respect to i;; implies

0 (,ug-? — ijt)

T
ey / () Ay (7)2dr < 0,
a’LJt 0

where the second step follows because (A.4) implies A;;(7) > 0. ]

Proof of Proposition 3.4: The property A;je < ;«% is shown in the proof of Proposition 3.1.
ij

Differentiating (3.8) with respect to ig; and iy, we find

O(pet + it — i)
JiHt

2 2 2 2
= *aeaeAl'He (JZHAIHG + O-”LFAIFB) < 0,

O(et + ipt — iprt)
Oiry

2 2 2 2
= Qe Aipe (UiHAiHe + UiFAiFe) > 0.

where the second step in each case follows because A;jc > 0. ]
Proof of Proposition 3.5: Consider an one-off increase in 3j; at time zero, and denote by kg,
the rate at which 3;; reverts to its mean of zero. Bond prices in country j at time t are

P = e [ (MiaetAs; (Bt C(n)],

(A.10)
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where (A;j;(7), Ag;j(7),C;(7)) are functions of 7. The counterpart of (A.3) is
A (T)ije + Ay (T)Bje 4+ Ci(7) = Aij(T)kij (15 — ije) + Apj(T)kp;i Bjt

1 .
+ iAU(T) (A”(T) — 2AiFel{j:F}) 0'1-2]- — th

T
= a;Ai(T) (/0 [Gi(7) +0;(7)Bje — aj(7) (Aij(T)i5e + Agj(T)Bje + C5(7))] Aij(T)dT> o).
(A11)

Identifying terms in r; and constant terms, we find (3.20) and (3.21), respectively. Identifying terms

in B¢, we find
) T
!/
5;(T) + rpjApi(7) = ajoi; Aij(T) /0 [6;(7) = (1) Ag;(T)] Agj(7)dr. (A.12)
Solving (A.12) with the initial condition Ag;(7) = 0, we find
Agj(7) = Ag; / Ay (e o3y, (A.13)
0
with
, [T
Agj = ajaij/o 10;(1) — o (1) Ap; (T)] Aij(T)dT. (A.14)
Substituting Ag;(7) from (A.13) into (A.14), we find

ajagj fOT 0;(1)Ai;(T)dr
1+ ajoy; fOT o (1) (fy Aij(T)e R8s T=m)dr") Aij(m)dr

Agi (A.15)

Since (0;(7), Ai;(7)) are positive, so is Ag; and Ag;(7). Hence, (A.15) implies that an increase in
Bj¢ raises bond yields in country j. Since the foreign currency and bonds in country j" are traded

by different agents than those trading bonds in country j, their prices do not depend on (.

Consider next an one-off increase in 7; at time zero, and denote by k. the rate at which ~;

reverts to its mean of zero. The exchange rate at time t is

e =6 [AiHeth_AiFeiFt+AW€7i+CE+ift]7 (A.lﬁ)
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where ({Ajje}j=m,F, Aye, Ce) are scalars. The counterpart of (3.9) is
11}

-~ . ~ . 2 . .
— Aigerin (i — iHt) + AiFekir(1F — iFt) + AyeliyYe — + AlHe o+ AZFeUz'F +ipe — iH

= e |Ce + Oyt + Vet — e (AiHeth — Aireirt + Ayeyt + Ce + — we )] (A’LZHCO—?H + A?FeUiQF) .
(A.17)

Identifying terms in (i g+, i7¢) and constant terms, we find (3.10) and (3.11), respectively. Identifying

terms in -y, we find

"f'yAye = ae(ee - aeAWE) (A12He g+ AzFe ’LF)

ae@e (AzHe zH + AZF@ IF) (A18)

= Ay = .
Koy + ete (A 00y + Alpo7n)

Since 0. is positive, so is A,.. Hence, (A.18) implies that an increase in <, causes the foreign
currency to depreciate. Since bonds in each country are traded by a separate set of agents than

those trading foreign currency, their prices do not depend on ~;. ]

Proof of Proposition 4.1: Applying Ito’s Lemma to (4.1) for j = H, we find the following
counterpart of (3.13):

dP(T) ,
Pg)t = ufHEdt — Ainn(T)oindBige — Ainr(7)0irdBirt, (A.19)
Hi
where

W) = A (Pie + A p(TYime + Cly(7) — Asmrmr (T kit Gar — ime) — e (T kir (e — ire)

1 1
+ §AiHH(7_)20'1‘2H + §AiHF(T>2O-7j2F' (A.20)
Likewise, (4.1) for j = F' and (3.2) yield the following counterpart of (3.15):

d(Pp)er) _ des

- = ,ugt)dt — Az‘FH(T)UinBz‘Ht — AiFF(T)UiFdBin (A.Ql)
P( )6 €
Ft ©t

where

u%? =Alpy(Tige + Aipp(T)ip + Cp(1) — Aipp (T)kin (ig — i) — Aipp(T)kip(ip — ipt)

1 1
+ §A1FH(T) (A’LFH(T) + 2AiHe) UiQH + §AZFF(T) (A’LFF(T) — 2AiFe) O'?F. (A.22)

50



Substituting the returns (3.4), (A.19) and (A.21) into the arbitrageurs’ budget constraint (2.3), we

can write their optimization problem (2.4) as

[ nax Wrt (ftet +ir: — i) + Z / Jt th - Z]t) dr
WFt7{Xj: Yre,1),j=H,F j=H,F
2
a ) 2
_5 Z WFtAije( {J F} 1 Z / X ; A,L] j d 0ij | - (A23)
Jj=H,F j'=H,F

The first-order condition with respect to Wry is (4.2), and the first-order condition with respect to
xj7) s (4.3),

Using (3.7) and (3.18), we can write A;j; as

)\’L]t = aO—ZZj Z / /t 7’.7 .7 d - ZetA’Lje(_]~>1{]:F}

:aafj Z / ajr( 10g< /t)+CJ()+0 ()ﬁﬂ} Agjri(T)dr
+ [aelog(er) + Ce + Oyt + et] Aije(—l)l{j—F}>

= aa'izj Z / Cj +0 ( )B]/t ( ) ( @]IH(T)th+Aij/F(T)iFt+Cj/(7'))] Aij/j(T)dT

j'=H,F
+ |:Ce + 96’7)& + wet — O (AiHeth - AiFeiFt + Ce + zet>:| Aije(_l)l{j_p}>

= a(f% (j\ijjijt + j\rj’jij’t + Xijc) , (A24)
where the second step follows from (2.5) and (2.7), the third step follows from (3.2) and (4.1), and
the fourth step follows from Sy = Bp: = 7 = 0 and the definitions of (S\ijj,)\m/,)\zjc) in the

statement of the proposition. We next substitute (e, {,ug-:), Niji }i=m,F) from (3.5), (A.20), (A.22)

and (A.24) into the arbitrageurs’ first-order condition. Substituting into (4.2) and identifying terms
in (ig,ir¢) and constant terms, we find (4.5) and (4.6), respectively. Substituting into (4.3) and

identifying terms in 4, terms in 4,/ and constant terms, we find (4.7), (4.8) and (4.9), respectively.
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Proof of Corollary 4.1: When a = 0, (4.5) implies A;jc = %j, (4.7) with the initial condition

A;;;(0) = 0 implies A;j;(7) = ¢ "7 " and (4.8) with the initial condition A;ji7(0) = 0 implies

A;jir (1) = 0. Substituting into (4.6), we find (3.12). Substituting into (4.2), we find per = i — iy,
(7)
t

J

and substituting into (4.3), we find g ;" = ij.

When a goes to zero, (4.5) implies that A;je converges to -, (4.7) with the initial condition
ij

A;;;(0) = 0 implies that A;;;(7) converges to ki#, and (4.8) with the initial condition A;;;(0) =

3

0 implies that A;;;/(7) converges to zero. When, in addition, (3.12) does not hold, (4.6) and (4.12)
imply that C. converges to plus or minus infinity at the rate a%, and (A.24) implies that A

converges to a non-zero limit for j = H,F. Hence, (4.2) implies that ue does not converge to

(

it — ipt, and (4.3) implies that uj? does not converge to ;. |

Proof of Proposition 4.2: We start by proving a series of lemmas.

Lemma A.1. The matriz

2 3 2 3

M= KiH — QO;gA\eHH — —A0p A\rHF A95

= —ao? A Ao\ (A.25)
Q0 g ArFH RiF — QO pArFF

has two positive eigenvalues.

Proof: The characteristic polynomial of M is
H(/\) = (HiH — GUZ'QHS\THH — /\) (KviF — aUz'gF/_\rFF — )\) — GQUZ-QHUZ-QF/_\THFX\TFH. (A.26)

For A =0, II(\) takes the value
I1(0) = (kimr — aoigAemrn) (Kip — a0ipAFF) — A0 O A\ HF A FH

2 2 2 (y 3 T3
> a’oigoiy (MaEAFF — MHFAFH)

T T
a2al-2Hai2H [(/ aH(T)AiHH(T)QdT +/ CtF(T>AZ‘FH(T)2dT—|- CkeA?He)
0 0
T T
X (/ OZH(T)AiHF(T)QdT+/ aF(T)AiFF(T)QdT‘FaeA?Fe)
0 0

T T 2
_ </ ag(T)Aign (1) Aigr(T)dr —I—/ ap(T)Aira (T)Aipp(T)dT — aeAiHeAi%) ] .
0 0

(A.27)
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The second step in (A.27) follows because (k;m, ki) are positive and because (4.10) implies that

(Are e, Arpr) are non-positive. The third step in (A.27) follows from (4.10) and (4.11). The

Cauchy-Schwarz inequality associated to the scalar product
T T
X.v= / ant (7) X 1 (1) Yo (7)dr + / an (1) X i (7)Y (F)dr + aury
0 0

where X = (Xg(7), Xp(7),2), Y = Yu(1),Yr(7),y), (Xa(7),Xp(7),Yu(7),Yr(7)) are functions
of 7, and (z,y) are scalars, implies that (A.27) is non-negative. Hence, II(0) > 0.

For A\ = ki — aJ?HXTHH and A = k;p — aafFj\rFF, II(\) takes the value —a2al-2Hai2F5\THF;\rFH,
which is non-positive because (4.11) implies \,gr = M\pg. Since (kim,kir) are positive and
(ArmH, ArFF) are non-positive, kg — aoiy Mg and A\ = k;p — aoipA\pr are positive. Since IT(\)
is a quadratic function of A, is positive for A = 0, is non-positive for two positive values of A, and

converges to infinity when A\ goes to infinity, it has two positive roots. |

The matrix M plays an important role in the determination of (A;g g (7), Aigr(7), Airu(7), Aipp(T))

and (A;pge, Aire). Equation (4.5) gives rise to the linear system

Al 1
M e ) = . A.28
()= (1) (h29
Since M has two positive eigenvalues, it is invertible, and hence (A.28) can be solved for (A;xe, Aire)-

Equations (4.7) and (4.8) give rise to the linear system

(e ) = (G )= (5) a2
for (j,5') = (H, F), and to

(el ) o () = (2) (nan

for (4,j') = (F,H). Since M has two positive eigenvalues, the solutions (A;mp(7), Aigr(T)) to
(A.29) and (A;rp (1), Airr(T)) to (A.30) converge to finite limits when 7 goes to infinity.

Lemma A.2. The normalized factor prices MHEF = M\ Py are non-negative.
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Proof: Suppose, proceeding by contradiction, that A\,gr = A\.pg are negative. The solution to
(A.28) is

. _
Kig — a0y (AMHH + ANrFH)

2 3 2 2 2y 3

(kirt — ao?yAemn) (Kip — a02pAoprp) — A20 202 AP A P H

Aipge = (A.31)

. _
KiF — a0 p(AFF + A F)

2 3 2 3 2 23y 3 "

(kirr — ac?ydemn) (Kir — ao?phipr) — 202405 AP AP H

Aire = (A.32)
The denominator in (A.31) and (A.32) is II(0) > 0. The numerators in (A.31) and (A.32) are

positive because (k;, kir) are positive and (a\, g, a\Fr, e\ g F, a\-Frr) are non-positive. Hence,

A;ge and A;p. are positive.

When a = 0, (4.8) with the initial conditions A;gzr(0) = A;pg(0) = 0 implies A;gp(T) =
Aipp(7) = 0 for all 7 > 0. Since, in addition, A;y. > 0 and A;pe > 0, (4.11) implies A,y =

A > 0, a contradiction.

When a > 0, (4.7) and (4.8) with the initial conditions A;pr(0) = Airr(0) = Aigr(0) =
Aipa(0) = 0imply ALy, (0) = Al pp(0) =1 and Al (0) = Alpp(0) = 0. Moreover, differentiating
(4.8), we find A/, (0) = ao?yArr ALy (0) < 0 and Ak (0) = ao? A\ grAlpR(0) < 0. Hence,

Aigp(t) >0, Aipp(t) >0, Aigp(t) <0 and A;pg (1) < 0 for 7 close to zero. We define 7y by

10 = sup{A;gg (") >0, Aipp(7') >0, Aigp(7') <0 and A;pg () <0 for all 7/ € (0,7)}.

If 79 is finite, then (i) Aigm(10) =0, ALy (10) <0, Aipr(10) > 0, Ainr (o) < 0and A;pp(m) <0,
or (ii) Aigm(m0) > 0, Airr(10) = 0, Alpp(m0) < 0, Aigr(10) < 0 and A;jpp(10) < 0, or (iii)
Aign(10) > 0, Aipp(10) > 0, Ainr(10) =0, ALy p(10) > 0 and Ajpu(9) <0, or (iv) Aigu (1) > 0,
Airr(m0) > 0, Aigr(10) < 0, Airr(ro) = 0 and Alpy(70) > 0. Case (i) yields a contradiction
because (4.7) for j = H, Aigr(m0) =0, Aigr(0) <0 and Ay < 0 imply Al (70) > 1. Case (ii)
yields a contradiction by using the same argument as in Case (i) and switching H and F. Case (iii)
yields a contradiction because (4.8) for (j,7') = (H, F), Aigr(m0) > 0, Aigr(7o) =0 and A\py < 0
imply Al r(70) < 0. Case (iv) yields a contradiction by using the same argument as in Case
(iii) and switching H and F. Therefore, 7y is infinite, which means A,y (7) > 0, A;pp(7) > 0,
Aigrp(T) < 0 and A;pg(7) < 0 for all 7 > 0. Since, in addition, A;p. > 0 and A;pe > 0, (4.11)

implies MNHE = MNFH > 0, a contradiction. Hence, MNHF = \opp are non-negative. ]

Lemma A.3. The functions Aijgp(T) and A;pp(T) are positive for all T > 0.
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e When a >0 and ae > 0, the functions A;gr(T) and A;rpp(T) are positive for all T > 0.

o When a =0 or ae =0, the functions A;gr(7T) and Ajpp(T) are zero.

Proof: Consider first the case a > 0 and o > 0. If \,gr = M\opg = 0, then (4.8) with the
initial conditions A;gr(0) = A;Fpp(0) = 0 implies A;gr(7) = Aipa(7) = 0 for all 7 > 0. Since,
in addition, (A.31) and (A.32) imply A;ze > 0 and A;p. > 0, (4.11) implies A\ogr = A\rg > 0, a

contradiction. Hence, Lemma A.2 implies \,gr = Appg > 0.

Equations (4.7) and (4.8) with the initial conditions A;gp(0) = Airrp(0) = Aigrp(0) =
Aipu(0) = 0 imply A}, 4(0) = Alpp(0) = 1 and A, (0) = AL,y (0) = 0. Moreover, differen-
tiating (4.8), we find A/ -(0) = ao?y A rr ALy (0) > 0 and AYpy(0) = ac? Ao mrpAlpp(0) > 0.
Hence, Aigp(7) >0, Aipp(7) >0, Ajgrp(7) > 0 and A;pg(7) > 0 for 7 close to zero. We define 7
by

10 = sup{ Aigg (7)) > 0, Aipp(7)) > 0, Aigr(7") > 0 and A;pg (7)) > 0 for all 7/ € (0,7)}.

If 79 is finite, then (i) Aigu(10) =0, ALy (10) <0, Aipr(10) > 0, Aigr (o) > 0 and A;pp (1) > 0,
or (ii) Aigm(m0) > 0, Airp(10) = 0, Alpp(m0) < 0, Aigr(10) > 0 and A;jpp(10) > 0, or (iii)
Aigr(10) > 0, Aipp(10) > 0, Ainr(10) = 0, ALy p(10) < 0 and Aipr(70) > 0, or (iv) Aigm(10) > 0,
Aipr(m0) > 0, Aigr(m0) > 0, Aira (o) = 0 and Alpy(10) < 0. Case (i) yields a contradiction
because (4.7) for j = H, Aipr (o) =0, A;igr(mo) > 0 and \.gp > 0 imply Al (10) > 1. Case (ii)
yields a contradiction by using the same argument as in Case (i) and switching H and F. Case (iii)
yields a contradiction because (4.8) for (j,7) = (H, F), Aigu(m0) > 0, Aigr(79) =0 and A\.pgy > 0
imply Al;p(170) > 0. Case (iv) yields a contradiction by using the same argument as in Case
(iii) and switching H and F. Therefore, 7y is infinite, which means A;y(7) > 0, A;pr(7) > 0,

AzHF(T) > 0 and AzFH('r) > 0 for all 7 > 0.

Consider next the case a = 0. The properties of (A;gp(7), Airp(7), Ainr(7), Airm (7)) follow

from Corollary 4.1.

Consider finally the case a > 0 and a, = 0. Suppose, proceeding by contradiction, that A, gr =
A\-rp are positive. The argument in the case a > 0 and . > 0 implies A;zg(7) > 0, A;pp(7) > 0,
Aipr(t) > 0 and A;pg(7) > 0 for all 7 > 0. Since a, = 0, (4.11) implies A\,gr = Mrg < 0, a

contradiction. Hence, Lemma A.2 implies A\, gz = \rrg = 0.
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Since \,gr = AMpyg = 0, (4.8) with the initial conditions A;yr(0) = A;rg(0) = 0 implies
AzHF(T) = AzFH(7—> = 0. Since AzHF(T) = AzFH(T) = 0, (4.7) with the initial conditions
Aigr(0) = A;jpp(0) = 0 implies that A;gy(7) and A;pp(7) are positive for all 7 > 0. |

Lemma A.4. The functions Aigm(7) and A;pp(T) are increasing. When a > 0 and o > 0, the

functions A;pr(7) and A;pp(T) are also increasing.

Proof: Consider first the case a > 0 and a. > 0. Equations Al (0) = ALzp(0) =1, AL, (0) =
Aip(0) = 0, Afyp(0) = aofyhrrAjyy(0) > 0 and Afpy(0) = aofpArnpAjpp(0) > 0 imply

Ay (1) >0, Al pp(1) >0, ALy p(7) > 0 and Alp, (1) > 0 for 7 close to zero. We define 7y by

10 = sup{ Ay (7)) > 0, Aipp(7) > 0, Al p(7') > 0 and A}y (7)) > 0 for all 7' € (0,7)}.

or (ii) Alypy(10) > 0, Alpp(m) = 0, Alpp(m0) < 0, Alyp(10) > 0 and A;jpp(10) > 0, or (iii)
Al (10) > 0, Aipp(70) > 0, Ajgrp(10) = 0, Al p(70) < 0 and Ajpy(10) > 0, or (iv) Ajyy(70) > 0,

Al pp(10) >0, ALy p(10) > 0, Al gy (10) = 0 and Ay (70) < 0. To analyze Cases (i)-(iv), we use

A (’7‘) + HijA

i (1) = aoj;Aijj Al (T) + aoiy Nijj Ay (1), (A.33)

/
ijj i i’

Toa(T) + nTj/A’»jj/(T) = aa?jj\rj/jA’-

i’ i L (T) + aoi Ay A (1), (A.34)

which follow from differentiating (4.7) and (4.8), respectively.

Case (i) yields a contradiction. Indeed, if A7y, (70) = 0, then (A.33) for j = H, A, (10) =0
and A\rgp > 0 imply A’ (70) = 0. The unique solution to the linear system of ODEs (A.33) for
Jj = H and (A.34) for (j,7") = (H, F) with the initial condition (A} ;(70), ALy (70)) = (0,0) is the
function that equals (0,0) for all 7. This yields a contradiction because (A} ;(0), Al #(0)) = (1,0).
Hence, Ay ;(79) < 0, which combined with (A.33) for j = H, Al ;(70) = 0 and A\ogp > 0
implies A’ -(170) < 0, again a contradiction. Case (ii) yields a contradiction by using the same
argument as in Case (i) and switching H and F. Case (iii) yields a contradiction because (A.34) for
(4,9) = (H,F), Aigra(10) >0, Aigr(1o) = 0 and \,pg > 0 imply A’y -(70) > 0. Case (iv) yields
a contradiction by using the same argument as in Case (iii) and switching H and F'. Therefore, 7

is infinite, which means that (A;gg(7), Aipp(7), Aigr(7), Aipm (7)) are increasing.
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In the case a = 0 or o, = 0, Lemma A.3 implies A;gr(7) = Airg(7) = 0. Since A;gp(T) =
Airpp(T) = 0, (4.7) with the initial conditions A;pr(0) = A;prp(0) = 0 implies that A;gg(7) and

A;pp(T) are increasing. |
Lemma A.5. The scalars A;ge. and A;pe are positive.

Proof: Consider first the case @ > 0 and o, > 0. Since \,gr = A\pg > 0 and A;jgp(r) >
0, Aipp(1) > 0, Ajgp(t) > 0 and A;pp(7) > 0 for all 7 > 0 (Lemma A.3), (4.11) implies
AineAire > 0. Hence, (Aime, Aire) are either both positive or both negative. Suppose, proceeding

by contradiction, that they are both negative. Equations (A.31) and (A.32) imply
Kill — QO A HE < Q0 A\rFH, (A.35)

KiF — A0 pArEE < Q0 pArHP- (A.36)
Since the left-hand side in each of (A.35) and (A.36) is positive, (A.35) and (A.36) imply

I1(0) = (HiH — acr?Hj\,«HH) (KiF — aUZ-QFXTFF) — aa?HJ?FXTHFS\,«FH <0,
a contradiction. Hence, A;g. and A;pe are positive.

Consider next the case a = 0. Corollary 4.1 implies that A;f. and A;p. are positive. Consider
finally the case a, = 0 and a > 0. Since \,gr = A\rg = 0 and (XTHH, S\TFF) are non-positive,

(A.31) and (A.32) imply that A;g. and A;r. are positive. |
Lemma A.6. The functions Aigp(7)— Aip(7) and A;pp(7) — Aigr(T) are positive for all 7 > 0.

Proof: In the case a = 0 or o = 0, the lemma follows from Lemma A.3. To prove the lemma in
the case a > 0 and a, > 0, we proceed in two steps. In Step 1, we show that A,y (7) — Aipm(T)
and A;rpp(T) — Aigrp(7) are positive in the limit when 7 goes to infinity. In Step 2, we show
that A;gp (1) — Aipg(7) and A;pp(7) — Ajgp(T) are either increasing in 7, or increasing and
then decreasing. The lemma follows by combining these properties with A;p(0) — A;rpp(0) =
Airr(0) — Aigr(0) = 0.

Step 1: Limit at infinity. Since the matrix M has two positive eigenvalues, the functions

(Aiga (1), Airp(7T), Aigr(7), Aipa(T)) converge to finite limits when 7 goes to infinity. These
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limits solve the system of equations

KijAijj(00) = 1= aoy;NijjAijj(00) + aoy Aijjr Aijjr(00), (A.37)

KyjrAj(00) = aa,?jijj/injj(oo) + aa?jlxrj/j/Aijj/(oo), (A.38)
which are derived from (4.7) and (4.8) by setting the derivatives to zero. Subtracting (A.38) for
(4,7") = (F,H) from (A.37) for j = H, we find

ki (A (00) — Aipp(00)) — 1

= aoig A (Ain (00) — Airr (00)) + aoipArmr(Ainp(00) — Aipr(00)). (A.39)
Subtracting (A.38) for (j,j') = (H, F) from (A.37) for j = F, we similarly find

kir(Aipp(00) — Aigr(oc)) — 1

= aoiyAer(Ainr(00) — Aig(00)) + aoipArpr(Aipp(00) — Aipp(c0)). (A.40)
The solution to the system of (A.39) and (A.40) is

kit — ao2y (Mrire + Arpir)

Aigp(00) — Aipp(00) = = - _ = Ajne,
(c0) (0) (kirr — actyhemm) (Kir — a0?pAipr) — 202405 AP A FH
(A.41)
Aipp(c0) — Ajp(oo) = KiF — QU?F(S‘TFF + S\THF) _ _ — Ap
' ' (ki — ao?yAemm) (Rir — a0 Aerr) — A202 020 Mg P APl e
(A.42)

where the second equality in (A.41) and (A.42) follows from (A.31) and (A.32), respectively. Since

(Aife, Aire) are positive (Lemma A.5), so are (A;pp(00) — Aigr(00), Aipr(c0) — Aipr(00)).
Step 2: Monotonicity. Equations (4.7) and (4.8) with the initial conditions A;pn(0) =

Airr(0) = Aigr(0) = Airu(0) = 0 imply A;HH(O) = A;FF<O) =1>0and A;HF(O) = A;FH<O) =

0. Hence, Al (1) — Alpy (1) > 0 and Al pp(7) — ALy (1) > 0 for 7 close to zero. We define 79 by

10 = sup{ Ay (7)) — Alpy (') > 0 and Al pp(7') — Al p(7') > 0 for all 7/ € (0,7)}.

If 79 is infinity, then A;gg(7) — Aipa(7) and A;pp(7) — A;gr(7) are increasing in 7. Suppose
instead that 7 is finite. Then, either (i) AL, (10) — Alppy(10) = 0, Ay (10) — Alpp(10) <0
and Ajpp(10) — Ajyp(r0) = 0, or (i) Ajyp(r0) — Ajpg(10) > 0, Ajpp(mo) — Ajgp(r0) = 0 and
Al (10) — Al (10) < 0. To analyze Cases (i) and (ii), we use

Aipp(7) = Alpy (1) + Rin(Aign (1) — Aipp (7)) — 1

= aoiyhemm(Aign (T) — Aipg (7)) + acie N F (Aigp(T) — Aipp(T)), (A.43)
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which follows by subtracting (4.8) for (4, ;') = (F, H) from (A.37) for j = H, and
Aipp(1) = Aigp(7) + 8ir (Aipr(T) — Ainp(r)) — 1

= aoiy rn (Ainp(T) — Aign (1)) + aoZpAerp(Aipp(T) — Ainr(1)), (A.44)

which follows by subtracting (A.38) for (j,j') = (H, F) from (A.37) for j = F. Differentiating
(A.43) and (A.44), we find

irm(7) = Alpg (1) + wim (A g (1) — Ajpp (7))

= aUz‘QHS\rHH(AgHH(T) - A;FH(T)) + aUZZFS‘THF(A;HF(T) - A;FF(T)) (A.45)

and
Trr(T) = Alyp(T) + Kip(Alpp(T) — Algp(T))

= GU?HXTFH(A;HF(T) - AQHH(T)) + GU?FS\TFF(AQFF(T) - A;HF(T))v (A.46)

respectively. Equations (A.45) and (A.46) are a linear system of ODEs in the functions (A}, (1) —
Aipp (1), Aipp(T) = Aigp(7)).

Consider first Case (i). If A7y (10) — Az (10) = 0, then (A.45), AL,y (10) — Alppy(0) =0
and A.gp > 0 imply Alpp(70) — Alyr(70) = 0. The unique solution to the linear system of
ODEs (A.45) and (A.46) with the initial condition (A% (10) — AL p i (70), Alpp(10) — ALy p(70)) =
(0,0) is the function that equals (0,0) for all 7. This yields a contradiction because (A} (0) —
Al g (0), AL pp(0) — ALy (0)) = (1,1). Hence, Ay (10) — Alpy(10) < 0, which combined with
(A45), ALy (10)— Al (7o) = 0 and A, gp > 0 implies Al (10) — ALy (10) > 0. Since Ay (10) —
Al py(10) = 0 and Ay (10) — Ay (10) < 0, ALy (1) — Al (1) < 0 for 7 larger than and close

to 79. We define 7 by

1o = sup{ Ay g (7)) — Alpy (7)) <0 and Alpp(7") — Algp(r’) > 0 for all 7' € (79, 7)}.

If 7 is finite, then either (ia) ALy, (70) — Alpy(10) =0, Ay p(10) — Alp g (70) > 0 and Al pp(10) —
Aigp(70) 2 0, or (ib) Ajp y (10) = Ajpy (10) <0, Ajpp(70) = Ai g p(70) = 0 and Afp o (70) —Afy p(70) <
0. In Case (ia), the same argument as for 7o implies Ay, (74) — Az (7)) > 0, which combined with
(A45), Ay (10) — Alppr(10) = 0 and Apgp > 0 implies Al (74) — Al (1) < 0, a contradiction.
In Case (ib), the same argument as for 7o implies A}y (7)) — Ay (7)) < 0, which combined with

(A.46), Al pp(10) — Al p(70) = 0 and A\ppgr > 0 implies A%y () — Alpg (7)) > 0, a contradiction.
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Therefore, 7 is infinite, which means that A;pp(7) — A;pp(7) is increasing, and A;gp (1) — Aipa (1)

is increasing in (0, 79) and decreasing in (79, 00).

Consider next Case (ii). A symmetric argument by switching H and F' implies that A;gg (1) —

A;pp(7) is increasing, and A;pp(7) — A;gp(7) is increasing in (0, 79) and decreasing in (79, 00). W

Using Lemmas A.1-A.6, we next prove the proposition. Since (A;ge, A;re) are positive (Lemma

A.5), (3.2) implies 8221 < 0and 2 > 0. Whena > 0 and a, > 0, (4.10) implies that (A\rfr 7, Arrr)

ipy

are negative, and the proof of Lemma A.3 implies that (A, gr, \rprr) are positive. Hence,
aoig i Aifie — a0ip A pAire <0, (A.47)

acipArprAire — a0y Aeri Airre < 0. (A.48)

Combining (A.47) and (A.48) with (4.5), we find A;p. < % = AU and Aipe < % = AUIP.

Combining (A.47) and (A.48) with (4.2) and (A.24), we find Hppertip=im) () apq Wtettir=tm) -

8th 8iFt

0. This establishes the first bullet point of the proposition.

Since (A;gm(7), Airp(7)) are positive for all 7 > 0 (Lemma A.3), (2.1) and (4.1) imply that

() ()
(%jgz , %Zi’;i ) are positive. When a > 0 and o, > 0, Lemma A.3 implies that (A;gp(7), Aipp (7)) are

positive for all 7 > 0, and Lemma A.4 implies that (A;gr(7), Aipu(7)) are increasing. Equation

(4.8) for (j,j') = (H, F) implies

aciy M rrAin(7) + aote N rrpAiprr(T) > 0. (A.49)

Multiplying both sides of (A.49) by A < () we find

ArFH

- A HEHA
2 2 rHHA\rFF
aoighaa A (T) + aoip————

AiHF(T) <0
ArFH

= aoig e Ain i (T) + aoip A A () <0, (A.50)

where the second step follows from A;gr(7) > 0 and from the inequality MHEMNEFF—MNHENFH < 0
established in the proof of Lemma A.1. We likewise find

aoip M Aipp(T) + aolg A Aipr (T) > 0, (A.51)

aoip M prAipp(T) + aoig Mepa Aipn (1) <0, (A.52)
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by switching H and F. Equations (A.50) and (A.52) hold also when a > 0, o = 0 and (ag (1), ap (7))
are positive in a positive measure set of (0, 7). Indeed, the proof of Lemma A.3 implies \.gr =

Mrr = 0, and since (A;gp(7), Aipr(7)) are positive, (4.10) implies that (A gm, A\rpr) are neg-

ative. Combining (A.50) and (A.52) with (4.7), we find A;pp(r) < =" = AEBH (7} and

KiF
Airr(T) < % = AEH(7). Combining (A.50) and (A.52) with (4.3) and (A.24), we find
% < 0 and % < 0. This establishes the second bullet point of the proposition.

When a > 0 and a. > 0, (Aigr(7), Airu (7)) are positive for all 7 > 0, and hence (2.1) and

(1) (r)
(4.1) imply that (ayHt Wy ) are positive. Moreover, combining (A.49) and (A.51) with (4.3) and

Oipe ' Oige
(T)—iFt)

>>Oand8(#Ft7

(r) _
Ht “UHt

0
(A.24), we find (uaiFt

> 0. This establishes the third bullet point of the

proposition. The fourth bullet point follows from Lemma A.6, (2.1) and (4.1). |
Proof of Proposition 4.3: Using (3.4), (4.2), (4.3), (4.13), (A.19) and (A.21), we can write the
expected return of the hybrid CCT as

,UJ%TC)CTt = Nimi(Aine + Aira (7) — Aina (7)) — Nird(Aire + Ainrp (1) — Airrp(T)). (A.53)

Using (A.24), we find

o (1) _ _

% = aoiy e (Aige + Airn(7) — A (1)) — aoipdemr(Aire + Aip(T) — Aipp(T)),
(A.54)

o (1) _ B

% = aoig rr(Aige + Aipn (1) — Aign (1)) — aoiperr(Aire + Aigp(T) — Aipp(T)).

(A.55)

When a > 0, and a, > 0 or a;(7) > 0, (ArHH, A\ FF) are negative. Since, in addition, (A\rgr, \rra)

are non-negative, (A;pe, Aire) are positive and A; g (0)—A;pr(0) = Aiprp(0)—A;nrp(0) = 0, (A.54)
() (r)

and (A.55) imply that there exists a threshold 7% > 0 such that 8“5%;;” < 0 and 8”5’#?” > 0

for all 7 € (0,7*). Since at least one of (A;pp(7) — Airu(7), Airr(T7) — Ajgr(7)) is increasing

(proof of Lemma A.4), they are both increasing when countries are symmetric. Since, in addition,

(AlHH(OO) — AzFH(OO),AlF'F(OO) — AzHF<OO)) = (AiH67AiF6) (proof Of Lemma AG), (A54) and

(r)

(r)
(A.55) imply that when countries are symmetric, Wg#f” < 0 and 8“5%;;” > 0 for all 7 > 0, which

means 7 = 0o.
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Since (4.2) implies that the expected return of the basic CCT is
peceTt = pet + trt — it = NiHtAine — AiFtAire,
(A.24), (A.54) and (A.55) imply

0 (M](:C)‘CTt - ,UCCTt) _ _
=N (Aira(T) — Aigu (7)) — Menp(Ainr (1) — Aipr(7)) > 0,

Ot
(A.56)
(1)
0 HEroort — HCCTt _ B
( dir ) = MrH(Aira(T) — Aina (7)) — Mrp(Aigr(T) — Airr(T)) <0,
t
(A.57)

where the inequalities follow because (A.gm, \rpr) are negative, (A, gr, \rpr) are non-negative,
and (A;igp (1) — Airu (1), Airr(7) — Aigr (7)) are positive for all 7 > 0 (Lemma A.6). Hence, the
sensitivity of the hybrid CCT’s expected return to (ig¢, if¢) is smaller (less negative in the case of iy

and less positive in the case of i ;) than for the basic CCT. Since (A (00) — Aipa(00), Aipr(00) —

Aigrp(00)) = (Aige, Aire), (A.53) implies that ugTC)CTt goes to zero when 7 goes to infinity, and

(r) ()
(A.54) and (A.55) imply the same for Yncore gpq Mncore
Oipre Oipt

Using (3.2), (4.1) and (4.14), we can write the return of the long-horizon CCT as
Aincimt — Aireirt + Ce — (AibelH t++ — Airciriir + Ce)
+ Airp(T)ire + Aipa (T)ine + Cp(T) — (Aina (7)ige + Aigr(T)ipe + Cu (7))
Hence, (3.1) implies that the expected return of the long-horizon CCT is
HiOor = Aine(1 = e~ ) (i = i) = Ase(1— ¢ (i, — ip)

+ Airr(T)ipe + Aira (T)ige + Cp(T) — (Aigu (T)im + Aigr(7)ip: + Cu (1)),

and its sensitivity to (igy,ip¢) is

a (T)
icert Aige(1 — e "8 + Aipp (1) — Aiga (T), (A.58)
Oimt
6 (7')
Mgiccw = —Aipe(1 — e P + Aipp(1) — Aipp(T). (A.59)
Ft

When a > 0, and ae > 0 or oj(7) > 0, Ajpe < ﬁ and A;pe < ﬁ (These properties are shown in

Proposition 4.2 for a > 0 and «, > 0. They also hold for @ > 0 and «;(7) > 0 since (A\rgm, \rrF)
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are negative and (A,gp, \rppr) are non-negative.) Since, in addition, A’ ;(0) = AL, (0) =1 and
Al p(0) = Alp;(0) = 0, the derivative of (A.58) with respect to 7 at 7 = 0 is negative, and

the derivative of (A.59) with respect to 7 at 7 = 0 is positive. Hence, there exists a threshold

(1)

()
7% > 0 such that %Hct“ < 0 and %Fct“ > 0 for all 7 € (0,7%). When countries are symmetric,
we set Ky = Kig = Kip, 0p = 0ig = 0iF, Aie = Aige = Aire, AA(T) = Aigu(7) — Airn(7) =
Airp(T) — Aigp(T), AN = Mg — Mra = Mrr — Mrerr < 0. Taking the difference between (4.7)
and (4.8) yields

AA(T) + K AA(T) — 1 = ac? ANAA(T),

which integrates to
AA(r) = Ay, (1 — e (e

since AA(0) =0 and AA(c0) = A;e. Substituting into (A.58) and (A.59), we find

(1) (1) -
core _  Otycor = Aje(e= (Fr=aoPANT _ o=rrTy (A.60)

Dipe Dipy

Hence, 7" = co.
The expected return of the sequence of basic CCTs is
() t+1
loore = Et/ ()\rHt’AiHe - )\TFt’AiFe) dt/'
¢
Using (3.1) and (A.24), we find

aM(T) 1 — e FiHT _ N
CCTt _ (CLO'Z'QH)\THHAZ'HE - anQFArHFAiFe)

Dipre KiH
1— e MHaT
= 7(/4}1‘]_[147;1{6 - 1), (A61)
KiH

where the second step follows from (4.5). We likewise find

a“gngt L —e™mrm
= — irAire — 1). A.62
6iFt RiF (/{F F ) ( 6 )

Combining (A.58) and (A.61), we find

0 METC)CTt - 'u(CTé'Tt 1 — e MiHT
( 5 ) = + Aipu(T) — Aigu (1) >0,
THt RiH
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where the inequality sign follows from (A.43) by noting that the left-hand side of (A.43) is negative.
Combining (A.59) and (A.62), we likewise find

9 MéQCTt - :“’(C%Tt 1 — e HiFT
< i ) = — —f—AiFF(T)—AZ’HF(T) < 0.
LRt KiF

Hence, the sensitivity of the long-horizon CCT’s expected return to (igy,ipy) is smaller (less neg-
ative in the case of iy, and less positive in the case of ip;) than for the corresponding sequence

of basic CCTs. Since (A;gp(o0) — Aipp(00), Aipp(c0) — Aigrp(00)) = (Aime, Aire), (A.58) and

() ()
(A.59) imply that O it and aﬂéicFC;Tt go to zero when 7 goes to infinity. [

We next prove a lemma that we use in subsequent proofs.

Lemma A.7. When a > 0 and o, > 0, the functions (ﬁ?gf,((:))? Alig((:))> are increasing.

Proof: The functions (A;gu(7), Aigr (7)) solve the system (A.29) of linear ODEs with constant
coefficients. The solution is an affine function of (e*7,e~"27), where (v, 1) are the eigenvalues of

the matrix M. Because of the initial conditions A;;g(0) = A;zr(0) = 0, we can write the solution

as a linear function of (176_”17, 176_”27). Because (Al ;(0), AL, -(0)) = (1,0), the coefficients of

v v2

the linear terms sum to one for A;;(7) and to zero for A;pr(7). Hence, we can write the solution

as
1—e™7 1—e™" 1—e™7
Aiga(T) = ———— + ¢HmE < — > ; (A.63)
141 1) 141
l—e ™ 1—e T
Aigr(T) = ¢HF < - ) ; (A.64)
1) 141

for scalars (¢gm,drr). The eigenvalues (v1,1v5) are positive (Lemma A.1), and without loss of
generality we can set 11 > vo. Since A;pp(7) is positive when a > 0 and a, > 0 (Lemma A.3),

¢gr > 0. Since

1—e— Y17
Aigu(T) _ < 1 PHH _ 1 n dHH
Aigr(T) gy (1—8’”2” _ 1-er17> PHF  Gpp (Ll 1—e—vam 1) bur’

V2 %1 vy 1—e Y17

voT

and the function (v1,v9,7) — 1:#17 increases in 7 because its derivative has the same sign as

V1T _ voT _ . A . . . . A .. .
=127 =1 the function A (1) g decreasing. Hence, the inverse function Aup(T) i increasing.
v v2 Apr(Tr) Apn(r)

A similar argument using (A.30) establishes that 1; ;’((T)) is increasing. [
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Proof of Proposition 4.4: We prove the proposition in the case j = H. The proof for the case
Jj = F'is symmetric. Consider a one-off increase in By at time zero, and denote by kgr the rate

at which B reverts to its mean of zero. Bond prices in country j = H, F' at time ¢ are

Pj(tT) — e [Auss (Mgt Asyy (T)igrt Ay (D)4 C5 ()] (A.65)
and the exchange rate is
er = e_[AiHeth_AiFeiFt+AﬂHe/3Ht+Ce]’ (A.66)

where ({Ai;;/(7)};0=m,Fs {Agju(T), Cj(T)}j=m,F) are functions of 7, and ({Aije}j—m,F, AgHe, Ce)
are scalars.
The arbitrageurs’ first-order condition (4.2) and (4.3) remains the same, with (fset, ,ugg , ,ugt), Nijt)

taking the values

- . - 1 1
pet = — Airerin (tg — ime) + Airekir(ir — ipy) + AgrekgaBat + §A12Heaz‘2H + §A22Fe<7i2Fa

(A.67)
17) = Al (Time + Al p(7)ime + Al (7)Bre + Cop(7) — Assrar (P)arr (i — imt)

e . 1 1
— Aigr(T)Rir(ir —ip) + A (T)KgHBHE + §AiHH(T)20'i2H + §AiHF(T>2Ui2F7
(A.68)

i =Aipn (T)ine + Aipp(7)ire + A (7)Bue + Cp(r) = Aipn (T)kan (i1 — i)

— Aipp(T)kip(ir — ipt) + Agp (T)ku Bt + %AiFH(T) (Aipn(T) + 2Aime) 07y

+ 3 Air(r) (e (r) — 2Aire) o (A.69)
Aijt ZCLUZ-Q]- (Nijjtje + Aejritire + Agri B + Nije) (A.70)

instead of those in (3.5), (A.20), (A.22) and (A.24), and Agp; taking the value

_ T T
AgHj = /0 (00 (7)—an(T)Agru (7)) Aipj (T)dT— /O ap(r)Apgrn (7)Aipj (T)dT—ac AgeAije(—1) =7
(A.71)

We next substitute (fiet, ugﬁ,u}?, Xijt) from (A.67)-(A.70) into the arbitrageurs’ first-order condi-
tion. Substituting into (4.2) and identifying terms in Sp, we find

KpHAgHe = a0y AgHH Al — ATipAgH P Aire. (A.72)
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Substituting into (4.3) and identifying terms in Bg, we find
b (T) + kg Agim (1) = aofy Nsnn Aiji (1) + aotp Mg Aijr (1), (A.73)

which integrates to

T

Ang(T) —CLUZ-QHS\QHH/ Ain(T/)e_HﬂH(T_TI)dT/—I—CLU?F;\/QHF/ Am‘p(’l‘/)e_NBH(T_T/)dT,, (A.74)
0 0

since Ag;jp(0) = 0. Substituting Agpe from (A.72) and {Ag;n(7)}j=n,F from (A.74) into (A.71),
we find

T
(1 + anZHZHH)/\BHH + aUz'QFZHF/\BHF = / GH(T)AiHH(T)dT, (A75)
0
B B T
CLO'?HZFH)\ﬁHH + (1 + CLU?FZFF))\QHF = / 9H(T)AiHF(T)dT, (A.?G)
0

where
T T ,
ZHH = / ag(T)Aigg(T) [/ AZ-HH(T’)e_”ﬁH(T_T )dT/] dr
0 0

Qe

T T
+ / aF(T)AiFH(T) [/ AiFH(T/)e_’WBH(T—T/)dT/] dr + A?Hea
0 0

/iBH

T T
ZHF = / ag(T)Aiga(T) [/ Az‘HF(T/)e_WH(T_TI)dT/} dr
0 0

T T
+/ aF(T)AiFH(T) |:/ AiFF(T/)e”BH(TT’)dTI:| dT — &AiHeAiFey
0 0 KgH

T T
ZFHg = / ozH(T)AiHF(T) |:/ AiHH(T,)e_”BH(T—T’)dT/:| dr
0 0

T T
+/ ap(T)Aipr(T) [/ Az’FH(T,)e_KﬁH(T_T/)dT/:| dr — &AiHeAiFw
0 0 KsH
T T ,
ZFF — / (XH(T)AZ'HF(T) [/ AiHF(T/)efﬁﬁH(TfT )dT/:| dT
0 0
T T , «a
+/ ap(T)Aipr(T) [/ AiFF(T/)G_HﬁH(T_T)dT/] dr + —— A%p,
0 0 KsH

Equations (A.75) and (A.76) form a linear system of two equations in the two unknowns (A\grra, A\gr r)-
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Its solution is

B 1 T T
NsHH = x [(1 + anQFzFF)/ O (1) Aim (T)dT — anQFzHF/ QH(T)AZ‘HF(T)dT] (A.T7)
0 0

z

B 1 T T
NsHF = = [(1 + aa?HzHH)/ O (T)Aigp(T)dr — aal-QHzFH/ QH(T)AZ'HH(T)dT:| ,
0 0

(A.78)
where

— 2 2 2 _2 2
A, = (1 + anHZHH)(l + aainFp) — Q0O pZHFZFH-

The statements in the proposition concern the signs of (Agpr(7), Agru(7), Agme). To deter-
mine these signs, we proceed in four steps. In Step 1, we show that A, is positive. In Step 2,
we show that (zpr,zrp) are non-negative, and are zero when o, = 0. In Step 3, we show that
Agpp(T) is positive, and that Agppg(7) is positive when o, > 0 and zero when o, = 0. In Step 4,
we show that Agp. is positive. The first statement in the proposition follows from the first result
in Step 3. The second statement follows from the second result in Step 3. The third statement

follows from the result in Step 4.

Step 1: A, is positive. Since (zgp, zrF) are non-negative, A, is positive under the sufficient

condition
ZHHZFF 2 ZHFZFH- (A.79)

The function

F(u) = zum + w(zar + 2rm) + 122rp
T T ,
= / OZH(T) [Az‘HH(T) + ,UAZ'HF(T)] |:/ [AiHH(T) + ,uAiHF(T)] e_“ﬁH(T_T )dT/:| dr
0 0
T T ,
—‘r/ aF<T) [AZ‘FH(T)—F,U,AZ'FF(T)] I:/ [AiFH(T) +MAiFF(T)] e’{/BH(TT)dT/:| dr
0 0

+ 2 (Aige — nAire)?

/QBH

is non-negative for all y if
T T ,
= / a(T)A(T) {/ A(T’)e*”ﬁH(T*T )dr'| dr
0 0
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is non-negative for a non-negative and non-increasing «(7). Since

Fy= /0 " (o) [ /0 ' @(T’)dT’} dr,
where
o(1) = afr)e s,

O(1) = A(1)esHT

integration by parts implies

Fy— %¢(T) [ /O ' @(T)dT] 2— % /0 " [ /0 ’ @(T')dT'} i (A.80)

The first term in the right-hand side of (A.80) is non-negative because a(7) is non-negative, and
the first term is non-positive because «(7) is non-increasing. Therefore, Fj is non-negative. Since
F(u) is quadratic in pu, its non-negativity for all p implies

dzppzrr > (zar + 2rn)*

1 1
= ZHHZFF = Z(ZHF + ZFH)2 = ZHFZFH + Z(ZHF — ZFH)2 > ZHFZFH-

Therefore, (A.79) holds.

Step 2: (zyr,zry) are non-negative, and are zero when o, = 0. Since Lemma A.3
implies that A;pp(7) is positive and A;pg(7) is non-negative, and Lemma A.4 implies that A;pr(7)

is non-decreasing and A;pp(7) is increasing,
T T
ZHE < / OéH(T)AZ‘HH(T) [/ AZ‘HF(T)e_”ﬂH(T_T/)dT/] dr
0 0

Qe
- AiHeAiFe

T T
+/ CYF(T)AiFH(T) [/ AiFF(T)BF”BH(TT/)dT':| dr —
0 0 o

T A; T T A;pp(T Qe
S/ OZH(T)AZ'HH(T)HF()dT‘f‘/ ap(T)Aipa(T) re(r) AireAire
0 KBH 0 KBH KpH

_ _ArHF <0

HﬁH

9

where the second step follows because (A;pp(7), Aipp(7)) are positive and (A;rpp (1), Aipa (7)) are
non-negative, the third step follows from (4.11), and the fourth step follows from Lemma A.2. The

inequality zpg < 0 follows similarly.
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When a, = 0, Lemma A.3 implies A;gr(7) = Ajpp(7) = 0. Therefore, zgr = zpg = 0.

Step 3: Agpu(7) is positive, and Agpy(7) is positive when a. > 0 and zero when
ae = 0. Since (A,,0p(7),Aign (7)) are positive, (A;gr(7),zrpF) are non-negative, and zyp is
non-positive, (A.77) implies that Agpp is positive. When a. > 0, A;gp(7) is positive. Since, in
addition, zg g is non-negative and zpp is non-positive, (A.78) implies that 5\5 HF is positive. When

Qe — 0, (A.78) and AzHF(T) = ZFH — 0 imply X/gHF = 0.

Since (Agrm, Airn (7)) are positive and (A\gmr, Aigr (7)) are non-negative, (A.73) implies that
Agpp(7) is positive. When o, > 0, A;pp(7) is positive. Since, in addition, (j\ﬁHF,AZ‘FF(T)) are
positive, (A.73) implies that Agppy(7) is positive. When a, = 0, (A.73) and A;pu (1) = Agur =0

imply Agru (1) = 0.

Step 4: Agp.(7) is positive. Substituting (Aggm, Agur) from (A.77) and (A.78) into (A.72),

and using the definitions of (z2pH, 2HF, 2FH, 2FF), we find that Agpy,. is positive if

T T
ZH/O GH(T)AiHH(T)dT—ZF/O QH(T)AZ‘HF(T)dT>0, (A.81)

where

_ 2 2 2 2
Zg =0yl +aoipzrr)Aife + a0;yoipzra Aire

2
= UiHAiHe

T T
+ (IO’?HO'?F/ OéH(T)AiHF(T) |:/ [AiHeAiHF(TI) + AZ'FeAiHH(T/)]e”BH(TT/)dT/:| dr
0 0

T T
+ CLO’?HO'Z-QF / aF(T)AZ'FF(T) [/ [AiHeAiFF(T/) + AZ’FeAiFH(T,)]e_HﬁH(T_T’)dT,:| dr,
0 0

_ 2 2 2 2
ZF = aaiHJiFZHFAiHe + UZF(l —+ aO’iHZHH)AiFe

2
= UZ‘FAiFe

T T
+ CLO'?HO'Z-QF/ OéH(T)AZ'HH(T) [/ [AiHeAiHF(T/) + AiFeAiHH(T/)]C_HBH(T_TI)dT/:| dr
0 0

T T
+ CLU?HU?F/ ap(T)Aira(T) [/ [AigeAirr(T') + AiFeAiFH(T/)]e_HﬂH(T_T/)dT/:l dr.
0 0

Since (0(7), Aigu (7)) are positive, A;gp(7) is non-negative, and 1’2?572((3 is non-decreasing (in-

creasing when a > 0 and a, > 0 from Lemma A.7, and zero when a = 0 or o, = 0), the ratio

69



fOT O (T)Aigr(T)dr
S 0 (T) Asrp (T)dr

is bounded above by %

holds for all positive functions €z (7) under the sufficient condition
ZHAZHH(OO) — ZFAZHF(OO) > 0.

Using the definitions of (Zy, Zr), we can write (A.82) as

ol AieAirr i (00) — 07p Aipe Airp(00)

T
+ anQHJzZF/ ap(7) [Ainr(T)Ainn(0) — Aign (1) Ainr(00)]
0
X [/ [Aige Ainr(T") + Az‘FeAz‘HH(T')]e_WH(T_T/)dT’] dr
0
T
+aotyody | ar(r) A (r) A (o0) = () Aunr (o)
0
X [/ [AigeAipp(T") + AiFeAiFH(T/”eR’BH(TT/)dT/:| dr > 0.
0

Equation (4.8) for (j,j') = (H, F) implies

aotyherAinn(t)  Ajyp(r)

AiHF(T) = CERN 2 3 )
KiF — QO pA\rFF KiF — QO pA\rFF

which for 7 = oo becomes

2 5\7" Az
A (oe) =TI (E0)

RiFp — aO'Z'QF/_\rFF
Equation (4.7) for j = F implies

a(’z‘QHS‘TFHAiFH(T) 1= Alpp(7)

Aipp(T) = a0\ Ao :
RiF — QO pArFF RiFp — Q0 pArFF

. Since, in addition (Zy, ZF) are positive, (A.81)

(A.82)

(A.83)

(A.84)

(A.85)

(A.86)

Using (A.84)-(A.86) to simplify the terms in the first, second and fourth lines of (A.83), and dividing
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2

2 4
throughout by i %ip Aira (%) 0, we find that (A.83) is equivalent to

3
KiF =0 pArFF

Kq S
( 5 - )\rFF> Aige — MeFHAiFe

a0

T T
—/ ap (T)Ajpp(7) [/ [AigeAinr(T') + AiFeAiHH(T')]e_HﬁH(T_T')dT’} dr
0 0

T T
+ / ap(T)(1 = Ajpp(T)) [/ [AigeAirr(T)) + AiFeAiFH(T')]e_”ﬁH(T_T')dT’] dr > 0.
0 0

(A.87)
Equations (4.10) and (4.11) imply
— MrrAie — MrHAiFe
T
— / sz (7) Aiszp (7 Astte Asptp (7) + Aipe Asgrrg (7)) dr
0
T
+/ ap(T)Airp(T)[AineAirr(T) + AireAipu (T)]dT. (A.88)
0

We next substitute (A.88) into (A.87). Noting that 1 — A%, () > 0, which follows from (4.7) for
j = F and (A.52), and that (Az’HH(T),AiFF(T),AiHe7AiFe) are pOSitiVG and (AiFH(T),AiFH(T))

are non-negative, we find that (A.87) holds under the sufficient condition
T
/ ap (T) {AiHF(T)[AiHeAiHF(T) + AipeAinn (T)ldT
0
—Ainp(T) [/ [AineAirr (T) + AiFeAiHH(TI)]e_KﬂH(T_T,)dT/] } =0
0
which, in turn, holds under the sufficient condition
T
/ ap(T) {AiHF(T)[AiHeAiHF(T) + AipeAirn (T)]dT (A.89)
0
—Algp(T) [/ [AigeAigr(T') + AiFeAiHH(T,)]dT/:| } dr > 0. (A.90)
0

Equation (A.90) holds under the sufficient condition that the function

Aigr(T)

G(t) = =
") Jo lAineAinp (') + Aipe Aigm (7/))dr!
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is non-increasing because the term in curly brackets in (A.90) is the negative of the numerator of

G'(7). The function G’(7) is non-increasing under the sufficient condition that the function

A;HF (7)
AireAinp(T) + Aire Ainrm (T)

Gi(1) =

is non-increasing. Equation (4.8) for (j, ;') = (H, F) implies

GUZ'QHX\TFHAiHH(T) + (aafF/_\TFF — /‘fz’F)Az’HF(T)

Gl (T) - AiHeAiHF(T) + AiFeAiHH(T)

2 3 2 3 NAigr(T)
acyAvrH + (00 p AP — K/lF)AiHH(T)

Aig Aigr(T) + Aipe

e A 1 (T)

Since A\vpg > 0, \vpr < 0 and 1’2?5752?) is non-decreasing, G1(7) is non-increasing. |

Proof of Proposition 4.5: Consider a one-off increase in 7; at time zero, and denote by x, the

rate at which ~; reverts to its mean of zero. Bond prices in country j = H, F' at time ¢ are

pj(tT) _ 6_[Aijj(T)i]'t"'Aijj’(T)ij’t""A’Yj(T)"/t‘f'Cj(T)]7 (A.91)
and the exchange rate is
e = e—[AiHeth—AiFeiFt-&-A»ye%+Ce}’ (A.92)

where ({A;;(7)}j =07, {Av;(7),C;(T)}j=m,F) are functions of 7, and ({Ayje}j—m,F, Aye, Ce) are

scalars.

The counterparts of (A.72) and (A.74) are
Fim Ane = a0 Ay Aize — a0T2p NP Ajire (A.93)
and
Ai(1) = aotyhm /0 " A ()T a0k /O " Ayr( e T ar . (A94)
respectively, where

T T
Ayj = _/ aH(T)AwH(T)AiHj(T)dT_/ ap(r) Ay (1) Aip (T)dT + (0 — Qe Aye) Aje (—1)H57F .
0 0
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(A.95)

The counterparts of (A.77) and (A.78) are

_ 0,
AyH = A [(1+ aorzpr)Aife + aUZ'QFZHFAiFe] (A.96)

_ 0,
M =—-[(1+aolyzun)Aire + aoiyzraAine] (A.97)

respectively, where

T T
2HH = / OzH(T)AiHH(T) |:/ AiHH(T/)e_RW(T_T’)dT/:| dr
0 0

T T
+/ OéF<T)AiFH(T) [/ AiFH(T/)e_”W(T—T/)dT/] dr + Qe A?He?
0 0 KpH
T T ,
ZHp = / ag(T)Aiga(T) {/ Aipp(r)e (=T )dT/:| dr
0 0
T T , a
+/ ap(T)Airpa(T) [/ Aipp(r)e (=7 )dT'] dr — —=AigeAire,
0 0 KBH

T T
2rg = / ag(T)Aigr(T) [/ AiHH(T,)e_H’Y(T_T,)dT,] dr
0 0

T T
+/ ap(T)Airr(T) [/ Az‘FH(T’)GK”(TTI)dT’] dr — =% AipreAipe,
0 0 KBH

T T
ZpF = / ag(T)Ainr(T) [/ AiHF(T')e””(TTI)dT’] dr
0 0

Qe

T T
+/ ap(T)Airr(T) {/ Az’FF(T/)e_M(T_T/)dT/} dr + Az,
0 0

K,gH

To complete the proof, we proceed in two steps. In Step 1, we show that A,. is positive.
This proves the first statement in the proposition. In Step 2, we show that A, (7) is positive and

A p(7) is negative. This proves the second and third statements in the proposition.

Step 1: A,.(7) is positive. Substituting (Aym, Ayr) from (A.96) and (A.97) into (A.93), ,

and using the definitions of (2gw, 2 F, ZrH, 2rF), we find that A,. is positive if

ZgAine + ZpAipe > 0, (A.98)
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_ 2 2 2

Zg = Oig [(1 + aaiFZFF)AiHe + anFZHFAiFe]
2

= Uz‘HAiHe

T

T
+an2HUi2F/ ag(T)[AineAinr(T) + AireAiga (T)] [/ Aigrp(T ')e_“”(T_T)dr’] dr
0

T
+ aa'izHaz'ZF/ aF(T) [AiHeAiFF( ) + A A zFH |:/ AZFF Nv(7""/)d7-/:| dr,
0

ZF = U [(1 -+ QO'ZHZHH)AiFe + QU?HZFHAiHe]

2
= UiFAiFe

T
+ QO'?HO'?F/ aH(T)[AZHeA’LHF( ) + AzFe ’LHH |:/ A7,HH KW(T?T )dT/:| dT
0
T
+ a’o-7,2Ho-’L2F/ aF(T)[AlHeAlFF( ) + AzFe ’LFH |:/ AlFH ’Y(T T )dT:| d’T
0

Since (A;ge, Aire, ZH, ZF) are positive, (A.98) holds.

Step 2: A,y (7) is positive and that A,p(7) is negative. We prove that A, (7) is positive.
The proof that A,r(7) is negative is symmetric. Substituting (Ayg, A\yr) from (A.96) and (A.97)
into (A.94) for j = H, and using the definitions of (2gw, ZuF, 2ru, 2rr), we find that A g (1) is

positive if
ZH/ AiHH(TI)e_R"(T_T/)dTI — ZF/ AiHF(T,)e_KW(T_T,)dT, > 0. (A.99)
0 0

Since (AiHH(T),ZH,ZF) are positive, A;gr(7) is non-negative and 3?572((:)) is non-decreasing,

(A.81) holds under the sufficient condition
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Using the definitions of (Zg, Zr), we can write (A.100) as

ol AineAir i (00) — 07p Aire Airr(00)
T
+ anQHJiZF/ ag(T)[AineAinr(T) + AireAiga(T)]
0
X [/ [Airr(T") Airr (00) — A (7') Aigrp(00) ] e—fw(f—r’)dT/] dr
0
T
+ aa?HUiQF/ OJF(T)[AiHeAZ'FF(T) + AiFeAiFH(T)]
0
X [/ [Airr(T") Aiga (00) — Aipg (") Airr(00)] €_N'Y(T_T/)d7'/:| dr > 0. (A.101)
0

Using (A.84)-(A.86) to simplify the terms in the first, second and fourth lines of (A.101), and

dividing throughout by a0 i Tl i1 (20) > 0, we find that (A.101) is equivalent to

RiFp— CLO’2 )\TFF

Kq < <
( 5 - )\rFF> Aige — MrrHAiFe

ao?y,
T T ,
_ / ap(T)[AigeAinr(T) + AipeAig (7)) [/ ;HF(T/)Q_H’Y(T—T )dT/:| dr
0 0
T T ,
+ / ap(T)[AineAirr(T) + AireAirm (T)] [/ (1= Ajpp(r))e =T )dT/} dr > 0.
0 0
(A.102)

We next substitute (A.88) into (A.102). Noting that 1— A%, (7) > 0 and that (Aigpa(7), Airr(T), Aibe, AiFe)
are positive and (A;pg (7), Airg (7)) are non-negative, we find that (A.87) holds under the sufficient

condition

T

T
/ CYH(T)[Az‘HeAiHF(T) + AiFeAiHH(T)] I:AZHF(T) — / ;HF(T’)Q*IW(TfT’)dT/ dr > 07
0 0

which, in turn, holds because

AiHF / AlHF ) 71{'\/(7 T)dT >AZHF / AZHF dT _AlHF(O) :0

Proof of Proposition 5.1: Applying Ito’s Lemma to (5.1), we find the following counterpart of
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(3.4):

? = perdt — Al XdBy, (A.103)
t
where
et = —A (G — q) — Ve y AT »TA.. (A.104)
Qe

Applying Ito’s Lemma to (5.2) for j = H, we find the following counterpart of (A.19):

dP(T)
(Ij)t :ngzdt AH( )TEdBta (A.105)
Py
where
p5) = A1) T+ Cia(r) — An(r) 0@ — @) + 5 An(r) 55T A (7). (A.106)

Likewise, (5.2) for j = F' and (5.1) yield the following counterpart of (A.21):

d P("')
A(Pr/er) o ct) _@:uggdt—AF(T)TZdBt, (A.107)
PF‘; (&3 €t

where
) = A (1T, + C" A _ LA TssT (4, 24 A.108
pir = Ap(r) g+ Ch(r) — Ap(1) TT(q g) + 544(7) (Aj(1) +2A,). (A.108)

Substituting the returns (A.103), (A.105) and (A.107) into the arbitrageurs’ budget constraint

(2.3), we can write their optimization problem (2.4) as

, ax Wrt (pet +ire — ime) + Z / Jt th - th) dr
WFu{th Yre,1),j=H,F j=H,F

a T) T

J=H,F j=H,F
(A.109)
The first-order condition with respect to Wy is (5.3), and the first-order condition with respect to

x5 s (5.4).
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Using (3.7) and (3.18), we can write \; as

T
M=axs |- Y / 2D Aj(r)dr — etAe)
0

—assT | Y /0 g 108(PD) + ) + 0500851+ (Glr) + 0ur)) (~D1=m] Ay (r)dr

j=H,F

T
+ [ae log(et) + Qe + 96725 + wet + /O (Ce(T) + 06(7_)715) dT:| Ae)

QEET(Z/ [G(7) + 05(7)B1t + (Co(T) + 0. (F)) (=1) 5=
j=H,F

—a(7) (A4;(7) Ta + C5(1)) | A5(r)dr

6

T (%
+ |:Ce + 06')/15 + wet + / (Ce(T) + 96(7—)775) dr — Qe (A qt + C + — < )] Ae
0

— T ( Z / Aj( 7)Egj + 0c(T)E(— 1)1{j=H} —aj(T)Aj(T))T dr
j=H,F

T T
+ A, <9687 —I—/ e (T)EdT — OéeAe> ) Gt

0
faxyT ( > / (G(7) + Cr) (=)= — ()T (7)) Ay(r)

j=H,F
<<e / Ce Qe e) Ae)

—(M =T")Tq + Ac, (A.110)

where the second step follows from (2.5) and (2.7), the third step follows from (5.1) and (5.2), and
the fifth step follows from the definitions of (M, A\¢) in the statement of the proposition. We next

substitute (e, {17 }j—ar,p, M) from (A.104), (A.106), (A.108) and (A.110) into the arbitrageurs’

first-order condition. Substituting into (5.3) and identifying terms in ¢ and constant terms, we

find (5.6) and (5.7), respectively. Substituting into (5.4) and identifying terms in ¢; and constant

7



terms, we find (5.8) and (5.9), respectively. ]

B Numerical Solution

B.1 Model Dynamics

Stack the J state variables in a vector y;, which include the H and F short rates iy, ip¢, and all

the demand factors. Dynamics:

dy; = -T (yt - y) dt + o dB; (Al)

where I' is a J x J matrix determines the mean reversion of the state, and o determines the

stochastic properties. Define ¥ = oo .

Write the habitat demand factors as
B = Cul(r) +y{ ©;(7)

Yet = Cet + y;rGe

Note that the vector functions @ ;(7) will typically be zero in most elements.

B.2 Characterizing the Solution

Conjecture that all (log) prices are affine in the state variables:
—log P =y A;(r) + C;(r)

—loge; =y Ac + Ce
Define the following matrix
T
MoTT - { / —an(r)Au(r) + ©u(r) Au(r)T dr
0
T
+ / [—ap(T)Ap(T) + OFp(T)] AF(T)T dr (A2)
0
+[—acAc + O] A }z
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Then the solution to the affine functions A;(7), A:
Al(T) + MA;(1) —e; =0
MA, — (eg—ep)=0
with initial conditions A;(0) = 0.
Hence equations (A2), (A3), and (A4) implicitly characterize the solution to the

though in general, the solution is not available in closed form).

B.3 Laplace Transforms

model (al-

In order to solve the model numerically, we need to take a stance on the functional forms of the

elasticity and demand functions «, @. A numerically tractable approach is to assume that T — oo

and use Laplace transforms. Assume that
a(T; a0, 1) = ag exp(—arT)
0(7:00,61) = 0837 exp(—617)

and note this implies [~ 0(7; 0o, 61) dT = 6.

Eq. (A3) is a differential equation characterizing the coefficient functions A (7).

Laplace transform A;(s) = L{A;(7)} (s). Then Eq. (A3) implies:

1
sAj(s) + MA;(s) — S8 = 0

— Aj(s) = [sT+M]} Eej]

Additionally, define X;(7) = A;(7)A;(7)". Note that from Eq. (A3) we can write

AST)AG(T) T+ A (M)A ()T + MX;(1) + X(1)M T —e;A (1)T — Aj(r)e] =0

<

= X)(r) + MX;(7) + X;(r)M| —e;A;(1)T — Aj(r)e] =0

Define the Laplace transform X;(s) = £ {X;(7)} (s). Then we have

BSI + M} X;(s) + X;(s) BSI + M] - ejAj(s) " +Aj(s)e]
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This is a Lyapunov equation. A sufficient conditions for a unique solution X;(s) is if all the

eigenvalues of [%SI + M] have positive real parts. The solution can be written

vecX;(s) = [I ® [;sl + M} + BSI + M] ® I} - vec [ejﬂj(s)T + Aj(s)ejT]
= H;SI n M] @ [;SI + M” e [ejAj(s)T + Aj(S)eﬂ

However, for numerically computing the solution, more efficient algorithms exist.

With this notation, we have that

T
A aj (T)AJ(T)A]'(T)T dr = Oéjox]'(ozjl) = x]'

T
/ 0jc(T)AG (1) " T = 00105154 (0510) "
0
T : R
— [ 0, dr = |- k0| =5,
0 .

and note that the n* derivative is given recursively by

—1)"n!

A (5) = [sT+ M) [( ST nA ()

Finally, define the exchange rate terms

Z=[-a.A, —OJA]
where recall A, = M~ !(ey — ep).

The terms 5Cj, Y IR Z are all determined by M. Hence we can write the equation characterizing

M, Eq. (A2), as the solution of a root-finding problem:
FM)=0

F(M):FT—G{QH—chJrgF—jCF—HZ}Z—M
The advantage of this approach is the solution does not require computing the eigen-decomposition
and computing exponentials of the eigenvalues, which can lead to numerical instability.
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B.4 Continuation Solution Algorithm

Given model dynamics parameters I', o, the habitat elasticity parameters «; o, a; 1, the habitat
demand parameters 00,0, 1, and risk aversion a, the following continuation algorithm solves for

the endogenous parameters M:

1. Keeping all other parameters fixed, set risk aversion a(®) = 0. The solution to this simplified

model is M(© =TT,

2. Use the solution M@ to the model in the i step with risk aversion a() as the initial point for a

local root-finding algorithm for ¢t = a() + s(+D for some small stepsize s+,

3. If a1 = g, stop. Otherwise, return to step 2.

The algorithm selects the unique equilibrium (if it exists) that persists when tracing the solution

as risk aversion falls to zero.

C Predictive Regression Coefficients

[[[TO BE ADDED]]]

D Method of Simulated Moments

Let p be the set of parameters to estimate. Set p in order to minimize the following loss function:
L(p) = an(mn —mn(p))’

where m,, and m,,(p are the empirical and model-implied covariances involving yields and exchange

rates described below.

Given the dynamics in equation (A1), the long-run (unconditional) variance and autocovariance

of the state is given by:
Varlyy] = vec ' [(T @ T) lvec(T)] = = (B1)

Cov|yits,yi] = exp(—I's) X (B2)
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Hence, moments involving yields and the exchange rate are straight-forward to compute. For

instance, the covariance of H and F 7 yields is given by

Cov(ysl,yed) = [Au () /)] TS®[Ap(r)/7)]

Note that computing these moments involves first solving the model for any choice of p (using

the continuation algorithm defined above).

D.1 Baseline Calibration

D.1.1 Model Specifics

The baseline calibration model is a 5-factor model: H and F short rates iy, ip:; H and F bond

demand factors B¢, Br¢, and a currency demand factor ~y.;. The state vector is therefore

THt
LFt
yi = | Bt
BFt
Vet

The corresponding demand vector functions are:

0 0 0

0 0 0

Ou(t)= |0g(1)|, Op(r) = 0 |,08.=10

0 0r (1) 0

0 Oc

We allow for the following correlation structure:

i, O 0 0 0 Yig  Zigir 0 0 0
0 Iy, O 0 0 Yigir 2ip 0 0 0
'=1|0 0 I'gy, O 0|, ¥= 0 0 1 00
0 0 0 Ig. 0 0 0 010
0 0 0 0o I, 0 0 001

Hence, we have the following 15 parameters to estimate:
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1. 5 parameters in the I' matrix.

2. 3 parameters in the o matrix.

3. 3 elasticity size parameters: agg, aor, Q.-
4. 3 demand size parameters: Oyg, Ogr, 0.

5. 1 shape parameter 0 = a1 = 01;.

D.1.2 Target Moments

We use the US as the Home country and Germany (Eurozone) as the Foreign country. The zero-

coupon yield curve data is from Wright (2011) (frequency: monthly, from 1986).

Table B1: Targeted variances and covariances

Row Variable Maturity
1 o (yj(-?
2 o (Ayﬁ)
3 o (Avin. Aul)
4 o (Alogey)
5 p (A log e;, A% log et)
6 p (Aygz — Aygt), Alog et>
7 Volg(r < 3)
8 o (yj(z)) v
9 o (a7 v
10 p (Ayﬂ), Ayﬁ)> v

The A prefix denotes the 12-month forward difference. So Azy = x¢110 — x4 for any variable
x¢. A? denotes a “long” 24-month difference. The first seven rows refer to 9 scalar moments, while
the bottom 3 rows refer to collections of moments (as a function of maturities, up to a maximum

maturity of 20 years).

Note that, with the exception of the rows 1 and 8, all of the moments are either time differences
or country differentials. The variances of the levels yields (H and F) are the only exception. We

remove a common linear time trend from these series before computing this variance in the data.
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