# Beyond Incomplete Spanning: Convenience Yields and Exchange Rate Disconnect

Zhengyang Jiang, Arvind Krishnamurthy and Hanno Lustig

**PWC-BIS** Conference

June, 2021

## Outline

#### 1. Exchange Rates and Yields

- 2. Exchange Rates and Convenience Yields
- 3. Three Exchange Rate Puzzles
- 4. Incomplete markets Model with Convenience Yields
- 5. Convenience Yield Channel for QE

## Exchange Rates and Short Yields

▶ in large class of models, exchange rates are forward-looking

Exchange Rate Valuation Equation  
The nominal exchange rate in FC/USD is:  

$$s_{t}^{\frac{*}{5}} = \mathbb{E}_{t} \sum_{\tau=0}^{\infty} (r_{t+\tau}^{\$} - r_{t+\tau}^{\ast}) - \mathbb{E}_{t} \sum_{\tau=0}^{\infty} r x_{t+\tau}^{\frac{*}{5}, FX} + \mathbb{E}_{t} [\lim_{\tau \to \infty} s_{t+\tau}].$$

Campbell-Clarida (1987); Froot-Ramadorai (2005)

- dollar exchange rate today reflects future
  - 1. short rate differences  $(r_{t+\tau}^{\$} r_{t+\tau}^{*})$
  - 2. FXRP  $\mathbb{E}_{t} r x_{t+\tau}^{\frac{4}{5},FX} = r_{t+\tau}^{\$} r_{t+\tau}^{*} + \mathbb{E}_{t+\tau} \Delta s_{t+\tau+1}$  earned by foreign investors going long in USD
- ▶ dollar appreciates when  $y_{t+\tau}^{\$}$  > and dollar FXRP  $rx_{t+\tau}^{\frac{\$}{\$},FX}$  >

### Stationary Exchange Rates

substitute out the short rates to obtain:



over long holding periods, foreign and domestic bonds are equally risky with stationary exchange rates.

Long-Run U.I.P.  

$$(s_t^{\frac{*}{5}} - s_0^{\frac{*}{5}}) = \lim_{N \to \infty} N(y_t^{\$, N} - y_t^{*, N})$$

### Bond Risk Premium Channel for QE.

- GRV (2020) and GHSS (2020) bring equilibrium models of term structure with market segmentation (Vayanos and Villa, 2019) to FX markets: arbitrageurs in bond markets and FX markets (GM (2015))
- downward sloping demand curves for Treasurys.
  - decrease in net US supply of long bonds (QE): US arbs demand smaller BRP on long USD bonds

$$\mathbb{E}_{t} r x_{t+j}^{US,N} = \mathbb{E}_{t} [h p r_{t+1}^{US,N} - y_{t}^{\$}] \searrow$$

Fed controls long yields  $y_t^{\$,N}$  and hence the exchange rate

## Outline

- 1. Exchange Rates and Yields
- 2. Exchange Rates and Convenience Yields
- 3. Three Exchange Rate Puzzles
- 4. Incomplete markets Model with Convenience Yields
- 5. Convenience Yield Channel for QE

### Exchange Rates and Convenience Yields

future convenience yields are priced into USD exchange rate (Jiang, Krishnamurthy and Lustig, 2021).

Exchange Rate Valuation Equation

$$s_{t}^{*} = \mathbb{E}_{t} \sum_{\tau=0}^{\infty} (\lambda_{t+\tau}^{\$,*}) + \mathbb{E}_{t} \sum_{\tau=0}^{\infty} (r_{t+\tau}^{\$} - r_{t+\tau}^{*}) \\ - \mathbb{E}_{t} \sum_{\tau=0}^{\infty} r x_{t+\tau}^{*FX} + \dots$$

• measured by CIP deviation in Treasury markets  $\lambda_t^{\$,*} = -\frac{x_t}{(1-\beta)}$ , where

 $x_t^{Treasury} \equiv$ 

cash Treasury

 $(y_t^* - (f_t^1 - s_t)).$ 

synthetic Treasury

### Convenience Yield Channel for QE

our paper develops a convenience yield channel

$$s_{t}^{\frac{*}{5}} = \mathbb{E}_{t} \sum_{\tau=0}^{\infty} (\lambda_{t+\tau}^{\$,*}) + \mathbb{E}_{t} \sum_{\tau=0}^{\infty} (r_{t+\tau}^{\$} - r_{t+\tau}^{*}) \\ - \mathbb{E}_{t} \sum_{\tau=0}^{\infty} r x_{t+\tau}^{\frac{*}{\$}, FX} + \dots$$

- dollar appreciates when future US Treasury CY  $\lambda_{t+\tau}^{\$,*} \nearrow$
- CY channel also creates a role for flows/quantities.
  - 1. QE: when Fed buys long-dated Treasurys,  $\lambda_{t+\tau}^{\$,*} \nearrow s_t \nearrow$ 2. QE: when Fed buys MBS and issues reserves,  $\lambda_{t+\tau}^{\$,*} \searrow s_t \searrow$

  - 3. QE: when Fed buys long-dated Treasurys and issues reserves??

## Outline

- 1. Exchange Rates and Yields
- 2. Exchange Rates and Convenience Yields

#### 3. Three Exchange Rate Puzzles

- 4. Incomplete markets Model with Convenience Yields
- 5. Convenience Yield Channel for QE

#### Puzzles

$$\Delta s_{t+1}^{\frac{*}{5}} = m_{t+1}^{\$} - m_{t+1}^{\$}$$

1. Volatility puzzle: Brandt, Cochrane, and Santa-Clara (2006)

$$var_t(\Delta s_{t+1}) = var_t(m_{t+1}^*) + var(m_{t+1}) - 2\rho_t(m_{t+1}, m_{t+1}^*) std_t(m_{t+1}) std_t(m_{t+1}^*).$$

 Counter-cyclicality puzzle (correlation puzzle, exchange rate disconnect): Kollmann (1991), Backus and Smith (1993)

$$Corr_t\left(\Delta s_{t+1}, m_{t+1}^{\$} - m_{t+1}^{*}\right) = 1$$

3. **Risk premium puzzle** (Forward premium / UIP puzzle): Tryon (1979), Hansen and Hodrick (1980), Fama (1984)

#### Market Incompleteness: Not enough

$$\Delta s_{t+1}^{\frac{*}{\$}} = m_{t+1}^{\$} - m_{t+1}^{*} + \frac{\eta_{t+1}}{\eta_{t+1}}$$

Lustig and Verdelhan (2018)

1. Volatility puzzle:

$$\begin{aligned} \mathsf{var}_t(\Delta s_{t+1}) &= \mathsf{var}_t(m_{t+1}^*) + \mathsf{var}(m_{t+1}) \\ &- 2\rho_t(m_{t+1}, m_{t+1}^*) \mathsf{std}_t(m_{t+1}) \mathsf{std}_t(m_{t+1}^*) - \mathsf{var}_t(\eta_{t+1}). \end{aligned}$$

2. Counter-cyclicality puzzle (correlation puzzle, exchange rate disconnect):

$$Corr_t \left( \Delta s_{t+1}, m_{t+1}^{\$} - m_{t+1}^{*} \right) >> 0$$

3. Risk premium puzzle worsens

#### Market Incompleteness+Convenience Yields

our paper brings incomplete markets wedges and Euler equation wedges (convenience yields), no market segmentation

▶ foreign investors earn convenience yield on US bonds :

$$E_{t}\left(M_{t+1}^{*}R_{t}^{f,*}\right) = E_{t}\left(M_{t+1}^{*}e^{\eta_{t+1}}\frac{S_{t}}{S_{t+1}}\right) = 1,$$
  
$$E_{t}\left(M_{t+1}^{*}\frac{S_{t+1}}{S_{t}}R_{t}^{f}\right) = E_{t}\left(M_{t+1}e^{\eta_{t+1}}\right) = \exp(-\tilde{\lambda}_{t}),$$

where the IM wedges are:

$$\widehat{M}_{t+1} = M_{t+1} e^{\eta_{t+1}} = \frac{S_{t+1}}{S_t} M_{t+1}^*,$$

and the Euler equation wedges  $\lambda_t$  are the convenience yields.

## Outline

- 1. Exchange Rates and Yields
- 2. Exchange Rates and Convenience Yields
- 3. Three Exchange Rate Puzzles
- 4. Incomplete Markets Model with Convenience Yields
- 5. Convenience Yield Channel for QE

#### Bond Investor Euler equations

Let P<sub>t</sub> denote the cumulative return on the US bond, and P<sup>\*</sup><sub>t</sub> denote the cumulative return on the foreign bond:

$$dP_t = r_t P_t dt, dP_t^* = r_t^* P_t^* dt.$$

▶ Investors can trade both home and foreign risk-free assets. Let  $S_t = \exp(s_t)$ ,  $M_t = \exp(m_t)$  and  $M_t^* = \exp(m_t^*)$ .

domestic investors don't earn convenience yields:

$$0 = \mathbb{E}_{t}[d(M_{t}P_{t})], 0 = \mathbb{E}_{t}[d(M_{t}S_{t}^{-1}P_{t}^{*})]$$

foreign investors earn convenience yields on US bonds:

$$0 = \mathbb{E}_t[d(M_t^*P_t^*)], 0 = \mathbb{E}_t[M_t^*S_tP_t\tilde{\lambda}_t dt + d(M_t^*S_tP_t)].$$

▶ flow convenience yield S<sub>t</sub>P<sub>t</sub> \(\tilde{\lambda}\)t dt in the foreigner investors' pricing condition for the home (dollar) risk-free asset.

## Flight-to-Treasurys

pricing kernel dynamics:

$$dm_t = -\mu dt - \sigma dZ_t, dm_t^* = \phi s_t dt - \sigma dZ_t^*,$$

convenience yield dynamics:

$$\tilde{\lambda}_t = \ell \frac{\exp(\lambda_t)}{\exp(\lambda_t) + 1}, d\lambda_t = -\theta \lambda_t dt + \nu dX_t$$

flight-to-Treasurys: positive correlation between m<sup>\*</sup> shocks and λ shocks

$$\begin{bmatrix} dZ_t, dX_t \end{bmatrix} = \rho << 0, \\ \begin{bmatrix} dZ_t^*, dX_t \end{bmatrix} = \rho^* << 0.$$

## FR Decomposition of Exchange Rates

forward looking expression: FR-JKL decomposition.

Exchange Rate Valuation Equation

The log of the exchange rate is given by

$$s_t = \bar{s} + \mathbb{E}_t \int_t^\infty (r_u - r_u^*) du - \mathbb{E}_t \int_t^\infty \pi_u du,$$

where  $\mathbb{E}_t \int_t^\infty \pi_u du$  encodes future currency risk premia and the convenience yields:

$$\pi_t = \mathbb{E}_t[d\log(P_t S_t/P_t^*)] = \mathbb{E}_t[ds_t] + r_t - r_t^*$$
$$= -\frac{1}{2}\tilde{\lambda}_t + \frac{1}{2}\sigma\gamma_t\nu(\rho + \rho^*).$$

## Equilibrium Exchange Rates with IM and CY Wdges

 solve for exchange rate dynamics with incomplete markets and convenience yield wedges

Exchange Rate Dynamics

The equilibrium exchange rate process is given by:

$$ds_t = \alpha_t dt + \frac{\beta_t}{\sigma} (dZ_t^* - dZ_t) + \gamma_t \nu dX_t.$$

- β (degree of incompleteness) controls the size of η (incomplete markets wedges)
- γ controls the impact of the convenience yields λ̃ (Euler equation wedges)

• incomplete markets: many equilibria indexed by  $\beta, \gamma$ 

$$\beta_t = 1, \gamma = 0$$
: complete markets.

$$ds_t^{cm} = (-\mu - \phi s_t^{cm})dt + \sigma (dZ_t^* - dZ_t).$$

## Calibration

- HJ bound:  $\sigma = 0.5$
- ▶ foreign flight to Treasurys:  $\rho = 0, \rho^* = -0.50$
- $\blacktriangleright$  CY parameters:  $\tilde{\lambda}_t$  has mean of 2.5% and stdev of 2.1%

### Simulation Results

|         | (2)                | (3)        | (4)         | (5)                |
|---------|--------------------|------------|-------------|--------------------|
| $\beta$ | FX-Conv Yield Coef | FX Vol (%) | FX-SDF Coef | Exp.Log Return (%) |
| data    | 1.00 - 1.50        | 10.00      | << 0        | -1.89              |
|         |                    |            |             |                    |
| 0.10    | 1.70               | 11.93      | 0.10        | -1.97              |
| 0.14    | 2.77               | 16.01      | 0.14        | -2.71              |
| 0.19    | 3.79               | 21.55      | 0.19        | -3.66              |
| 0.25    | 4.70               | 27.16      | 0.25        | -3.16              |
| 0.32    | 5.77               | 33.72      | 0.32        | -4.41              |
| 0.50    | 7.32               | 47.51      | 0.50        | -6.67              |

(2) reports the slope coefficient in regression of  $\Delta s_t$  on  $\Delta \tilde{\lambda}_t$ . (3) reports FX vol. (4) reports slope coefficient in regression of  $\Delta s$  on  $m - m^*$ . (5) reports the exp. log excess return on long position in USD.

#### The Vol Puzzle: Shock Absorbers

#### Exchange Rate Vol

The conditional variance of the IM exchange rate is

$$Var_t = \gamma_t^2 \nu^2 + 2\beta^2 \sigma^2 + 2\gamma_t \nu \beta \sigma (\rho^* - \rho)$$

▶ CM benchmark:  $Var_t^{CM} = 2\sigma^2$  when  $\beta = 1$  and  $\gamma = 0$ 

▶ IM model: when  $\beta << 1$  and  $\gamma >> 0$ 

USD appreciates less when m is higher than m\*

- β: incomplete market wedges absorb SDF shocks (not exchange rates)
- ▶  $\gamma > 0, \rho^* < 0$ : CY Euler equation wedges also absorb shocks
  - reverse flight to Treasurys when m is higher than m\*: lower CY causes USD to appreciate less

### The Cyclicality Puzzle: Shock Absorbers

#### Exchange Rate Vol

The slope coefficient in regression of  $\Delta s$  on  $m - m^*$ :

$$\beta + \frac{(\rho^* - \rho)}{2\sigma}$$
$$\frac{(\rho^* - \rho)\sigma(1 - 2\beta) + \sqrt{(\rho^* - \rho)^2\sigma^2(1 - 2\beta)^2 + 4(k - \tilde{\lambda}_t)}}{2}$$

- CM benchmark  $\beta = 1$ : slope is 1
- ▶ in IM:  $\beta < 1$
- ▶ flight to Treasury:  $(\rho^* \rho) << 0$ : lowers slope coefficient
- slope could be negative (in theory)

## Currency Risk Premium

#### Exchange Rate Vol

The expected return on a long position in USD:

$$\Pi_t = \mathbb{E}_t \left[ \frac{dS_t}{S_t} \right] + r_t - r_t^* = \pi_t + \frac{1}{2} [ds_t, ds_t]$$
$$= -\tilde{\lambda}_t + \beta \sigma^2 + \sigma \gamma_t \nu \rho^*.$$

▶ CM benchmark 
$$\beta = 1, \gamma = 0$$
: CRP

$$\Pi_t = \sigma^2$$

- ▶ IM: CRP declines one-for-one with convenience yield
- $\blacktriangleright$  additional risk premium effect from flight to Treasury  $\rho < 0$

#### The Dollar's Expected Excess Return



$$\Pi_t = \mathbb{E}_t \left[ \frac{dS_t}{S_t} \right] + r_t - r_t^* = \pi_t + \frac{1}{2} [ds_t, ds_t]$$
$$= -\tilde{\lambda}_t + \beta \sigma^2 + \sigma \gamma_t \nu \rho^*.$$

#### The Dollar's Expected Log Excess Return



$$\pi_t = \mathbb{E}_t[d\log(P_t S_t / P_t^*)] = \mathbb{E}_t[ds_t] + r_t - r_t^*$$
$$= -\frac{1}{2}\tilde{\lambda}_t + \frac{1}{2}\sigma\gamma_t\nu(\rho + \rho^*)$$

## Outline

- 1. Exchange Rates and Yields
- 2. Exchange Rates and Convenience Yields
- 3. Three Exchange Rate Puzzles
- 4. Incomplete markets Model with Convenience Yields
- 5. Convenience Yield Channel for QE



Figure: G-10 Dollar appreciation against change in basis around QE event dates. Sample of 14 QE event dates. 2-day window after QE-event dates.

#### IRF to a Convenience Yield Shock



Figure: CY  $\lambda_t$  jumps up by 1 standard deviation in the period 0 and simulations in which all shocks have zero means.