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1 Proofs

1.1 Proof for Proposition 2.1

According to (2.3), the log-linearization approximation leads to the following representation:

rt+1 = Lzt+1 − zt + ∆dt+1 + `. (OA.1)

Plugging (2.1) and (2.4) into the equation above, we can obtain

rt+1 = L(ζ + ζh(ht+1 − h̄))− (ζ + ζh(ht − h̄)) + µ +
√

htBut+1 +
√

htεt+1 + `. (OA.2)

Further, if we plug (2.2) into the relation above, we can obtain

rt+1 = L(ζ + ζh(ρ(ht − h̄) +
√

htσut+1))− (ζ + ζh(ht − h̄)) + µ +
√

htBut+1 +
√

htεt+1 + `.

(OA.3)

Rearranging terms further leads to

rt+1 = µt +
√

htKut+1 +
√

htεt+1, (OA.4)

where

µt = µ + `+ (L− In)ζ + (ρL− In)ζh(ht − h̄) and K = Lζhσ + B. (OA.5)

1.2 Proof for Proposition 2.2

According to (2.6) and (2.9), it holds that

µt − r f ≈ (ρL− In)ζhht. (OA.6)
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1.3 Proof for Proposition 2.3

Plugging in the budget constraint, the optimization problem can be rewritten as

max
φd,t,Cd,t

(1− β) ln(Cd,t)+ β ln(Wd,t−Cd,t− αQt)+ β(1−γ)−1 ln Et

{[
R f + φT

d,t(Rt+1 − R f )
]1−γ

}
.

Thus, the unit EIS allows for the separation of optimal consumption and optimal portfolio

problems. The optimal consumption is straightforward to derive:

Cd,t = (1− β)(Wd,t − αQt). (OA.7)

Following Campbell and Viceira (1999, 2001), we approximate the dynamic budget con-

straint rt+1(φd,t) = ln [Rt+1(φd,t)] as follows

rt+1(φd,t) ≈ r f + φT
d,t(rt+1 − r f 1) +

1
2

φT
d,t (vt − Σtφd,t) (OA.8)

where vt ≡ diag(Σt) is the vector that contains the diagonal elements of Σt. The optimal

portfolio problem becomes

max
φd,t

(1− γ)−1 ln Et

{
e(1−γ)[r f +φT

d,t(rt+1−r f 1)+ 1
2 φT

d,t(vt−Σtφd,t)]
}

(OA.9)

Using the moment generating function of multivariate normal variables, it follows that

Et

{
e(1−γ)[r f +φT

d,t(rt+1−r f 1)+ 1
2 φT

d,t(vt−Σtφd,t)]
}
= e(1−γ)[r f +φT

d,t(µt−r f 1)+ 1
2 φT

d,t(vt−Σtφd,t)]+(1−γ)2 1
2 φT

d,tΣtφd,t

Thus, the optimal portfolio problem can be further rewritten as

max
φd,t

φT
d,t(µt − r f 1 +

1
2

νt)−
γ

2
φT

d,tΣtφd,t. (OA.10)
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The first-order condition leads to

φd,t =
1
γ

Σ−1
t (µt − r f 1 +

1
2

νt). (OA.11)

1.4 Proof for Proposition 2.4

Denote φc,t ≡ Qt
Wc,t − Cc,t

. Plugging in the budget constraint, the optimization problem can

be rewritten as

max
φc,t,Cc,t

(1− β) ln(Cc,t) + β ln(Wc,t − Cc,t) (OA.12)

+ β(1− γ)−1 ln Et

{[
R f + φc,t

(
Rt+1(φd,t) + αt + ω− R f

)]1−γ
}

,

Thus, the unit EIS coefficient allows for the separation of optimal consumption and optimal

portfolio problems. The optimal consumption is straightforward to derive:

Cc,t = (1− β)Wc,t (OA.13)

= (1− β)λWt. (OA.14)

Following Campbell and Viceira (1999, 2001), we approximate the dynamic budget con-

straint rα,t+1(φd,t) = ln [Rt+1(φd,t) + αt + ω] as follows

rα,t+1(φd,t) ≈ ln [Rt+1(φd,t) + αt + ω] (OA.15)

≈ αt + ω + r f + φT
d,t(rt+1 − r f 1) +

1
2

φT
d,t (vt − Σtφd,t) , (OA.16)

where vt ≡ diag(Σt) is the vector that contains the diagonal elements of Σt. Again,

appealing to Campbell and Viceira’s approximation method, the following log-linearization
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approximation holds:

ln
[
R f + φc,t

(
Rt+1(φd,t) + αt + ω− R f

)]
≈ r f + φc,t

[
rα,t+1(φd,t)− r f

]
+

1
2

φc,t(1− φc,t)φ
T
d,tΣtφd,t. (OA.17)

The optimal portfolio problem can be approximately rewritten as

max
φc,t

(1− γ)−1 ln Et

{
e(1−γ)[φc,t(αt+ω)+φc,tφ

T
d,t(rt+1−r f 1)+ 1

2 φc,t(1−φc,t)φ
T
d,tΣtφd,t+

1
2 φc,tφ

T
d,t(vt−Σtφd,t)]

}
.

After calculating the moment generating function and rearranging terms, searching for the

optimal φc,t is equivalent to solving the following maximization problem:

max
φc,t

φc,t(αt + ω) + φc,tφ
T
d,t

(
µt − r f +

1
2

vt

)
− 1

2
γφ2

c,tφ
T
d,tΣtφd,t. (OA.18)

The first-order condition is

0 = αt + ω + φT
d,t

(
µt − r f 1 +

1
2

νt

)
− γφc,tφ

T
d,tΣtφd,t. (OA.19)

Thus, according to Proposition 2.3, the optimal delegation φc,t is

φc,t =
1
γ

1
φT

d,tΣtφd,t

(
αt + ω + γφT

d,tΣtφd,t

)
= 1 +

ω + αt

γt
, (OA.20)

where the effective risk aversion is

γt ≡ St/γ, with St ≡
(

µt − r f 1 +
1
2

νt

)T
Σ−1

t

(
µt − r f 1 +

1
2

νt

)
. (OA.21)

According to Proposition 2.2 and Equation (2.7), it holds that

µt − r f 1 +
1
2

νt =

[
(ρL− In)ζh +

1
2

ν

]
ht and Σt = Σht. (OA.22)
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Therefore, by plugging (OA.22) into (OA.20), it follows that

φc,t = 1 +
ω + αt

γht
, (OA.23)

where γ =
[
(ρL− In)ζh +

1
2 ν
]T

Σ−1
[
(ρL− In)ζh +

1
2 ν
]
.

And hence, it holds that

qt = φc,t
Wc,t − Cc,t

Wt
(OA.24)

= βλ

(
1 +

ω + αt

γht

)
. (OA.25)

Finally, after rearranging terms, it follows that

Uc(Wc,t)−Ud(Wc,t) = βφc(αt + ω)− ln
(

1− α

λ
qt

)
(OA.26)

= βφc(ω− θ−1qt + α− f )− ln
(

1− α

λ
qt

)
(OA.27)

≥ βφc(ω− θ−1qt + α− f ) (OA.28)

≥ 0. (OA.29)

When ω + α > f + θ−1λβ as assumed in the proposition, the last inequality in (OA.29) can

be established by plugging in the equilibrium delegation qt derived in Proposition 2.5.

1.5 Proof for Proposition 2.5

The equilibrium net alpha αt and asset management services (i.e., delegation) qt are

determined by solving the intersection point of the following equations:

qt = θ(α− f )− θαt (qt supplied by funds), (OA.30)

qt = βλ [1 + (ω + αt)/(γht)] (qt demanded by fund clients). (OA.31)
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Plugging (OA.31) into (OA.30) leads to the results.

1.6 Proof for Proposition 2.6

By definition, the aggregate fund flow is

f lowt+1 =
Qt+1

Qt
− Rt+1(φm,t)− αt

=
qt+1

qt

Wt+1

Wt
− Rt+1(φm,t)− αt

=
qt+1

qt

Wd,t − Cd,t + (1− α)Qt

Wt
Rt+1(φM,t)− Rt+1(φm,t)− αt.

Thus, the aggregate fund flow can be rewritten as

f lowt+1 =
qt+1

qt
[(1− λ)β + (1− α)qt] Rt+1(φM,t)− Rt+1(φm,t)− αt (OA.32)

= e∆ ln(qt+1)+ln[(1−λ)β+(1−α)qt]+rt+1(φM,t) − ert+1(φm,t) − αt. (OA.33)

Log-linear approximation leads to

f lowt+1 ≈ ∆ ln(qt+1) + ln[(1− λ)β + (1− α)qt]

+ rt+1(φM,t)− rt+1(φm,t)− αt + Jensen’s term at t. (OA.34)

According to Proposition 2.1, it holds that

f lowt+1 −Et [ f lowt+1] ≈
√

ht

[
q′(h̄)
q(h̄)

σut+1 + (φM,t − φm,t)
TKut+1 + (φM,t − φm,t)

Tεt+1

]
≈
√

ht

[
q′(h̄)
q(h̄)

σut+1 + (φM,t − φm,t)
TKut+1

]
, (OA.35)

where the approximation in (OA.35) is based on (φM,t − φm,t)Tεt+1 ≈ 0 as n approaches

infinity.

Given the market clearing condition on assets, we have the (approximated) relation in
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Theorem 2, which leads to

φM,t = ηtφm,t + (1− ηt)φd,t

≈ η(h̄)φm,t + [1− η(h̄)]φd,t,

where ηt ≡ qt/ [(1− λ)β + (1− α)qt].

Thus, according to Proposition 2.1, it holds that

f lowt+1 −Et [ f lowt+1] ≈
√

ht

{
q′(h̄)
q(h̄)

σut+1 + [1− η(h̄)] (φd,t − φm,t)
T Kut+1

}
=
√

ht

{
q′(h̄)
q(h̄)

σut+1 + [1− η(h̄)]
(

Σ−1
t Bt

)T
Kut+1

}
=
√

ht

{
q′(h̄)
q(h̄)

σut+1 + [1− η(h̄)]BTΣ−1Kut+1

}
=
√

ht

{
q′(h̄)
q(h̄)

σut+1 + [1− η(h̄)]BT
(

In + KKT
)−1

Kut+1

}

According to Theorem 1, we can further obtain that

f lowt+1 −Et [ f lowt+1] ≈
√

ht

{
q′(h̄)
q(h̄)

σut+1 + [1− η(h̄)]AKT
(

In + KKT
)−1

Kut+1

}
(OA.36)

Therefore, the exposure coefficient is

A =
q′(h̄)
q(h̄)

σ + [1− η(h̄)]AKT
(

In + KKT
)−1

K. (OA.37)

1.7 Proof for Theorem 1

The portfolio choice is based on the competitive prices and aggregate fund flows in the

equilibrium, including r f , Pt, αt, and f lowt+1. We can rewrite Rt+1(φm,t) + αt + f lowt+1 as
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follows:

Rt+1(φm,t) + αt + πt+1 = R̃t+1(φ̃m,t) (OA.38)

≡ R f + φ̃T
m(R̃t+1 − R f 1), (OA.39)

where

φ̃m ≡

 1

φm

 and R̃t+1 =

 R f + αt + f lowt+1

Rt+1

 . (OA.40)

Similar to Campbell and Viceira (1999, 2001), we can derive the approximation based on

Proposition 2.6:

ln(R f + αt + f lowt+1) ≈ ln(1 + r f + αt + f lowt+1) (OA.41)

≈ r f + αt + f lowt+1 −
1
2

AATht, (OA.42)

where −1
2 AATht is the Jensen’s term. Therefore, the log returns are

r̃t+1 =

 r f + αt − 1
2 AATht + f lowt+1

rt+1

 , (OA.43)

and the log returns are distributed as

r̃t+1 = µ̃t + Σ̃tut+1, (OA.44)

where

µ̃t =

 r f + αt − 1
2 AATht + Et [ f lowt+1]

µt

 and Σ̃t =

 AAT AKT

KAT Σ

 ht. (OA.45)
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Now, we can apply the approximation of Campbell and Viceira (1999, 2001) again to obtain

the following relation:

r̃t+1(φ̃m,t) = ln
[
R̃t+1(φ̃m,t)

]
(OA.46)

≈ r f + φ̃T
m,t(r̃t+1 − r f 1) +

1
2

φ̃T
m,t(ṽt − Σ̃tφ̃m,t), (OA.47)

where ṽt is the diagonal vector of Σ̃t:

ṽt =

 AATht

vt

 . (OA.48)

As a result, the augmented log returns are

r̃t+1(φ̃m,t) ≈ r f + (r f + αt + f lowt+1 −
1
2

AATht − r f ) + φT
m,t(rt+1 − r f 1) +

1
2

φ̃T
m,tṽt −

1
2

φ̃T
m,tΣ̃tφ̃m,t

= r f + αt + f lowt+1 −
1
2

AATht + φT
m,t(rt+1 − r f 1 +

1
2

vt)−
1
2

φT
m,tΣtφm,t − AKThtφm,t.

Recall that Bt ≡ Bht with B = KAT, and it is the covariance of the stock log returns and

the aggregate flow:

Bt = Covt [rt+1, f lowt+1] . (OA.49)

Then, the augmented log returns are

r̃t+1(φ̃m,t) = r f + αt + f lowt+1 −
1
2

AATht + φT
m,t(rt+1 − r f 1 +

1
2

vt)−
1
2

φT
m,tΣtφm,t −BT

t φm,t.

The optimal portfolio problem for fund managers can be simplified as

max
φm,t

(1− γ)−1 ln Et

{
e(1−γ)r̃t+1(φ̃m,t)

}
. (OA.50)
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After calculating the moment-generating function, the optimal portfolio problem can be

further rewritten as

max
φm,t

φT
m,t(µt − r f 1 +

1
2

vt −Bt)−
γ

2
φT

m,tΣtφm,t + (1− γ)φT
m,tBt. (OA.51)

The standard quadratic optimization problem leads to the optimal portfolio of fund man-

agers:

φm,t =
1
γ

Σ−1
t

(
µt − r f +

1
2

νt

)
− Σ−1

t Bt (OA.52)

= φd,t − Σ−1
t Bt. (OA.53)

Because Bt = htB and Σt = htΣ, it holds that

φm,t = φd,t − Σ−1B. (OA.54)

1.8 Proof for Corollary 2.2

The cross-sectional covariance between Bt and φτ,t for each t is equal to

Cov [Bt, φτ,t] = n−1BT
t Σ−1

t Bt − n−2
(

1TBt

) (
1TΣ−1

t Bt

)
. (OA.55)

Because Σt is a positive definite symmetric matrix, according to the Cauchy-Schwarz

inequality, it holds that

n−1BT
t 11TΣ−1

t Bt = n−1(BT
t 11TΣ−1/2

t )(Σ−1/2
t Bt) (OA.56)

≤ n−1(BT
t 11TΣ−1

t 11TBt)
1/2(BT

t Σ−1
t Bt)

1/2. (OA.57)
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Thus, to show Cov [Bt, φτ,t] ≥ 0, it is sufficient to show that

n−1BT
t 11TΣ−1

t 11TBt ≤ n−1BT
t Σ−1

t Bt. (OA.58)

We denote x ≡ n−1/2Σ−1/2
t Bt and y ≡ n−1/2Σ−1/2

t 1, and thus, the inequality above can be

rewritten as

xT Hyx ≤ xTx, (OA.59)

where Hy is the orthogonal projection matrix, Hy ≡ y(yTy)−1yT. Inequality (OA.59) is

obviously true once we realize that Hy is an orthogonal projection matrix.

1.9 Proof of Theorem 2

The market-clearing condition of assets (ii.b) can be rewritten as

qtφm,t + [(1− λ)β− αqt] φd,t = [(1− λ)β + (1− α)qt] φM,t. (OA.60)

Plugging φd,t = φm,t + φτ,t into the equation above, we obtain that

φm,t = φM,t − (1− ηt)φτ,t, (OA.61)

where ηt ≡ qt/ [(1− λ)β + (1− α)qt].

1.10 Proof for Theorem 3

Based on the fund manager’s optimal portfolio derived in Theorem 1, it holds that

µt − r f +
1
2

νt = γΣtφm,t + γBt. (OA.62)
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According to the market-clearing condition of assets

φm,t = η−1
t φM,t − (η−1

t − 1)φd,t (OA.63)

= η−1
t φM,t − (η−1

t − 1)
1
γ

Σ−1
t (µt − r f +

1
2

vt). (OA.64)

Plugging (OA.64) into (OA.62) and rearranging terms leads to

µt − r f 1 +
1
2

vt = γΣtφM,t + ηtγBt. (OA.65)

Therefore, for any portfolio rt+1(φ) = φTrt+1 with 1Tφ = 1, the risk premium is

explained by the covariance with market return, denoted by rM
t+1, and the covariance with

common fund flow, denoted by f lowt+1:

φT(µt − r f 1 +
1
2

vt) = γCovt [rt+1(φ), rt+1(φM,t)] + ηtγCovt [rt+1(φ), f lowt+1] . (OA.66)

1.11 Proof of Corollary 2.3

According to Proposition 2.5 and Theorem 2, qt = 0 and thus ηt = 0 when λ = 0. Therefore,

Theorem 3 implies the conditional CAPM when λ = 0:

φT(µt − r f 1 +
1
2

vt) = γCovt [rt+1(φ), rt+1(φM,t)] (OA.67)

= γCovt [rt+1(φ), r̂t+1(φM,t)] (OA.68)

with r̂t+1(φM,t) ≡ rt+1(φM,t)−Etrt+1(φM,t).

When λ = 0, the market portfolio is the mean-variance efficient portfolio:

φM,t = φd,t =
1
γ

Σ−1
t (µt − r f 1 +

1
2

νt) (OA.69)

=
1
γ

Σ−1
[
(ρL− In)ζh +

1
2

ν

]
. (OA.70)
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Thus, φM,t has constant portfolio weights, denoted by φM.

Further, according to (OA.68), it holds that

φT(µt − r f 1 +
1
2

vt) = γVart [r̂t+1(φM)]
Covt [rt+1(φ), r̂t+1(φM)]

Vart [r̂t+1(φM)]
(OA.71)

= γVart [r̂t+1(φM)]
φTΣφM

φT
MΣφM

. (OA.72)

Taking unconditional expectations on both sides leads to

E

[
φTrt+1 − r f +

1
2

φTvt

]
= Λ

φTΣφM

φT
MΣφM

(OA.73)

where Λ ≡ γh̄
[
(ρL− In)ζh +

1
2 ν
]T

Σ−1
[
(ρL− In)ζh +

1
2 ν
]
.

Lastly, φTΣφM
φT

MΣφM
is actually the unconditional CAPM beta:

φTΣφM

φT
MΣφM

= βM(φ) ≡ Cov [rt+1(φ), r̂t+1(φM)]

Var [r̂t+1(φM)]
. (OA.74)

Therefore, the unconditional CAPM holds:

E

[
φTrt+1 − r f +

1
2

φTvt

]
= βM(φ)Λ. (OA.75)

2 Supplementary Empirical Results

Additional Description of Mutual Fund Data. Figure OA.1 provides additional facts and

description of the mutual fund data. Panel A plots the percentage of the US corporate

equity market held by mutual funds. Panel B plots the aggregate asset size of the active US

mutual funds and passive US mutual funds in the CRSP mutual fund data, covering 25,459

unique fund shares from 5,875 unique funds over the period from 1961 to 2018. Panel C

plots the number of fund shares of the active US mutual funds covered by the CRSP mutual

fund data over time. Panel D plots the 20th, 40th, 60th, and 80th percentiles of the asset

OA.13
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Note: Panel A plots the percentage of the US corporate equity market held by mutual funds. The dollar value of the aggregate US
corporate equities owned by mutual funds is obtained from the flow of funds accounts of the Federal Reserve Board. The market
value of the aggregate US corporate equities is obtained from CRSP. Panel B plots the aggregate asset size of active US mutual funds
and passive US mutual funds in the CRSP mutual fund data. Panel C plots the number of fund shares of the active US mutual funds
covered by the CRSP mutual fund data. Panel D plots the 20th, 40th, 60th, and 80th percentiles of the asset size for fund shares of active
US mutual funds covered by the CRSP mutual fund data. Panel E plots the percentage of fund shares in the CRSP mutual fund data
that can be matched to the Morningstar mutual fund data. Panel F plots the median size of fund shares in the CRSP mutual fund data
and the CRSP-Morningstar intersection data.

Figure OA.1: Mutual fund data.

size for active US mutual funds covered by the CRSP mutual fund data.

Following Berk and van Binsbergen (2015) and Pástor, Stambaugh and Taylor (2015),

we use the Morningstar mutual fund data to cross-check the accuracy of the fund returns

and asset size in the CRSP data. Specifically, we define a share class as well matched if

and only if (a) the 60th percentile (over the available sample period) of the absolute value

of the difference between the CRSP and Morningstar monthly returns is less than five

basis points, and (b) the 60th percentile of the absolute value of the difference between

the CRSP and Morningstar monthly TNA is less than $100,000. Panel E of Figure OA.1

plots the percentage of fund shares in the CRSP mutual fund data that can be matched
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to the Morningstar mutual fund data. The percentage of matching increases over time

because of expanded coverage of the Morningstar data. The analysis of our paper focuses

on the period from 1991 to 2018, in which we have monthly asset data to compute fund

flows. During this sample period, 13,519 out of 24,823 active fund shares in the CRSP

mutual fund data can be matched to Morningstar, while 1,407,627 out of 2,226,748 fund

share-month observations in the CRSP mutual fund data can be matched to Morningstar.

The matching rate is 54.46% at the fund share level and is 63.21% at the fund share-month

level. Around 2% of share-month observations in the CRSP panel data are not matched

with the Morningstar data because of the discrepancies in reported returns and TNA across

the two datasets. The remaining 35% of share-month observations in the CRSP panel data

are not matched because of no coverage in the Morningstar data. The above summary

statistics for the matching percentage are similar to those in Pástor, Stambaugh and Taylor

(2015). Panel F of Figure OA.1 plots the median size of fund shares in the CRSP mutual

fund data and the CRSP-Morningstar intersection data. The median fund shares covered

by the CRSP-Morningstar intersection sample are slightly larger than those covered by the

CRSP mutual fund sample, but the difference has diminished since 2000.

Flow Volatility and Return Volatility. We compute the yearly flow volatility and return

volatility for fund portfolios sorted on asset size and age. We focus on the volatility of the

systematic component of fund flow shocks and returns. Specifically, we regress the fund

flow of each fund portfolio on the common fund flows and compute the yearly volatility

of the explained component. Similarly, we regress the returns of each fund portfolio on

the market returns and compute the yearly volatility of the explained component. The

results are tabulated in Table OA.1 and plotted in Figure OA.2. Fund flow volatility is

higher for smaller and younger funds. The average flow volatility is around 25% and 20%

of the average return volatility for fund portfolios sorted on asset size and age, respectively.

This finding shows that a substantial amount of variation in AUM comes from fund flows

instead of price changes of the underlying stocks, which suggests that fund managers
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Table OA.1: Flow volatility and return volatility.
Panel A: Yearly flow volatility and return volatility across fund portfolios sorted on asset size

CRSP mutual funds alone CRSP-Morningstar intersection

Asset size quintiles Flow volatility Return volatility Flow volatility Return volatility

Q1 0.057 0.156 0.070 0.159
Q2 0.046 0.163 0.048 0.163
Q3 0.038 0.167 0.042 0.167
Q4 0.027 0.172 0.027 0.173
Q5 0.022 0.172 0.026 0.174
Average 0.038 0.166 0.043 0.167

Avg flow vol/avg return vol 22.9% 25.5%

Panel B: Yearly flow volatility and return volatility across fund portfolios sorted on age

CRSP mutual funds alone CRSP-Morningstar intersection

Age quintiles Flow volatility Return volatility Flow volatility Return volatility

Q1 0.055 0.174 0.049 0.179
Q2 0.023 0.177 0.023 0.181
Q3 0.030 0.180 0.033 0.178
Q4 0.042 0.177 0.039 0.179
Q5 0.025 0.169 0.024 0.168
Average 0.035 0.175 0.034 0.177

Avg flow vol/avg return vol 19.9% 19.1%

Note: Panel A tabulates the yearly flow volatility and return volatility for fund portfolios sorted on asset size. Panel B tabulates the
yearly flow volatility and return volatility for fund portfolios sorted on age. Flow volatility of each fund portfolio is the volatility
of the part of fund flows that can be explained by common fund flows. Return volatility of each fund portfolio is the part of fund
returns that can be explained by the market returns.

should indeed care about fund flows.

Common Fund Flows Constructed Based on Other Fund Characteristics. Besides asset size and

age, we also construct common fund flows based on other fund characteristics. Figures

OA.3 and OA.4 plot fund flow shocks across fund quintiles sorted on industry concentration

(Kacperczyk, Sialm and Zheng, 2005), and portfolio liquidity (Pástor, Stambaugh and Taylor,

2019), respectively. Similar to asset size and age, we find that fund flow shocks sorted on

these characteristics also share common time-series variation. The common fund flows

constructed based on asset size, age, industry concentration, and portfolio liquidity are

highly correlated with each other. The correlation coefficients range from 0.87 to 0.96 (see

Table OA.2 for details).

Common Fund Flows, Discount Rates, and Sentiments. We test the relation between common

fund flows and shocks to the discount rates and sentiments. We measure discount rates
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Note: Panels A and B plot the yearly flow volatility and return volatility for fund portfolios sorted on asset size. Panels C and D plot
the yearly flow volatility and return volatility for fund portfolios sorted on age. Flow volatility and return volatility are computed based
on the CRSP mutual fund data in panels A and C and based on the CRSP-Morningstar intersection data in panels B and D.

Figure OA.2: Flow volatility and return volatility.

using the dividend-to-price ratio and the smoothed earnings-price ratio (Campbell and

Shiller, 1988, 1998), and we measure sentiments using the investor sentiment index of

Baker and Wurgler (2006). We regress common fund flows on the contemporaneous shocks

to the measures of discount rates and sentiments estimated using an AR(1) model. As

shown in panel A of Table OA.3, active mutual funds experience common outflows when

contemporaneous discount rate increases. The relation is both statistically and economically

significant. Active mutual funds experience common inflows when contemporaneous

sentiment increases, but this relation is statistically insignificant. In panel B, we find similar
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Table OA.2: Correlation among the common fund flows constructed based on various
fund share characteristics.

Panel A: Correlation in the CRSP mutual funds data

Fund characteristics Asset size Age Industry concentration Portfolio liquidity

Asset size 1
Age 0.87 1
Industry concentration 0.88 0.95 1
Portfolio liquidity 0.91 0.90 0.94 1

Panel B: Correlation in the CRSP-Morningstar intersection data

Fund characteristics Asset size Age Industry concentration Portfolio liquidity

Asset size 1
Age 0.91 1
Industry concentration 0.91 0.96 1
Portfolio liquidity 0.93 0.92 0.95 1
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C. Industry concentration Q1 vs
industry concentration Q4 (Q5)
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Corr(Q1,Q3) = 0.50
p-value < 0.001
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Note: Panel A plots active mutual fund flows by quintiles sorted on the industry concentration of funds (Kacperczyk, Sialm and Zheng,
2005) after removing relative performance. We control for the flow-performance sensitivity at the fund level. The lines represent the
asset-value-weighted fund flows of individual quintiles. Gray areas represent the NBER recession periods. Panels B and C plot the
detrended flows of funds with lowest industry concentration (Q1) against the detrended flows of other industry concentration groups.

Figure OA.3: Mutual fund flows by industry concentration after removing relative perfor-
mance.

results for common fund flows constructed from the CRSP-Morningstar intersection data.
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Note: Panel A plots active mutual fund flows by quintiles sorted on the portfolio liquidity of fund (Pástor, Stambaugh and Taylor,
2019) after removing relative performance. We control for the flow-performance sensitivity at the fund level. The lines represent the
asset-value-weighted fund flows of individual quintiles. Gray areas represent the NBER recession periods. Panels B and C plot the
detrended flows of the fund with lowest portfolio liquidity (Q1) against the detrended flows of other portfolio liquidity groups.

Figure OA.4: Mutual fund flows by portfolio liquidity after removing relative performance.

Table OA.3: Common fund flows, discount rates, and sentiments.
(1) (2) (3) (4) (5) (6)

Panel A. CRSP mutual funds alone Panel B. CRSP-Morningstar intersection

Common_ f lowst Common_ f lowst

DP_shockt −0.249∗∗∗ −0.294∗∗∗

[−3.982] [−4.503]

SmoothEP_shockt −0.253∗∗∗ −0.304∗∗∗

[−4.041] [−4.561]

Sentiment_shockt 0.079 0.018
[1.230] [0.286]

Common_ f lowst−1 0.170∗∗∗ 0.164∗∗∗ 0.191∗∗∗ 0.295∗∗∗ 0.288∗∗∗ 0.317∗∗∗

[2.998] [2.913] [3.357] [5.403] [5.310] [5.839]

Observations 334 334 334 334 334 334
R-squared 0.093 0.096 0.042 0.180 0.186 0.099

Note: This table shows the relation between common fund flows (Common_ f lowst) and the shocks to discount rates and sentiments.
DP_shockt is the shock to the dividend-to-price ratio in month t estimated by an AR(1) model. SmoothEP_shockt is the shock to
smoothed earnings-price ratio (Campbell and Shiller, 1988, 1998) in month t estimated by an AR(1) model. Sentiment_shockt is
the shock to the investor sentiment index (Baker and Wurgler, 2006) in month t estimated by an AR(1) model. All variables are
standardized to have means of 0 and standard deviations of 1. The constant term is omitted for brevity. The analysis is performed
at a monthly frequency. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels,
respectively. Sample period spans from 1991 to 2018.
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Relation Between Flow Betas and the Flow-Induced Trading Pressure. In Table 3 of the main

text, we show that stocks with high flow betas are associated with higher average excess

returns and higher CAPM alphas. One potential concern is that this empirical pattern could

simply be driven by the flow-induced trading pressures (FIT). Indeed, a large literature has

documented that aggregate fund flows can exert a substantial price impact on short-term

stock returns, which reverts over a longer horizon (e.g., Coval and Stafford, 2007; Frazzini

and Lamont, 2008; Lou, 2012).

Because flow betas are estimated based on the past-36-month covariance between stock

returns and common fund flows, it is possible that stocks in different flow beta quintiles

have experienced different flow-driven trading, or they are at different stages of the flow-

driven price-pressure cycles. Thus, to test this slow-moving capital story, we construct the

FIT measure following Lou (2012) and examine its relation with flow betas. Specifically, we

define the FIT for each stock i in each quarter t as:

FITi,t =
∑j sharesi,j,t−1 × f lowj,t × PSFj,t−1

∑j sharesi,j,t−1
, (OA.76)

where f lowj,t is the flow of active mutual fund j in quarter t, and sharesi,j,t−1 is the number

of shares held by mutual fund j at the end of the previous quarter. PSFj,t−1 is the partial

scaling factor, which is estimated by regressing the trade of mutual funds on the fund flows.

We follow Lou (2012) to set PSFj,t−1 to 0.970.

Lou (2012) examines the cumulative portfolio returns of the long-short portfolio sorted

by FIT using the mutual fund holding data from 1980 to 2006. Figure 1 of his paper shows

that in the portfolio formation quarter, stock returns of the long-short portfolio are positive

and such positive returns are reversed by the end of year three. We extend the data to 2018

and replicate the findings of Lou (2012). Figure OA.5 shows the cumulative returns to the

long-short portfolio that longs Decile 10 and shorts Decile 1 stocks sorted by FIT. We find

that the stock return patterns associated with FIT documented by Lou (2012) remain robust

in the extended time window.
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Note: This figure replicates Figure 1 of Lou (2012) using the data from 1980 to 2018, and it shows the value-weighted cumulative returns
of the long-short portfolio that longs Decile 10 and shorts Decile 1 stocks sorted by FIT.

Figure OA.5: Cumulative portfolio returns of the long-short portfolio sorted by the flow-
induced trading pressure.

Next, we examine the cross-sectional relation between flow betas and FIT using panel

regressions with quarter fixed effects. Besides computing the contemporaneous and lagged

FIT, we also accumulate the FIT measure across different past time horizons (i.e., past two

quarters, one year, two years, and three years) because flow betas are estimated based on

returns of past 36 months. As shown in Table OA.4, flow betas have insignificant correlation

with the contemporaneous FIT, lagged FIT, and FIT accumulated across different time

horizons. In Panel C of Table 4 in the main text, we further show that the flow betas remain

positively priced in the cross section of stocks after controlling for FIT. The above findings

collectively suggest that the asset pricing implications of the flow betas are very unlikely a

side effect of the flow-induced trading pressures.

Relation Between Flow Betas and Price Impact. Next, we study the relation between flow

betas and the price impact of each stock across different types of investors (e.g., mutual

funds, households, investor advisors, and pension funds). It is possible that high flow beta
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Table OA.4: Relation between flow betas and the flow-induced trading pressure.
Panel A: Flow betas and lagged FIT

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

CRSP mutual funds alone CRSP-Morningstar intersection

β
f low
i,t β

f low
i,t

FITi,t −0.001 −0.002
[−0.109] [−0.184]

FITi,t−1 −0.005 −0.003
[−0.496] [−0.334]

FITi,t−2 −0.007 −0.004
[−0.681] [−0.566]

FITi,t−3 −0.009 −0.004
[−1.012] [−0.620]

FITi,t−4 −0.008 −0.003
[−1.176] [−0.540]

Quarter FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 351835 343766 337483 332077 327148 351835 343766 337483 332077 327148
R-squared 0.167 0.168 0.170 0.172 0.173 0.188 0.190 0.192 0.194 0.196

Panel B: Flow betas and FIT cummulated across different time horizons

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

CRSP mutual funds alone CRSP-Morningstar intersection

β
f low
i,t β

f low
i,t

FITi,t −0.001 −0.002
[−0.109] [−0.184]

∑1
k=0 FITi,t−k −0.004 −0.003

[−0.350] [−0.297]

∑3
k=0 FITi,t−k −0.010 −0.006

[−0.824] [−0.647]

∑7
k=0 FITi,t−k −0.015 −0.004

[−1.635] [−0.513]

∑11
k=0 FITi,t−k −0.013 0.006

[−1.470] [0.701]

Quarter FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 351835 342890 327881 303235 280873 351835 342890 327881 303235 280873
R-squared 0.167 0.168 0.171 0.177 0.184 0.188 0.190 0.194 0.202 0.209

Note: Panel A of this table shows the relation between common flow betas and lagged FIT. Panel B of this table shows the
relation between common flow betas and FIT cummulated across different time horizons. The analysis is performed at the quarterly
frequency. β

f low
i,t is the common flow beta for stock i in quarter t. FITi,t is the flow-induced trading pressure for stock i in quarter

t, which is computed following Lou (2012). All variables are standardized to have means of 0 and standard deviations of 1. We
include t-statistics in brackets. Standard errors are double clustered at the stock and quarter levels. *, **, and *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively. Sample period spans from 1992 to 2018.

stocks are held by investors with higher price impact, so a systematic flow shock causes

larger price movement.

We obtain the price impact measures from Koijen and Yogo (2019), who estimate the

price impact based on an asset pricing model with flexible heterogeneity in asset demand

across investors. We examine the cross-sectional relation between flow betas and price

impact using panel regressions with quarter fixed effects. Table OA.5 shows that flow
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Table OA.5: Relation between flow betas and price impact measures.
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. CRSP mutual funds alone Panel B. CRSP-Morningstar intersection

β
f low
i,t β

f low
i,t

Price_impact_mutual_ f undsi,t 0.003 0.011∗∗

[0.529] [2.222]

Price_impact_householdsi,t 0.063∗∗∗ 0.080∗∗∗

[4.813] [6.485]

Price_impact_investment_advisorsi,t 0.010∗ 0.023∗∗∗

[1.721] [3.929]

Price_impact_pension_ f undsi,t 0.006 0.028∗∗∗

[0.847] [3.714]

Quarter FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 387986 398573 375027 297126 387986 398573 375027 297126
R-squared 0.151 0.145 0.154 0.177 0.162 0.156 0.166 0.192

Note: This table shows the relation between common flow betas and the price impact measures. The analysis is performed at the
quarterly frequency. β

f low
i,t is the common flow beta for stock i in quarter t. The price impact measures are obtained from Koijen

and Yogo (2019). All variables are standardized to have means of 0 and standard deviations of 1. We include t-statistics in brackets.
Standard errors are double clustered at the stock and quarter levels. *, **, and *** indicate statistical significance at the 10%, 5%, and
1% levels, respectively. Sample period spans from 1992 to 2018.

betas are in general positively correlated with the price impact measures. The results are

especially robust for the price impact of household and investment advisors, which include

many hedge funds. These investors are the direct investors in our model. The positive

relation between flow betas and price impact is relatively weaker for the price impact of

mutual funds and pension funds, likely because Koijen and Yogo (2019) include both active

funds and passive funds in their sample of mutual funds and pension funds.

We then examine the asset pricing implications of flow betas by double sorting on price

impact. As shown in Panel D of Table 4 in the main text and Table OA.6, the flow betas

remain positively priced in the cross section of stocks after controlling for price impact

of different types of investors, suggesting that the asset pricing implications of flow betas

cannot be entirely explained by price impact.

Common Flows of Index Funds. We perform portfolio-sorting analysis based on the betas

to the common flows of the US index funds. Specifically, we sort index funds to quintiles

based on asset size and then compute the value-weighted flow of each quintile. We then

detrend the flow and extract the principal components. We standardize the first principal

component and define it as the common flows of index funds. We estimate the betas to
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Table OA.6: Double-sort analysis for additional price impact measures.
Price impact measures Panel A: Households Panel B: Investor advisors Panel C: Pension funds

CRSP alone CRSP-Morningstar CRSP alone CRSP-Morningstar CRSP alone CRSP-Morningstar

β
f low
i quintiles Excess

returns
CAPM

α
Excess
returns

CAPM
α

Excess
returns

CAPM
α

Excess
returns

CAPM
α

Excess
returns

CAPM
α

Excess
returns

CAPM
α

Q1 5.10 −5.72∗∗∗ 5.23 −4.42∗∗ 5.21 −5.57∗∗∗ 5.00 −4.19∗∗ 5.27 −5.53∗∗∗ 5.99 −3.45∗∗

[1.20] [−2.73] [1.39] [−2.48] [1.23] [−2.73] [1.41] [−2.54] [1.23] [−2.60] [1.64] [−2.06]

Q2 6.46∗∗ −1.66 6.62∗∗ −0.68 7.09∗∗ −0.68 7.35∗∗∗ 0.06 6.68∗∗ −1.32 7.38∗∗∗ −0.08
[2.11] [−1.34] [2.38] [−0.57] [2.43] [−0.58] [2.67] [0.06] [2.23] [−1.12] [2.65] [−0.08]

Q3 7.85∗∗∗ −0.03 8.52∗∗∗ 0.66 8.50∗∗∗ 0.76 7.81∗∗∗ 0.11 8.19∗∗∗ 0.25 7.94∗∗∗ 0.30
[2.64] [−0.02] [3.01] [0.79] [2.98] [0.74] [2.80] [0.12] [2.77] [0.22] [2.86] [0.33]

Q4 9.90∗∗∗ 1.92∗∗ 10.21∗∗∗ 1.57 9.93∗∗∗ 2.13∗∗ 11.66∗∗∗ 3.09∗∗ 10.00∗∗∗ 2.32∗∗ 9.98∗∗∗ 1.30
[3.42] [2.09] [3.20] [1.34] [3.48] [2.21] [3.65] [2.49] [3.56] [2.42] [3.12] [1.13]

Q5 11.24∗∗∗ 2.11 12.81∗∗∗ 1.82 10.95∗∗∗ 1.71 11.46∗∗∗ 0.53 10.83∗∗∗ 1.25 12.95∗∗∗ 1.99
[3.18] [1.30] [2.97] [0.87] [3.00] [0.94] [2.63] [0.24] [2.89] [0.70] [2.99] [0.92]

Q5 − Q1 6.14∗∗ 7.83∗∗∗ 7.58∗∗ 6.24∗∗ 5.75∗∗ 7.27∗∗ 6.46∗∗ 4.71∗ 5.56∗∗ 6.78∗∗ 6.96∗∗ 5.44∗∗

[2.07] [2.66] [2.59] [2.13] [2.23] [2.45] [2.19] [1.81] [2.26] [2.25] [2.40] [2.18]

Note: This table shows the results from the double-sort analysis. In each June, we first sort stocks into five groups based on the
price impact of households (panel A), the price impact of investor advisors (panel B), and the price impact of pension funds (panel
C). Next, we sort stocks within each liquidity group into quintiles based on their average common flow betas from January of year
t to June of year t. We then pool the firms in the same flow beta quintiles together across the liquidity groups. Once the portfolios
are formed, their monthly returns are tracked from July of year t to June of year t + 1. Our sample includes the firms listed on the
NYSE, NASDAQ, and Amex with share codes 10 and 11. We exclude financial firms and utility firms from the analysis. We obtain
the price impact measures from Koijen and Yogo (2019). We annualize the average excess returns and CAPM alphas by multiplying
them by 12. Sample period spans from July 1992 to June 2018. We include t-statistics in brackets. *, **, and *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively.

common flows of index funds using a 3-year rolling window. Unlike betas to the common

flows of active mutual funds, betas to the common flows of index funds are not positively

priced at the cross section of stocks. As shown in Table OA.7, the long-short portfolios

sorted on the betas to the common flows of index funds have insignificant average excess

returns and CAPM alphas.

Stock Characteristics Across Portfolios Sorted on Common Flow Betas. In Table OA.8, we

tabulate the mean values of the stock characteristics across stock quintile portfolios sorted

on common flow betas. We show that stocks with higher flow betas tend to have lower

market cap, higher book-to-market ratio, higher historical liquidity betas, and higher

Amihud illiquidity measure.

Predicted Common Flow Betas. Table 6 in the main text shows that common flow betas are

closely associated with stock characteristics. Because of this feature, we further strengthen

our results by predicting flow betas using stock characteristics, following previous studies
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Table OA.7: Portfolio-sorting analysis based on the betas to the common flows of index
funds.

CRSP mutual funds alone CRSP-Morningstar intersection

β
index f low
i quintiles Excess returns CAPM alphas Excess returns CAPM alphas

Q1 9.33∗∗∗ 1.10 8.82∗∗∗ 1.52
[2.93] [0.75] [3.02] [1.01]

Q2 8.37∗∗∗ 1.27 9.15∗∗∗ 2.75∗∗∗

[3.23] [1.48] [3.82] [2.88]

Q3 9.28∗∗∗ 1.91∗∗ 8.74∗∗∗ 0.52
[3.46] [2.19] [2.96] [0.62]

Q4 10.96∗∗ 1.25 10.12∗∗ −0.56
[2.99] [0.82] [2.47] [−0.30]

Q5 9.71∗∗ −2.49 9.75∗ −3.46
[1.99] [−1.00] [1.81] [−1.18]

Q5 − Q1 0.38 −3.59 0.93 −4.98
[0.12] [−1.19] [0.23] [−1.38]

Note: This table shows the value-weighted average excess returns and alphas for stock portfolios sorted on betas to the common
fund flows of index funds (βindex f low

i ). In June of year t, we sort firms into quintiles based on their β
index f low
i . Once the portfolios are

formed, their monthly returns are tracked from July of year t to June of year t + 1. Our sample includes the firms listed on the NYSE,
NASDAQ, and Amex with share codes 10 and 11. We exclude financial firms and utility firms from the analysis. We annualize the
average excess returns and CAPM alphas by multiplying them by 12. Sample period spans from July 1992 to June 2018. We include
t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

(e.g., Pástor and Stambaugh, 2003; Kogan and Papanikolaou, 2013).

Specifically, we model each stock’s predicted flow beta as a linear function of observable

variables:

β
f low
i,t−1 = a0,i + aT

1,iZi,t−1. (OA.77)

Vector Zi,t−1 contains five characteristics: lagged firm size, lagged book-to-market ratio,

lagged historical liquidity betas, lagged Amihud illiquidity measure, and lagged common

flow betas estimated by equation (4.4) using all data available from month t− 36 through

t− 1. Substituting the right side of equation (OA.77) for β
f low
i in equation (4.4), we obtain:

reti,t = a + a0,i × common flowt + aT
1,iZi,t−1 × common flowt + εi,t. (OA.78)

The above regression for stock i contains six independent variables, five of which

are cross-products of the elements of Zi,t−1 with common flowt. Following Pástor and

Stambaugh (2003), we use an expanding window to run the above regression to obtain â0,i

and âT
1,i using all data available up to the current month-end. We then predict flow betas
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Table OA.8: Stock characteristics across portfolios sorted on common flow betas.
Panel A: Summary statistics of the stock characteristics

Mean Median Standard deviation p25 p75

Lnsizet 5.33 5.23 2.10 3.86 6.70
Lnsizet − Lnsizemedian

t 0.10 0 2.01 −1.29 1.41
LnBEMEt −0.40 −0.41 1.19 −1.00 0.10
Liqbetat 16.48 13.85 54.86 −8.04 41.36
AIMt 3.05 0.04 11.38 0.01 0.63

Panel B: Stock characteristics across portfolios sorted on common flow betas

CRSP mutual funds alone CRSP-Morningstar intersection

β
f low
i quintiles Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

Lnsizet 5.20 5.67 5.78 5.77 5.00 5.24 5.75 5.79 5.71 4.94
Lnsizet − Lnsizemedian

t −0.01 −0.02 −0.02 −0.01 0.03 −0.02 −0.02 −0.02 0.00 0.04
LnBEMEt −0.53 −0.32 −0.30 −0.33 −0.39 −0.50 −0.32 −0.30 −0.33 −0.42
Liqbetat 7.65 11.04 13.48 18.04 32.64 5.71 9.84 13.76 19.27 34.18
AIMt 3.55 1.98 1.81 2.42 5.47 3.38 1.88 1.92 2.52 5.51

Note: Panel A tabulates summary statistics of the stock characteristics. P25 and p75 are the 25th and 75th percentiles. Panel B
tabulates the mean values of the stock characteristics across stock quintile portfolios sorted on the common flow betas. The sorting
is performed at quarterly frequency. Lnsizemedian

t represents the median stock size (natural log of market cap) in each quarter. Sample
period spans from 1992 to 2018.

based on the estimated coefficients:

Predicted_β
f low
i,t−1 = â0,i + âT

1,iZi,t−1. (OA.79)

The predicted common flow betas exhibit many properties that are similar to those of

the common flow betas. First, Table OA.9 shows that the predicted common flow betas are

negatively correlated with stock size and positively correlated with book-to-market ratio,

historical liquidity betas, and Amihud illiquidity measure. This result is consistent with

the relation between common flow betas and stock characteristics shown in Table 6 in the

main text. Next, in panel A of Table OA.10, we perform Fama-MacBeth regressions of stock

returns on the predicted common flow betas. We find that the predicted common flow

betas are also positively priced in the cross-section of stocks. Finally, in panel B of Table

OA.10, we examine the relation between the portfolio weight deviation of active mutual

funds and the predicted flow betas. We find that active mutual funds tilt their portfolio

holdings away from the stocks with high predicted common flow betas.
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Table OA.9: Predicted common flow betas and stock characteristics.
Panel A: Relation between predicted common flow betas and stock characteristics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

CRSP mutual funds alone CRSP-Morningstar intersection

Predicted_β
f low
i,t Predicted_β

f low
i,t

Lnsizei,t−1 −0.39∗∗∗ −0.30∗∗∗ −0.41∗∗∗ −0.37∗∗∗

[−7.46] [−5.50] [−8.49] [−8.18]

LnBEMEi,t−1 0.30∗∗∗ 0.23∗∗∗ 0.16∗∗∗ 0.06∗∗

[8.94] [5.36] [7.40] [2.43]

Liqbetai,t−1 0.09∗∗∗ 0.06 0.23∗∗∗ 0.20∗∗∗

[2.76] [1.54] [4.84] [3.84]

AIMi,t−1 0.40∗∗∗ 0.13∗∗∗ 0.31∗∗∗ 0.06∗

[5.49] [3.73] [8.60] [1.87]

Constant −0.01 0.01 −0.03 0.04 −0.03 −0.02 −0.01 −0.04 0.02 −0.06
[−0.09] [0.05] [−0.27] [0.35] [−0.19] [−0.11] [−0.04] [−0.21] [0.13] [−0.28]

Average obs./month 2886 2810 2679 2858 2607 2886 2810 2679 2858 2607
Average R-squared 0.339 0.219 0.034 0.113 0.545 0.388 0.064 0.110 0.110 0.537

Panel B: Stock characteristics across portfolios sorted on the predicted common flow betas

CRSP mutual funds alone CRSP-Morningstar intersection

Predicted_β
f low
i,t quintiles Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

Lnsizet 7.27 6.41 5.67 4.88 3.88 7.58 6.43 5.58 4.77 3.73
Lnsizet − Lnsizemedian

t 2.04 1.18 0.44 −0.35 −1.35 2.36 1.20 0.35 −0.45 −1.50
LnBEMEt −1.14 −0.60 −0.37 −0.20 0.48 −0.82 −0.53 −0.36 −0.16 0.05
Liqbetat 9.21 13.33 16.73 21.70 29.44 −4.41 7.60 14.80 24.69 47.71
AIMt 0.89 0.85 1.27 2.51 9.56 0.53 0.63 1.23 2.72 9.99

Note: Panel A shows the slope coefficients and test statistics in brackets from Fama-MacBeth regressions that regress predicted com-
mon flow betas on stock characteristics. Predicted_β

f low
i,t is the predicted common flow beta for stock i in month t. The independent

variables are explained in Table 6 in the main text. All variables are standardized to have means of 0 and standard deviations of 1.
We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Panel B
shows the stock characteristics across stock portfolios sorted on the predicted common flow betas. The characteristics in panel B are
raw values before standardization. Sample period spans from 1992 to 2018.

Portfolio Tilts with Rescaled Weights. In Table 7 in the main text, we show that active mutual

funds tilt their portfolios away from stocks with high flow betas using the raw stock weights

to compute the deviations of mutual fund portfolios from benchmark portfolios. In Table

OA.11, we perform a robustness check by rescaling the stock weights in the aggregate

mutual fund portfolio, the market portfolio, and the self-disclosed benchmark portfolios

to make sure the sum of the weights for the stocks included in the analysis is 1 in each

quarter. In panel A of Table OA.11, for a given quarter t, we include stocks with positive

aggregate mutual fund holdings in this quarter, and stocks with zero aggregate mutual

fund holdings in quarter t but non-zero aggregate mutual fund holdings in any of the

quarters from quarter t− 8 to t− 1. In panel B of Table OA.11, we further require the stocks
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Table OA.10: Portfolio holdings of active mutual funds and predicted common flow betas.
Panel A: Fama-MacBeth regressions

(1) (2) (3) (4)

CRSP mutual funds alone CRSP-Morningstar intersection

Reti,t (%) Reti,t (%)

Predicted_β
f low
i,t−1 0.337∗∗ 0.345∗∗ 0.385∗∗ 0.389∗∗∗

[2.356] [2.334] [2.557] [2.600]

βM
i,t−1 0.065 0.005

[0.510] [0.037]

Constant 1.313∗∗∗ 1.322∗∗∗ 1.269∗∗∗ 1.244∗∗∗

[3.790] [3.748] [3.621] [3.365]

Average obs./month 2842 2842 2842 2842
Average R-squared 0.007 0.017 0.007 0.016

Panel B: Active mutual funds tilt their holdings away from stocks with high predicted common flow betas

(1) (2) (3) (4)

CRSP mutual funds alone CRSP-Morningstar intersection

wMF
i,t − wM

i,t wMF
i,t − wM

i,t

Predicted_β
f low
i,t−1 −0.205∗∗∗ −0.286∗∗∗ −0.217∗∗∗ −0.357∗∗∗

[−9.375] [−11.575] [−13.012] [−15.183]

βM
i,t−1 0.055∗∗∗ 0.050∗∗∗ 0.093∗∗∗ 0.106∗∗∗

[6.716] [5.669] [10.926] [10.906]

Quarter FE No Yes No Yes
Observations 369899 369899 369899 369899
R-squared 0.038 0.053 0.040 0.061

Note: Panel A reports the slope coefficients and test statistics from Fama-MacBeth regressions that regress monthly stock returns
(reti,t) on the predicted common flow betas (predicted_β

f low
i,t−1) and market betas (βM

i,t−1). predicted_β
f low
i,t−1 and βM

i,t−1 are standardized
to have means of 0 and standard deviations of 1. Panel B studies the relation between predicted common flow betas and active
mutual funds’ weight deviation from the market (wMF

i,t − wM
i,t ). We control for the market betas in the regressions. wMF

i,t − wM
i,t ,

predicted_β
f low
i,t−1, and βM

i,t−1 are standardized to have means of 0 and standard deviations of 1. FE is fixed effects. The analysis
is performed at quarterly frequency. Sample period spans from 1992 to 2018. Standard errors are double-clustered at the stock
and quarter levels. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels,
respectively.

in our analysis to be part of the self-disclosed benchmark portfolios. Our results remain

robust to the usage of the rescaled portfolio weights.

Model-Implied Portfolio Tilt. In equilibrium, the portfolio tilt is equal to

Σ−1
t Bt =

(
v2 In + KKT

)−1
B (OA.80)

= v−2
[

In − K
(

v2 Ik + KTK
)−1

KT
]
B. (OA.81)

The first equality is caused by the equilibrium covariance matrix of log returns Σ =

v2 In + KKT and the cancelation of
√

ht. The second equality is because of the Woodbury
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Table OA.11: Active mutual funds tilt their holdings away from stocks with high flow
betas: analysis with rescaled portfolio weights.

Panel A: Using the market portfolio as the benchmark portfolio

(1) (2) (3) (4)

CRSP mutual funds alone CRSP-Morningstar intersection

rescaled_wMF
i,t − rescaled_wM

i,t rescaled_wMF
i,t − rescaled_wM

i,t

β
f low
i,t−1 −0.020∗∗∗ −0.027∗∗∗ −0.013∗∗∗ −0.023∗∗∗

[−4.850] [−5.666] [−3.506] [−5.219]

βM
i,t−1 0.071∗∗∗ 0.073∗∗∗ 0.071∗∗∗ 0.075∗∗∗

[10.649] [10.552] [10.790] [10.866]

Quarter FE No Yes No Yes
Observations 413321 413321 413321 413321
R-squared 0.004 0.005 0.004 0.005

Panel B: Using the self-declared benchmarks as the benchmark portfolio

(1) (2) (3) (4) (5) (6)

Benchmarks S&P 500 TR Russell 1000 Growth TR Russell 2000 TR
CRSP CRSP-MS CRSP CRSP-MS CRSP CRSP-MS

rescaled_wMF
i,t − rescaled_wBenchmark

i,t rescaled_wMF
i,t − rescaled_wBenchmark

i,t rescaled_wMF
i,t − rescaled_wBenchmark

i,t

β
f low
i,t−1 −0.061∗∗∗ −0.040∗∗ −0.053∗∗∗ −0.048∗∗∗ −0.018∗∗ −0.023∗∗∗

[−3.281] [−2.159] [−3.809] [−3.544] [−2.477] [−3.057]

βM
i,t−1 0.105∗∗∗ 0.106∗∗∗ 0.079∗∗∗ 0.085∗∗∗ −0.012 −0.009

[3.206] [3.112] [4.142] [4.260] [−1.166] [−0.822]

Observations 26208 26208 30780 30780 88017 88017
R-squared 0.009 0.007 0.008 0.008 0.001 0.001

Note: This table studies the relation between common flow betas (β f low
i,t−1) and active mutual funds’ weight deviation from the

benchmark portfolios. Our analysis is the same as in Table 7 in the main text, except that we rescale the stock weights in the
aggregate mutual fund portfolio, the market portfolio, and the self-disclosed benchmark portfolios to make sure the sum of the
weights for the stocks included in the analysis is 1 in each quarter. In panel A, for a given quarter t, we include stocks with positive
aggregate mutual fund holdings in this quarter, and stocks with zero aggregate mutual fund holdings in quarter t but non-zero
aggregate mutual fund holdings in any of the quarters from quarter t− 8 to t− 1. In panel B, we further require that the stocks in
our analysis to be part of the self-disclosed benchmark portfolios. FE is fixed effects. We include t-statistics in brackets. *, **, and ***
indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

identity.

We empirically estimate Σ−1
t using equation (OA.81). We estimate the factor structure

of stock returns using the Fama-French three-factor model with a 3-year rolling window.

Matrix Kt is the loading matrix of the three factors. Scalar vt is the average idiosyncratic

volatility across all stocks. Consistent with Corollary 2.2, we find that the theoretical tilts

(i.e., Σ−1
t Bt) are highly correlated with the flow betas (i.e., Bt). The correlation is 0.70 in the

CRSP mutual fund data and is 0.69 in the CRSP-Morningstar intersection sample. In Table

OA.12, we regress the deviation of mutual fund holdings from the market portfolios on the

lagged theoretical portfolio tilt. We find that active mutual funds systematically tilt their

holdings away from the stocks with higher theoretical portfolio tilts. This result provides
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Table OA.12: Relation between mutual fund weight deviation and theoretical tilt.
Panel A: Without controlling for market betas

(1) (2) (3) (4)

CRSP mutual funds alone CRSP-Morningstar intersection

wMF
i,t − wM

i,t wMF
i,t − wM

i,t

Σ−1
t−1β

f low
i,t−1 −0.017∗∗∗ −0.016∗∗∗ −0.014∗∗∗ −0.013∗∗∗

[−3.516] [−3.182] [−3.234] [−2.981]

Quarter FE No Yes No Yes
Observations 408054 408054 408054 408054
R-squared 0.001 0.006 0.001 0.006

Panel B: Controlling for market betas

(1) (2) (3) (4)

CRSP mutual funds alone CRSP-Morningstar intersection

wMF
i,t − wM

i,t wMF
i,t − wM

i,t

Σ−1
t−1β

f low
i,t−1 −0.017∗∗∗ −0.016∗∗∗ −0.014∗∗∗ −0.013∗∗∗

[−3.513] [−3.181] [−3.232] [−2.981]

Σ−1
t−1βM

i,t−1 0.001 0.000 0.001 0.001
[0.563] [0.255] [0.640] [0.320]

Quarter FE No Yes No Yes
Observations 408054 408054 408054 408054
R-squared 0.001 0.006 0.001 0.006

Note: This table studies the relation between the theoretical portfolio tilt and active mutual funds’ weight deviation from the market.
Variable wMF

i,t is the weight for stock i in the aggregate active mutual fund holdings in quarter t; and wM
i,t is the weight for stock i

in the equity market portfolio. wMF
i,t − wM

i,t represents the weight deviation of the aggregate active mutual fund portfolio from the

equity market portfolio. Independent variable Σ−1
t−1β

f low
i,t−1 represents the lagged theoretical portfolio tilt. We include stocks with zero

aggregate mutual fund weight conditional on these stocks have non-zero aggregate mutual fund weight in any of the quarters in
the previous 2 years. Σ−1

t−1β
f low
i,t−1, Σ−1

t−1βM
i,t−1, and wMF

i,t − wM
i,t are standardized to have means of 0 and standard deviations of 1. FE is

fixed effects. The analysis is performed at a quarterly frequency. Standard errors are double clustered at the stock and quarter levels.
We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Sample
period spans from 1991 to 2018.

strong support to Theorems 1 and 2 of our model.

Portfolio Tilts of Flow Betas and Firm Characteristics. Our findings shed light on some of the

puzzling patterns found by Lettau, Ludvigson and Manoel (2018), who show that active

mutual funds do not systematically tilt their portfolios toward profitable return factors, such

as small stocks or stocks with high book-to-market ratios (value stocks). These patterns

are also suggested for a broader set of institutional investors (e.g., Gompers and Metrick,

2001; Bennett, Sias and Starks, 2003; Lewellen, 2011). In a recent paper, Blume and Keim

(2017) allow for a more flexible nonlinear relation between log market cap and portfolio

weights to improve estimation and find that institutional investors overweigh large-cap

stocks, but have started to underweight mega-cap and overweigh small-cap stocks for the
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Table OA.13: Portfolio tilts of flow betas and book-to-market ratio.

Pane A: Aggregate mutual fund tilts

(1) (2) (3) (4) (5) (6)

wMF
i,t − wM

i,t

Predicted_β
f low
i,t−1 −0.284∗∗∗ −0.276∗∗∗ −0.278∗∗∗

[−11.321] [−8.553] [−8.370]

LnBEMEi,t−1 −0.149∗∗∗ −0.011 −0.148∗∗∗ −0.146∗∗∗ −0.010
[−14.300] [−0.728] [−14.288] [−13.986] [−0.630]

Liqbetai,t−1 −0.016∗∗∗ 0.014
[−2.905] [1.540]

AIMi,t−1 −0.033∗∗∗ −0.012∗∗

[−5.807] [−2.216]

Quarter FE Yes Yes Yes Yes Yes Yes
Observations 354891 354891 354891 354891 354891 354891
R-squared 0.051 0.022 0.051 0.023 0.023 0.051

Pane B: Individual mutual fund tilts

(1) (2) (3) (4) (5) (6)

wi, f ,t − wM
i,t

Predicted_β
f low
i,t−1 −0.210∗∗∗ −0.284∗∗∗ −0.285∗∗∗

[−14.648] [−11.032] [−10.281]

LnBEMEi,t−1 −0.063∗∗∗ 0.083∗∗∗ −0.060∗∗∗ −0.059∗∗∗ 0.085∗∗∗

[−7.027] [5.086] [−6.828] [−6.633] [5.064]

Liqbetai,t−1 −0.031∗∗∗ 0.013∗

[−5.871] [1.983]

AIMi,t−1 −0.041∗∗∗ −0.026∗∗∗

[−3.931] [−3.229]

Quarter FE Yes Yes Yes Yes Yes Yes
Observations 16036661 16036661 16036661 16036661 16036661 16036661
R-squared 0.038 0.019 0.041 0.020 0.021 0.042

Note: This table examines the portfolio tilts of flow betas and book-to-market ratio. The dependent variables in panel A are the
weight deviation of aggregate mutual funds from the market portfolio (wMF

i,t − wM
i,t ). The dependent variables in panel B are the

weight deviation of individual mutual funds from the market portfolio (wi, f ,t − wM
i,t ). All variables are standardized to have means

of 0 and standard deviations of 1. FE is fixed effects. The analysis is performed at a quarterly frequency. Sample period spans from
1992 to 2018. Standard errors are double-clustered at the stock and quarter levels. We include t-statistics in brackets. *, **, and ***
indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

last few decades. Put together, there is little evidence showing that portfolio overweighting

is monotonically decreasing in market cap or increasing in book-to-market ratio.

Our results help make sense of the absence of the value tilt in the funds’ portfolios.

As we show above, the book-to-market ratio and the beta on common fund flows are

positively correlated in the cross-section of stocks (see Table 6 in the main text). This

suggests that a simple tilt based solely on the book-to-market ratio would expose funds

to elevated flow risk. Yet, there is an incentive for the funds to favor value stocks with

lower flow betas. In Table OA.13, column (2), we replicate the finding that active mutual

funds underweight value stocks in their portfolios – both at the aggregate, and individual
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fund levels. Column (3) shows that this tilt becomes insignificant at the aggregate level and

significantly positive at the individual fund level when we add the common flow betas to

the regression. Thus, controlling for the flow betas, funds do tilt their portfolios toward

value stocks. We explicitly address one alternative interpretation of these results: because

high-flow-beta stocks are relatively illiquid (see Table 6 in the main text), the flow beta

may be capturing effects of stock illiquidity. Columns (4) and (5) of Table OA.13 show that

directly controlling for liquidity does not reverse the puzzling tilt toward growth stocks,

although funds do tend to underweigh less liquid stocks, as expected. When controlling for

illiquidity and liquidity risk, the effect of flow betas on portfolio weights remains virtually

unchanged, and the growth tilt reverses at the fund level.1

Table OA.15 shows that the cross-sectional correlation between the book-to-market ratio

and flow betas is not accidental, and has fundamental underpinnings. In this table, we

relate the “uncertainty betas” of stocks, measured by their time-series betas on changes

in the CBOE S&P 100 volatility index, to the book-to-market characteristics. Value stocks

tend to have higher exposure to aggregate uncertainty shocks, according to this definition.

Taking the relation between book-to-market and uncertainty as given, the logic of our

model then dictates that value stocks should, on average, have higher flow betas. The

above relation survives when controlling for stock illiquidity and liquidity risk. We should

note here that our controls for illiquidity capture stock properties that are outside of our

theoretical model, but are natural to consider in the context of portfolio choice. In future

work, it would be useful to extend our equilibrium model to incorporate heterogeneous

stock liquidity and endogenous firm characteristics.

Natural Disaster Shocks Measured Using Establishment-Level Data. In Table OA.16, we use

establishment-level data from Infogroup Historical Business Database to map firms to

1We further examine the relation between flow betas, stock liquidity, and portfolio tilts in Table OA.14.
When taken separately, funds tend to tilt away from high-beta stocks, and illiquid or high-liquidity-risk stocks.
When used jointly, the coefficients on flow betas remain virtually unchanged and remain highly significant,
while the relation between the portfolio tilt and market liquidity is largely subsumed by the common flow
beta.
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Table OA.14: Portfolio tilts of flow betas and stock liquidity.

Pane A: Portfolio tilts of flow betas and historical liquidity betas

(1) (2) (3) (4) (5) (6)

Aggregate tilt Fund-level tilt

wMF
i,t − wM

i,t wi, f ,t − wM
i,t

Predicted_β
f low
i,t−1 −0.286∗∗∗ −0.288∗∗∗ −0.213∗∗∗ −0.215∗∗∗

[−11.626] [−11.575] [−14.805] [−14.467]

Liqbetai,t−1 −0.019∗∗∗ 0.014 −0.034∗∗∗ 0.008
[−3.405] [1.556] [−6.127] [1.651]

Quarter FE Yes Yes Yes Yes Yes Yes
Observations 369899 369899 369899 17028364 17028364 17028364
R-squared 0.051 0.004 0.051 0.039 0.016 0.039

Pane B: Portfolio tilts of flow betas and Amihud illiquidity measure

(1) (2) (3) (4) (5) (6)

Aggregate tilt Fund-level tilt

wMF
i,t − wM

i,t wi, f ,t − wM
i,t

Predicted_β
f low
i,t−1 −0.286∗∗∗ −0.284∗∗∗ −0.213∗∗∗ −0.208∗∗∗

[−11.626] [−11.382] [−14.805] [−14.278]

AIMi,t−1 −0.049∗∗∗ −0.012∗∗ −0.046∗∗∗ −0.026∗∗∗

[−7.273] [−2.248] [−4.213] [−3.052]

Quarter FE Yes Yes Yes Yes Yes Yes
Observations 369899 369899 369899 17028364 17028364 17028364
R-squared 0.051 0.006 0.051 0.039 0.018 0.039

Note: Panel A examines the portfolio tilts of flow betas and historical liquidity betas. Panel B examines the portfolio tilts of flow
betas and the Amihud illiquidity measure (panel B). The dependent variables are the weight deviation of aggregate mutual funds
from the market portfolio (wMF

i,t − wM
i,t ) in columns (1) to (3) , and are the weight deviation of individual mutual funds from the

market portfolio (wi, f ,t − wM
i,t ) in columns (4) to (6). All variables are standardized to have means of 0 and standard deviations of 1.

FE is fixed effects. The analysis is performed at a quarterly frequency. Sample period spans from 1992 to 2018. Standard errors are
double-clustered at the stock and quarter levels. We include t-statistics in brackets. *, **, and *** indicate statistical significance at
the 10%, 5%, and 1% levels, respectively.

natural disaster losses. Infogroup Historical Business Database records and updates all

business locations in the US starting from 1997. Infogroup gathers geographic location-

related business and residential data from various public data sources, such as local yellow

pages, credit card billing data, etc. The data contain addresses, sales, and number of

employees at the establishment level. We merge Infogroup to Compustat-CRSP based on

tickers and the names of the parent firms.

We define a stock as being negatively affected by natural disasters if it is a nonfinancial

firm and at least one of its main establishments (i.e., the establishments with more than 5%

of firm-level sales) experiences property losses due to natural disasters. We find that active

mutual funds with heavy exposures to the stocks that are affected by natural disasters

experience outflows in the next few quarters (see panel A of Table OA.16). To hedge against
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Table OA.15: Relation between uncertainty betas and stock characteristics.
(1) (2) (3) (4)

βVXO
i,t

LnBEMEi,t−37 0.07∗∗ 0.06∗∗

[2.14] [1.98]

Liqbetai,t−37 −0.09∗∗∗ −0.10∗∗∗

[−3.93] [−3.89]

AIMi,t−37 0.12∗∗∗ 0.10∗∗∗

[4.76] [3.75]

Constant 0.03 0.05 0.02 0.07
[0.31] [0.64] [0.22] [0.93]

Average obs./month 2451 2327 2701 2235
Average R-squared 0.013 0.010 0.007 0.029

Note: This table shows the slope coefficients and test statistics in brackets from Fama-MacBeth regressions that regress uncertainty
betas on 3-year lagged stock characteristics. We measure uncertainty betas using βVXO

i,t , which is the betas to the monthly changes of
the CBOE S&P 100 volatility index. Liqbetai,t−37 is the historical liquidity betas estimated by regressing stock returns on the shocks
of aggregated liquidity. AIMi,t−37 is the Amihud illiquidity measure. All variables are standardized to have means of 0 and standard
deviations of 1. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Sample period spans from
1992 to 2018.

the increased outflow risk, these mutual funds tilt their holdings of the stocks that are

unaffected by natural disasters toward low-flow-beta stocks relative to other funds (see

panel B of Table OA.16). These findings are consistent with those in the main text in which

we measure natural disaster shocks using the headquarter-level data.

Response of the Benchmarked Returns of Active Mutual Funds to Natural Disasters. We examine

the responses of relative performance of active mutual funds to natural disasters. Specifi-

cally, we regress the returns of active mutual funds benchmarked by the market returns on

the fund-level exposure to natural disasters. As we show in Table OA.17, the benchmarked

performance of active mutual funds is more negative when they have higher exposure to

natural disasters.

Evidence Supporting the Exclusion Restriction Condition in the Natural Disaster Setting. In

Table 10 in the main text, we examine how mutual funds rebalance stocks unaffected by

natural disasters. We find that active funds tilt their holdings further away from stocks

with high flow betas. In this analysis, we focus on firms that are not affected by natural

disasters. However, one may still argue that the exclusion restriction could be violated

if the spillover effect through the supplier-customer linkage (e.g., Barrot and Sauvagnat,
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Table OA.16: Mutual funds’ rebalancing of unaffected stocks following natural disaster
shocks measured with establishment-level data.

Panel A: Abnormal fund flows around natural disaster shocks

(1) (2) (3) (4) (5) (6) (7) (8)

CRSP mutual funds alone CRSP-Morningstar intersection

Ab f low f ,t Ab f low f ,t+1 Ab f low f ,t+2 Ab f low f ,t+3 Ab f low f ,t Ab f low f ,t+1 Ab f low f ,t+2 Ab f low f ,t+3

ND f ,t −0.049∗∗∗ −0.039∗∗∗ −0.029∗∗∗ −0.021∗∗∗ −0.040∗∗∗ −0.031∗∗∗ −0.022∗∗∗ −0.012∗

[−7.381] [−5.913] [−4.573] [−3.197] [−5.625] [−4.215] [−3.111] [−1.688]

Observations 174984 170928 166856 162733 141530 137756 134611 131575
R-squared 0.002 0.002 0.001 0.001 0.002 0.001 0.001 0.001

Panel B: Rebalancing of stocks unaffected by natural disasters

(1) (2) (3) (4) (5) (6) (7) (8)

CRSP mutual funds alone CRSP-Morningstar intersection

∆(wi, f ,t − wM
i,t ) (×103) ∆(wi, f ,t − wM

i,t ) (×103)

β
f low
i,t−1 × ND f ,t −0.017∗ −0.020∗ −0.022∗∗ −0.025∗∗ −0.020∗∗ −0.021∗∗ −0.026∗∗ −0.026∗∗

[−1.842] [−1.899] [−1.982] [−2.211] [−2.201] [−2.152] [−2.194] [−2.164]

β
f low
i,t−1 0.036∗∗∗ 0.059∗∗∗ 0.067∗∗∗ 0.095∗∗∗ 0.019∗∗ 0.040∗∗∗ 0.053∗∗∗ 0.070∗∗∗

[3.991] [5.478] [5.949] [6.680] [2.110] [3.400] [4.488] [4.411]

βM
i,t−1 × ND f ,t 0.004 0.018∗ 0.013 0.023∗ 0.007 0.020∗ 0.016 0.025∗∗

[0.407] [1.662] [1.096] [1.926] [0.660] [1.773] [1.345] [2.045]

βM
i,t−1 0.004 −0.013∗ 0.043∗∗∗ 0.019 0.005 −0.015∗ 0.040∗∗∗ 0.016

[0.529] [−1.654] [3.314] [1.310] [0.604] [−1.819] [3.023] [1.107]

ND f ,t −0.082∗∗∗ −0.409∗∗∗ −0.182∗∗∗ −0.409∗∗∗ −0.084∗∗∗ −0.409∗∗∗ −0.184∗∗∗ −0.410∗∗∗

[−5.923] [−15.445] [−11.318] [−15.586] [−6.016] [−15.420] [−11.497] [−15.601]

Quarter FE No Yes No Yes No Yes No Yes
Stock FE No No Yes Yes No No Yes Yes
Fund FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6428819 6428819 6428513 6428513 6428819 6428819 6428513 6428513
R-squared 0.010 0.011 0.016 0.017 0.010 0.011 0.016 0.017

Note: This table shows how active mutual funds rebalance their holdings unaffected by natural disasters following natural disaster
shocks. The variables are explained in Tables 9 and 10 in the main text. Different from these two tables in which firms are mapped
to natural disaster losses based on headquarter-level information, we define a stock as being negatively affected by natural disasters
if it is a nonfinancial firm and at least one of its main establishments (i.e., the establishments with more than 5% of firm-level sales)
experiences property losses due to natural disasters. The establishment-level data are from Infogroup. FE is fixed effects. We include
t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Sample period spans
from 1994 to 2018.

2016) is prevalent. To address this potential concern, we further drop the suppliers and

customers of the affected firms from our analysis. As shown in Table OA.18, our findings

remain robust in this test.

Another potential concern is that mutual funds may tilt their portfolios following

natural disasters because of how they rebalance stocks with different liquidity – e.g., funds

experiencing outflows because of the disaster shocks may reduce their holdings of more

liquid stocks on impact. To mitigate this concern, we control for stock liquidity and its

interaction with flow betas in Table OA.19. Our results remain robust.
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Table OA.17: Response of the benchmarked returns of active mutual funds to natural
disasters.

(1) (2) (3) (4)

CRSP mutual funds alone CRSP-Morningstar intersection

Natural disaster data: Headquarter-level Establishment-level Headquarter-level Establishment-level

AbRet f ,t (%) AbRet f ,t (%)

ND f ,t −1.362∗∗ −1.748∗∗ −1.119∗∗ −0.924∗

[−2.256] [−2.028] [−1.968] [−1.795]

Fund FE Yes Yes Yes Yes
Observations 172238 172238 139692 139692
R-squared 0.046 0.046 0.029 0.029

Note: This table shows the response of the benchmarked returns of active mutual funds to natural disasters. AbRet f ,t is the active
mutual funds’ annualized returns benchmarked by the market returns. Independent variable ND f ,t is the portfolio weight of the
stocks affected by natural disasters in fund f , and it is standardized to have a mean of zero and a standard deviation of one. FE is
fixed effects. We cluster standard errors at both the fund level and at the quarter level. We include t-statistics in brackets. *, **, and
*** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Sample period spans from 1994 to 2018.

Next, we explore the possibility that natural disaster shocks and fund rebalancing may

be correlated because funds’ exposures to disasters are dependent on certain characteristics

of their portfolios, which may be correlated with future changes in the portfolios in the

direction related to stocks’ flow betas. In other words, although disasters themselves

are largely unpredictable, there may still be variation in the conditional mean of the ND

variable we construct, driven by the composition of the funds’ portfolios.

To address this possibility in our empirical tests, we control for a list of portfolio

characteristics (i.e., average size, average book-to-market ratio, average historical liquidity

betas, and average Amihud illiquidity measure of the stocks held by the fund) and their

interaction with flow betas in Table OA.20 – these are the characteristics we have shown

to be correlated with flow betas at the individual stock level (see Table 6 in the main

text). Clearly, this list of characteristics is not exhaustive, but this test helps us evaluate

how likely our results are to be driven by the covariance of the conditional expectations

of disaster shocks and portfolio changes, as we describe above. We find that our results

remain essentially unchanged, with flow betas predicting portfolio tilt in relation to natural

disaster shocks.

Active Mutual Funds Hedge at the Expense of Fund Performance. We show that active mutual

funds hedge at the expense of their fund performance. Specifically, in each quarter t, we
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Table OA.18: Exclusion of suppliers and customers of the firms affected by natural
disasters.

Panel A: Natural disaster shocks defined using headquarter-level information

(1) (2) (3) (4) (5) (6) (7) (8)

CRSP mutual funds alone CRSP-Morningstar intersection

∆(wi, f ,t − wM
i,t ) (×103) ∆(wi, f ,t − wM

i,t ) (×103)

β
f low
i,t−1 × ND f ,t −0.034∗∗∗ −0.039∗∗∗ −0.037∗∗∗ −0.042∗∗∗ −0.028∗∗∗ −0.033∗∗∗ −0.034∗∗∗ −0.037∗∗∗

[−3.618] [−3.995] [−3.569] [−3.879] [−2.739] [−3.059] [−3.105] [−3.284]

β
f low
i,t−1 0.028∗∗∗ 0.060∗∗∗ 0.047∗∗∗ 0.085∗∗∗ 0.014∗∗ 0.045∗∗∗ 0.035∗∗∗ 0.065∗∗∗

[4.173] [7.742] [5.427] [8.092] [2.034] [5.427] [3.913] [5.834]

βM
i,t−1 × ND f ,t 0.012 0.026∗∗ 0.016 0.027∗∗ 0.015 0.029∗∗∗ 0.020∗ 0.030∗∗

[1.118] [2.367] [1.402] [2.295] [1.368] [2.620] [1.693] [2.526]

βM
i,t−1 0.013∗∗ −0.008 0.060∗∗∗ 0.034∗∗∗ 0.014∗∗ −0.011∗ 0.059∗∗∗ 0.031∗∗∗

[2.037] [−1.360] [6.472] [3.409] [2.212] [−1.731] [6.228] [3.035]

ND f ,t −0.069∗∗∗ −0.252∗∗∗ −0.114∗∗∗ −0.255∗∗∗ −0.071∗∗∗ −0.254∗∗∗ −0.116∗∗∗ −0.257∗∗∗

[−6.909] [−13.122] [−10.289] [−13.054] [−7.091] [−13.198] [−10.465] [−13.142]

Quarter FE No Yes No Yes No Yes No Yes
Stock FE No No Yes Yes No No Yes Yes
Fund FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6222587 6222587 6222285 6222285 6222587 6222587 6222285 6222285
R-squared 0.009 0.010 0.014 0.015 0.009 0.010 0.014 0.015

Panel B: Natural disaster shocks defined using establishment-level information

(1) (2) (3) (4) (5) (6) (7) (8)

CRSP mutual funds alone CRSP-Morningstar intersection

∆(wi, f ,t − wM
i,t ) (×103) ∆(wi, f ,t − wM

i,t ) (×103)

β
f low
i,t−1 × ND f ,t −0.022∗∗ −0.027∗∗ −0.023∗ −0.026∗∗ −0.027∗∗ −0.030∗∗ −0.029∗∗ −0.032∗∗

[−1.969] [−2.293] [−1.902] [−2.084] [−2.233] [−2.432] [−2.310] [−2.430]

β
f low
i,t−1 0.019∗∗ 0.052∗∗∗ 0.036∗∗∗ 0.071∗∗∗ 0.004 0.038∗∗∗ 0.026∗∗ 0.056∗∗∗

[2.421] [5.567] [3.818] [5.944] [0.553] [3.786] [2.516] [4.209]

βM
i,t−1 × ND f ,t 0.004 0.018 0.011 0.022 0.007 0.021∗ 0.015 0.026∗

[0.299] [1.435] [0.772] [1.567] [0.575] [1.650] [1.067] [1.806]

βM
i,t−1 0.008 −0.013∗ 0.051∗∗∗ 0.027∗∗ 0.011 −0.014∗ 0.051∗∗∗ 0.025∗∗

[1.115] [−1.686] [4.477] [2.222] [1.506] [−1.849] [4.500] [2.075]

ND f ,t −0.084∗∗∗ −0.389∗∗∗ −0.183∗∗∗ −0.388∗∗∗ −0.086∗∗∗ −0.390∗∗∗ −0.185∗∗∗ −0.390∗∗∗

[−6.088] [−12.150] [−10.849] [−11.994] [−6.227] [−12.152] [−10.951] [−12.022]

Quarter FE No Yes No Yes No Yes No Yes
Stock FE No No Yes Yes No No Yes Yes
Fund FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 4638090 4638090 4637812 4637812 4638090 4638090 4637812 4637812
R-squared 0.010 0.011 0.017 0.018 0.010 0.011 0.017 0.018

Note: This table shows how active mutual funds rebalance their holdings unaffected by natural disasters after natural disaster
shocks. We exclude from the sample (i.e., unaffected firms) the suppliers and customers of the firms affected by natural disasters.
The variables are explained in Tables 9 and 10 in the main text. In panel A, we map firms to natural disaster shocks based on
headquarter-level information as done in Table 10. In panel B, we map firms to natural disaster shocks based on establishment-level
information as done in panel B of Table OA.16. FE is fixed effects. We include t-statistics in brackets. *, **, and *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively. Sample period spans from 1994 to 2018.

consider a counterfactual world in which active mutual funds keep relative portfolio weights

the same as those in quarter t− 1. In the first row of Table OA.21, we focus on the holdings

of the stocks unaffected by natural disasters. We find that, relative to the counterfactual
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Table OA.19: Control for stock liquidity and its interaction with flow betas.

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A. CRSP mutual funds alone Panel B. CRSP-Morningstar intersection

∆(wi, f ,t − wM
i,t ) (×103) ∆(wi, f ,t − wM

i,t ) (×103)

β
f low
i,t−1 × ND f ,t −0.031∗∗∗ −0.032∗∗∗ −0.035∗∗∗ −0.039∗∗∗ −0.025∗∗ −0.025∗∗ −0.031∗∗∗ −0.033∗∗∗

[−3.390] [−3.328] [−3.605] [−3.734] [−2.575] [−2.411] [−3.006] [−2.908]

β
f low
i,t−1 0.040∗∗∗ 0.063∗∗∗ 0.061∗∗∗ 0.091∗∗∗ 0.026∗∗∗ 0.046∗∗∗ 0.048∗∗∗ 0.069∗∗∗

[5.692] [7.711] [6.783] [8.392] [3.836] [5.363] [5.452] [5.980]

βM
i,t−1 × ND f ,t 0.021∗∗ 0.032∗∗∗ 0.026∗∗ 0.036∗∗∗ 0.024∗∗ 0.035∗∗∗ 0.029∗∗∗ 0.039∗∗∗

[2.202] [3.297] [2.479] [3.383] [2.350] [3.310] [2.650] [3.404]

βM
i,t−1 0.006 −0.010∗ 0.053∗∗∗ 0.026∗∗ 0.005 −0.014∗∗ 0.051∗∗∗ 0.023∗∗

[1.012] [−1.754] [5.398] [2.427] [0.803] [−2.242] [5.112] [2.116]

AIMi,t−1 × ND f ,t −0.003 0.008 0.003 0.009 −0.003 0.008 0.003 0.009
[−0.471] [1.048] [0.358] [1.212] [−0.414] [1.072] [0.426] [1.248]

AIMi,t−1 −0.047∗∗∗ 0.010 −0.020∗∗∗ 0.005 −0.047∗∗∗ 0.010 −0.020∗∗∗ 0.005
[−8.907] [1.548] [−3.502] [0.812] [−8.870] [1.535] [−3.492] [0.828]

ND f ,t −0.058∗∗∗ −0.259∗∗∗ −0.094∗∗∗ −0.258∗∗∗ −0.060∗∗∗ −0.260∗∗∗ −0.096∗∗∗ −0.260∗∗∗

[−5.794] [−15.156] [−8.509] [−15.473] [−5.983] [−15.215] [−8.748] [−15.569]

Quarter FE No Yes No Yes No Yes No Yes
Stock FE No No Yes Yes No No Yes Yes
Fund FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 9477152 9477152 9476833 9476833 9477152 9477152 9476833 9476833
R-squared 0.007 0.007 0.011 0.012 0.007 0.007 0.011 0.011

Note: This table shows how active mutual funds rebalance their holdings unaffected by natural disasters after natural disaster
shocks. We control for stock liquidity and its interaction with flow betas. We measured stock liquidity using the Amihud illiquidity
measure (AIMi,t−1), which is standardized to have a mean of 0 and standard deviation of 1. Other variables are explained in Table
10 in the main text. FE is fixed effects. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%,
and 1% levels, respectively. Sample period spans from 1994 to 2018.

world, mutual funds, on average, lose 63 basis points (p<0.001) in annualized returns by

changing the relative weights of the stocks that are unaffected by natural disasters. In the

second row of Table OA.21, we consider the fund quarters with higher-than-median-level

exposure to natural disasters. We find that the loss in the annualized fund returns increases

to 99 basis points (p < 0.001). In the third row of Table OA.21, we consider the fund

quarters with lower-than-median-level exposure to natural disasters. We find that the loss

in the annualized fund returns decreases to five basis points and becomes insignificant

(p = 0.586). In the last row of Table OA.21, we compute the changes of fund returns based

on their holdings of all stocks relative to the fund returns in the counterfactual world. We

find that the annualized fund returns is 49 basis points (p < 0.001) higher than those in the

counterfactual world.
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Table OA.20: Control for fund portfolio characteristics and their interaction with flow
betas.

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A. CRSP mutual funds alone Panel B. CRSP-Morningstar intersection

∆(wi, f ,t − wM
i,t ) (×103) ∆(wi, f ,t − wM

i,t ) (×103)

β
f low
i,t−1 × ND f ,t −0.027∗∗∗ −0.027∗∗∗ −0.032∗∗∗ −0.035∗∗∗ −0.024∗∗ −0.023∗∗ −0.030∗∗∗ −0.030∗∗∗

[−3.076] [−2.893] [−3.408] [−3.415] [−2.570] [−2.215] [−2.965] [−2.736]

β
f low
i,t−1 × lnsize f ,t−1 −0.007 −0.007 0.001 0.002 0.000 −0.006 0.005 0.000

[−0.675] [−0.675] [0.136] [0.150] [0.031] [−0.608] [0.500] [0.014]

β
f low
i,t−1 × lnBEME f ,t−1 −0.039∗∗∗ −0.036∗∗∗ −0.044∗∗∗ −0.044∗∗∗ −0.019∗ −0.018 −0.022∗ −0.023∗∗

[−3.562] [−3.287] [−3.700] [−3.843] [−1.771] [−1.620] [−1.929] [−2.029]

β
f low
i,t−1 × liqbeta f ,t−1 −0.026∗∗∗ −0.015∗ −0.023∗∗∗ −0.013 −0.013∗ −0.002 −0.010 0.001

[−3.382] [−1.861] [−2.663] [−1.426] [−1.771] [−0.299] [−1.205] [0.142]

β
f low
i,t−1 × AIM f ,t−1 0.019∗∗∗ 0.015∗∗ 0.020∗∗∗ 0.018∗∗∗ 0.013∗∗ 0.012∗ 0.014∗∗∗ 0.014∗∗

[3.072] [2.335] [3.469] [3.010] [2.147] [1.833] [2.579] [2.528]

β
f low
i,t−1 0.045∗∗∗ 0.062∗∗∗ 0.068∗∗∗ 0.093∗∗∗ 0.031∗∗∗ 0.047∗∗∗ 0.053∗∗∗ 0.071∗∗∗

[5.967] [7.395] [7.161] [8.363] [3.933] [5.127] [5.410] [5.933]

βM
i,t−1 × ND f ,t 0.018∗ 0.030∗∗∗ 0.024∗∗ 0.035∗∗∗ 0.024∗∗ 0.035∗∗∗ 0.030∗∗∗ 0.040∗∗∗

[1.943] [3.073] [2.339] [3.235] [2.360] [3.288] [2.674] [3.413]

βM
i,t−1 0.009 −0.008 0.053∗∗∗ 0.026∗∗ 0.004 −0.015∗∗ 0.048∗∗∗ 0.020∗

[1.434] [−1.335] [5.314] [2.435] [0.694] [−2.357] [4.822] [1.837]

ND f ,t −0.070∗∗∗ −0.259∗∗∗ −0.101∗∗∗ −0.258∗∗∗ −0.068∗∗∗ −0.260∗∗∗ −0.101∗∗∗ −0.261∗∗∗

[−6.752] [−14.844] [−9.092] [−15.147] [−6.641] [−14.898] [−9.120] [−15.247]

Lnsize f ,t−1 0.044∗∗∗ 0.081∗ 0.038∗∗∗ 0.092∗∗ 0.042∗∗∗ 0.086∗ 0.036∗∗ 0.094∗∗

[3.197] [1.844] [2.703] [2.055] [3.016] [1.936] [2.501] [2.117]

LnBEME f ,t−1 0.050∗∗ −0.056 0.029 −0.056∗ 0.049∗∗ −0.060∗ 0.026 −0.061∗

[2.514] [−1.643] [1.436] [−1.651] [2.474] [−1.768] [1.319] [−1.783]

Liqbeta f ,t−1 −0.023∗∗ −0.004 −0.020∗ −0.008 −0.019∗∗ −0.003 −0.015 −0.006
[−2.324] [−0.193] [−1.934] [−0.402] [−1.981] [−0.133] [−1.516] [−0.320]

AIM f ,t−1 −0.046∗∗∗ 0.007 −0.025∗∗∗ 0.001 −0.046∗∗∗ 0.008 −0.024∗∗∗ 0.002
[−6.104] [0.870] [−3.067] [0.139] [−6.001] [0.929] [−2.979] [0.234]

Quarter FE No Yes No Yes No Yes No Yes
Stock FE No No Yes Yes No No Yes Yes
Fund FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 9477152 9477152 9476833 9476833 9477152 9477152 9476833 9476833
R-squared 0.007 0.008 0.011 0.012 0.007 0.007 0.011 0.012

Note: This table shows how active mutual funds rebalance their holdings unaffected by natural disasters after the natural disaster
shocks. We control for lagged fund portfolio characteristics and its interaction with flow betas. The fund portfolio characteristics
are computed based on value-weighted average of the characteristics of the stocks held by the mutual funds. These fund portfolio
characteristics include fund-level average stock size (lnsize f ,t−1), average stock book-to-market ratio (lnBEME f ,t−1), average stock
historical liquidity betas (liqbeta f ,t−1), and average Amihud illiquidity measure (AIM f ,t−1). All these fund portfolio characteristics
are standardized to have means of 0 and standard deviations of 1. Other variables are explained in Table 10 in the main text. FE
is fixed effects. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels,
respectively. Sample period spans from 1994 to 2018.

Changes of Portfolio Weights Around the Unexpected Announcement of the Possible US-China

Trade War. We examine the changes of portfolio weights of China-related stocks and

China-unrelated stocks in active mutual funds around the unexpected announcement of the

possible US-China trade war. The summary statistics for the changes in portfolio weight

are tabulated in Table OA.22. We find that active mutual funds do not significantly reduce
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Table OA.21: Active mutual funds hedge at the expense of fund performance.
Mean (%) Standard

error (%)
t-stat # of funds

Unaffected stocks −0.63∗∗∗ 0.09 −6.99 5274
Unaffected stocks, fund quarters with high natural disaster exposure −0.99∗∗∗ 0.12 −8.48 5003
Unaffected stocks, fund quarters with low natural disaster exposure −0.05 0.09 −0.54 5157
All stocks 0.49∗∗∗ 0.07 6.83 5408

Note: This table shows that active mutual funds hedge at the expense of their fund performance by examining the changes of
annualized fund performance relative to the counterfactual world. In the first row, we focus on the holdings of the stocks unaffected
by natural disasters. We consider a counterfactual world in which active mutual funds keep the relative portfolio weights across the
stocks unaffected by natural disasters the same as those in quarter t− 1. We denote the set of stocks unaffected by natural disasters
as Ut. We denote the portfolio weights for stock i in fund f in quarter t within the unaffected stocks as wU

i, f ,t, which is computed

as
wi, f ,t

∑i∈Ut wi, f ,t
. The portfolio weights for stock i in fund f in quarter t in the counterfactual portfolio weights is assumed to be the

same as the weights in quarter t− 1, which is denoted by wU
i, f ,t−1 and is computed as

wi, f ,t−1
∑i∈Ut wi, f ,t−1

. The changes of fund returns for

fund f in quarter t + 1 based on their holdings of the unaffected stocks relative to the fund returns in the counterfactual world are
estimated as: ∆retU

f ,t+1 = ∑i∈Ut wU
i, f ,treti,t+1 −∑i∈Ut wU

i, f ,t−1reti,t+1, where reti,t+1 is the returns for stock i in quarter t + 1. We average

∆retU
f ,t+1 at the fund level across all quarters in our sample and then present the summary statistics for the fund-level changes in

fund returns (∆retU
f ) in the first row. The analysis in the second row and third row is the same as that in the first row, except that we

limit the sample to the fund quarters that have higher and lower than the median level of natural disaster exposures, respectively.
In the last row, we consider a counterfactual world in which active mutual funds keep the portfolio weights for all stocks the same
as those in quarter t− 1. The changes of fund returns for fund f in quarter t + 1 relative to the fund returns in the counterfactual
world are estimated as: ∆ret f ,t+1 = ∑i wi, f ,treti,t+1 − ∑i wi, f ,t−1reti,t+1. We average ∆ret f ,t+1 at the fund level across all quarters in
our sample and then present the summary statistics for the fund-level changes in fund returns (∆ret f ) in the last row. *, **, and ***
indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Sample period spans from 1994 to 2018.

Table OA.22: Active mutual funds maintaining their positions in China-related stocks.
Mean (%) Standard error (%) t-stat N

∆wi, f of China-unrelated stocks 0.009 0.009 0.987 149671
∆wi, f of China-related stocks −0.006 0.007 −0.927 220627

Note: This table shows the changes in portfolio weights around the unexpected announcement of the possible US-China trade war.
∆wi, f is the weight changes of stock i of fund f from December 2017 to December 2018. China-related stocks are firms that have
either positive revenue or positive import from China in 2016. Firms’ revenue from China comes from Factset Revere data. Firms’
import from China comes from the bills of lading data from US Customs and Border Protection.

their holdings of China-related stocks after the unexpected announcement.

Evidence Supporting the Exclusion Restriction Condition in the Trade War Setting. We focus

on firms that are China-unrelated in the analysis of the trade war setting. However, one

may still argue that the exclusion restriction could be violated if the China-unrelated firms

are affected by the spillover effect through the supplier-customer linkage. To address this

potential concern, we further drop the suppliers and customers of the China-related firms

from our analysis. As shown in Table OA.23, our findings remain robust in this test.

2014 OPEC Announcement. On November 28, 2014, OPEC announced the outcome of its

166th meeting. The organization unexpectedly decided that member countries would not
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Table OA.23: Exclusion of suppliers and customers of China-related firms.
Panel A: Changes in portfolio weights after the unexpected trade war announcement

(1) (2) (3) (4) (5) (6) (7) (8)

China-related measure: Export and import Offshore activities

CRSP alone CRSP-Morningstar CRSP alone CRSP-Morningstar

∆(wi, f − wM
i ) (%) ∆(wi, f − wM

i ) (%) ∆(wi, f − wM
i ) (%) ∆(wi, f − wM

i ) (%)

β
f low
i,Dec2016 −0.035∗∗∗ −0.041∗∗ −0.035∗∗∗ −0.045∗∗ −0.041∗∗∗ −0.033∗∗ −0.039∗∗ −0.037∗∗∗

[−2.723] [−2.007] [−3.079] [−2.222] [−2.732] [−2.553] [−2.547] [−2.974]

βM
i,Dec2016 −0.056∗∗ −0.082∗∗∗ −0.059∗∗ −0.083∗∗∗ −0.055∗∗∗ −0.047∗∗∗ −0.059∗∗∗ −0.048∗∗∗

[−2.339] [−4.235] [−2.524] [−4.366] [−3.372] [−2.655] [−3.899] [−2.799]

SIC-4 industry FE No Yes No Yes No Yes No Yes
Fund FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 98440 97979 98440 97979 137520 136761 137520 136761
R-squared 0.035 0.039 0.035 0.039 0.025 0.029 0.025 0.029

Panel B: Changes in portfolio weights assuming no price changes

(1) (2) (3) (4) (5) (6) (7) (8)

China-related measure: Export and import Offshore activities

CRSP alone CRSP-Morningstar CRSP alone CRSP-Morningstar

∆(w̃i, f − w̃M
i ) (%) ∆(w̃i, f − w̃M

i ) (%) ∆(w̃i, f − w̃M
i ) (%) ∆(w̃i, f − w̃M

i ) (%)

β
f low
i,Dec2016 −0.034∗∗ −0.048∗∗ −0.034∗∗∗ −0.059∗∗∗ −0.030∗∗ −0.019∗ −0.034∗∗ −0.028∗∗

[−2.446] [−2.266] [−2.883] [−2.736] [−1.974] [−1.846] [−2.101] [−2.093]

βM
i,Dec2016 −0.002 −0.046∗∗ −0.005 −0.047∗∗ −0.009 −0.033∗ −0.012 −0.034∗

[−0.095] [−2.404] [−0.203] [−2.492] [−0.548] [−1.851] [−0.807] [−1.917]

SIC-4 industry FE No Yes No Yes No Yes No Yes
Fund FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 101462 101001 101462 101001 141502 140743 141502 140743
R-squared 0.049 0.052 0.049 0.052 0.041 0.044 0.041 0.044

Note: This table shows how active mutual funds rebalance their China-unrelated portfolios after the unexpected announcement
of the possible US-China trade war. We exclude from the sample (i.e., China-unrelated firms) the suppliers and customers of the
China-related firms. The variables are explained in Table 12 in the main text. FE is fixed effects. We include t-statistics in brackets.
*, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

cut their oil supply despite the increased supply from non-OPEC sources and falling oil

prices. On the announcement day, oil prices dropped by more than 10%. After the OPEC

announcement, oil price volatility increased significantly and maintained at a high level

for the next year (see panel A of Figure OA.6). Facing a much more volatile oil price,

the returns of oil-related stocks become more sensitive to the uncertainty of oil prices.

As shown by panel B of Figure OA.6 and panel A of Table OA.24, the sensitivity of the

stock returns to uncertainty of the oil-related stocks increases significantly relative to the

oil-unrelated stocks following the 2014 OPEC announcement. We use two methods to

construct the oil-related dummy. In the first method, oil-related firms are defined as firms

that produce oil or firms in industries that heavily rely on oil products as inputs (5% or

OA.41



Year
2014 2014.5 2015 2015.5 2016

C
B
O
E
cr
u
d
e
oi
l
vo
la
ti
li
ty

in
d
ex

0

20

40

60

OPEC
meeting

Panel A: CBOE crude oil volatility index
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Panel B: −1 × oil price uncertainty betas
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Panel C: Common flow betas

Note: Panel A plots the CBOE crude oil ETF volatility index (OVX) around the 2014 OPEC announcement (i.e., November 2014). Panel
B plots the oil price uncertainty betas (i.e., betas to the OVX index) around the 2014 OPEC announcement for oil-related stocks relative
to oil-unrelated stocks. Because stock prices tend to react negatively to increases in economic uncertainty, we multiply the oil price
uncertainty betas with −1 so that higher values in the y-axis of panel B represent higher sensitivity of stock returns to uncertainty.
Oil-related firms are firms that produce oil or firms in industries that heavily rely on oil products as inputs (5% or more) according to
the 2012 NIPA input-output table. Panel C plots the common flow betas around the 2014 OPEC announcement for oil-related stocks
relative to oil-unrelated stocks. Oil price uncertainty betas and common flow betas are standardized to have means of 0 and standard
deviations of 1.

Figure OA.6: Uncertainty betas and flow betas around the 2014 OPEC announcement.

larger) according to the 2012 National Income and Product Accounts (NIPA) input-output

table. In the second method, oil-related firms are defined as firms in industries that have

positive oil risk premium according to the estimates of Chiang, Hughen and Sagi (2015).

More importantly, we find that the common flow betas of the oil-related stocks also

increase significantly (see panel C of Figure OA.6 and panel B of Table OA.24). Therefore,

similar to the US-China trade war setting, the 2014 OPEC announcement allows us to

examine whether active mutual funds adjust their holdings to hedge against the increased

common flow risk. Table OA.25 examines how active mutual funds rebalance their hold-

ings in response to the increased common flow risk after the 2014 OPEC announcement.

Consistent with the prediction of our model, we find that active mutual funds tilt their

holdings of oil-unrelated stocks further toward low-flow-beta stocks.
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Table OA.24: Changes in uncertainty betas and flow betas following the 2014 OPEC
announcement.

Panel A: Changes in oil price uncertainty betas

(1) (2) (3) (4)

Oil-related measure: Input-output tables Oil risk premium

−1× β
uncertainty
i,t −1× β

uncertainty
i,t

Oil_relatedi × 1{t>November_2014} 0.188∗∗∗ 0.188∗∗∗ 0.248∗∗∗ 0.249∗∗∗

[7.131] [7.135] [9.102] [9.105]

Oil_relatedi 0.020 0.020 0.055∗∗ 0.054∗∗

[0.735] [0.732] [2.079] [2.071]

1{t>November_2014} −0.005 −0.008
[−0.518] [−0.666]

Month FE No Yes No Yes
Observations 134952 134952 135576 135576
R-squared 0.008 0.009 0.015 0.016

Panel B: Changes in common flow betas

(1) (2) (3) (4) (5) (6) (7) (8)

Oil-related measure: Input-output tables Oil risk premium

CRSP CRSP-Morningstar CRSP CRSP-Morningstar

β
f low
i,t β

f low
i,t β

f low
i,t β

f low
i,t

Oil_relatedi × 1{t>November_2014} 0.182∗∗∗ 0.182∗∗∗ 0.121∗∗∗ 0.122∗∗∗ 0.273∗∗∗ 0.274∗∗∗ 0.212∗∗∗ 0.212∗∗∗

[6.825] [6.846] [5.595] [5.606] [8.393] [8.453] [8.091] [8.115]

Oil_relatedi −0.138∗∗∗ −0.138∗∗∗ −0.071∗∗ −0.071∗∗ −0.339∗∗∗ −0.340∗∗∗ −0.268∗∗∗ −0.268∗∗∗

[−4.384] [−4.389] [−2.247] [−2.250] [−10.040] [−10.052] [−7.756] [−7.764]

1{t>November_2014} 0.271∗∗∗ 0.121∗∗∗ 0.259∗∗∗ 0.105∗∗∗

[7.845] [5.605] [7.491] [4.720]

Month FE No Yes No Yes No Yes No Yes
Observations 134952 134952 134952 134952 135573 135573 135573 135573
R-squared 0.028 0.035 0.007 0.009 0.035 0.043 0.012 0.014

Note: This table shows the changes in stocks’ oil price uncertainty betas (βuncertainty
i,t , panel A) and common flow betas (β f low

i,t , panel
B) following the 2014 OPEC announcement. Sample period spans from November 2013 to October 2015. Oil_relatedi is a dummy
variable that equals one for oil-related industries. 1{t>November_2014} is a dummy variable that equals 1 for the time period after the

OPEC announcement in November 2014. Both β
uncertainty
i,t and β

f low
i,t are standardized to have means of 0 and standard deviations of

1. Because stock prices tend to react negatively to increases of economic uncertainty, we multiply β
uncertainty
i,t with −1 so that higher

values of the outcome variable in panel A represent higher sensitivity of stock returns to uncertainty. FE is fixed effects. The analysis
is performed at a monthly frequency. Standard errors are double-clustered at the stock and month levels. Results remain robust if
standard errors are clustered at the stock level. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% levels, respectively.
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Table OA.25: Mutual funds’ rebalancing of oil-unrelated stocks after the 2014 OPEC
announcement.

(1) (2) (3) (4)
Oil-related measure: Input-output tables Oil risk premium

CRSP alone CRSP-Morningstar CRSP alone CRSP-Morningstar

∆(wi, f − wM
i ) (%) ∆(wi, f − wM

i ) (%) ∆(wi, f − wM
i ) (%) ∆(wi, f − wM

i ) (%)

β
f low
i,Dec2013 −0.030∗∗∗ −0.033∗∗∗ −0.017∗∗∗ −0.020∗∗∗

[−5.605] [−6.571] [−3.416] [−4.144]

βM
i,Dec2013 −0.072∗∗∗ −0.071∗∗∗ −0.053∗∗∗ −0.052∗∗∗

[−11.467] [−11.437] [−8.966] [−9.134]

Fund FE Yes Yes Yes Yes
Observations 154430 154430 166667 166667
R-squared 0.035 0.035 0.032 0.032

Note: This table shows how active mutual funds rebalance their oil-unrelated holdings after the 2014 OPEC announcement. The
dependent variable is the changes of stock weights in mutual funds around the announcement in excess of the changes in stock
weights in the market portfolio. ∆(wi, f − wM

i ) = (wi, f ,Sep2015 − wM
i,Sep2015)− (wi, f ,Sep2014 − wM

i,Sep2014). Variable wi, f ,Sep2014 represents
the weight of stock i in fund f in September 2014 (i.e., the quarter end prior to the OPEC announcement). Variable wi, f ,Sep2015

represents the weight of stock i in fund f in September 2015. Variable wM
i,Sep2014 and wM

i,Sep2015 represent the weight of stock i in the

market portfolio in September 2014 and September 2015, respectively. β
f low
i,Dec2013 is the standardized common flow beta for stock i in

December 2013 with a mean of 0 and a standard deviation of 1. We intentionally choose to use the common flow betas in 2013 so
that the cross-sectional variation in the common flow betas is not related to the oil shock. βM

i,Dec2013 is the standardized market beta
for stock i in December 2013 with a mean of 0 and a standard deviation of 1. FE is fixed effects. Standard errors are clustered at the
fund level. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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