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Abstract

We propose a new measure of private information in decentralised markets – con-
nections – which exploits the time-variation in the number of dealers with whom a
client trades in a time period. Using trade-level data for the UK government bond
market, we show that clients perform better when having more connections as their
trades predict future price movements. Time-variation in market-wide connections
also helps explain yield dynamics. Given our novel measure, we present two applic-
ations suggesting that (i) dealers pass on information, acquired from their informed
clients, to their affiliates, and (ii) informed clients better predict the orderflow in-
termediated by their dealers.
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1 Introduction

A main role of financial markets is to aggregate private information held by economic
agents. Trading activity and subsequent adjustments in asset prices release this informa-
tion to the wider public, thereby making markets more efficient and increasing the welfare
of society. The main challenge facing any scientific study of this mechanism is that neither
private information nor the identities of its owners are readily observable.

Our paper proposes a proxy for private information. We combine a detailed dataset
of the UK government bond market, covering the identities and transactions of trading
parties, with insights from the microstructure literature. The idea is that, just like in
centralised markets where informed traders may split their trades over time to slow down
information revelation and avoid market-impact (Kyle, 1985), informed traders in decent-
ralised markets may submit orders to different dealers at the same time, thereby splitting
their trades in the cross-section. This implies that one should observe a trader obtaining
private information to trade with more dealers than usual. Accordingly, our proposed
proxy for private information in decentralised markets is the time-variation in the number
of dealers that clients trade with, which we will refer to as clients’ connections.1

Our empirical analysis yields two sets of results. First, we confirm that connections
serve as a proxy for private information by showing that (i) clients make more profitable
trades when having more connections and (ii) time-variation of total client connections
in the market helps explain daily innovations in yields. Second, we present two of the
many possible applications of our proxy: (i) we find suggestive evidence that dealers learn
from their informed clients and pass this information to their affiliates, and (ii) we also
show that while the private information proxied by connections includes fundamental
information around key macro-events, it also contains information on future orderflows.
In particular, more connected clients better predict the orderflow intermediated by the
dealers they trade with.

We start with the idea that trading with more dealers may be advantageous because
it helps the client hide her private information. This, however, requires the client to reach
out for quotes from dealers she does not regularly trade with, which is costly. Therefore,
the client will do so only when the benefit of hiding information is sufficiently large, that

1Our study focuses on the UK government bond market, because (i) being one of the most liquid
decentralised markets, it provides a particularly hard test to measure private information, (ii) our dataset
provides a detailed, almost universal coverage of all transactions on this market, and (iii) the government
bond market plays a crucial role in the economy as the yield curve serves as a benchmark in many financial
transactions, it affects government financing costs and plays an important role for the implementation
of monetary policy.
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is, when her information is sufficiently precise. In subsequent periods the client should
overperform.2 We expect that when a client is connected to more dealers, her trades are
more profitable even after controlling for the volume and the number of her transactions
in the given period. This effect should not be driven by favourable transaction prices, but
by forecasting future price movements. That is, the price of bonds that connected clients
buy (sell) should increase (decrease) in subsequent days. We also expect our baseline
result to be driven by more sophisticated clients (e.g. hedge funds and asset managers)
who are more likely to trade for speculative reasons rather than less sophisticated clients
(e.g. pension funds, foreign central banks etc.). We find empirical evidence for each of
these predictions. Including client fixed effects, we identify these results primarily from
the within-variation of a given client’s activity.

We also consider aggregate implications for yield dynamics. We construct a market-
wide measure of private information – the total number of client-dealer connections in the
system in a time period. We then measure the response of yields to changes in aggregate
connections, and find a significant effect even after controlling for trading volume and the
total number of clients in the market.

Given our proxy for private information, we offer two of the many possible applica-
tions. As a first application, we provide suggestive evidence that dealers pass on informa-
tion, acquired from their informed clients, to their affiliates. To show this, we use a novel
source of variation in our data: for each dealer, we are able to distinguish between trading
accounts that perform a market-making function from trading accounts that correspond
to other, client-like arms of the given dealer bank, i.e. the given dealer’s affiliates. We
then test whether dealers’ affiliates perform better when the given dealer trades with a
larger proportion of high-connection clients. We find that this is indeed the case, sug-
gesting that these affiliates obtain the information that their dealers learn from informed
clients.

As a second application, we study the nature of private information on Treasury
markets. Our main focus is to assess whether the private information captured by the
time-variation in clients’ connectedness is on fundamentals, or on future orderflow. We
find some evidence on both. To illustrate the viability that clients trade with more deal-
ers when obtaining private information on key macroeconomic events, we first analyse
trading around the Brexit referendum. Given the large uncertainty before the vote, mar-
ket participants were motivated to either reduce their exposure radically, or to generate

2To demonstrate that our narrative can work in a standard rational framework, we extend the Glosten
and Milgrom (1985) model in the Online Appendix 2.
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private information and bet on the outcome. In line with our hypothesis, we show that a
change in their number of dealer connections helps identify the client group with private
information. In particular, the group of clients who were connected with more dealers on
the day before the referendum persistently increased the duration of their positions for
days before the referendum and, subsequently, outperformed other clients when the yield
curve dropped immediately as the outcome of the poll became public. We also show evid-
ence that our main findings are more pronounced around macroeconomic announcements.
This reinforces that fundamental information plays some role in our mechanism.

At the same time we find strong evidence that more connected clients can better pre-
dict the maturity structure of other clients’ orderflow, especially the part of the orderflow
received by their own dealers in subsequent days. For instance, when a more connected
client’s orders are concentrated on the short-end of the yield curve in a given day, her
dealer is more likely to receive a disproportionate share of orders for short bonds in the
following five days. We also show that trading in line with the maturity structure of
clients’ future orders can be profitable because of the resulting pressure on prices.

Related Literature Our paper is the first to suggest clients’ connections as a measure
of private information in decentralized markets. Our study is related to several streams
of the literature.

There is a vast literature on measuring private information in financial markets. A
large group of these papers focus on security-based measures (e.g. Easley, Kiefer, O’Hara,
and Paperman, 1996; Chakravarty, Gulen, and Mayhew, 2004; Duarte and Young, 2009;
Roll, Schwartz, and Subrahmanyam, 2010; Johnson and So, 2018). These papers identify
securities for which a large share of transactions are likely to be motivated by private
information in a given period, typically using the aggregate volume characteristics of
those securities, and study the implied return patterns. Instead, our measure allows to
study informed transactions of any given client. As our applications show, this feature
changes the range of relevant questions we can address with our approach.

A more related group of papers identify informed transactions focusing on the activity
of a specific group of clients such as large shareholder activists or corporate insiders
(Cohen, Malloy, and Pomorski, 2012; Collin-Dufresne and Fos, 2015) often during specific
episodes (Boulatov, Hendershott, and Livdan, 2013; Hendershott, Livdan, and Schurhoff,
2015). By design, these studies are mostly focusing on the cross-sectional heterogeneity
in information, building on ex-ante assumptions of which clients should be more informed
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and in which periods private information should be concentrated.3 Instead, we use time-
series heterogeneity to identify client specific periods of informed trading. That is, our
measure can systematically identify periods of informed trading for any given client, even
if these periods are uncorrelated across clients.

Our first application studies potential information leakages across clients, their deal-
ers, and the affiliates of these dealers.4 While there are many empirical works studying
the trading process in decentralised markets (e.g. Gabrieli and Georg, 2014; Hollifield,
Neklyudov, and Spatt, 2017; Brancaccio, Li, and Schurhoff, 2017) most of these do not
focus on the role of private information.5 Instead, the most related work to this ap-
plication is Maggio, Franzoni, Kermani, and Sommavilla (2019). Just as we do in this
application, they use the network of transactions across market participants to study the
flow of private information among them. Apart from the context – they focus on brokers
and their clients in stock markets – their proxy of informed trades and the suggested
mechanism are also different from our approach. They identify a client’s informed trans-
actions as those which are executed by a more connected broker. The argument is that
central brokers gather information by executing informed trades, which is then leaked to
their best clients through these transactions. Instead, we identify informed transactions
as those which are executed when the client is more connected. Our argument is that
the client chooses to be more connected when her information is more precise in order to
hide it.

Our second application is related to the literature on price discovery in government
bond markets (Fleming and Remolona, 1999; Balduzzi, Elton, and Green, 2001; Green,
2004; Brandt and Kavajecz, 2004; Pasquariello and Vega, 2007; Hortacsu and Kastl,
2012; Valseth, 2013). This literature emphasises the informational role of clients’ and/or
dealers’ orderflow. We add to this literature by highlighting the empirical link between
variation in connections and orderflow predictability. We are able to do so due to the
important feature of our dataset: for each trade we can observe the identity of both
parties. This allows us to map out the dynamics of connections of government market

3Another approach is to study the effect of transactions which ex-post turns out to be private inform-
ation driven. For instance (Meulbroek, 1992; Kacperczyk and Pagnotta, 2019) investigates the effect of
transactions that subsequently became subject to SEC investigations of insider trading activities.

4There is a related, growing theoretical literature on the role of private information in decentralized
markets such as Duffie, Malamud, and Manso (2009), Golosov, Lorenzoni, and Tsyvinski (2014), Babus
and Kondor (2018), Brancaccio, Li, and Schurhoff (2017) amongst others.

5A notable exception is Hagstromer and Menkveld (2019) which uses short-term comovement across
quotes of different dealers to map information percolation, and Collin-Dufresne, Hoffmann, and Vogel
(2019) which finds that dealers’ markups partially prices in future permanent price impact.
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participants and explore their links with the price discovery process.
The remainder of the paper is as follows: Section 2 introduces the environment,

concepts and hypotheses. Section 3 describes the data sources and provides summary
statistics; Section 4 presents the empirical results on using connections as proxy for private
information; Section 5 contrasts our findings with alternative explanations; Section 6
presents the two applications of our measure; Section 7 presents robustness checks; Section
8 concludes.

2 Context and Main Hypotheses

We start this section with a basic description of the micro-structure of the UK gilt market.
Then, we discuss our main hypotheses.

2.1 Primary Dealers in the UK Gilt Market

The key actors in the UK gilt market are the primary dealers, also known as gilt-edged
market markers (GEMMs). In our sample period between 2011 and 2017, their number
fluctuates around 20. From now on, we refer to this group as dealers. The UK Debt
Management Office (DMO) tenders new issues of government securities to dealers. Clients
(e.g. as asset managers, commercial banks, foreign central banks etc.) buy and sell
government securities mostly through bilateral transactions to this group.6 Primary
dealers are committed to make, on demand, continuous and effective two-way prices to
their clients by regulation. They must also maintain a minimum market share (DMO,
2011).7

When a client trades in the UK gilt market, she can observe quotes of all dealers
on electronic trading platforms. However, these observed quotes are merely indicative
and only small trades can be executed at these prices. If the client wishes to trade a
larger quantity, she directly contacts the dealers typically via the phone. Unlike other,
centralised exchanges (e.g. the UK gilt futures market) that are increasingly automated,
the gilt cash market, which our study focuses on, continues to retain its traditional OTC
characteristics where reputation and trading relationships matter largely for dealers (to
continue to attract orderflow and thereby trading profitably) as well as for clients (to
receive favourable price quotes).

6In our sample, only about 1% of client trades are directly between clients.
7See Benos and Zikes (2018) for further details about the institutional arrangements of the UK gilt

market.
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In our sample, we observe that clients tend to trade with a relatively small and
persistent subset of all the dealers. Based on interviews with traders, we understand that
clients perceive that requesting quotes from dealers they do not regularly trade with as
costly. The source of this cost might be diverse. Especially for larger trades, it might take
time to approach multiple dealers for quotes. Also, as dealers’ quotes reveal information
about their inventory, if it is not reciprocated with trades, the dealer might decide to
give less tight quotes to that particular client next time. Perhaps most importantly,
clients build complex relationships with the investment banks acting as dealers which
goes beyond this particular market. Deviating from their regular dealers might harm this
relationship.

2.2 Our Mechanism and Main Implications

Our main conjecture is that the time-variation in clients’ connections can be a proxy for
the time-varation in the precision of their private information. The underlying mechanism
is that, just like in centralised markets where informed traders may split their trades over
time to slow down information revelation and avoid market-impact (Kyle, 1985), informed
traders in decentralised markets may submit orders to various dealers, thereby splitting
their trades in the cross-section.8

However, splitting trades requires the client to reach out for quotes from those dealers,
which might be costly. The client will do so only when the advantage of hiding her private
information is large, that is, when its information is sufficiently precise. This implies that
a trader obtaining more precise private information should trade with more dealers than
usual. This mechanism provides a number of testable implications.

First, consider the time-variation of the performance of a given client. Under our
intuition, we should observe that when clients are connected to more dealers, they over-
perform. However, overperformance could come from multiple sources. For instance,
even if connections were not related to information, clients requesting more quotes would
expose their dealers to more competition, possibly resulting in more favourable trans-

8Since Kyle (1985), the microstructure literature has extensively studied how private information can
be concealed by splitting informed orders in smaller amounts over time to avoid market impact (e.g.
Garleanu and Pedersen, 2013; Mascio, Lines, and Naik, 2017; Back, Collin-Dufresne, Fos, Li, and Ljun-
gqvist, 2018) Splitting across dealers might be a particularly prominent way to hide private information
in markets where positions with multiple legs is the norm. In these markets, a trader’s individual trades
reveal her strategic position less than her full portfolio would. This is the case in treasury markets where
speculation on the changing shape of the yield curve often involves the simultaneous buying and selling
of multiple bonds of different maturity. This is in line with the the summary statistics (Table 1) on the
number of bonds clients traded in our sample.
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action prices. Instead, if connection proxies private information, we should expect that
the price of government bonds, purchased by the client in these periods, should increase
in subsequent days compared to the price of bonds they sell. That is, a more connec-
ted client’s overperformance should come from the correlation of the direction of their
transactions and future price movements.

Also, our intuition would be enforced if these effects were stronger among those cli-
ents who are usually considered to trade on information, such as as hedge funds and
asset managers compared to insurance companies, pension funds, commercial banks and
government organisations. We will refer to the former (latter) group as more (less) soph-
isticated traders.

We summarize these predictions in the following hypotheses.9

Hypothesis 1 Periods with more connections for a given client should be associated with
higher trading profit.

Hypothesis 2 More connections for a client i in a given interval should be associated
with a stronger positive connection between her buy (sell) transactions and subsequent
increases (decreases) compared to the cross-sectional average transaction price.

Hypothesis 3 These effects should be stronger for sophisticated traders.

Note that our mechanism does not imply causality between connections and perform-
ance in any direction. Instead, both higher performance and higher connectedness are
caused by more private information.

Second, consider implications for aggregate connections and price formation. In the
absence of news, innovations of bond prices should be driven by private information.
Also, under our conjecture, average connections in a given time period is a measure of
the amount of private information present in the market. Therefore, we should expect
a comovement between this measure and innovations in the yield curve. This gives our
last hypothesis.

Hypothesis 4 Periods with higher aggregate connections should be associated with larger
absolute innovations in yields.

9To show that our mechanism is consistent with standard arguments of trading under asymmetric
information, we rationalize each of these predictions in a simple extension of a Glosten and Milgrom
(1985) model.
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At this point we do not take a stance on the nature of private information connection
is a proxy for. It might be fundamental information on future macroeconomic news or
information on the price impact of future orderflow or a mixture of both. All the above
hypotheses hold in any of these cases. We will investigate this question further in Section
6.2.

Next, we introduce our data and present evidence that supports Hypotheses 1-4.

3 Measurement and Summary Statistics

In this section we describe the data and construct the two main variable of interest:
clients’ connections and performance.

3.1 Data Source

To analyse how the dynamics of client-dealer connections are related to clients’ trading
performance and information, one needs a detailed transaction-level dataset which con-
tains information on the identity of both sides of a trade. The proprietary ZEN database
maintained by the UK Financial Conduct Authority (FCA), fittingly provides this inform-
ation together with information on the transaction date and time; the execution price and
quantity; the International Securities Identification Number (ISIN); the account number,
the buyer-seller flag. The ZEN database contains trade reports for all secondary-market
transactions, where at least one of the counterparties is an FCA-regulated entity. We
focus exclusively on conventional gilts. Given that all dealers in our sample are FCA-
regulated, we have at least one report for each dealer-client transaction, thereby giving us
virtually full coverage of the client trade universe. Our sample covers the period between
October 2011 and June 2017. We match our transaction-level data with information on
bond duration and end-of-day closing prices obtained from Datastream.

A key aspect of our empirical analysis is to exploit the time-variation in client-dealer
connections which requires the matching of each transaction with a client and a dealer
identifier. The names of clients and dealers are recorded as unstructured strings of text
in the ZEN database. Moreover, a typical client or dealer tends to have multiple accounts
with different variants of the firm name across accounts and also within the same account.
We use a textual algorithm that searches through the unstructured strings of names and
accounts, and assigns a unique identifier to each transaction. When constructing identi-
fiers, we aim at the highest possible level of consolidation by treating parent companies,
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affiliates and different arms as one client or dealer.10 After discarding duplicate trades,
we end up with 480 identified clients and about 1.2 million trades transacted by them
and their dealers. The trading activity between these clients and dealers covers around
80% of all client activity (in terms of trading volume) in the UK gilt market.

3.2 Client-Dealer Connections

Our baseline measure of connections is the number of dealers a given client is connected
to in a given time period. A client is connected to a dealer if she trades with the dealer at
least once.11 Since client connectivity is a key variable in our analysis, we provide some
descriptive statistics to describe it.

Table 1 presents summary statistics based on our baseline regression sample that is
aggregated to the client-day level. We find that the average client on a given day is
connected to three dealers and carries out about 10 transactions with them. There is
substantial sample variation: the average difference in connections between the 90th and
10th percentile is 6. To illustrate the extent to which the variation in client connectivity
is a cross-sectional phenomenon, we compute the averages of our measures at the client-
level, and plot the resulting distribution in a histogram (left panel of Figure 1). We find
that the distribution of the connection measure is positively skewed, with the mass of
clients having low values and a few clients exhibiting large values.

Clients that are on average more connected can differ from less connected clients along
other time-invariant characteristics such as size, business model etc. To control for this,
we purge out client fixed effects from our connectivity measures and plot the resulting
distribution in a histogram (right panel of Figure 1). We find substantial within-client
variation: the average difference in connections between the 90th and 10th percentile is
3.45, which is high compared to the corresponding value using cross-client variation (2.42).
Similarly, the standard deviation of first-order connections is around 1.12 in the cross-
section and as high as 1.47 when using only the within-client variation. This substantial
within-variation in connections is a key feature of the data, which our empirical analysis

10In Section 6, we take a closer look at the heterogeneity of dealer accounts. For each dealer we
distinguish between the market making accounts of a given dealer (the ones which are mainly used for
transactions with clients) from the affiliate accounts (the ones which are mainly used for transactions with
the market making accounts of the same dealer). We identify signs of information flow from informed
clients to dealers’ affiliates via their market making activity.

11In the previous version of our paper (Kondor and Pinter, 2019), we also use eigenvector centrality
(Bonacich and Lloyd, 2001; Maggio, Kermani, and Song, 2017) as an alternative measure of connectivity,
yielding very similar results.
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Table 1: Summary Statistics – Client-Day Level

(a) All Clients

(1) (2) (3) (4) (5) (6)
Mean Median p10 p90 sd N

First Order Connection 3.28 3.00 1.00 6.00 2.33 100,696
Transaction Number 10.14 6.00 3.00 20.00 12.92 100,696
Volume (£millions) 73.31 12.36 0.11 214.66 158.69 100,696
Number of Bonds Traded 6.45 4.00 2.00 13.00 6.27 100,696

(b) High Connection vs Low Connection Days

High Connection Days Low Connection Days
Mean Median Mean Median

2-day Performance 0.54 0.27 -0.22 0.09
4-day Performance 0.69 0.31 -0.27 0.18
First Order Connection 5.04 4.00 2.38 2.00
Transaction Number 14.70 10.00 7.80 5.00
Volume (£millions) 114.29 27.80 52.30 8.04
Number of Bonds Traded 8.55 6.00 5.37 4.00

Notes: This table reports summary statistics for our baseline sample, covering 2011m10-2017m6, that is collapsed at the
client-day level. Panel A reports summary statistics for all clients. Panel B reports summary statistics on volume-weighted
performance measures at the 2-day and 4-day horizons, measured in basis points. Panel B differentiates between high
connection and low connection trading days, by placing each client observation into two groups based on the within-
variation of connections, i.e. depending on whether the client’s first-order connection on a given day is below or above the
client’s own median connection measure based on the whole sample.

will primarily rely on.

3.3 Trading Performance

3.3.1 Baseline Measure

To measure trading performance, we follow Maggio, Franzoni, Kermani, and Sommavilla
(2019) and compute the T -day-horizon return on each trade of client i on day t, meas-
ured as the percentage difference between the transaction price and the closing price T
days after the transaction date.12 Formally, for each trade j, we construct the measure
PerformanceTj as follows:

PerformanceTj =
[
ln
(
P T

)
− ln

(
P ?
j

)]
× 1B,S, (3.1)

12The T -day horizon starts at the start of each day and ends after T days. We use overlapping time
windows. For example, to compute one-day performance measures (T = 1), we compare all trades on
day 1 to the closing price on day 2, and compare all trades on day 2 to the close price on day 3, and so
on.
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Figure 1: Cross-Client and Within-Client Variation in Connections
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Notes: these figures summarize the cross-client and within-client variation in our first-order connections, defined as the
number of dealers with whom a client trades on a given trading day. The left panel plots the distribution of average client
connections, after collapsing the data at the client-level. To construct the right panel, we first collapse the data at the
client-day level, then run a panel regression to purge out client and day fixed effects (ClientConnectionsi,t = αi +µt +εi,t),
and plot the distribution of the residuals (εi,t).

where P ?
j is the transaction price, P T is the T -day ahead closing price of the corresponding

gilt, and 1B,S is an indicator function equal to 1 when the transaction is a buy trade, and
−1 when it is a sell trade. All transactions-specific cumulative (T -day ahead) returns
are then averaged for each client i and day t using the pound value of the trades as
weights. This measure, denoted by PerformanceTi,t, will be our left-hand-size variable in
our baseline regressions detailed below. As robustness, we also present the results using
unweighted daily average returns.

Table 1 summary statistics of the 2-day and 4-day performance measures. Panel
B shows that the average client performs better on days with more dealer connections
compared to days when the same client has fewer connections. Note that trading volume
and numbers of transactions are also higher in high connection days, which motivates the
use of these variables as controls in our regressions.

3.3.2 Decomposing Trading Performance

In this part, we propose a decomposition method which extends our baseline performance
measurement. The T -day performance of a client on a trade can be high because the
given client faces lower price impact compared to other clients trading at the same time.
We refer to this as the transaction component of performance. Alternatively, trading
performance can be high because the given client can better anticipate future prices
changes. We refer to this as the anticipation component of performance. Building on 3.1,
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we compute the decomposition for each transaction j as follows:

ln
(
P T

)
− ln

(
P ?
j

)
≈
[
ln
(
P T
)
− ln

(
P
)]

︸ ︷︷ ︸
Anticipation

+
[
ln
(
P
)
− ln

(
P ?
j

)]
︸ ︷︷ ︸,

Transaction

(3.2)

where P is the only new term which denotes the average transaction price (based on
all available dealer-client trades in the corresponding gilt) measured around the time
of transaction j.13 To estimate P , we split each trading day into three time-windows,
and compute the average transaction price P based on all relevant transactions in each
window. The intra-day time windows are <11am, 11am-15pm and >15pm, which are set
to have an approximately even number of transactions across the windows. Given the
trade-level decomposition, we then collapse our dataset at the client-day level using both
volume-weighted and unweighted daily average returns.

Note that most of the recent empirical work on financial networks (Afonso, Kovner,
and Schoar, 2014; Hendershott, Li, Livdan, and Norman, 2017; Hollifield, Neklyudov,
and Spatt, 2017; Maggio, Kermani, and Song, 2017) mainly focused on the transaction
component. Distinguishing between the transaction component and the anticipation
component allows us to test whether more connections increase performance because
clients can achieve more favourable deals (at lower mark-ups) or because clients have
private information about future price changes.

4 Client Connections as Proxy for Private Informa-
tion

This section presents our main empirical results, supporting the key message of our
paper: time-variation in client-dealer connections can be used to proxy time-variation in
private information. First, we present supporting evidence for Hypotheses 1–3. Using
panel-data regressions, we show that clients’ trading performance systematically increases
when the given client trades with more dealers, and that this effect is stronger among
more sophisticated clients. Second, we study innovations in yields and Hypothesis 4. We
provide evidence that variation in total client-dealer connections in the market comove

13When computing the average transaction price P for the calculation of the transaction component
for client i, we exclude the trades of client i from the construction of P . In effect, we compute a different
average transaction price for each client, P i/∈, in order to avoid any mechanical effect (say, of the given
client’s size or trading activity) on the computation of the transaction component.
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with the day-to-day innovations in the level and slope of the yield curve. Finally, we
argue that our quantitative estimates are economically significant.

4.1 Client Profitability

In this part, we connect the time-variation in clients’ connections with the time-variation
in their performance along the lines of Hypotheses 1–3.

4.1.1 Baseline Results

To estimate whether a client’s trading performance increases when the client increases its
connections with the primary dealer sector, we run the following daily panel regression:

PerformanceTi,t = β × ClientConnectionsi,t +Xi,t + αi,year + µt + εi,t, (4.1)

where PerformanceTi,t is the trading performance (3.1) of client i on day t at horizon T ;
ClientConnectionsi,t is the number of dealers the given client is connected to on day t;
αi,year and µt are client-year and day fixed effects, respectively14; Xi,t includes controls
such as the number of transactions and trading volume. These controls are important
for checking that our connections variable is not simply picking up the effect of increased
trade size (Easley and O’Hara, 1987; Merrick, Naik, and Yadav, 2005; Maggio, Franzoni,
Kermani, and Sommavilla, 2019). Throughout the analysis, in computing standard errors
we take a conservative approach, and employ two-way clustering at the client and time
level. This allows for arbitrary correlation of the residuals across time and across clients.

The main coefficient of interest in 4.1 is β which captures the relation between client
connections and trading performance. Panel a of Table 3a reports our baseline results
for value-weighted trading performance. Each column corresponds to a different trading
horizon going from T = 1 to T = 5. We find a positive relationship between client con-
nections and trading performance, whose magnitude and statistical significance increases
in the horizon. At the 5-day horizon, an additional connection is worth about 0.5bp.

Table 3b decomposes the baseline into the effects going through the transaction com-
ponent and the anticipation component (3.2). By doing so, we learn whether more
connected clients may perform better because they get better deals compared to other

14The client-year fixed effect, αi,year, aims control for any low-frequency changes in client’s trading
activity that would not be captured by a client fixed effect, αi. For example, successfully growing (and
surviving) traders may experience over time a gradual expansion of their trading network as well as an
increase in trading performance.
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clients trading around the same time (transaction component) or because they can better
anticipate future price changes over the coming trading days (anticipation component).
Our mechanism does not have strong predictions on the earlier, but requires the latter
effect to be present.

Table 2: Client Connections and Trading Performance: Baseline Results

(1) (2) (3) (4) (5)
1-day 2-day 3-day 4-day 5-day

Client 0.176** 0.231** 0.379*** 0.487*** 0.502***
Connections (2.07) (2.30) (2.99) (3.08) (2.84)

Volume
0.200* 0.276** 0.277* 0.248 0.269
(1.71) (2.10) (1.73) (1.40) (1.32)

Tran.
-0.734*** -1.104*** -1.517*** -1.350*** -1.735***
(-2.87) (-3.16) (-3.88) (-3.14) (-3.90)

N 100414 100414 100414 100414 100414
R2 0.058 0.056 0.057 0.057 0.058
Day FE Yes Yes Yes Yes Yes
Client*Year FE Yes Yes Yes Yes Yes

(a) Trading Performance over 1-5 Days

(1) (2) (3)
Baseline Transaction Anticipation

Client 0.487*** 0.099** 0.383**
Connections (3.08) (2.53) (2.37)

Volume
0.248 -0.090 0.318*
(1.40) (-1.51) (1.81)

Tran.
-1.350*** -0.198 -1.098**
(-3.14) (-1.57) (-2.56)

N 100414 100348 100348
R2 0.057 0.100 0.055
Day FE Yes Yes Yes
Client*Year FE Yes Yes Yes

(b) Decomposing 4-day Performance: Transaction vs Anticipa-
tion Effect

Notes: panel A regresses the value-weighted trading performance at different time horizons on client connections (4.1).
The transaction-level data is collapsed at the client-day level. The performance measures are in basis points. We include
as a control the natural logarithm of the pound trade volume of each client (“Volume”) and the natural logarithm of
the number of daily transactions (“Tran.”). To reduce noise, we winsorise the sample at the 1%-level and use client-day
observations that are based on more than two daily transactions. Panel B decomposes the 4-day performance effect into a
transaction component and an anticipation component (3.2). The results are based on the average transaction price P that
uses the trades (for the given gilt) in a 3-hour window within the transaction time (excluding the given client’s trades from
the computation of P – see footnote 13). T-statistics in parentheses are based on robust standard errors, using two-way
clustering at the day and the client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Our results show that a client, when more connected, tends to perform significantly
better in each component. When more connected, she tends to trade at a more favour-
able price and to the direction of future price movements. Quantitatively, we find that
the anticipation component has a much larger role in the overall higher performance of
clients when they are more connected. In particular, almost 80% of our baseline effect
(0.49bp) is explained by the anticipation component (0.38bp) as opposed to the transac-
tion component (0.1bp).

Moreover, we assess the persistence of the effect of connections and gradually increase
the trading horizon up to 20 days (T = 20) while re-estimating our baseline regression
4.1. In Figure 2, we present the 20 estimated βs together with the 90% confidence bands.
We find that the effect peaks at the 4-day horizon. While our point estimates remain
positive for weeks, the effect gradually loses significance.

Figure 2: Connections and Performance over 1-20 Day Horizons
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Notes: this figure plots the estimated β coefficients from our baseline regression 4.1 up to 20-day horizon (T = 20),
using the value weighted performance variable as the regress and, measured in basis points. We include as a control the
natural logarithm of the pound trade volume of each client (“Volume”) and the natural logarithm of the number of daily
transactions (“Transactions”). To reduce noise, we winsorise the sample at the 1%-level and use client-day observations
that are based on more than two daily transactions. The shaded area denotes the 90% confidence band, It is based on
robust standard errors, using two-way clustering at the client and day level.

4.1.2 More Sophisticated vs Less Sophisticated Investors

To reinforce the information-based interpretation of our baseline estimates, we next com-
bine the within-variation of client connections with cross-sectional heterogeneity of client
types. It is reasonable to conjecture that not all type of clients engage in speculative
trading on treasury markets. Pension funds, foreign central banks, other government or-
ganisations, insurance companies and commercial banks are less focused on future price
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movements of treasuries compared to hedge funds and asset managers. In our formal
language, if the former group neither seek nor receive private information, then variation
in their connections introduces noise in our findings. To assess this possibility, based
on the name of the client account in our data, we assign clients to a more sophisticated
and a less sophisticated group. We end up having 250 and 230 clients in each group,
respectively.15

Figure 3: Connections and Performance over 1-20 Day Horizons: More vs. Less Sophist-
icated Clients
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Notes: this figure plots the estimated β coefficients from our baseline regression 4.1 up to 20-day horizon (T = 20), for
more sophisticated (left panel) and less sophisticated (right panel) clients separately, using the value weighted performance
variable as the regress and, measured in basis points. We include as a control the natural logarithm of the pound trade
volume of each client (“Volume”) and the natural logarithm of the number of daily transactions (“Transactions”). To
reduce noise, we winsorise the sample at the 1%-level and use client-day observations that are based on more than two
daily transactions. The shaded area denotes the 90% confidence band, It is based on robust standard errors, using two-way
clustering at the client and day level.

Given our classification, we re-estimate our baseline (Figure 2) for both types of
clients separately, and plot the estimates on Figure 3 up to the 20-day horizon. We

15The guiding principle in our classification was (i) to focus on the main business profile of a given client
and (ii) to aim at the highest possible level of consolidation, when determining whether a given client
can be regarded as a hedge fund / asset manager (more sophisticated) or other type (less sophisticated).
In most cases, this was straightforward. For example, we have 46 government entities (mainly foreign
central banks), that can be immediately placed in the group of less sophisticated clients, and around 40
hedge funds that belong to the more sophisticated group. In contrast, there could be some ambiguity in
the classification of some asset managers. For example, certain less sophisticated clients (e.g. insurance
companies, commercial banks and pension funds) have asset manager branches. In line with our strategy,
we regarded these asset manager accounts as part of the parent company with a less sophisticated type.
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find substantial heterogeneity across the client types with the majority of our baseline
effects being driven by the more sophisticated clients. Note also, that our effect is more
persistent in the sample of more sophisticated clients.16

The fact that most of our baseline effect is driven by the increased ability of more
sophisticated investors to predict future price movements is important for the information-
based interpretation of our reduced-form evidence. For example, this result makes altern-
ative interpretations related to demand pressures of large uninformed traders less likely.
Our group of less sophisticated traders features 46 government entities (mainly foreign
central banks) who trade infrequently, but when they do, they often trade large quantit-
ies. Trading large quantities – big enough to move prices – may require increased number
of dealer connections. Therefore, Figure 3 is indicative that when connections increase to
reduce the individual order size, it does not translate to over-performance in subsequent
days. We return to the discussion of this and other alternative explanations in Section 5.

4.1.3 The Economic Significance

We argue that our baseline results are also economically significant. For example, using
the estimate (0.5bp) in Column 4-5 of Table 2, if a client trades with one additional
dealer on a day, then the expected increase in her short-term returns is more than twice
her average performance (we are using the fact that the median 4-day returns are 0.22bp
in our sample). Table 3 further illustrates the economic significance of the performance-
connection relationship, by comparing days when clients have few connections to days
when they have more connections. Single-sorting by the within-variation in connections,
we find that the difference in mean (median) performances is about 1bp (0.25bp), con-
sistent with our baseline regression results (Table 2).

Moreover, clients trade more when they are more connected: the median trading
volume is about £6.9million (£24.9million) on days when the client has fewer (more)
dealer connections than its sample average. The performance difference coupled with the
difference in trading volume in high and low connectivity days implies that the majority
of positive trading performance is concentrated in high connectivity days.

16Table 11 of the Online Appendix shows the performance decomposition into transaction and anti-
cipation components (as Table 3b above) for both client groups. More sophisticated investors’ overall
benefit from an additional connection concentrates in the anticipation component, with both compon-
ents being statistically significant. There is some statistical evidence that less sophisticated investors
also enjoy more favourable transaction prices when having an additional connection.
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Table 3: Illustrating the Economic Significance of Connections

Average Daily Average Daily Decomposition of
Volume (in £000s) 4-day Performance Gross Performance
Mean Median Mean Median Mean Median

Low Connection Days 50,000 6,900 -0.381 0.136 -33% 9%
High Connection Days 109,000 24,900 0.704 0.393 133% 91%

100% 100%
Note: This table illustrates the economic significance of the performance-connectedness relationship. The sample (at the
client-day level) into two groups using single-sorting, based on the within-variation of connections, i.e. the first (second)
group contains the observations for those days when the given client had fewer (more) daily connections compared to its
sample average. The 4-day performance measures are in basis points.

4.2 Aggregate Connections

Having presented evidence on the positive relationship of a client’s connections and her
individual performance, we now turn to the information content in aggregate connections.
First, we consider the aggregate implication of Hypothesis 1. If many highly connected
clients buy (sell) a given bond a given day, that should signal that the price of the given
bond will increase (decrease) during the following days or weeks. Second, we show that
yield innovations tend to cluster in days when aggregate connection is high, validating
Hypothesis 4.

4.2.1 Aggregate Connections and Portfolio Returns

An alternative way to test Hypothesis 1 is by portfolio analysis. In this part, we argue
that the aggregate portfolio choice of connected clients is a signal for future bond returns.
To show this, we build on the portfolio analysis of Maggio, Franzoni, Kermani, and
Sommavilla (2019) and Czech, Huang, Lou, and Wang (2020). For each client, we sort
trading days into two groups – high-connection and low-connection days – based on
whether the number of connections of the client in that day is above or below the sample
average for the given client. For the high-connection client-day pairs, we proceed in three
steps. First, for each gilt we calculate the daily aggregate orderflow generated by high-
connection clients. Second, we rank all gilts on each trading day based on the computed
order flow, i.e. gilts that high-connection clients predominantly bought (sold) will feature
at the top (bottom) of this daily ranking. Third, we build a long-short portfolio that
goes long on the top half and goes short on the bottom half of gilts by this ranking. We
then compute the cumulative daily returns of this portfolio up to 20 days, as shown in
the left panel of Figure 4.
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Figure 4: Long-short Portfolio Returns – Sorted by Daily Orderflows of High/Low Con-
nection clients
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Notes: The figure shows the cumulative return of a long-short portfolio that is based on the daily orderflow of more
sophisticated clients with fewer (left panel) or more (right panel) dealer connections than their sample average. The
sorting of clients is based entirely on the within-variation of connections, so all clients appear in the two portfolio categories
half the time. On each trading days, all government bonds are equally sorted into two groups based on the orderflow of
connected and unconnected clients. The portfolios are rebalanced every day and are held for 1, 2,... 20 trading days. The
dashed lines denote 90% confidence intervals based on robust standard errors.

For the low-connection client-day pairs, we follow the three steps above, and the
cumulative daily returns of this portfolio is shown by the right panel of Figure 4.17

The results show that the high-minus-low portfolio of high-connection clients yields
positive returns, reaching about 4bp after 20 days. In contrast, the high-minus-low
portfolio of low connections generates returns that are statistically insignificant in the
long horizon. That is, we find that there is a strong information content in the aggregate
portfolio choice of connected clients.

4.2.2 Aggregate Connections and the Yield Curve

Specifically, we test whether time-variation in aggregate client-dealer connections in the
market can explain variation in yields.

We start by constructing an aggregate measure of connections defined as the total
number of unique client-dealer connections on a given trading day. We then examine

17It is important to highlight that our sorting of gilts using clients’ orderflows is based on the within-
variation of connections as well, as opposed to sorting clients purely based on characteristics that vary
in the cross-section (e.g. Czech, Huang, Lou, and Wang (2020)).
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the relationship between changes in aggregate connections and changes in the absolute
value of the 5-year yield. All our regressions control for trading volume, given previous
evidence on the relation between price changes and volume (Karpoff, 1987; Bessembinder
and Seguin, 1993).

Table 4: Explaining Daily Changes in 10-year Yields with Aggregate Connections

More Sophisticated Investors Less Sophisticated Investors
(1) (2) (3) (4) (5) (6)

∆ log (Connectionst)
0.028*** 0.034*** 0.021*** 0.001
(6.22) (3.57) (5.88) (0.07)

∆ log (NumOfClientst)
-0.016* 0.024***
(-1.70) (2.87)

∆
(

Connectionst

NumOfClientst

) 0.011*** -0.003
(2.93) (-0.79)

N 1450 1450 1450 1450 1450 1450
R2 0.032 0.035 0.029 0.027 0.034 0.019

Notes: this table regresses the absolute value of daily changes in the 10-year yield on daily changes in the logarithm of
the total number of aggregate connections, the total number of clients and changes in connections per clients. We run
separate regressions for more sophisticated clients (columns 1-3) and for less sophisticated clients (columns 4-6). The
transaction-level data is collapsed at the day level yielding 1450 trading days spanning the period 4 Oct 2011 to 30 June
2017. Data on yields are from the Bank of England Financial Database. T-statistics, based on robust standard errors, are in
parentheses. All regressions controls for trading volume (Karpoff, 1987; Bessembinder and Seguin, 1993). The coefficients
for the deterministic variables (constant, linear and quadratic time trends) and trading volume are not shown. Asterisks
denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).

Results are summarised in Table 4, distinguishing between more and less sophisticated
clients. We find a statistically strong relationship (2.8bp and 2.1bp) between daily changes
in aggregate connections and absolute deviations in yields levels both types of clients.
However, we detect differences in the sources of explanatory power, as we include the
total number of unique clients (Tauchen and Pitts, 1983) as a control in the regression.
For more sophisticated clients, connections continue to be significant (column 2), whereas
for less sophisticated clients, connections are no longer significant (column 5). This means
that in the case of more sophisticated clients it is, effectively, the changes in the total
number of dealer connections per client (and not the changing number of clients) that
drive day-to-day yield changes; whereas, in the case of less sophisticated clients, it is
their increased presence which affects yields. We check this explicitly by including the
change in the total number of connections as a regressor (columns 3 and 6). Overall,
these results suggest that the aggregate connections of more sophisticated clients are an
important conduit by which new (private and public) information gets built into prices,
consistent with Hypothesis 4.
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So far, our empirical results provide support for Hypotheses 1–4. In the next Section
we consider alternative explanations behind our results.

5 Alternative Explanations

The main premise of this paper is that when a client trades with more dealers it is a
sign that she has private information about the future price movement. This private
information is reflected in an expected price increase (decrease) of a given asset when she
buys (sells) from an unusually large number of dealers. In this section, we consider and
refute potential alternative explanations for our findings which do not require connected
clients to have private information.

5.1 Connections as a Proxy of Large Demand Shocks

In this part, we consider whether our results can be consistent with a narrative where
uninformed clients increase their number of connections whenever they are subject to
demand shocks.

Consider the possibility that there is a positive correlation across large, uninformed
liquidity needs of different clients and across time. Hence, it is a typical case that clients
A and B both have to buy a large quantity at consecutive days for liquidity reasons.
Suppose that at a given date, A buys before B. Then the purchase of client A pushes the
price up to V + ∆1 in the first day, where V is the fundamental value and ∆1 is her price
impact. The next day the purchase of client B pushes the price further up to V +∆1 +∆2.
Later, in the absence of price-pressure the price returns to the fundamental value of V .
Both A and B minimize price-impact by increasing connection, hence for both A and B
these days will be associated with higher connections.18

In the short term (one day in the example), client A, representing clients arriving
early in the series of correlated shocks, has a positive performance proportional to ∆2

(compared to other days when her and other client’s liquidity demand is small). Over
longer term, as the demand pressure dissipates so does A’s over-performance which is
broadly consistent with Figure 2.

18It is important to emphasize that in this narrative clients are uninformed as to whether they are in
the role of client A or in client B. In contrast, in any mechanism where client A understands that she is
hit early and increases her number of connections because she expects that demand pressure is likely to
continue, client A has private information. Namely, in that case client A has information on the future
orderflow. Any such mechanism would be consistent with our preferred interpretation that connections
proxy for private information, as described in Section 2.
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In contrast, client B, representing the clients arriving late in the series of correlated
demand shocks, is under-performing both in the short and long term. He suffers the high
transaction price, without the possibility to profit from increased price in the future.
Hence, client B’s performance is inconsistent with Figure 2.

Given our empirical design, Figure 2 should be read as the average performance over
different time periods of A type and B type clients. Depending on the parameters, this
average might show short-term under- or over-performance in periods of high connections
compared to those with low connections.19

More importantly, under this mechanism a client trades with a lot of dealers because
she trades a large volume in that given period. That is, in any of our results large trading
volume should be able to take over the role of connections. To address this, we first note
that our baseline regression includes clients’ daily trading volume which aims to control
for the linear effect of demand shocks. However, it could still be that the volume interacts
with connections and performance non-linearly.

We are interested in whether the connection-performance relation is stronger during
trading days when a given client trades particularly large amounts compared to when
she trades relatively little. If connections simply proxy large demand shocks, we would
expect the connection-performance relation to be stronger during large volume days. To
reinforce that our results are not simply picking up the effect of trading volume (driving
both connections and performance), as a first step, in panel a of Table 5, we double-
sort our sample using the within-variation both in connections and in trading volume.
The performance difference on high and low connectivity days is approximately the same
irrespective of whether the client’s trading volume is high or low, and thereby the majority
of positive trading performance continues to concentrate in high connectivity days.

19We illustrate this in a simple model presented in Online Appendix A.2.
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Table 5: The Role of Trading Volume

Average Daily Average Daily Decomposition of
Volume (in £000s) 4-day Performance Gross Performance

Volume Connections Mean Median Mean Median Mean Median
Low Low 17,300 2,400 -0.414 0.113 -28% 7%
Low High 44,800 9,700 0.733 0.403 128% 93%
High Low 83,100 20,600 -0.347 0.147 -33% 12%
High High 173,000 57,400 0.676 0.380 133% 88%

(a) Economic Significance of Connections

1-day 2-day 3-day 4-day 5-day
Client Connections * 0.316*** 0.429*** 0.609*** 0.686*** 0.690***
Low Volume Days (3.28) (3.71) (4.11) (3.71) (3.28)
Client Connections * 0.131 0.167* 0.305** 0.424*** 0.442**
High Volume Days (1.55) (1.66) (2.46) (2.68) (2.55)
Volume 0.336*** 0.467*** 0.499*** 0.440** 0.451**

(2.61) (3.39) (2.94) (2.21) (2.00)
Tran. -0.691*** -1.043*** -1.446*** -1.289*** -1.677***

(-2.70) (-2.97) (-3.70) (-2.99) (-3.76)
p-value, equality of 0.00002 0.0001 0.0001 0.0192 0.0286
connection coefficients
N 100414 100414 100414 100414 100414
R2 0.058 0.057 0.057 0.057 0.058
Day FE Yes Yes Yes Yes Yes
Client*Year FE Yes Yes Yes Yes Yes

(b) Connection and Performance on Low and High Volume Days
Notes: Panel A illustrates the economic significance of the performance-connectedness relationship. The sample (at the
client-day level) is split into four groups using double-sorting, based on the within-variation of both connections and
trading volume. The numbers in the last two columns decompose gross performance (defined as the product of volume
and performance) into the contribution of each group. The 4-day performance measures are in basis points. Panel B
regresses the value-weighted trading performance at different time horizons on client connections interacted with a dummy
taking value 1 (0) if the client’s daily trading volume is above (below) her sample average. The transaction-level data is
collapsed at the client-month level. The performance measures are in %-points. To reduce noise, we winsorise the sample
at the 1%-level and use day-client observations that are based on more than two transactions in the month. T-statistics in
parentheses are based on robust standard errors, using two-way clustering at the day and the client level. Asterisks denote
significance levels (* p<0.1, ** p<0.05, *** p<0.01).

We also formally test the differential effect of volume as follows. Panel b of Table 5
shows the results for a variant of our baseline regression (4.1) where we interacted our
measure of connections with a dummy indicating whether a client traded on a given day
more or less than her sample average. The results shows that, if anything, connection
effects are stronger during low volume days. As shown by Figure 8 in the Appendix, the
results are similar for longer horizons irrespective of whether we use the full sample or
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the subsample consisting only of more sophisticated clients.

5.2 Informed Dealers and Uninformed Clients

An other possibility is that a client trades with many dealers when (some of the) dealers
are informed, even if the client is uninformed. For instance, one such mechanism is that
a dealer, expecting a price increase, would give unfavourable ask quotes to increase its
inventory. This might motivate clients to requests quotes from other dealers too, ulti-
mately increasing their number of connections. To test for these, we perturb our baseline
regression 4.1 by including additional, dealer-specific controls. First, we compute that
average number of trading relationships (with clients) and the average trading volume
of all dealers that a given client trades with on a trading day. These measures are mo-
tivated by the recent work Maggio, Franzoni, Kermani, and Sommavilla (2019) which
focuses on the heterogeneity in the centrality of stock-market brokers to study inform-
ation diffusion. Then, we decompose the 4-day trading performance into transaction
and anticipation components and regress these components on clients’ connections and
dealer-level variables similarly to Table 3b.

The results are shown in Table 6. We find that the added dealer characteristics
mainly affect the transaction component. Including both dealer connections and dealer
volume (column 3) halves the connection effect on the transaction component, rendering
it statistically insignificant. This result is primarily driven by the inclusion of trading
volume, suggesting that some of the connections effect in our baseline is picking up that
clients who increase their connections to receive tighter bid-ask spreads tend to trade
with larger dealers who provide more favourable prices.

However, turning to the anticipation component (columns 4-6), we find no evidence
that dealer characteristics affect our baseline connection results. We find some positive
effect of dealers’ connections on client’s anticipation component, consistent with Maggio,
Franzoni, Kermani, and Sommavilla (2019), but these results are statistically insignific-
ant. That is, the direction of trade of connected clients predicts the subsequent price
movement, while the characteristics of their dealers do not. This enforces our interpret-
ation that client connections proxy for clients’ private information.

While these results suggest that information at the dealer level cannot explain our
baseline results, it by no means prove that there is no information flow between clients
and dealers. In fact, in the next Section we argue that such two-way information flow
is present in our data. In particular, we present evidence that dealers learn from their
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Table 6: Decomposing 4-day Performance: Controlling for the Average Characteristics of
Clients’ Dealers

(1) (2) (3) (4) (5) (6)
Transaction Component Anticipation Component

Client 0.099** 0.105*** 0.053 0.383** 0.393** 0.415**
Connections (2.53) (2.64) (1.45) (2.37) (2.44) (2.58)
Mean Connections of 0.030* -0.054*** 0.045 0.080
Client’s Dealers (1.96) (-3.10) (0.74) (1.17)
Dealers’ Mean 0.769*** -0.323
Volume (5.63) (-1.01)
N 100348 100348 100348 100348 100348 100348
R2 0.100 0.100 0.102 0.055 0.055 0.055
Day FE Yes Yes Yes Yes Yes Yes
Client*Year FE Yes Yes Yes Yes Yes Yes

Notes: this table decomposes the 4-day performance effect into a transaction component and an anticipation component
(3.2) and regresses the components on client connections and average characteristics of the dealers that clients trade with.
Mean Connections of Client’s Dealers is the average number of trading relationships of all dealers that a given client trades
with on a trading day. Similarly, Dealers’ Mean Volume is the log of average trading volume of all the dealers that a client
trades with on a trading day. The transaction-level data is collapsed at the client-day level. The performance measures are
in basis points. All regressions include as additional controls (not shown) the natural logarithm of the pound trade volume
of each client (“Volume”) and the natural logarithm of the number of daily transactions (“Tran.”). To reduce noise, we
winsorise the sample at the 1%-level and use client-day observations that are based on more than two daily transactions.
The computation of the transaction component is based on the average transaction price P that uses the trades (for the
given gilt) in a 3-hour window within the transaction time. T-statistics in parentheses are based on robust standard errors,
using two-way clustering at the day and the client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, ***
p<0.01).

informed clients and let that information leak to their affiliates.20

6 Applications

Having established that client connections serve well as a proxy for private information
in dealer markets, one can use this proxy to empirically investigate a number of long-
standing issues in the finance literature.

In this section, we turn our attention to two questions in particular. First, in Subsec-
tion 6.1, we explore the leakage of information from dealers to their preferred clients. In
particular, we present suggestive evidence that dealers learn from their informed clients

20As a related exercise, in Online Appendix C, we exploit the incidents when two primary dealers
ceased their market making functions during our sample period leading to a plausibly exogenous shock
to the connections of those clients which previously were in contact with the exiting dealers. We find no
evidence that this exogenous shock significantly reduced the performance of these clients. This reinforces
our interpretation that clients proxy for existing private information, as opposed to being the medium
to transfer the information of dealers to the clients. In Online Appendix C, we also discuss the caveats
of this exercise.
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and pass this information to their affiliates.21

Second, in Subsection 6.2, we are interested in the the nature of private information
in treasury markets. This is an intriguing topic as this market is often viewed as a market
with little role for private information. Our main focus is to assess whether the private
information captured by the time-variation in clients’ connectedness is on fundamentals,
or on future orderflow. We find some evidence on both. On one hand we show suggestive
evidence that connections identify speculative positions before the Brexit referendum. We
also show evidence that our main findings are more pronounced around macroeconomic
announcements. This reinforces that fundamental information plays some role in our
mechanism, at least around key macroeconomic events.

On the other hand, we find systematic evidence that more connected clients can
better predict the maturity structure of other clients’ orderflow, especially the part of the
orderflow received by their own dealers in subsequent days. For instance, when a more
connected client’s orders are concentrated on the short-end of the yield curve in a given
day, her dealer is more likely to receive a disproportionate share of orders for short bonds
in the following five days. We also show that trading in line with the maturity structure
of clients’ future orders can be profitable because of the resulting pressure on prices.

6.1 Information Leakages

In this part, with the help of our particularly detailed data set, we investigate the inform-
ation leakage from dealers to their trading affiliates. While our baseline analysis took the
approach to consolidate the accounts of dealers (and of clients) at the highest possible
level, in this subsection we dive in to explore the heterogeneity in the trading accounts
of dealers to study information leakages.

For each dealer, we are able to distinguish between trading accounts that perform
a market-making function (trading primarily with clients, executing large number of
transactions, participating in primary auctions) from trading accounts that correspond
to other, client-like trading affiliates of the given dealer bank (trading primarily with
other dealers, executing lower number of transactions, e.g. asset-manager arms). We

21In a related set of papers, Maggio, Franzoni, Kermani, and Sommavilla (2019); Barbon, Maggio,
Franzoni, and Landier (2017) shows that brokers in stock markets pass on orderflow information to the
clients that they have had a strong trading relationships. It is important to keep in mind that our set
up is differs from this line of work even beyond the difference of the traded asset. The identification
in these papers relies on the heterogeneity of stock market brokers a given client trades with. In the
UK government bond market there are fewer dealers and they are more homogeneous, leading to more
limited cross-sectional variation in their centrality.
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refer to this latter group of accounts as the given dealer’s affiliates.22

We then test whether dealers’ affiliates perform better when the given dealer trades
with a larger proportion of high-connection clients. To use our connectivity measure to
proxy the informativeness of client orderflow that a given dealer faces, we construct the
following measure for each dealer i on day t:

InfSharei,t =
V olHi,t

V olLi,t + V olHi,t
, (6.1)

where V olHi,t and V olLi,t are the trading volume of dealer i with clients whose connectivity
on day t is high and low, respectively. Again, we rely purely on the time-series variation
in connectivity when sorting client-day pairs. Specifically, we place each trading day of
each client into three tertiles based on connections. If the given client is in the top tertile
on a given trading day, then her trading volume with dealer i contributes to V olHi,t. In all
other trading days the same client’s trading volume with dealer i contributes to V olLi,t.

We use measure 3.1 to compute the daily trading performance of dealers’ affiliates,
AffilPerformancei,t. To test whether affiliates perform better when their dealers trade
with more connected clients, we estimate the following daily panel regression for each
dealer i and day t:

AffilPerformanceTi,t = β × InfSharei,t +Xi,t + αi,year + µt + εi,t, (6.2)

where αi,year and µt are client-year and day fixed effects; andXi,t includes control variables
such as the number of transactions and trading volume of dealers’ affiliates as well as the
dealers. The main coefficient of interest in 6.2 is β which captures the relation between
dealers’ enhanced interaction with high-connection clients and the performance of dealers’
affiliates.

22Specifically, we identify 164 trading accounts, corresponding to 21 dealers, totalling about 662 thou-
sand transactions. These accounts can have orders of magnitude fewer traders (than the market-making
accounts) and predominantly trade with other dealers instead of other clients. See Table 12 of the
Appendix for summary statistics. The names corresponding to these account include the terms ‘As-
set Management’, ‘Wealth Management’, ‘Private Bank’, ‘Investment Management’, ‘Managed Funds’
among others as well as geographical names such as ‘Zurich’, ‘Europe’ etc. One caveat of our classifica-
tion, therefore, is that we group together multiple trading accounts of a given dealer that may perform
diverse functions, leading to possible measurement error.
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Table 7: Dealers’ Informed Clientele and the Performance of Dealers’ Affiliates

0-day 1-day 2-day 1-day 2-day
(1) (2) (3) (4) (5)

InfShare
0.325 1.717** 2.080** 1.693** 2.012**
(0.71) (2.35) (2.23) (2.38) (2.14)

DealerVolume
-0.020 -0.358* -0.332 -0.366* -0.341
(-0.17) (-2.00) (-1.24) (-1.99) (-1.28)

DealerConnections
0.003 0.022 -0.021 0.022 -0.019
(0.13) (0.43) (-0.24) (0.44) (-0.22)

AffilConnections 0.030 0.046
(0.18) (0.21)

InfShare of -0.366 -1.387
OtherDealers (-0.31) (-0.66)
N 20898 20898 20898 20880 20880
R2 0.079 0.082 0.078 0.082 0.079
Day FE Yes Yes Yes Yes Yes
Affil.#Year FE Yes Yes Yes Yes Yes

Notes: this table shows the results for regression 6.2, which regresses the value-weighted trading performance of dealers’
affiliates at different time horizons on our informativeness measure (6.1). The transaction-level data is collapsed at the
affiliate client-day level. The performance measures are in bp-points. For columns (1)-(3), we include as controls the natural
logarithm of the pound trade volume of affiliate clients (not shown) and the affiliate’s dealers (“DealerVolume”), and the
natural logarithm of the number of daily transactions of affiliates (not shown) and total number of client connections of
affiliates’ dealers (“DealerConnections”). Controls not shown have statistically insignificant coefficients. For columns (4)-
(5), we add as controls the connections of the affiliate clients (“AffilConnections”), the informativeness of client orderflow
of other dealers that the affiliate client is connected to (“InfShare of OtherDealers”). To reduce noise, we winsorise the
sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the
day and the affiliate client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).

Columns (1)-(3) in Table 7 show that when a dealer’s clientele goes from low connectiv-
ity to high-connectivity, then the trading performance of the dealer’s affiliates improves
by around 2 basis points over the 1-2 day horizon. Interestingly, there is no effect at
the 0-day horizon suggesting that we are not simply picking up that dealers’ affiliates
get better information about bid-ask spreads; the information they learn is informative
about imminent changes in the yield curve over the coming days. It is worth noting that
these results are not just detecting that larger/better dealers who tend to attract more
informed (and connected) clients might have higher performing affiliates: the inclusion of
affiliate client fixed effects absorbs this type of time-invariant heterogeneity across dealers.

Note that the regressions also control for the trading volume and the connections of
the dealer (corresponding to the given affiliate whose performance we aim to explain) with
little effect on the baseline. This suggests that the estimated β is not simply picking up
that dealers’ trading volume, while being correlated to our measure InfSharei,t, conveys
information about yields to dealers’ affiliates in the spirit of Kyle (1985). Instead, it is the
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composition of dealers’ clientele that determines how dealers’ affiliates perform (against
other dealers). This suggests that affiliates obtain the information that their dealers learn
from informed clients.

Two possible concerns with this conclusion are that (i) the information, which in-
creases the profitability of dealers’ affiliates, might originate from other dealers that
these clients are connected to, or (ii) it might originate from the affiliates themselves. To
reinforce that neither is the case, we perturb our research design by adding two control
variables to regression 6.2. First, we build on measure 6.1 to compute the average inform-
ativeness of all other dealers that the given affiliate is connected to (excluding the given
affiliate’s own dealer from this average measure). The constructed variable (“InfShare of
OtherDealers”) is aimed to control for the first identification concern. Second, we include
as a control the number of dealer connections of affiliates (“Subsid Connections”) to ad-
dress the second concern. Columns (4)-(5) of Table 7 show that these additional controls
are statistically insignificant and their inclusion in the regression makes little difference
to the coefficient on InfSharei,t.23 We interpret these results that the information is in
fact flowing from dealers to their affiliates and not the other way around.24

6.2 The Nature of Private Information: Future Fundamentals
or Future Orderflow

In this part, we investigate the nature of private information clients’ connections may
proxy. Our main focus is to assess whether the private information captured by the time-
variation in clients’ connectedness is on fundamentals, or on future orderflow. We find
evidence on both.

In the first part, using the case study of the Brexit referendum, and re-running our
main tests with distinguishing days with and without macroeconomic announcements, we
argue that fundamental information plays some role in our mechanism, at least around
key macroeconomic events.

23Figure 10 in Appendix shows the results over longer horizons from the model corresponding to
columns (4)-(5) in Table 7.

24Moreover, we also relate this analysis to that of Maggio, Franzoni, Kermani, and Sommavilla (2019)
which focuses on the cross-sectional heterogeneity in the eigenvalue-centrality of stock-market brokers
to study information diffusion. The main premise of their paper is that more central brokers gather
and disseminate more information than less central brokers do. This begs the question of whether the
eigenvalue-centrality of a dealer in our application proxies the time-variation in the share of connected
clients in the dealer’s total client base, measured by InfSharei,t. We find no statistically significant
effect for dealer centrality and including it in the regression makes little difference to the coefficient on
InfSharei,t, as shown our working paper (Kondor and Pinter, 2019).
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In the second part, we present strong evidence that more connected clients can bet-
ter predict the maturity structure of other clients’ orderflow, especially the part of the
orderflow received by their own dealers in subsequent days.

This suggests that clients’ connections in government bond markets might proxy both
for private information on price effects of anticipated orderflows and that of information
connected to macroeconomic events.

6.2.1 Connections as a Proxy for Information on Future Fundamentals

Betting on Brexit: An Event Study In this section, we take a close look at the
connectedness-performance relationship during the days around the Brexit referendum
on leaving the European Union. The referendum took place on Thursday 23 June 2016,
and the results that 51.9% of the participants voted to leave became public on Friday
morning (24 June 2016). Based on polls, the chances of a leave or a remain vote were
close to 50-50 leaning slightly towards remain immediately before the vote. Either way
market prices were expected to jump. In particular, the common perception was that a
leave result would likely trigger a rate cut soon, leading to an immediate downward shift
in the yield curve on 24 June. Indeed, this is what happened with the 1-year, 5-year
and 25-year yields dropping by 14bp, 30bp and 24bp, respectively, on 24 June. This was
followed by the Bank of England cutting the policy rate by 25bp in August.

Given the large uncertainty before the vote, market participants were motivated to
either reduce their exposure radically, or to generate private information and bet on the
outcome. Reportedly, major hedge funds ordered private opinion polls to generate an
informational edge.25 Our main hypothesis implies that we should be able to separate
these two groups from each other based on the change of their connectivity before the
vote. We should see that clients with private information increase the number of dealers
they trade with to hide this information. Furthermore, they should be the group who,
in average, increases the duration of its portfolio to speculate on the leave outcome and

25Reportedly, major hedge funds ordered private opinion polls to generate an informational edge for
this bet and earned handsomely on those bets:

“Behind the scenes, a small group of people had a secret – and billions of dollars were at stake. Hedge
funds aiming to win big from trades that day had hired YouGov and at least five other polling companies
[...]. Their services, on the day and in the days leading up to the vote, varied, but pollsters sold hedge
funds critical, advance information, including data that would have been illegal for them to give the public.
Some hedge funds gained confidence, through private exit polls, that most Britons had voted to leave the
EU, or that the vote was far closer than the public believed – knowledge pollsters provided while voting
was still underway and hours ahead of official tallies.” ( “The Brexit Short: How Hedge Funds Used Private
Polls to Make Millions”, Bloomberg Businessweek, 25th June, 2018)
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when the yield curve eventually drops, they should overperform the others.
To verify this hypothesis, we group all those private clients who traded on the referen-

dum day 23 June into two groups based on how many dealers they traded with compared
to their average daily dealer connections during the whole sample (2011 Oct – 2017 Jun).
We end up with a total of 131 clients who traded on the day of the referendum. The
5-day trading performance of connected clients were about 0.5bp on average compared
to -0.15bp of unconnected clients. While connected clients had a larger average trading
volume than unconnected (£39m compared to £18m), the major difference between the
client groups is in the direction and magnitude of the duration purchased: connected cli-
ents on average bought £121m of duration whereas unconnected clients sold an average
£0.2m on 23 June.

To illustrate these facts visually, panels (a) and (b) of Figure 5 show the total duration
and cumulative performance of the two groups in the days around the vote. While
this episode is intuitive, note that the differences in performance of the high- and low-
connection groups might come from other, unobserved heterogeneity in these two groups.
Indeed, it is quite likely that the traders who decide to bet on the outcome of the Brexit
vote are very different from those institutions that decide to cut back their exposure in
this volatile period. Also, this particular episode might be special. Hence we turn to
systematic evidence next where we can include client- and time- fixed effects as well as
additional controls to decompose the different forces at play.

Connections During Informationally Intensive Periods To further test whether
connections proxy fundamental private information, we divide our sample into periods
with more or less fundamental information. A natural proxy for periods when funda-
mental private information is especially relevant are trading days that coincide with the
release of macroeconomic news.

Macroeconomic news hit markets almost constantly, some of which may contain very
little surprise component or little relevance to affecting prices. It is therefore important
to identify trading days where macroeconomic news truly surprised markets and moved
prices non-trivially. To do so, we build on the high-frequency methodology of Swanson
and Williams (2014a,b) to identify the surprise components of macroeconomic announce-
ments and their effects on bond prices.26 We sort trading days into two groups depending

26Our dataset is obtained from colleagues from the Bank of England (building on Eguren-Martin and
McLaren (2015)). The method uses historical tick data to compute the change in the 3-year interest rate
in a tight window (five minutes before and five minutes after) around the release of both nominal and
real news from both the UK and the US.
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Figure 5: Connections and Performance around the Brexit Referendum

(a) Cumulative Daily Net Duration of High and Low Connection Clients

(b) Cumulative Returns of High and Low Connection Clients
Notes: In Panel a, the black squared line depicts the evolution of the cumulative duration-weighted net position (in
£billions) of those 66 clients that have more dealer-connections on the day of the referendum than their sample average.
The grey diamond line shows the result for those 65 clients that have low within-connectedness on the day of the referendum.
In Panel b, the black squared (gray diamon) line depicts the cumulative average returns (in %) of high-connection (low-
connection) clients. The average returns for both groups are weighted by the individual clients’ daily trading volume. The
returns are computed using the closing price on 29 June 2016 as the reference price.

on whether the magnitude of the macroeconomic surprise on the given day was smaller
or bigger than the sample average.

We then re-estimate a variant of our baseline model 4.1, where we interact connections
with an indicator variable for small and big macroeconomic news days. Importantly, we
lead the indicator variable by one period, thereby asking whether connections matter
more for performance ahead of big macroeconomic shocks. Thereby we test whether the
information proxied by connections has predictive power of future macroeconomic news.27

27In the previous version of our paper (Kondor and Pinter, 2019) we also document that the relationship
between connections and trading performance is stronger during the contemporaneous release of monetary
news, consistent with some market participants having an advantage at processing the newly arrived
information (Kandel and Pearson, 1995; Pasquariello and Vega, 2007).
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Figure 6: Connections and Performance over 1-20 Day Horizons: Before Macroeconomic
Surprises
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Notes: this figure plots the estimated β coefficients from variant of regression 4.1 up to 20-day horizon (T = 20), where we
interact connections with an indicator variable for days before small and large macroeconomic surprises. The construction
of surprises follows the methodology of Swanson and Williams (2014a,b). We restrict the sample to more sophisticated
investors, and include as a control the natural logarithm of the pound trade volume of each client (“Volume”) and the
natural logarithm of the number of daily transactions (“Transactions”). To reduce noise, we winsorise the sample at the
1%-level and use client-day observations that are based on more than two daily transactions. The shaded area denotes
the 90% confidence band associated with the estimated β coefficients, It is based on robust standard errors, using two-way
clustering at the day and the client level.

Figure 6 shows that the effect of connections of more sophisticated clients on their trading
performance is stronger, more significant and more persistent before big macroeconomic
surprises compared to days before small surprises.

Next, we study the possibility that clients’ connections may also proxy private in-
formation about future orderflow.

6.2.2 Connections as a Proxy of Information on the Price Impact of Future
Orderflow

Our starting point is the empirical literature (Fleming and Remolona 1999; Evans and
Lyons 2002; Brandt and Kavajecz 2004; Menkveld, Sarkar, and van der Wel 2012) on
the role of orderflow in driving prices in various dealer markets. As orderflow has a price
impact, private information about future orderflow can be used profitably. In this part,
we study the possibility that connections are the proxy for such private information.
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First, we propose a measure of co-movement of the composition of client’s orders with
the future aggregate orderflow of a given group of clients. The idea is that whenever this
measure is positive, the client, intentionally or by chance, is effectively front-running that
group of clients. We test whether this measure identifies profitable trades. We indeed
find that whenever the duration composition of a client’s trade is similar to that of all
the other clients in subsequent days, her performance is higher. Second, we connect
our baseline results to orderflow information: we show that whenever a client is more
connected, the composition of her trades tend to be more similar to the group of clients
in subsequent days who are served by the same dealer. We also show that a client who
is a regular counterparty of the given dealer can predict the composition of the orderflow
better. This raises the possibility that dealers have a role in disseminating orderflow
information towards their own, regular clients.

Measuring Co-movement between Client Trades and Future Orderflow Our
proposed measure aims to capture whether a client trades in the same direction as other
clients in the subsequent trading days. First, we partition all transactions in K equal-
sized segments based on the modified duration of all traded gilts. We then compute
the net trading position of client i, on day t, in duration segment k, Wi,t,k.28 We then
calculate the cumulative net trading position of group g between days t+ 1 and t+ T in
duration segment k, denoted by W g

t+T,k. The identity of group g will play an important
role in section 6.2.2 where we identify the group whose orderflow connected clients can
forecast. For now, we set g for the group of all the clients in the market. Our daily
covariance measure, ΨT,g

i,t , is then computed as follows:

ΨT,g
i,t = 1

K

K∑
k=1

(
Wi,t,k −

1
K

K∑
k=1

Wi,t,k

)(
W g
t+T,k −

1
K

K∑
k=1

W g
t+T,k

)
. (6.3)

When ΨT,g
i,t is high, the given client tends to concentrate her orders in the same segment

as group g in the subsequent T days.29

Given this measure, we first check whether it is profitable to guess right the segments
of the yield curve where future demand pressure will be concentrated. For each client i
we partition the trading days into two sets, indicated by the dummy variable DT,g

i,t , based
on whether ΨT,g

i,t for the given day is larger or smaller than the client-specific median in
28Clients’ net positions correspond to their orderflow in this market, as client-dealer trades are initiated

by clients.
29Our working paper (Kondor and Pinter, 2019) provides a visual illustration of this measure.
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the full sample. Then we estimate the following regression:

PerformanceTi,t = γ ×DT,g
i,t + αi + µt + εi,t, (6.4)

where PerformanceTi,t is our baseline performance measure (3.1). Table 8 summarises
the results. Panel A shows the results when the covariance measure uses the cumulative
orderflow of the market (g = Total) at the 1-day horizon (columns 1-2) and 5-day horizon
(columns 3-4). For the latter, we compute the turnover-weighted performance measures
at the 1- and 3-day horizons. For the former, we compute performance at the 5- and
7-day horizons. We find that the trading performance of a client can be 2-3bp higher
on high covariance days, i.e. predicting the orderflow of the market is profitable. Panel
B shows the results when the covariance measure uses the cumulative orderflow of the
subset of the market that is intermediated by the dealers that the given client is connected
to (g = Own). We find that if a client can predict this subset of the aggregate orderflow,
it is still profitable with performance being 1-2bp higher on high covariance days.
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Table 8: Trading Performance on Days with High Covariance with Future Orderflow

1-day Covariance 5-day Covariance
1-day Perf. 3-day Perf. 5-day Perf. 7-day Perf.

(1) (2) (3) (4)
QT otal

i,t = 1 1.965*** 2.913*** 2.194*** 2.365***
(5.64) (5.35) (3.08) (2.82)

Volume
0.198* 0.307* 0.327 0.315
(1.70) (1.93) (1.61) (1.34)

Tran.
-0.456** -0.956*** -1.003*** -1.113**
(-1.97) (-3.01) (-2.93) (-2.41)

N 100311 100311 100040 100039
R2 0.059 0.058 0.058 0.057
Day FE Yes Yes Yes Yes
Client-Day FE Yes Yes Yes Yes

(a) Covariance with the Total Market Orderflow

1-day Covariance 5-day Covariance
1-day Perf. 3-day Perf. 5-day Perf. 7-day Perf.

(1) (2) (3) (4)
QOwn

i,t = 1 0.577** 0.993** 1.516*** 1.943***
(2.48) (2.55) (3.14) (3.77)

Volume
0.205* 0.317** 0.336* 0.321
(1.76) (1.98) (1.67) (1.38)

Tran.
-0.469** -0.978*** -1.027*** -1.133**
(-2.01) (-3.07) (-2.99) (-2.47)

N 100407 100407 100407 100406
R2 0.058 0.057 0.058 0.057
Day FE Yes Yes Yes Yes
Client*Year FE Yes Yes Yes Yes

(b) Covariance with the Market Orderflow Intermediated by Own Dealers

Notes: panel A regresses the value-weighted trading performance at different time horizons on a dummy QT otal
i,t that takes

value 1 if on day t the orderflow of client i has a covariance (see measure 4.1) with the future orderflow of the market that
is higher than the median (based on all trading days of the given client). Panel B regresses performance at different time
horizons on a dummy QOwn

i,t that takes value 1 if on day t the orderflow of client i has a covariance (see measure 4.1) with
the future orderflow of its own dealers that is higher than the median (based on all trading days of the given client). Own
dealers (g = Own) are the ones that the client traded with on the day of the trade (for which the trading performance
is calculated) as well as during the past 10 trading days. The transaction-level data is collapsed at the client-day level.
The performance measures are in %-points. We include as a control the natural logarithm of the pound trade volume
of each client (“Volume”) and the natural logarithm of the number of daily transactions (“Tran.”). To reduce noise, we
winsorise the sample at the 1%-level and use day-client observations that are based on more than two transactions in the
day. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and the client
level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table 9: Client Connectivity and Covariance with the Orderflow

Regular Connections Non-Regular Connections
1-day Covariance 5-day Covariance 1-day Covariance 5-day Covariance

(1) (2) (3) (4)
Client 0.0046*** 0.0037** -0.0006 -0.0022
Connections (2.59) (2.57) (-0.41) (-1.40)

Volume
0.0011 0.0024 0.0047** 0.0046**
(0.61) (1.39) (2.14) (2.27)

Tran.
0.0058 0.0018 0.0009 0.0029
(1.28) (0.37) (0.20) (0.67)

N 100407 100407 100407 100407
R2 0.051 0.054 0.038 0.040
Day FE Yes Yes Yes Yes
Client*Year FE Yes Yes Yes Yes

Notes: this table regresses different versions of the covariance measure 6.3 on our connectivity measure and controls (6.5).
The transaction-level data is collapsed at the client-day level. The performance measures are in basis points. We include
as a control the natural logarithm of the pound trade volume of each client (“Volume”) and the natural logarithm of
the number of day transactions (“Tran.”). To reduce noise, we winsorise the sample at the 1%-level and use day-client
observations that are based on more than two transactions on the day. T-statistics in parentheses are based on robust
standard errors, using two-way clustering at the day and the client level. Asterisks denote significance levels (* p<0.1, **
p<0.05, *** p<0.01).

Connected Clients Predict the Orderflow Let us return to our baseline result that
the time-variation in a client’s number of connections is a proxy for her level of private
information. In this section, we provide evidence that this private information is, at least
partially, on the duration composition of the future orderflow of certain group of other
clients, as measured by our covariance measure 6.3. In this case, we expect that the
covariance measure of a given client on a given day tends to be higher when this client is
more connected. Hence, we estimate the following panel regression:

DT,g
i,t = φ× ClientConnectionsi,t +Xi,t + αi + µt + εi,t, (6.5)

where the terms on the right-hand-side are identical to our baseline specification 4.1.
Table 9 shows the results after decomposing the aggregate orderflow into the part that

is intermediated through the dealers which a given client is connected to (g = Regular)
and into the part that goes through all the other dealers that the given client does not have
a regular relationships with (g = Non−Regular). We regard a client-dealer connection
regular if the client traded with the given dealer on the given trading day as well as
over the previous two weeks. The complement of this set includes relationships that are
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non-regular.30

We find (Columns 1-2) that it is the covariance with Regular dealer orderflow that
correlates with the client’s connectivity, and the effects for Non − Regular dealer or-
derflow are economically and statistically insignificant (Columns 3-4). Specifically, we
find having one additional dealer connection increases the probability that the client is
in a high covariance day by about 0.4%. Our interpretation is that dealers, intentionally
or unintentionally, disseminate information about future orders towards (some of) their
clients. We have little evidence on the exact mechanism. In principle, dealers’ private
information on their clients expected orders in the subsequent days might be revealed ac-
cidentally by the dealers’ quotes. Or it might be that there is an intentional information
flow from dealers to their best clients helping dealers to keep these clients as suggested
by (Maggio, Kermani, and Song, 2017).

Note also that our quantitative findings suggest that this channel explains only a frac-
tion of our baseline effect in Table 2. In our baseline, one additional dealer increases the
client’s 5-day performance with approximately 0.5 basis-points. This is to compare with
the 0.004 × 1.5 = 0.006 basis-points for the 0.4% larger probability of a high covariance
day with the clients’ own dealer 5-day orderflow, and the 1.5 basis-point higher perform-
ance on these high covariance days. Whether this is due to our imperfect measurement
of orderflow information or due to the importance of fundamental private information
should be subject to future research.

7 Robustness

Our baseline performance measure used daily average %-returns weighted by the size of
each transaction. To show that our baseline is not driven by this weighting scheme, Table
10 in Appendix re-estimates our baseline model using unweighted performance measures
– the results are very similar to our baseline (Table 2).

As a candidate for informationally intensive periods, we used the surprise component
in the release of macroeconomic news. As an alternative classification, we also experi-
mented by sorting trading days into two groups based on realised price volatility, measured
by the daily dispersion of transaction prices (Jankowitsch, Nashikkar, and Subrahman-

30Note that, by the additivity of covariance, our measure is additive in the following sense:

Y CT,T otal
i,t = Y CT,Regular

i,t + Y CT,Non−Regular
i,t . (6.6)

This property helps the interpretation of our results.
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yam, 2011). Our motivation for this grouping is that days with high price dispersion
proxy for periods of higher market frictions, which may generate more profitable trading
opportunities for informed traders. We would therefore expect the relationship between
connections and performance to be more pronounced during these periods. Figure 9 in
Appendix shows the results for the more sophisticated investors up to the 20-day horizon.
We find that the effect of connections of sophisticated clients on their trading perform-
ance is stronger, more significant and more persistent on trading days with higher price
dispersion compared to days with low price dispersion.

Moreover, all the performance regressions so far were based on data at the client-day
level, as opposed to the client-month level. This is to measure the formation and the
dynamics of client-dealer connections accurately. This however may lead to problems of
oversampling those clients that trade very frequently, i.e. every day. The previous version
of our paper Kondor and Pinter (2019) conducted the analysis at the client-month level,
and we obtained similar results.

8 Summary and Conclusion

Our paper provided evidence from the UK government bond market that clients better
predict future price movements when they have more dealer connections compared to
periods when they have fewer connections. This effect is stronger around macroeconomic
announcements. We also showed that innovations in the slope and level of the yield curve
are associated with days of higher aggregate connections in the market. Based on these
findings, we argued that time-variation in client connections serves as an empirical proxy
for time-variation in private information. We also presented two applications using this
proxy. We found evidence suggesting that dealers leak the information deduced from their
client base to their affiliates. We also established that part of the private information
identified by connections is related to the maturity structure of the orderflow the given
client’s dealer is receiving in subsequent days.

These results have several implications. First, our results highlight the relevance of
financial network formation to the price discovery process in government bond markets.
While the literature has extensively studied the role of private information and aggregate
orderflow in determining yield curve dynamics, we find that a better understanding of
the network structure can sharpen our understanding of the price discovery process in
these markets. Second, while a number of recent papers have studied the core-periphery
structure of OTC markets (primarily focusing on the cross-sectional characteristics of
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dealer-client relationships), our results emphasize the dynamic and endogenous nature of
networks. Third, slow trade execution is often regarded as optimal because it minimizes
price impact, thereby helping to hide private information (Kyle, 1985). We find that
trade execution with multiple primary dealers could serve a similar purpose, suggesting
that splitting trades over time and across dealers may be substitutable.

We expect that our insights go beyond treasury markets (as confirmed by a follow-up
paper by Czech and Pinter (2020) on the UK corporate bond market), even if it might
not be present in all segments of financial markets.

Conceptually, clients are motivated to hide their information by trading with more
counterparties in any market where multiple-leg strategies are the norm. This is so,
because in this case the trader’s individual trades cannot reveal her strategic position,
only her portfolio would. Arguably, this is the case in treasury markets where positions
on the change of the yield curve consists of long-short positions over multiple durations.
This can also be the case in any other markets where traders aim to profit from the
relative mispricing of multiple assets. For instance, in the stock market agents might
identify stocks with different prices which load on similar risk factors, or in derivative
markets agents might profit from complex replicating strategies. However, our insight
is less potent when the main element of a strategy is a position in a single asset. For
instance, when stock pickers identify a single mispriced stock, trading small amounts with
many counterparties might even lead to a faster revelation of their information compared
to trading a large amount with a single counterparty.

A clear caveat of our approach is that to calculate clients’ connections, a detailed,
transaction level data-set, including the identities of market participants, is required.
As the trend seems to be that such data-sets are becoming increasingly accessible to
the academic community, we expect that our approach opens up new avenues to better
understand the role of private information in financial markets.
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Internet Appendix

A Theory

A.1 Connections and Private information

Consider many periods of trading indexed by t and informed clients indexed by i. The
end-of-period liquidation value of the asset is Vt = µt + ρVt−1 + εt where µt is a known
drift term, while εt is either 0 or 1 with equal probability, and independent across periods.
The innovation, εt, becomes public information at the end of the period and all positions
are liquidated at the closing price Vt.

Note that the process of Vt can incorporate different interpretations.

1. We can think of Vt as the fundamental value of the asset, perhaps specifying the
process as a simple random walk (ρ = 1, µt = 0). Then, εt is a fundamental
innovation, and a signal on εt is private fundamental information..

2. Alternatively, we might assume that the fundamental value of the asset is known,
but the end-of-period liquidation value, Vt is affected by demand or supply pressure.
Perhaps some large liquidity traders tend to submit large orders at the end of the
period and dealers need a premium for holding those risky positions betwen periods.
For instance, if we rewrite the process as

Vt − Vt−1 = (ρ− 1)
(
Vt−1 −

(
−µt
ρ− 1

))
+ εt

choosing ρ − 1 > 0, and µt < 0, gives a Vt which tends to revert to −µt

1−ρ , the
fundamental value. Then, εt is innovation in demand pressure and a signal on εt is
private information on future order flow.

In any case, we assume that during the period informed clients with a signal on εt,
noise traders, and market makers trade determining the mid-period transaction prices
Pit. The objective of clients is to maximize their trading profit xit (Vt − Pit) each period
by choosing to buy or sell one unit at the prevailing ask or bid prices respectively, i.e.,
choosing xit = {1,−1}. The trading protocol is a modified version of Glosten and Milgrom
(1985). Clients and noise traders seek bid and ask quotes from one or more risk neutral,
market maker (MM) in each period. Just as in Glosten and Milgrom (1985), we assume
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that MMs are competitive, hence, their quotes are determined by a zero expected profit
condition. Sampling quotes from more market makers might be costly.

To convey the intuition we focus on the simplest possible case. We consider four
potential MMs, m = Ri, N i serving two clients i = 1, 2. Client i is assigned to MMs
Ri, N i (for regular and potential new comer). We assume that client i’s signal, st = B, S

(for buy and sell) is informative:

Pr (εt = 1|st = B) = 1
2 + ∆ti

where ∆ti > 0 might vary across clients and time. ∆ti is observable to clients and has the
two point support of {∆L,∆H} with ∆H > ∆L. Before a client observes her signal, he
commits to a quote request function ρ (∆ti) : {∆L,∆H} → {Ri, (Ri, N i)} which describes
the states when dealer i requests quotes from one or both dealers. The cost of the earlier
is normalized to 0, while requesting two sets of quotes costs c. We think of c as a non-
observable, non-pecuniary cost. It is a reduced form treatment to capture a search cost,
or the reputation cost coming from the unmodelled future punishment from the dealer
who provided a quote but did not received the trade. Importantly, client i is present in
the market at t with only probability (1− α). Even if the client requests two sets of bid
and ask prices, eventually, she can trade only with one of the dealers. After observing
the bids and asks she decides whether to buy or sell at one of those prices. Whenever
client i is not requesting quotes from a given MM assigned to her, regardless it is by
choice or because she is not present at that period, a noise trader requests quotes instead
and buys or sells with equal probability. Therefore, MMs receive exactly one request for
quotes in any given period, but might or might not trade. We assume that MMs observe
∆it of their assigned client, but they do not observe whether she is present at the given
period. That is, they cannot observe whether a quote request comes from client i or a
noise trader. After trading, positions are liquidated at the realised true value Vt.

The following Proposition characterizes the equilibrium in this stage game. The client
requests two quotes if and only if her information is sufficiently precise. In that case, she
gets identical quotes and trades with each of the MMs with equal probability. The
intuition relies on a simple idea. For fixed parameters, when the client i asks a quote
only from Ri, Ri trades with an informed dealer with probability (1− α) , while N i trades
with only noise traders. Therefore, the bid-ask spread provided by Ri is relatively wide,
while the bid ask spread provided by N i is zero. When i asks a quote from both MMs
and trades with only one of them randomly, Ri faces with an informed dealer with a
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probability (1− α) π only, where π is the mixing probability. Therefore, she will give
better quotes to the client. In equilibrium, π has to adjust in a way that N i wants to give
identical quotes to Ri. Therefore, mixing between two dealers helps the client to hide his
information better implying more favourable transaction prices. At the same time asking
for two sets of quotes is costly. Hence, the client chooses to do so if and only if ∆ti is
sufficiently high.

Proposition 1 Let
∆̄ = (α + 1)

α (1− α)c

be within the support of ∆ti.

1. If ∆ti < ∆̄, the informed trader i trades only with Ri and the equilibrium bid ask
quotes are

AR
i

t

(
∆ti < ∆̄

)
= µt + ρVt−1 + 1

2 + ∆ti (1− α)

BRi

t

(
∆ti < ∆̄

)
= µt + ρVt−1 + 1

2 −∆ti (1− α)

AN
i

t

(
∆ti < ∆̄

)
= BN

(
∆ti < ∆̄

)
= µt + ρVt−1 + 1

2 .

2. If ∆ti > ∆̄, the informed trader i seeks quotes from both MM and trades with each
with equal probability. The equilibrium bid ask quotes are

AR
i

t

(
∆ti > ∆̄

)
= AN

i

t

(
∆ti > ∆̄

)
= µt + ρVt−1 + 1

2 + ∆ti
(1− α)
1 + α

B
iR
t

(
∆ti > ∆̄

)
= BN i

t

(
∆ti > ∆̄

)
= µt + ρVt−1 + 1

2 −∆ti
(1− α)
1 + α

.

Proof. The quotes are derived by Bayes Rule. For example, the ask price provided by
Ri to i when the MM understands that i trades with him with probability π = 1 i

E (Vt−1 + εt| observing a buy in t, π = 1) = Vt−1 + 1
2 + ∆ti (1− α) .

When the trader observes quotes from both MMs, in equilibrium the two MMs has to
submit the same quotes given the mixed strategy of acceptance from the trader. For this,
the informed trader has to mix with probability half. In this case the ask price is given
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by

E
(
Vt−1 + εt| observing a buy in t, π = 1

2

)
= Vt−1 + 1

2 + ∆ti
(1− α)
1 + α

.

For a fixed ∆ti, the expected benefit of transacting at the more favourable prices implied
by mixing, π = 1

2 , is

ΣVt=0,1 Pr (εt|s = H,∆it)
((

εt −
(

1
2 + ∆it

(1− α)
1 + α

))
−
(
εt −

(1
2 −∆it (1− α)

)))
=

= ∆itα
1− α
α + 1 ,

which is increasing in ∆ti. The indifference condition given cost c determines ∆̄.
To picture the implied time-series and cross-sectional evaluation of prices and trades,

we assume that for each client i, this subgame is repeated in many time-periods. These
games are independent from each other because all random variables are redrawn in
each period and because the MMs are disjunct across the two clients. Suppose that
∆H > ∆̄ > ∆L. The correlation structure across time and clients in ∆ti can be arbitrary.

To see the implications, it is useful to compare implied profits of clients in the two
states. (Because of symmetry, it is sufficient to calculate the implied expected profit
conditional on a signal s = B.)

Π (∆H) = ΣVt=0,1 Pr (εt|s = B,∆H)
(
εt −

(
1
2 + ∆H

(1− α)
1 + α

))
= 2α ∆H

α + 1

Π (∆L) = ΣVt=0,1 Pr (εt|s = B,∆L)
(
εt −

(1
2 −∆L (1− α)

))
= α∆L.

Clearly,
Π (∆H)− Π (∆L) = α

(1− α
α + 1∆H + (∆H −∆L)

)
> 0

for any parameter values. Note also, that Π (∆H) − Π (∆L) is increasing in ∆H and in
(∆H −∆L) .

Consider an interval with multiple, say, D, periods. Within this interval, in each
period when ∆it = ∆L, client i trades with only Ri with probability 1. In each period
when ∆it = ∆H , with probability 1

2 she trades with N i. Hence, if ξiD is a counting process
for the periods with ∆it = ∆H within D, then the expected number of connections of
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i within interval D is 1 + ξiD

2 , an increasing function of ξiD. That is, the number of
connections within an interval is a proxy for the number of periods with an interval where
the information precision of the client is ∆H . These observations give the Hypotheses 1
and 3.

For later use, note that aggregating connections over clients in a given interval D is a
proxy for the total private information present in the market.

Next, observe that the difference in the trading profit across ∆it = ∆H and ∆it =
∆L comes from two sources: the change in probability that the client trades the right
direction, and the change in the transaction price. On one hand, the probability that
client i is trading at the right direction, buying before the price moves up and selling before
the price moves down, is 1

2 + ∆ti, an increasing function of ∆ti. This gives Hypothesis2,
which we refer to in the text as the anticipation component.

On the other hand, the transaction price can be more or less favorable when ∆it = ∆H .

In particular, if and only if
∆H

∆L

< 1 + α,

a client buys (sells) at a lower (higher) price when she is more informed. This relationship
drives the sign of the relationship between connections and the transaction component
defined in the text. The reason for the ambiguous result is that the client’s ability to
hide its higher quality signal better by trading with more dealers is limited. When

1 + α <
∆H

∆L

, (A.1)

then a client with higher information precision mixing between the two dealers gets a
less favourable price then the client with the lower information precision who trades with
one dealer only. Of course, the high precision client’s price is still more favourable than
if she were to trade with her regular dealer only. Otherwise, there would be profitable
deviation in equilibrium.

Finally, we turn to price discovery. For this, we calculate the expected average trans-
action price when the innovation is εt = 1 in each possible scenarios with respect to
the type of traders arriving. First, when both traders have high precision signals, both
request quotes from both of their assigned MMs, but they trade only at one of those
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quotes. The average transaction price is

E
(
P1t + P2t

2 |εt = 1,∆H ,∆H

)
=

= Vt−1 +
(1

2 + ∆H

)(1
2 + ∆H

)((1
2 + ∆H

(1− α)
1 + α

))
+

(1
2 −∆H

)(1
2 −∆H

)((1
2 −∆H

(1− α)
1 + α

))
+ 2

(1
2 + ∆H

)(1
2 −∆H

)(1
2

)

= Vt−1 + 1
2 + 2∆2

H (1− α)
α + 1 .

If both clients have low precision signals, each requests quotes only from Ri and N i trades
with liquidity traders at price Vt−1 + 1

2 . That is, the average transaction price is:

E
(
P1t(R1)+P2t(R2)+P1t(N1)+P2t(N2)

4 |εt = 1,∆L,∆L

)
=

= Vt−1 +
(1

2 + ∆L

)(1
2 + ∆L

)(1
2

(1
2 + ∆L (1− α)

)
+ 1

2
1
2

)
+
(1

2 −∆L

)(1
2 −∆L

)(1
2

(1
2 −∆L (1− α)

)
+ 1

2
1
2

)
+ 2

(1
2 + ∆L

)(1
2 −∆L

)(1
2

)
= Vt−1 + 1

2 + (1− α) ∆2
L.

Following similar calculations, when the first client has low precision, while the second
one has high precision, the average price is:

E
(
P1t(R1)+P1t(N1)+P1t

3 |εt = 1,∆L,∆H

)
= Vt−1 + 1

2 + 2
3 (1− α)

(
∆2
H

α + 1 + ∆2
L

)
.

Also, we get the expected average price for the case when at least one of the clients is
not present (which we denote by �), hence replaced by two noise traders:

E
(
P1t(R1)+P1t(N1)+P2t(R2)+P2t(N2)

4 |εt = 1,�,�
)

= Vt−1 + 1
2

E
(
P1t(R1)+P1t(N1)+P2t(R2)+P2t(N2)

4 |εt = 1,�,∆L

)
= Vt−1 + 1

2 + 1
2∆2

L (1− α)

E
(
P1t(R1)+P1t(N1)+P2t

3 |εt = 1,�,∆H

)
= Vt−1 + 1

2 + 1
2∆2

H

1− α
α + 1 .
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It is easy to check that

E
(
P1t(R1)+P1t(N1)+P2t(R2)+P2t(N2)

4 |εt = 1,�,∆L

)
<

E
(
P1t(R1)+P1t(N1)+P2t

3 |εt = 1,�,∆H

)
, E

(
P1t(R1)+P2t(R2)+P1t(N1)+P2t(N2)

4 |εt = 1,∆L,∆L

)

E
(
P1t(R1)+P1t(N1)+P2t

3 |εt = 1,�,∆H

)
, E

(
P1t(R1)+P2t(R2)+P1t(N1)+P2t(N2)

4 |εt = 1,∆L,∆L

)
<

E
(
P1t(R1)+P1t(N1)+P1t

3 |εt = 1,∆L,∆H

)
< E

(
P1t+P2t

2 |εt = 1,∆H ,∆H

)
.

Recall that aggregate connections ΣiξiD is increasing in the fraction of high precision
clients in the market. Therefore, with the caveat that the comparison ofE

(
P1t(R1)+P1t(N1)+P2t

3 |εt = 1,�,∆H

)
and E

(
P1t(R1)+P2t(R2)+P1t(N1)+P2t(N2)

4 |εt = 1,∆L,∆L

)
depends on the parameters, we

form Hypothesis 4.

A.2 Connections and Persistent Demand Shocks

Consider 3 days of trading indexed by t = 1, 2, 3. There are two dealers in each period
are present in the market, standing ready to trade and indexed by i = 1, 2. Also, on each
of dates t = 1, 2 a risk-neutral liquidity trader arrives with a fixed negative demand of 1
or 2 units of the asset, dt = {1, 2}. In particular, the first trader has to sell one or two
units with equal probability, while the second trader has to sell the same number of units
as the first with probability π > 1

2 . We summarize the resulting distribution as follows:

(d1, d2) −1 −2
1 1

2π
1
2 (1− π)

2 1
2 (1− π) 1

2π

Liquidity traders cannot choose the amount or direction of their total demand. How-
ever, they can choose whether to sell all their required units from one of the dealers,
or share their trades across the two dealers. Asking for quotes from two dealers has an
extra cost. The idea is that each trader has a regular dealer, while they do not have a
relationship with the other one. Therefore, obtaining a quote from only one is free, but
from both requires a non-pecuniary cost of effort of c. At date t = 3, the fundamental
value of the asset V is realized. V is 0 or 1 with equal probability. As a result, at that
point any dealer holding any position off-loads that asset at the true value V.
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The trading protocol is as follows. A trader arriving in period t with demand dt can
contact her own dealer for free and signal that she would like to trade at1 = d1. The
dealer responds with a firm price quote pit. The client can accept, and trade accordingly,
or reject. If she rejects she pays the cost c and gives a take-it-or-leave it offers to both
dealers in a form of a quantity price pair (ati, pti) where at1 + at2 = dt.

Each dealer is risk-averse with a standard, concave utility function over final wealth
u (W3i)

W3i(a1i, a2i, p1i, p2i) ≡ eM + (ei + a1i + a2i)V − a1ip1i − a2ip2i,

where eM is a monetary endowment, while ei is existing inventory of the asset.
Dealers’ equilibrium holdings a∗1i(d1), a∗2i(d1, d2),∈ [0, 2] depend on the state d1, d2 and

whether clients share their demand across the two dealers. As u(·) is concave, the dealer
asks larger premium for holding larger positions, implying that the equilibrium prices are
decreasing in equilibrium quantities a∗ti.

We are looking for parameters, ei, ej, π, c that in equilibrium the trader shares her
demand if and only if dt = 2. That is, we guess and verify that in any period with dt = 1,
dealer 1 fully absorbs the demand shock of the arriving client. She will do so at the lowest
price which still deters the entry of dealer 2. In contrast, in any period dt = 2, the two
dealers share the demand shock at an allocation and price which leads to zero surplus
to both of them by the logic of Bertrand competition. Now we derive the equilibrium
conditions.

Whenever dt = 1 only the first dealer trades,

a∗11(1) = a∗21(d1, 1) = 1, a∗12(1) = a∗22(d1, 1) = 0.

It is easy to see that the corresponding prices are determined by the minimal prices at
which the client is deterred from searching for a quote from the second dealer. That is,
p∗11(1) = pmin

1 , p∗21(d1, 1) = pmin
2i (d1) where

pmin
1 ≡ {p12 : EV,d2 [u′ (eM + (e2 + a∗22(1, d2))V − a∗22(1, d2)p∗22(1, d2)) (V − p12)] = 0}+ c,

and

pmin
2 (d1) ≡ {p22 : EV (u′ ((eM + e2 + a∗12(d1))V − a∗12(d1)p∗12(d1)) (V − p22)) = 0}+ c.

Note that if dealer 1 were to quote higher prices than pmin
t , dealer 2 would be willing
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to buy a small quantity at a price which would be profitalbe to seek out for the client
even taking into account the cost c.

A further equilibrium condition is that the resulting prices p∗11(1), p∗21(d1, 1) are suffi-
ciently low that dealer 1 is willing to participate. That is,

EV,d2 [W3i(a∗11(1), a∗21(1, d2), p∗11(1), p∗2i(1, d2)) ≥ EV,d2 [W3i(0, a∗21(1, d2), p∗11(1), p∗2i(1, d2))(A.2)

EV [W3i(a∗11(d1), a∗21(d1, 1), p∗11(d1), p∗2i(d1, 1)) ≥ EV [W3i(a∗11(d1), 0, p∗11(d1), p∗2i(d1, 1)).(A.3)

If a client decides to share her demand shock across the two dealers, the two dealers
are effectively in a Bertrand competition. Starting with the second period, demand
a∗21 (d1, 2)=2-a∗22 (d1, 2) and price p∗21 (d1, 2) = p∗21 (d1, 2)= p2 has to solve

max
a21∈[0,2],p2

p2

EV ((u (eM + (e1 + a∗11 (d1) + a21)V − a∗11 (d1) p∗11 (d1)− a2ip2))) ≥

E ((u (eM + (ei + a∗11 (d1))V − a∗11 (d1) p∗11 (d1))))

EV ((u (eM + (e2 + (2− a∗11 (d1)) + (2− a21))V − (2− a∗11 (d1)) p∗11 (d1)− (2− a21) p2))) ≥

E ((u (eM + (e2 + (2− a∗11 (d1)) +)V − (2− a∗11 (d1)) p∗11 (d1)))) . (A.4)

Similarly, in the first period, taking the solution of problem (A.4) as given, the price
p∗11 (d1) = p∗12 (d1) = p1 and the quantities a∗11 (d1) = 2 − a∗12 (d1) , have to solve the
following problem:

max
a11∈[0,2],p1

p1

EV,d2 ((u (eM + (e1 + a11 + a∗21 (d1, d2))V − a11p1 − a∗21 (d1, d2) p∗21 (d1, d2)))) ≥

EV,d2 ((u (eM + (ei + a∗21 (d1, d2))V − a∗21 (d1, 2) p∗22 (d1, d2))))

EV,d2 ((u (eM + (e2 + (2− a11) + (2− a∗21 (d1, d2)))V − (2− a11) p1 − (2− a∗21 (d1, 2)) p∗22 (d1, d2)))) ≥

EV,d2 ((u (eM + (e2 + (2− a∗21 (d1, d2)))V − (2− a∗21 (d1, d2)) p∗22 (d1, d2)))). (A.5)

The inequalities in each of these problems are the participation constraints of the two
dealers. In an interior solution both participation constraints will bind.

Discussion If π is sufficiently large, the realization of d1is the same as d2 most of the
time. When both demand shocks are low, clients trade only with their own dealer, that
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Figure 7: The price and the expected price in each period, for small (left panel) and
large (right panel) cost of contacting a second dealer. In each panel, we show the price
path when both demand shock is small (dt = 1, thick red solid) hence both clients have a
single connection, and when both demand shocks are large (dt = 2, thin blue solid) hence
both clients have two connections. To calculate the expected profit for a connected and
unconnected client 1, we also show the expected prices in period 1 in each of the cases
(dashed). Parameters are u (·) = ln (·) ,eM = 10, e1 = 0, e2 = 1, π = 0.8, c = 0.015 and
c = 0.02 in the left and right panels, respectively.

is, their connection is low. When both demand shocks are high, connections are high. To
see whether higher connections predict higher short-term returns, we have to compare
the price pattern in these two scenarios. The two panels of Figure show the result for
two sets of parameter values.

The left panel shows equilibrium prices when c is small, while the right panel shows
the same prices when c is larger. The thick, red curve corresponds to the case when
clients are not connected, because each experience a small demand shock. The thin, blue
curves correspond the case when both clients are connected as both experienced a large
demand shock. (The dashed curves show the period 2 expected price conditional on the
first demand shock.)

As clients are selling, each client makes a short-term gain (loss) if the price decreases
(increases) in the period after their entry. Clearly, client 1 makes a gain when connected,
and a loss when unconnected, under both of the parameter combinations. This is con-
sistent with the idea that connection is associated with higher profit. However, client 2
makes a loss in the short -term regardless of the parameter values or her connections. In
particular, in each of the cases represented in the figure, her loss is larger when connected.

Our empirical design corresponds comparing the short-term average return of client
1 and client 2 when both our connected to the case when both our unconnected. This
comparison depends on the parameters. For instance, under the parameters correspond-
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ing to the right panel, the average short-term return is higher when both clients are
unconnected ( -0.044 vs -0.446 ) while on the right panel the opposite is the case (-0.05
vs -0.044).

Note , that the average profit is negative in each case, consistently with the idea
that dealers are willing to absorb these shocks for a risk-premium, and clients trade for
liquidity reasons.

We also emphasize that the total amount of trades of a given client across all the
dealers is large exactly when their number of connections are large. That is, in this
economy connections are caused by larger demand shocks. As we argue in the main text,
this is a testable implication which we can reject in the data.
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B Additional Tables and Figures

Figure 8: Connections and Performance over 1-20 Day Horizons: High vs Low Volume
Days

(a) All Clients
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(b) Sophisticated Clients
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Notes: this figure plots the estimated β coefficients from variant of regression 4.1 up to 20-day horizon (T = 20), where we
interact connections with an indicator variable for days above (left panel) and below (right panel) the client’s average daily
trading volume. Panel 8a presents the results for all clients, and panel 8b restricts the sample to sophisticated investors. We
include as a control the natural logarithm of the pound trade volume of each client (“Volume”) and the natural logarithm
of the number of daily transactions (“Transactions”). To reduce noise, we winsorise the sample at the 1%-level and use
client-day observations that are based on more than two daily transactions. The shaded area denotes the 90% confidence
band associated with the estimated β coefficients, It is based on robust standard errors, using two-way clustering at the
day and the client level.
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Figure 9: Connections and Performance over 1-20 Day Horizons: During Periods of High
and Low Price Dispersion
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Notes: this figure plots the estimated β coefficients from variant of regression 4.1 up to 20-day horizon (T = 20), where
we interact connections with an indicator variable for high and low dispersion days. High (low) dispersion days are those
trading days where the daily price dispersion (Jankowitsch, Nashikkar, and Subrahmanyam, 2011) is in the highest (lowest)
tertile of our sample of trading days. We restrict the sample to sophisticated investors, and include as a control the natural
logarithm of the pound trade volume of each client (“Volume”) and the natural logarithm of the number of daily transactions
(“Transactions”). To reduce noise, we winsorise the sample at the 1%-level and use client-day observations that are based
on more than two daily transactions. The shaded area denotes the 90% confidence band associated with the estimated β
coefficients, It is based on robust standard errors, using two-way clustering at the day and the client level.
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Table 10: Client Connections and Trading Performance: Unweighted Performance Results

(1) (2) (3) (4) (5)
1-day 2-day 3-day 4-day 5-day

Client 0.185** 0.219** 0.296** 0.430*** 0.461***
Connections (2.16) (1.99) (2.16) (2.62) (2.82)

Volume
-0.027 0.027 0.044 0.081 0.008
(-0.28) (0.22) (0.30) (0.49) (0.05)

Tran.
-0.399 -0.577* -0.870** -1.082** -1.273***
(-1.61) (-1.77) (-2.28) (-2.52) (-2.68)

N 100414 100414 100414 100414 100414
R2 0.065 0.062 0.062 0.062 0.063
Day FE Yes Yes Yes Yes Yes
Client*Year FE Yes Yes Yes Yes Yes

(a) Trading Performance over 1-5 Days

(1) (2) (3)
Baseline Transaction Anticipation

Client 0.430*** 0.089*** 0.317**
Connections (2.62) (2.62) (1.99)

Volume
0.081 -0.096** 0.163
(0.49) (-2.56) (1.03)

Tran.
-1.082** -0.127 -0.913**
(-2.52) (-1.12) (-2.14)

N 100414 100348 100348
R2 0.062 0.152 0.060
Day FE Yes Yes Yes
Client*Year FE Yes Yes Yes

(b) Decomposing 4-day Performance: Transaction vs Anticipa-
tion Effect

Notes: panel A regresses the unweighted trading performance at different time horizons on client connections (4.1). The
transaction-level data is collapsed at the client-day level. The performance measures are in basis points. We include as a
control the natural logarithm of the pound trade volume of each client (“Volume”) and the natural logarithm of the number
of daily transactions (“Tran.”). To reduce noise, we winsorise the sample at the 1%-level and use client-day observations
that are based on more than two daily transactions. Panel B decomposes the 4-day performance effect into a transaction
component and an anticipation component (3.2). The results are based on the average transaction price P that uses the
trades (for the given gilt) in a 3-hour window within the transaction time. T-statistics in parentheses are based on robust
standard errors, using two-way clustering at the day and the client level. Asterisks denote significance levels (* p<0.1, **
p<0.05, *** p<0.01).
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Table 11: Decomposing 4-day Performance into Transaction and Anticipation Effect:
More vs Less Sophisticated Investors

(1) (2) (3) (4) (5) (6)
More Sophisticated Investors Less Sophisticated Investors

Baseline Transaction Anticipation Baseline Transaction Anticipation
Client 0.713*** 0.100* 0.603*** 0.038 0.096 -0.055
Connections (3.54) (1.95) (2.95) (0.16) (1.60) (-0.23)

Volume
0.161 -0.112 0.249 0.430* -0.051 0.461*
(0.68) (-1.36) (1.09) (1.80) (-0.64) (1.79)

Tran.
-1.712*** -0.149 -1.486** -0.662 -0.270 -0.363
(-2.82) (-0.89) (-2.53) (-1.10) (-1.55) (-0.55)

N 60694 60660 60660 39720 39688 39688
R2 0.066 0.102 0.063 0.083 0.132 0.082
Day FE Yes Yes Yes Yes Yes Yes
Client#Year FE Yes Yes Yes Yes Yes Yes

(a) Weighted Performance

(1) (2) (3) (4) (5) (6)
More Sophisticated Investors Less Sophisticated Investors

Baseline Transaction Anticipation Baseline Transaction Anticipation
Client 0.660*** 0.078* 0.557** -0.045 0.101* -0.166
Connections (2.96) (1.75) (2.57) (-0.21) (1.90) (-0.80)

Volume
-0.062 -0.135*** 0.064 0.287 -0.047 0.313
(-0.28) (-2.66) (0.31) (1.29) (-0.90) (1.38)

Tran.
-1.371** -0.012 -1.328** -0.436 -0.277 -0.100
(-2.29) (-0.09) (-2.28) (-0.69) (-1.65) (-0.16)

N 60694 60660 60660 39720 39688 39688
R2 0.070 0.151 0.067 0.092 0.185 0.089
Day FE Yes Yes Yes Yes Yes Yes
Client#Year FE Yes Yes Yes Yes Yes Yes

(b) Unweighted Performance
Notes: this table regresses the value-weighted (12a) and unweighted (12b) trading performance at the 4-day horizon, and
its transaction and anticipation components (3.2), on client connections (4.1). The transaction-level data is collapsed at
the client-day level. The performance measures are in basis points. We include as a control the natural logarithm of the
pound trade volume of each client (“Volume”) and the natural logarithm of the number of daily transactions (“Tran.”).
To reduce noise, we winsorise the sample at the 1%-level and use client-day observations that are based on more than two
transactions on the day. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the
client and day level. Columns 1-3 and columns 4-6 show the results for more sophisticated and less sophisticated clients,
respectively. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table 12: Summary Statistics of Dealers’ Affiliates – Client-Day Level

(1) (2) (3) (4) (5) (6)
Mean Median p10 p90 sd N

InfShare 0.41 0.39 0.03 0.84 0.29 20,901
First Order Connection 3.01 2.00 1.00 6.00 2.16 20,901
Transaction Number 18.30 9.00 1.00 49.00 26.30 20,901
Volume (£millions) 108.90 17.71 0.33 290.14 261.56 20,901
Number of Bonds Traded 7.41 6.00 1.00 15.00 6.09 20,901

Notes: This table reports summary statistics for the sample of of dealers’ affiliates (used in Section 6.1), covering 2011m10-
2017m6, that is collapsed at the client-day level.

Figure 10: InfShare and Performance of Dealers’ Affiliates over 1-20 Day Horizons
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Notes: this figure plots the estimated β coefficients from variant of regression 6.2 up to 20-day horizon (T = 20). We
include as a control the natural logarithm of the pound trade volume of each affiliate and each affiliate’s dealer, the natural
logarithm of the number of daily transactions of affiliate, the number of connections of each affiliate and each affiliate’s
dealer as well as the average InfShare of dealers that a given affiliate trades with. To reduce noise, we winsorise the
sample at the 1%-level. The shaded area denotes the 90% confidence band associated with the estimated β coefficients, It
is based on robust standard errors, using two-way clustering at the affiliate and the client level.
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C GEMM Exits: ‘Shocks’ to Clients’ Connections

C.1 Background

In our sample, there are two notable incidents of primary dealers ceasing their market
making functions. These exits of GEMMs can be used as plausibly exogenous shocks to
the connections of those client who traded with these dealers prior to their exits.

On 22 October 2015, it was announced that Credit Suisse would resign as GEMM,
which would take effect at the close of business of the following day (23 October). On
29 January 2016, it was announced that Societe General would stop acting as GEMM,
which would take effect on the following week (5 Feb). The Debt Management Office
cited high capital costs of maintaining stock of British government debt to trade as well
as tougher regulation since the Great Recession as reasons for these exits.

C.2 Empirical Analysis

We use these plausibly exogenous shocks to client connections to estimate the causal effect
of connections on trading performance using a differences-in-differences (DD) strategy
(Angrist and Prischke, 2009). First, we check whether connections of clients who traded
with dealers prior to their exits significantly changed after the dealers’ exits. We focus on
a 20-day period around the exit, i.e. the treated group γs includes clients who traded at
least once with the dealer during the 20 days prior to the given dealer’s exit. Specifically,
we estimate the following regression for each client i, group s and time period t:

Connectionsi,s,t = γs + λt + δDs,t + controlsi,s,t + εi,s,t, (C.1)

where γs takes value 1 for the treated group and 0 for the control group, λt takes value
1 for the post-treatment period and 0 for the pre-treatment period, Ds,t takes value 1
for the treated group during the post-treatment period and 0 otherwise, and controlsi,s,t
includes the log of trading volume and number of transactions of client i. The coefficient
of interest is δ, which captures whether the exit of the given GEMM caused a significant
drop in the number of dealer connections of the treated group of clients.

Table 13 shows that clients lose on average one dealer-connection after the given dealer
ceases to be a market maker in the gilt market.

Next, we test whether changes in connections, induced by exiting GEMMs, would
have an effect on the trading performance of clients. To do that, we use an instrumental
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Table 13: The Effect of GEMM Exit on Client’s Connections

δ -1.135**
(-2.23)

γs 1.996***
(5.25)

λt 0.122
(0.71)

Intensity 1.563***
(20.04)

Volume 0.297***
(8.71)

N 811
R2 0.678

Notes: This table shows the estimation results for regression C.1. The sample includes sophisticated clients only. T-
statistics in parentheses are based on robust standard errors. Asterisks denote significance levels (* p<0.1, ** p<0.05, ***
p<0.01).

variable strategy, and take the fitted values from equation C.1 to use it in the following
performance regression:

PerformanceTi,s,t = γs + λt + β × ˜Connectionsi,s,t + controlsi,s,t + εi,s,t, (C.2)

where β is the coefficient of interest, which reveals whether changes in connections, in-
duced by GEMM exits, would have an effect on trading performance among sophisticated
clients. Table 14 shows that there is a statistically insignificant relationship between con-
nections and trading performance.

Discussion and Caveats Our baseline result in the full sample shows that there is a
positive and significant relationship between trading performance and clients’ connection.
One possible explanation for this is that clients learn from their new connections, and this
newly acquired knowledge is reflected in increased trading performance. If this mechanism
is at at play, we would have expected the estimates for β in regression C.2 to be positive
and significant.

While this non-result is suggestive that this mechanism is not what is driving the
main result of our paper, we acknowledge that this non-result comes from a rather weak
test: there are only two data points in our sample for GEMM exits, so the plausibly
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Table 14: GEMM Exit, Connections and Trading Performance

(1) (2) (3) (4) (5) (6)
0-day 1-day 2-day 3-day 4-day 5-day

Connections -1.444 -5.685 -4.647 -4.804 -9.889 -12.812
(-0.67) (-1.28) (-0.81) (-0.85) (-1.31) (-1.39)

Intensity 3.127 9.956 7.424 9.299 16.762 20.067
(0.93) (1.43) (0.82) (1.05) (1.41) (1.38)

Volume 0.626 1.575 1.698 1.043 2.440 4.188
(0.94) (1.14) (0.95) (0.59) (1.04) (1.45)

N 811 811 811 811 811 811
F-stat 7.431 7.431 7.431 7.431 7.431 7.431

Notes: This table shows the instrumental-variable estimation results for regression C.2. The sample includes sophisticated
clients only. T-statistics in parentheses are based on robust standard errors. Asterisks denote significance levels (* p<0.1,
** p<0.05, *** p<0.01). The F-statistics denotes the Cragg-Donald Wald F statistic.

exogenous variation in clients’ connections is rather limited. Also, the two dealers who
exited are rather peripheral in the dealer network, so the learning mechanism may be
much weaker in these cases compared to more central and larger dealers (whose exit we
do not observe).
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