Clients' Connections

Measuring the Role of Private Information in Decentralised Markets

Péter Kondor (LSE) Gábor Pintér (BoE)

13th Paul Woolley Conference 2021

3 Jun 2021

The views expressed are those of the authors and not necessarily those of the Bank of England, the MPC, the FPC or PRC.

Motivation: Measuring Private Information

• How to measure the role of private information in financial markets?

Motivation: Measuring Private Information

- How to measure the role of private information in financial markets?
- The main challenge: neither private information nor the identitites of its owners are observable

Motivation: Measuring Private Information

- How to measure the role of private information in financial markets?
- The main challenge: neither private information nor the identitites of its owners are observable
- We propose a new proxy for private information in dealer markets: clients' connections
 - definition of connections: the number of dealers with whom a client trades in a time period.

- Time-variation in connections is a proxy for (private) information
 - Client makes more profit after trading with more dealers

- Time-variation in connections is a proxy for (private) information
 - Client makes more profit after trading with more dealers
 - The effect is entirely driven by sophisticated clients (e.g. hedge funds, asset managers)

- Time-variation in connections is a proxy for (private) information
 - Client makes more profit after trading with more dealers
 - The effect is entirely driven by sophisticated clients (e.g. hedge funds, asset managers)
- Total connections in the market helps explain yield dynamics

Introduction

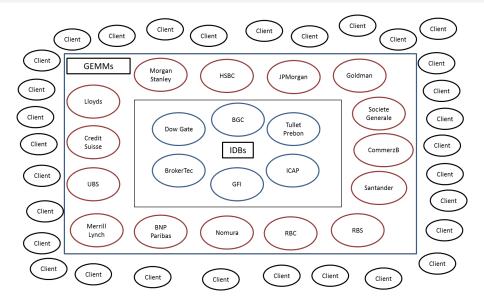
- Time-variation in connections is a proxy for (private) information
 - Client makes more profit after trading with more dealers
 - The effect is entirely driven by sophisticated clients (e.g. hedge funds, asset managers)
- Total connections in the market helps explain yield dynamics
- Application 1: dealers pass on information, from their informed clients, to their subsidiaries

- Time-variation in connections is a proxy for (private) information
 - Client makes more profit after trading with more dealers
 - The effect is entirely driven by sophisticated clients (e.g. hedge funds, asset managers)
- Total connections in the market helps explain yield dynamics
- Application 1: dealers pass on information, from their informed clients, to their subsidiaries
- Application 2: informed clients better predict the order-flow intermediated by their dealers

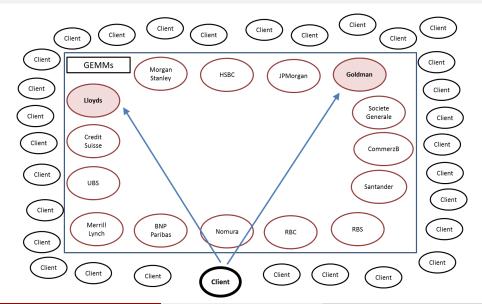
Outline

- Market Structure and Data
- Connections as Proxy for Private Information
- Application 1: Dealers Learn from Informed Clients
- Application 2: Nature of Private Information
- Event Study Brexit Referendum 23/06/2016

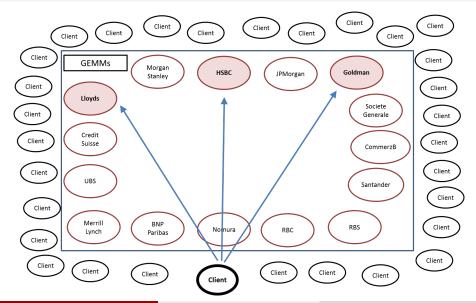
Structure of the UK Gilt Market



Illustrating Time-variation in Connections: t



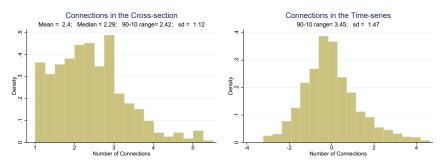
Illustrating Time-variation in Connections: t+1



Data

- ZEN database: all the trades of gilts (and other fixed-income instruments) where one of the counter-parties is regulated by FCA
- 2011-2017
- for each transaction: price, quantity, direction, time-stamp, and the identities of both counter-parties (unlike in TRACE dataset)
- identify 480 clients during that period (covering 80% of universe of client trading volume) Summary Stats
- from Datastream: daily closing prices, basic gilt characteristics

Connections in the cross-section and in the time-series



Notes: these figures summarise the time-series and cross-sectional variation in our first-order centrality measure. The left panel plots the distribution of mean client Connections. To construct the right panel, we first run a panel regression to purge out client and day fixed effects ($Centrality_{i,t} = \alpha_i + \mu_t + \varepsilon_{i,t}$), and plot the distribution of the residuals ($\varepsilon_{i,t}$).

Theoretical Model based on Glosten-Milgrom (1985)

- Benefit of connections: Trading with more dealers helps clients hide private information
- Cost of connections: reaching for quotes & establishing new dealer relationships is costly

Theoretical Model based on Glosten-Milgrom (1985)

- Benefit of connections: Trading with more dealers helps clients hide private information
- Cost of connections: reaching for quotes & establishing new dealer relationships is costly
 - \rightarrow clients trade with more dealers iff their private info is precise enough

Theoretical Model based on Glosten-Milgrom (1985)

- Benefit of connections: Trading with more dealers helps clients hide private information
- Cost of connections: reaching for quotes & establishing new dealer relationships is costly
 - \rightarrow clients trade with more dealers iff their private info is precise enough

If this is true, we should observe that:

- more connected client's buy (sell) trade predicts higher (lower) future value
- the relation between connection and performance is stronger around informational events and informationally sensitive clients (e.g. hedge funds)

Theoretical Model based on Glosten-Milgrom (1985)

- Benefit of connections: Trading with more dealers helps clients hide private information
- Cost of connections: reaching for quotes & establishing new dealer relationships is costly
 - \rightarrow clients trade with more dealers iff their private info is precise enough

If this is true, we should observe that:

- more connected client's buy (sell) trade predicts higher (lower) future value
- the relation between connection and performance is stronger around informational events and informationally sensitive clients (e.g. hedge funds)
- Splitting trades in the cross-section instead of splitting over time (Kyle, 1985)

4 Testable Hypotheses

- Hypothesis 1 [Profits] Time periods with more connections for a given client is associated with higher trading profit.
- Hypothesis 2 [Client Type] These effects should be stronger for more sophisticated traders
- Hypothesis 3 [Anticipation] More connections for a client i in a given period are associated with a stronger positive relation between her buy (sell) trades and subsequent price increases (decreases)
- **Hypothesis 4** [Aggregate Implications] Periods with higher aggregate connections are associated with larger absolute innovations in yields.

Outline

- Market Structure and Data
- Connections as Proxy for Private Information
- Application 1: Dealers Learn from Informed Clients
- Application 2: Nature of Private Information
- Event Study Brexit Referendum 23/06/2016

Measuring Performance

ullet for each transaction au of client i of gilt j, we measure signed h-day return by

$$r_{i,j,\tau}^{h} = s_{i,j,\tau} \left(\ln p_{j,\tau+h} - \ln p_{i,j,\tau} \right)$$
 (3.1)

where $s_{i,j,\tau} = +/-$ is the direction of the transaction

Measuring Performance

• for each transaction τ of client i of gilt j, we measure signed h-day return by

$$r_{i,j,\tau}^{h} = s_{i,j,\tau} \left(\ln p_{j,\tau+h} - \ln p_{i,j,\tau} \right)$$
 (3.1)

where $s_{i,j,\tau} = +/-$ is the direction of the transaction

 <u>Example</u>: 3-day performance on trade when buying it on Monday at £100, and price on Thursday is £120:

$$\log(120) - \log(100) \approx 20\%$$

We then calculate unweighted and volume weighted daily average

Decomposing Performance

• we further decompose our performance measure 3.1 as:

$$r_{i,j,\tau}^{h} = \underbrace{s_{i,j,\tau} \left(\ln \bar{p}_{j,\tau}^{s_{i,j,\tau}} - \ln p_{i,j,\tau} \right)}_{\text{transaction cost component}} + \underbrace{s_{i,j,\tau} \left(\ln p_{j,\tau+h} - \bar{p}_{j,\tau}^{s_{i,j,\tau}} \right)}_{\text{anticipation component}}$$

where $\bar{p}_{j,\tau}^{s_{i,j,\tau}}$ is the average transaction (bid or ask) price of gilt j in a given interval around τ (i.e. a day/three hours)

Decomposing Performance

• we further decompose our performance measure 3.1 as:

$$r_{i,j,\tau}^h = \underbrace{s_{i,j,\tau} \left(\ln \bar{p}_{j,\tau}^{s_{i,j,\tau}} - \ln p_{i,j,\tau} \right)}_{\text{transaction cost component}} + \underbrace{s_{i,j,\tau} \left(\ln p_{j,\tau+h} - \bar{p}_{j,\tau}^{s_{i,j,\tau}} \right)}_{\text{anticipation component}}$$

where $\bar{p}_{j,\tau}^{s_{i,j,\tau}}$ is the average transaction (bid or ask) price of gilt j in a given interval around τ (i.e. a day/three hours)

• Example: buying it on Monday at £100, when everyone else is buying it at £105 [price on Thursday is £120]:

$$\frac{\log{(105)} - \log{(100)} \approx 5\%}{\text{transaction cost component}} \quad \underbrace{\log{(120)} - \log{(105)} \approx 15\%}_{\text{anticipation component}}$$

Baseline Regression Model

• We estimate at the client-day level:

$$Performance_{i,t}^{T} = \beta \times Connections_{i,t} + Controls_{i,t} + \alpha_{i,year} + \mu_t + \varepsilon_{i,t}$$

- for our various performance measures, over $T = 1, \dots 20$
- Controls include (i) daily number of transactions and (ii) trading volume
- ullet winsorize LHS at 1%-level, and double cluster all standard errors at the client and day level

Figure: Connections and Performance over 1-20 Day Horizons

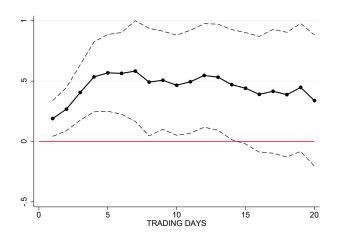
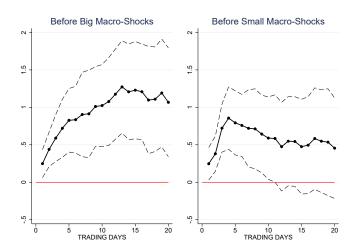


Figure: Connections and Performance over 1-20 Day Horizons



High- vs Low-Information Days

Figure: Connections and Performance over 1-20 Day Horizons



H3: Decomposing Performance [4-day ahead]

Table: Decomposing the effect into transaction & anticipation effects.

	(1)	(2)	(3)	
	Baseline	Transaction	Anticipation	
Client	0.487***	0.099**)**	
Connections	(3.08)	(2.53)	(2.37)	
Volume	0.248	-0.090	0.318*	
	(1.40)	(-1.51)	(1.81)	
Tran.	-1.350***	-0.198	-1.098**	
	(-3.14)	(-1.57)	(-2.56)	
N	100414	100348	100348	
R^2	0.057	0.100	0.055	
Day FE	Yes	Yes	Yes	
Client*Year FE	Yes	Yes	Yes	

H4: Total Market Connections and the Yield Curve

Do total connections in the market explain yield dynamics?

H4: Total Market Connections and the Yield Curve

- Do total connections in the market explain yield dynamics?
- We estimate daily time-series regressions:

$$|\Delta Yield_t| = \alpha + \beta \times TotalConnections_t + Controls_t + \varepsilon_t$$

where Controlst include:

- (i) Volume_t (Karpoff, 1987) and
- (ii) NumOfClients_t (Tauchen-Pitts, 1983)

H4: Total Market Connections and the Yield Curve

Table: Daily Changes in Yields and Aggregate Connections

$\left \Delta Y ield_t^{5Y} ight $						
	(1)	(2)	(3)	(4)		
$\Delta \log (Connections_t)$	0.0277***		0.0233***	0.0234***		
	(7.27)		(4.17)	(2.26)		
$\Delta \log (Volume_t)$		0.0100***	0.0025	0.0025		
		(6.11)	(1.07)	(1.06)		
$\Delta \log (NumOfClients_t)$				-0.0001		
				(-0.01)		
N	1449	1449	1449	1449		
R^2	0.040	0.030	0.041	0.041		

Outline

- Market Structure and Data
- Connection as Proxy for Private Information
- Application 1: Dealers Learn from Informed Clients
- Application 2: Nature of Private Information
- Event Study Brexit Referendum 23/06/2016

Dealers Learn from Informed Order Flow

Identification through Dealers' Affiliates

• Do dealers learn from observing an informed order flow? (Di Maggio et al, 2017)

Dealers Learn from Informed Order Flow

Identification through Dealers' Affiliates

- Do dealers learn from observing an informed order flow? (Di Maggio et al, 2017)
 - Do dealers perform better when trading more connected clients?

Dealers Learn from Informed Order Flow

Identification through Dealers' Affiliates

- Do dealers learn from observing an informed order flow? (Di Maggio et al, 2017)
 - Do dealers perform better when trading more connected clients?
- Identification strategy: for each dealer, distinguish between:
 - trading accounts of market-making function (mainly client trades, many transactions, primary auctions) from
 - trading accounts of client-like arms of dealers (mainly dealer trades, few transactions, e.g. asset-manager arms)

 — dealers' affiliates

Dealers Learn from Informed Order Flow

Identification through Dealers' Affiliates

- Do dealers learn from observing an informed order flow? (Di Maggio et al, 2017)
 - Do dealers perform better when trading more connected clients?
- Identification strategy: for each dealer, distinguish between:
 - trading accounts of market-making function (mainly client trades, many transactions, primary auctions) from
 - trading accounts of client-like arms of dealers (mainly dealer trades, few transactions, e.g. asset-manager arms)

 dealers' affiliates
- Do dealers' affiliates perform better when their dealer trades with more high-connection clients?

Estimating the Information Flow from Clients to Dealers

• Estimate the performance regression for dealers' affiliates:

AffilPerformance_{i,t}^T =
$$\beta \times InfShare_{i,t} + X_{i,t} + \alpha_i + \mu_t + \varepsilon_{i,t}$$
, (4.1)

Estimating the Information Flow from Clients to Dealers

Estimate the performance regression for dealers' affiliates:

AffilPerformance_{i,t}^T =
$$\beta \times InfShare_{i,t} + X_{i,t} + \alpha_i + \mu_t + \varepsilon_{i,t}$$
, (4.1)

where the informativeness of the dealer of the given affiliate is:

$$InfShare_{i,t} = \frac{Vol_{i,t}^{H}}{Vol_{i,t}^{L} + Vol_{i,t}^{H}}$$

Performance Regression of Dealers' Affiliates

Table: Dealers' Informed Clientele and the Performance of Dealers' Affiliates

	0-day	1-day	2-day
	(1)	(2)	(3)
InfShare	0.325	1.717**	2.080**
	(0.71)	(2.35)	(2.23)
DealerVolume	-0.020	-0.358*	-0.332
	(-0.17)	(-2.00)	(-1.24)
DealerConnections	0.003	0.022	-0.021
	(0.13)	(0.43)	(-0.24)
N	20898	20898	20898
R^2	0.079	0.082	0.078
Day FE	Yes	Yes	Yes
Affil.#Year FE	Yes	Yes	Yes

Outline

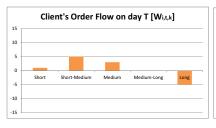
- Market Structure and Data
- Connections as Proxy for Private Information
- Application 1: Dealers Learn from Informed Clients
- Application 2: Nature of Private Information
- Event Study Brexit Referendum 23/06/2016

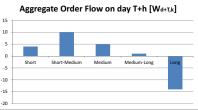
Measuring Order Flow Information

 Order flow drives prices in government bond markets (Fleming 1999, Brandt et al 2004, Green 2004)

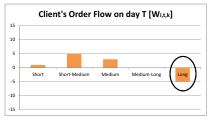
• How to measure relevant information about future order flow?

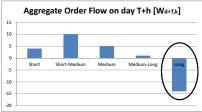
A High Flow-Covariance Day: an Illustration

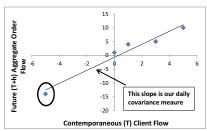




A High Flow-Covariance Day: an Illustration

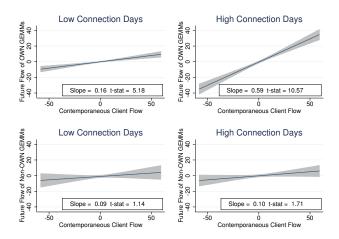






Decomposing Flows: Total via i's Dealers vs other Dealers

Figure: Predicting Aggregate Order Flow: the Roles of Connections with Own Dealers

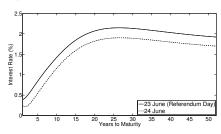


Outline

- Market Structure and Data
- Connections as Proxy for Private Information
- Application 1: Dealers Learn from Informed Clients
- Application 2: Nature of Private Information
- Event Study Brexit Referendum 23/06/2016

Brexit Referendum on 23 June 2016

- High information content of the event
- Brexit Referendum on Thursday (23 June 2016) → results became known on Friday morning (24 June 2016).
- The referendum results lead to an immediate drop in yields:
 - mainly parallel downward shift in the yield curve, rather than to changes in the slope.



Referendum on 23 June 2016: High-Connection Clients

Group clients (who traded on June 23) into two groups based on:

$$\alpha_i = connections_{i,Jun23} - \overline{connections}_i$$
 (6.1)

Referendum on 23 June 2016: High-Connection Clients

Group clients (who traded on June 23) into two groups based on:

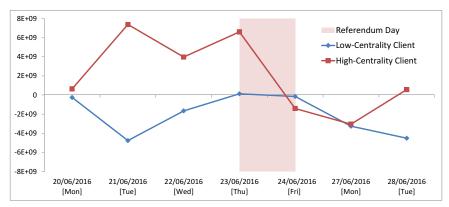
$$\alpha_i = connections_{i, Jun23} - \overline{connections}_i$$
 (6.1)

Table 1: Summary Statistics of the 125 Clients Trading on 23 June 2016

Client	5-day Perf.	Number	α	Volume	Signed Duration
Type	Mean	of Clients	Mean	Mean	Mean
$\text{Low-}\alpha$	-0.004	63	-0.80	$13.2 \mathrm{m}$	1.9m
$\operatorname{High-}\alpha$	0.003	62	0.98	$25.6 \mathrm{m}$	106m

High- α and Low- α Clients Around the Vote: Positions

Figure: Aggregate Daily Net Duration of High- α and Low- α Clients



High- α and Low- α Clients Around the Vote: Performance

Figure: Cumulative Returns of Low- α and High- α Clients



Relation to Literature

- Literature on price discovery in government bond markets (Fleming 1999, Brandt et al 2004, Green 2004)
- Recent Literature of OTC markets: various theories of why network structure matters:
 - connected clients should earn higher returns:
 - more opportunities to intermediate (Atkeson et al, 2016)
 - better terms of trade as higher bargaining power (Hollifield et al, 2016)
 - more chance to learn: from more quotes (Babus and Kondor, 2017) or information leakages (di Maggio et al, 2017)
- Contribution of our paper twofold:
 - Focus on the time-variation in client connections [rather than on the cross-sectional variation]
 - Focus on government bond markets [a liquid market where private information should have limited role?!]

Extensions and Robustness Checks

- Alternative performance measure Realised Profits
- Aggregate Connections and Measures of Asymmetric Information
 Subrahmanyam
- Forecasting the Yield-Curve and Noise Forecasting Yield Curve Noise
- Client Heterogeneity High β-clients
- Further Decompositions of the Order Flow Market Order Flow
- Measuring connections with eigenvector-centrality Eigenvector-centrality
- Dealer Exits as Shocks to Connections GEMM Exits
- Results for corporate bonds are similar and stronger (Czech-Pinter, 2020)

Conclusion

 Main take-away: we propose a new proxy of private information in decentralised markets:

Client Connections!

References