WHAT DO FINANCIAL MARKETS SAY ABOUT THE EXCHANGE RATE?

Mikhail Chernov UCLA, CEPR & NBER Valentin Haddad UCLA & NBER Oleg Itskhoki UCLA, CEPR & NBER

15th Annual Paul Woolley Centre Conference "Segmented Markets and Macroeconomics" LSE, June 2023

■ Under complete markets, home and foreign SDFs pin down the exchange rate:

$$\underbrace{\Delta s_{t+1}}_{\text{change in FX}} = \underbrace{m_{t+1}^*}_{\text{log foreign SDF}} - \underbrace{m_{t+1}}_{\text{log home SDF}}$$

■ Under complete markets, home and foreign SDFs pin down the exchange rate:

$$\Delta s_{t+1} = \underbrace{m_{t+1}^*}_{\text{log foreign SDF}} - \underbrace{m_{t+1}}_{\text{log home SDF}}$$

■ More generally, if we know home and foreign returns {r_{t+1}} and {r_{t+1}^{*}} and SDFs m_{t+1} and m_{t+1}^{*} pricing them, how much can we say about the exchange rate?

■ Under complete markets, home and foreign SDFs pin down the exchange rate:

- More generally, if we know home and foreign returns {r_{t+1}} and {r_{t+1}^{*}} and SDFs m_{t+1} and m_{t+1}^{*} pricing them, how much can we say about the exchange rate?
 - ▶ *Macro:* m_{t+1} representative Home household SDF, e.g. $m_{t+1} = -\gamma \Delta c_{t+1}$
 - Finance: representation of risk-return relation among assets, e.g. $m_{t+1} = \lambda'_t r_{t+1}$

■ Under complete markets, home and foreign SDFs pin down the exchange rate:

- More generally, if we know home and foreign returns $\{r_{t+1}\}$ and $\{r_{t+1}^*\}$ and SDFs m_{t+1} and m_{t+1}^* pricing them, how much can we say about the exchange rate?
 - ▶ *Macro:* m_{t+1} representative Home household SDF, e.g. $m_{t+1} = -\gamma \Delta c_{t+1}$
 - Finance: representation of risk-return relation among assets, e.g. $m_{t+1} = \lambda'_t r_{t+1}$
- For every economy that satisfies no arbitrage General AMV of FX

Components of the Exchange Rate

FX depreciation rate:

 $\Delta s_{t+1} = \underbrace{E_t \Delta s_{t+1}}_{t+1} + \underbrace{\Delta s_{t+1}}_{t+1}$ expected depriciation surprise depriciation

Components of the Exchange Rate

FX depreciation rate:

$$\Delta s_{t+1} = \underbrace{E_t \Delta s_{t+1}}_{\text{expected depriciation}} + \underbrace{\widetilde{\Delta s_{t+1}}}_{\text{surprise depriciation}}$$

FX decomposition:

$$\Delta s_{t+1} = \underbrace{E_t \Delta s_{t+1}}_{\approx 2\%} + \underbrace{\underbrace{v_{t+1}^G}_{k+1} + \underbrace{v_{t+1}^L}_{\approx 20\%} + \underbrace{v_{t+1}^L}_{\approx 20\%} + \underbrace{u_{t+1}}_{\approx 60\%}$$

GRAPHICAL REPRESENTATION

MARKET STRUCTURE AND SHOCK STRUCTURE

Market structure:

traded links — who trades assets with whom

Shock structure:

traded risks — what risks (assets) can be traded

MARKET STRUCTURE AND SHOCK STRUCTURE

Market structure:

traded links — who trades assets with whom

Shock structure:

- traded risks what risks (assets) can be traded
- E.g., complete markets: all agents trade all risks (states) with each other. Departures along two dimensions:
 - 1 not all risks (states) are traded
 - 2 not all agents can trade assets (directly vs via intermediary)

MARKET STRUCTURE

MARKET STRUCTURE

- \blacksquare H set of assets with returns $\{r_{t+1}\}$ in home currency priced by m_{t+1} , includes r_{ft}
- F set of assets with returns $\{r_{t+1}^*\}$ in foreign currency priced by m_{t+1}^* , includes r_{ft}^*
- I combined set of assets $\{r_{t+1}, r_{t+1}^* + \Delta s_{t+1}\}$ that must satisfy no arbitrage:

 $\forall r_{p,t+1} \in I : var_t(r_{p,t+1}) = 0 \quad \Rightarrow \quad E_t(r_{p,t+1}) = r_{f,t}$

Step 1: Given SDFs (m_{t+1}, m_{t+1}^*) and traded returns $\{r_{t+1}\}$, $\{r_{t+1}^*\}$, construct:

 $v^G_{t+1} \ = \ \text{projection of} \ \ \tilde{m}^*_{t+1} - \tilde{m}_{t+1} \ \ \text{on} \ \ \{\epsilon^G_{t+1}\} \equiv \{\tilde{r}_{t+1}\} \cap \{\tilde{r}^*_{t+1}\}$

Step 1: Given SDFs (m_{t+1}, m_{t+1}^*) and traded returns $\{r_{t+1}\}$, $\{r_{t+1}^*\}$, construct:

 $v^G_{t+1} = \text{ projection of } \tilde{m}^*_{t+1} - \tilde{m}_{t+1} \text{ on } \{\epsilon^G_{t+1}\} \equiv \{\tilde{r}_{t+1}\} \cap \{\tilde{r}^*_{t+1}\}$

Proposition 1 requires that the exchange rate surprise satisfies:

 $\widetilde{\Delta s}_{t+1} = v_{t+1}^G + \eta_{t+1}$ such that $\eta_{t+1} \perp \{\epsilon_{t+1}^G\}$

Step 1: Given SDFs (m_{t+1}, m_{t+1}^*) and traded returns $\{r_{t+1}\}$, $\{r_{t+1}^*\}$, construct:

 $v^G_{t+1} \ = \ \text{projection of} \ \ \tilde{m}^*_{t+1} - \tilde{m}_{t+1} \ \ \text{on} \ \ \{\epsilon^G_{t+1}\} \equiv \{\tilde{r}_{t+1}\} \cap \{\tilde{r}^*_{t+1}\}$

Proposition 1 requires that the exchange rate surprise satisfies:

 $\widetilde{\Delta s}_{t+1} = v_{t+1}^G + \eta_{t+1}$ such that $\eta_{t+1} \perp \{\epsilon_{t+1}^G\}$

Comments:

If $\tilde{m}_{t+1}^* - \tilde{m}_{t+1} = v_{t+1}^G + \epsilon_{t+1}$, and $(\epsilon_{t+1}, \eta_{t+1}) \perp {\epsilon_{t+1}^G}$ are otherwise unconstrained

Step 1: Given SDFs (m_{t+1}, m_{t+1}^*) and traded returns $\{r_{t+1}\}$, $\{r_{t+1}^*\}$, construct:

 $v^G_{t+1} = \text{ projection of } \tilde{m}^*_{t+1} - \tilde{m}_{t+1} \text{ on } \{\epsilon^G_{t+1}\} \equiv \{\tilde{r}_{t+1}\} \cap \{\tilde{r}^*_{t+1}\}$

Proposition 1 requires that the exchange rate surprise satisfies:

 $\widetilde{\Delta s}_{t+1} = v_{t+1}^G + \eta_{t+1}$ such that $\eta_{t+1} \perp \{\epsilon_{t+1}^G\}$

Comments:

If $\tilde{m}_{t+1}^* - \tilde{m}_{t+1} = v_{t+1}^G + \epsilon_{t+1}$, and $(\epsilon_{t+1}, \eta_{t+1}) \perp {\epsilon_{t+1}^G}$ are otherwise unconstrained

2 This step is agnostic of Δs_{t+1} . We construct FX risk without knowing expected return

Step 1: Given SDFs (m_{t+1}, m_{t+1}^*) and traded returns $\{r_{t+1}\}$, $\{r_{t+1}^*\}$, construct:

 $v^G_{t+1} = \text{ projection of } \tilde{m}^*_{t+1} - \tilde{m}_{t+1} \text{ on } \{\epsilon^G_{t+1}\} \equiv \{\tilde{r}_{t+1}\} \cap \{\tilde{r}^*_{t+1}\}$

Proposition 1 requires that the exchange rate surprise satisfies:

 $\widetilde{\Delta s}_{t+1} = v_{t+1}^G + \eta_{t+1}$ such that $\eta_{t+1} \perp \{\epsilon_{t+1}^G\}$

Comments:

If $\tilde{m}_{t+1}^* - \tilde{m}_{t+1} = v_{t+1}^G + \epsilon_{t+1}$, and $(\epsilon_{t+1}, \eta_{t+1}) \perp {\epsilon_{t+1}^G}$ are otherwise unconstrained

2 This step is agnostic of Δs_{t+1} . We construct FX risk without knowing expected return

3 Implications for FX risk:

$$\operatorname{var}_t(\Delta s_{t+1}) \ge \operatorname{var}(v_{t+1}^G) = \operatorname{var}(\tilde{m}_{t+1}^* - m_{t+1} | \{\epsilon_{t+1}^G\})$$

Illustration: FX volatility and cyclicality

Proposition 1 implies a joint constraint on FX volatility and cyclicality:

$$\operatorname{var}_{t}(\Delta s_{t+1}) \geq \operatorname{var}(v_{t+1}^{G}) + \frac{\left(\operatorname{cov}_{t}(\Delta s_{t+1}, m_{t+1}^{*} - m_{t+1}) - \operatorname{var}(v_{t+1}^{G})\right)^{2}}{\operatorname{var}_{t}(m_{t+1}^{*} - m_{t+1}) - \operatorname{var}(v_{t+1}^{G})}$$

Illustration: FX volatility and cyclicality

Volatility $var(\Delta s)$

Proposition 1 implies a joint constraint on FX volatility and cyclicality:

$$\operatorname{var}_{t}(\Delta s_{t+1}) \geq \operatorname{var}(v_{t+1}^{G}) + \frac{\left(\operatorname{cov}_{t}(\Delta s_{t+1}, m_{t+1}^{*} - m_{t+1}) - \operatorname{var}(v_{t+1}^{G})\right)^{2}}{\operatorname{var}_{t}(m_{t+1}^{*} - m_{t+1}) - \operatorname{var}(v_{t+1}^{G})}$$

INTUITION

Step 1 (Proposition 1) requires that:

$$proj\left[\widetilde{\Delta s}_{t+1}|\{\epsilon_{t+1}^G\}\right] = proj\left[\widetilde{m}_{t+1}^* - \widetilde{m}_{t+1}|\{\epsilon_{t+1}^G\}\right]$$

- necessary (and sufficient) to eliminate arbitrage opportunities

INTUITION

Step 1 (Proposition 1) requires that:

$$proj\left[\widetilde{\Delta s}_{t+1}|\{\epsilon^G_{t+1}\}\right] = proj\left[\widetilde{m}^*_{t+1} - \widetilde{m}_{t+1}|\{\epsilon^G_{t+1}\}\right]$$

- necessary (and sufficient) to eliminate arbitrage opportunities

Example: Arrow security for state $h^{t+1} = (h_{t+1}, h^t)$, traded directly or via intermediary:

$$\underbrace{m_{t+1}^*(h^{t+1})}_{\text{\pounds price of } h_{t+1}} - \underbrace{m_{t+1}(h^{t+1})}_{\text{\$ price of } h_{t+1}} = \underbrace{\Delta s_{t+1}(h^{t+1})}_{\text{\$ depreciation in } h_{t+1}}$$

INTUITION

Step 1 (Proposition 1) requires that:

$$proj\left[\widetilde{\Delta s}_{t+1}|\{\epsilon^G_{t+1}\}\right] = proj\left[\widetilde{m}^*_{t+1} - \widetilde{m}_{t+1}|\{\epsilon^G_{t+1}\}\right]$$

- necessary (and sufficient) to eliminate arbitrage opportunities

Example: Arrow security for state $h^{t+1} = (h_{t+1}, h^t)$, traded directly or via intermediary:

$$\underbrace{m_{t+1}^*(h^{t+1})}_{\mathfrak{L} \text{ price of } h_{t+1}} \quad - \quad \underbrace{m_{t+1}(h^{t+1})}_{\$ \text{ price of } h_{t+1}} \quad = \quad \underbrace{\Delta s_{t+1}(h^{t+1})}_{\$ \text{ depreciation in } h_{t+1}}$$

Proposition 1 generalizes this to any globally traded risk $\epsilon_{t+1}^G \in {\tilde{r}_{t+1}} \cap {\tilde{r}_{t+1}^*}$

— buy ϵ_{t+1}^G in $\$ and sell ϵ_{t+1}^G in \pounds prices $\widetilde{\Delta s}_{t+1} | \epsilon_{t+1}^G$ by no arbitrage (zero risk portfolio)

■ Spanned risk: $\tilde{m}_{t+1}, \tilde{m}_{t+1}^* \in \{\epsilon_{t+1}^G\} = \{\tilde{r}_{t+1}\} \cap \{\tilde{r}_{t+1}^*\}$,

Therefore:

$$proj[\widetilde{\Delta s}_{t+1}|\{\epsilon_{t+1}^G\}] = \tilde{m}_{t+1}^* - \tilde{m}_{t+1} = v_{t+1}^G$$

- e.g., arises in models with small number of macro risks that are traded
 RBC models, including rare disaster and LR risk models
- Implication: exacerbates complete market problems:

$$\operatorname{var}_{t}(m_{t+1}^{*} - m_{t+1}) = \operatorname{cov}_{t}(\Delta s_{t+1}, m_{t+1}^{*} - m_{t+1}) \le \operatorname{var}_{t}(\Delta s_{t+1})$$

- Spanned FX risk: $\widetilde{\Delta s}_{t+1} \in \{\epsilon^G_{t+1}\} = \{\tilde{r}_{t+1}\} \cap \{\tilde{r}^*_{t+1}\}$
- Therefore:

$$\widetilde{\Delta s}_{t+1} = v_{t+1}^G = proj \big[\tilde{m}_{t+1}^* - \tilde{m}_{t+1} | \{ \epsilon_{t+1}^G \} \big] \qquad \text{and} \quad \eta_{t+1} = v_{t+1}^L + u_{t+1} = 0$$

- Spanned FX risk: $\widetilde{\Delta s}_{t+1} \in \{\epsilon^G_{t+1}\} = \{\tilde{r}_{t+1}\} \cap \{\tilde{r}^*_{t+1}\}$
- Therefore:

$$\widetilde{\Delta s}_{t+1} = v_{t+1}^G = proj \big[\tilde{m}_{t+1}^* - \tilde{m}_{t+1} | \{ \epsilon_{t+1}^G \} \big] \qquad \text{and} \quad \eta_{t+1} = v_{t+1}^L + u_{t+1} = 0$$

- Arises when:
 - **I** FX is traded directly (both risk free bonds are traded integrated markets)
 - or FX is spanned by traded macro shocks

- Spanned FX risk: $\widetilde{\Delta s}_{t+1} \in \{\epsilon^G_{t+1}\} = \{\tilde{r}_{t+1}\} \cap \{\tilde{r}^*_{t+1}\}$
- Therefore:

$$\widetilde{\Delta s}_{t+1} = v_{t+1}^G = proj \big[\tilde{m}_{t+1}^* - \tilde{m}_{t+1} | \{ \epsilon_{t+1}^G \} \big] \qquad \text{and} \quad \eta_{t+1} = v_{t+1}^L + u_{t+1} = 0$$

- Arises when:
 - **I** FX is traded directly (both risk free bonds are traded integrated markets)
 - or FX is spanned by traded macro shocks
- Implications:
 - partially ameliorates complete market problems:

$$\operatorname{var}_t(\Delta s_{t+1}) = \operatorname{cov}_t(\Delta s_{t+1}, m_{t+1}^* - m_{t+1}) \le \operatorname{var}_t(m_{t+1}^* - m_{t+1})$$

as we see next, necessarily leads to the risk premium puzzle

UNSPANNED FX RISK: E.G. SINGLE TRADED BOND, $v_{t+1}^G = 0$

UNSPANNED FX RISK: E.G. SINGLE TRADED BOND, $v_{t+1}^G = 0$

SUMMARY: ALTERNATIVE MARKET AND SHOCK STRUCTURES

Small share of global shocks v_{t+1}^G requires **both**:

Sparce markets: lack of integration or non-traded FX risk (intermediation or one bond)

2 Sparce shocks: limited cross-border risk spanning (unspanned risks)

Step 2: Given Δs_{t+1} and $\{r_{t+1}\}$, $\{r_{t+1}^*\}$ construct:

 $v_{t+1} = \text{projection of } \widetilde{\Delta s}_{t+1} \text{ on } \{ \widetilde{r}_{t+1} \} \cup \{ \widetilde{r}_{t+1}^* \}$

If $R^2 = 1$, then $\widetilde{\Delta s}_{t+1} = v_{t+1}$ is spanned and $u_{t+1} = 0$; note that $v_{t+1} = v_{t+1}^G + v_{t+1}^L$ 2 if $R^2 < 1$, then $\widetilde{\Delta s}_{t+1} = v_{t+1} + u_{t+1}$ is unspanned; note that $R^2 = 1 - \frac{var(u_{t+1})}{var_t(\Delta s_{t+1})}$

Step 2: Given Δs_{t+1} and $\{r_{t+1}\}$, $\{r_{t+1}^*\}$ construct:

 $v_{t+1} = \text{projection of } \widetilde{\Delta s}_{t+1} \text{ on } \{\widetilde{r}_{t+1}\} \cup \{\widetilde{r}_{t+1}^*\}$

1 if $R^2 = 1$, then $\widetilde{\Delta s}_{t+1} = v_{t+1}$ is spanned and $u_{t+1} = 0$; note that $v_{t+1} = v_{t+1}^G + v_{t+1}^L$ 2 if $R^2 < 1$, then $\widetilde{\Delta s}_{t+1} = v_{t+1} + u_{t+1}$ is unspanned; note that $R^2 = 1 - \frac{var(u_{t+1})}{var_t(\Delta s_{t+1})}$

Proposition 2 requires that the expected depreciation $E_t \Delta s_{t+1} = x_t + \psi_t$, where: $x_t = r_{ft} - r_{ft}^* - \frac{1}{2} var_t(\Delta s_{t+1}) - cov_t(m_{t+1}, \Delta s_{t+1}) - cov_t(m_{t+1}^* - m_{t+1} - \Delta s_{t+1}, r_{p,t+1}^*)$

Step 2: Given Δs_{t+1} and $\{r_{t+1}\}, \{r_{t+1}^*\}$ construct:

 $v_{t+1} = \text{projection of } \widetilde{\Delta s}_{t+1} \text{ on } \{\widetilde{r}_{t+1}\} \cup \{\widetilde{r}_{t+1}^*\}$

1 if $R^2 = 1$, then $\widetilde{\Delta s}_{t+1} = v_{t+1}$ is spanned and $u_{t+1} = 0$; note that $v_{t+1} = v_{t+1}^G + v_{t+1}^L$ 2 if $R^2 < 1$, then $\widetilde{\Delta s}_{t+1} = v_{t+1} + u_{t+1}$ is unspanned; note that $R^2 = 1 - \frac{var(u_{t+1})}{var_t(\Delta s_{t+1})}$

Proposition 2 requires that the expected depreciation $E_t \Delta s_{t+1} = x_t + \psi_t$, where: $x_t = r_{ft} - r_{ft}^* - \frac{1}{2} var_t(\Delta s_{t+1}) - cov_t(m_{t+1}, \Delta s_{t+1}) - cov_t(m_{t+1}^* - m_{t+1} - \Delta s_{t+1}, r_{p,t+1}^*)$

If $R^2 = 1$, then $\psi_t = 0$ and x_t is a function of $(m_{t+1}, m_{t+1}^*, \{r_{t+1}\}, \{r_{t+1}^*\})$

Step 2: Given Δs_{t+1} and $\{r_{t+1}\}$, $\{r_{t+1}^*\}$ construct:

 $v_{t+1} = \text{projection of } \widetilde{\Delta s}_{t+1} \text{ on } \{\widetilde{r}_{t+1}\} \cup \{\widetilde{r}_{t+1}^*\}$

If $R^2 = 1$, then $\widetilde{\Delta s}_{t+1} = v_{t+1}$ is spanned and $u_{t+1} = 0$; note that $v_{t+1} = v_{t+1}^G + v_{t+1}^L$ if $R^2 < 1$, then $\widetilde{\Delta s}_{t+1} = v_{t+1} + u_{t+1}$ is unspanned; note that $R^2 = 1 - \frac{var(u_{t+1})}{var_t(\Delta s_{t+1})}$

Proposition 2 requires that the expected depreciation $E_t \Delta s_{t+1} = x_t + \psi_t$, where: $x_t = r_{ft} - r_{ft}^* - \frac{1}{2} var_t(\Delta s_{t+1}) - cov_t(m_{t+1}, \Delta s_{t+1}) - cov_t(m_{t+1}^* - m_{t+1} - \Delta s_{t+1}, r_{p,t+1}^*)$

1 if $R^2 = 1$, then $\psi_t = 0$ and x_t is a function of $(m_{t+1}, m_{t+1}^*, \{r_{t+1}\}, \{r_{t+1}^*\})$

2 if $R^2 < 1$, then ψ_t is unconstrained by pure arbitrage

— with max Sharpe ratio B bound, $|\psi_t| \leq B \sqrt{var(u_{t+1})}$

Step 2: Given Δs_{t+1} and $\{r_{t+1}\}$, $\{r_{t+1}^*\}$ construct:

 $v_{t+1} = \text{projection of } \widetilde{\Delta s}_{t+1} \text{ on } \{\widetilde{r}_{t+1}\} \cup \{\widetilde{r}_{t+1}^*\}$

1 if $R^2 = 1$, then $\widetilde{\Delta s}_{t+1} = v_{t+1}$ is spanned and $u_{t+1} = 0$; note that $v_{t+1} = v_{t+1}^G + v_{t+1}^L$ 2 if $R^2 < 1$, then $\widetilde{\Delta s}_{t+1} = v_{t+1} + u_{t+1}$ is unspanned; note that $R^2 = 1 - \frac{var(u_{t+1})}{var_t(\Delta s_{t+1})}$

Proposition 2 requires that the expected depreciation $E_t \Delta s_{t+1} = x_t + \psi_t$, where: $x_t = r_{ft} - r_{ft}^* - \frac{1}{2} var_t(\Delta s_{t+1}) - cov_t(m_{t+1}, \Delta s_{t+1}) - cov_t(m_{t+1}^* - m_{t+1} - \Delta s_{t+1}, r_{p,t+1}^*)$

1 if $R^2 = 1$, then $\psi_t = 0$ and x_t is a function of $(m_{t+1}, m_{t+1}^*, \{r_{t+1}\}, \{r_{t+1}^*\})$

2 if $R^2 < 1$, then ψ_t is unconstrained by pure arbitrage

— with max Sharpe ratio B bound, $|\psi_t| \leq B \sqrt{var(u_{t+1})}$

 $-(1-\omega)u_{t+1} = -\sum_{j=0}^{\infty} (E_{t+1} - E_t)[\psi_{t+j+1}]$, where ω is LR persistence of u_{t+1}

A LOOK AT THE DATA

- \blacksquare Econometrician's interpretation of H and F
 - Use data on asset returns in their origin currency $\{r_{t+1}\}$ and $\{r_{t+1}^*\}$
 - How much can we learn about FX from the risk-return relation of financial assets?
- Data:
 - ▶ G10 countries, from 1988 to 2022, monthly
 - Exchange rates (Bloomberg)
 - Equity indices (MSCI): Large+Mid Cap, Value, Growth, 10 industries
 - Sovereign bonds (central banks): maturities 2 to 10 years

IS THE EXCHANGE RATE SPANNED?

Estimate and report R^2 for various subset of returns:

$$\Delta s_{t+1} = \alpha + \underbrace{\beta' \mathbf{r}_{t+1} + \beta^{*'} \mathbf{r}_{t+1}^*}_{\mathbf{r}_{t+1}} + \underbrace{u_{t+1}}_{\mathbf{u}_{t+1}}$$

global + local component unspanned component

Dependent Variable	AU	CA	DE	JP	NO	NZ	SE	СН	UK
Bonds									
10Y	0.25	0.33	7.49	5.36	4.73	1.05	4.79	4.01	0.92
All Maturities	7.23	7.89	15.72	10.15	13.66	5.67	13.95	11.52	13.65
Stocks									
Mkt	21.67	26.56	6.96	4.44	11.24	16.56	16.20	12.34	12.71
Mkt + Value/Growth	21.60	27.98	6.75	5.06	12.47	17.16	15.91	12.71	13.68
Mkt + Value/Growth + Ind.	35.07	41.61	18.55	22.78	29.41	24.53	24.00	19.61	26.88
Bond+Equity	36.74	45.05	26.79	29.13	36.64	27.95	30.62	25.28	33.80
Ν	419	395	419	419	406	419	414	419	419

IS THE EXCHANGE RATE SPANNED? NO

Estimate and report R^2 for various subset of returns:

$$\Delta s_{t+1} = \alpha + \underbrace{\beta' \boldsymbol{r}_{t+1} + \beta^{*'} \boldsymbol{r}_{t+1}^*}_{t+1} + \underbrace{\boldsymbol{u}_{t+1}}_{t+1}$$

global + local component unspanned component

Dependent Variable	AU	CA	DE	JP	NO	NZ	SE	СН	UK
Bonds									
10Y	0.25	0.33	7.49	5.36	4.73	1.05	4.79	4.01	0.92
All Maturities	7.23	7.89	15.72	10.15	13.66	5.67	13.95	11.52	13.65
Stocks									
Mkt	21.67	26.56	6.96	4.44	11.24	16.56	16.20	12.34	12.71
Mkt + Value/Growth	21.60	27.98	6.75	5.06	12.47	17.16	15.91	12.71	13.68
Mkt + Value/Growth + Ind.	35.07	41.61	18.55	22.78	29.41	24.53	24.00	19.61	26.88
Bond+Equity	36.74	45.05	26.79	29.13	36.64	27.95	30.62	25.28	33.80
N	419	395	419	419	406	419	414	419	419

Financial FX disconnect $\Rightarrow E_t \Delta s_{t+1}$ not constrained

IDENTIFYING GLOBAL SHOCKS

■ Undirected approach: Canonical correlation analysis

- Look for portfolios of domestic and foreign assets that are maximally correlated
- Strict global shocks: correlation of 1
- Not much relation between assets: maximum correlation between 64% and 90%
- Generous approach: include all pairs with correlation above 60%

IDENTIFYING GLOBAL SHOCKS

■ Undirected approach: Canonical correlation analysis

- Look for portfolios of domestic and foreign assets that are maximally correlated
- Strict global shocks: correlation of ${\bf 1}$
- Not much relation between assets: maximum correlation between 64% and 90%
- Generous approach: include all pairs with correlation above 60%
- Directed approach: Use variables known to relate to global cycles
 - VIX, Global Financial Cycle (Miranda-Aggripino and Rey), Excess Bond Premium (Gilchrist and Zakrajsek)
 - Implicit strong assumption: could find assets to replicate them in each country

DO GLOBAL SHOCKS EXPLAIN THE EXCHANGE RATE?

Estimate fraction of variance due to global shocks

$$\Delta s_{t+1} = \alpha + \underbrace{\beta^{G'} \epsilon_{t+1}^G}_{\text{global component}} + \xi_{t+1}.$$

Decompose variance of exchange rate: global shocks, local shocks, unspanned shocks

DO GLOBAL SHOCKS EXPLAIN THE EXCHANGE RATE? NOT MUCH

Estimate fraction of variance due to global shocks

$$\Delta s_{t+1} = \alpha + \underbrace{\beta^{G'} \epsilon_{t+1}^G}_{\text{global component}} + \xi_{t+1}.$$

Decompose variance of exchange rate: global shocks, local shocks, unspanned shocks

TAKEAWAYS

Complete markets: Financial markets pin down FX... but counterfactual

TAKEAWAYS

- **Complete markets**: Financial markets pin down FX... but counterfactual
- (Partially) Integrated markets
 - FX expectation (risk premium) close to complete markets
 - FX risk becomes tightly constrained and close to complete markets if:
 - Both representative households can trade the exchange rate, or
 - Enough internationally traded assets to span SDFs

TAKEAWAYS

Complete markets: Financial markets pin down FX... but counterfactual

(Partially) Integrated markets

- FX expectation (risk premium) close to complete markets
- FX risk becomes tightly constrained and close to complete markets if:
 - Both representative households can trade the exchange rate, or
 - Enough internationally traded assets to span SDFs

Intermediated markets

- Constraints depend on empirical properties of returns: exactly what we measured in data
- FX expectation: spanning of exchange rate \rightarrow No
- FX shocks: presence of common shocks \rightarrow Not much
 - Difficult to find global shocks, explain even less of FX variation
 - \Rightarrow FX variation not constrained by domestic and foreign pricing kernels

RECIPE FOR A REALISTIC MODEL OF EXCHANGE RATES

- Intermediated markets
- Small global shocks (~10–20%)
 - constrained by the presence of the many other assets
 - must be positively related to relative household SDF $m^{\ast}-m$
- Some local shocks (~10–30%)
 - negatively related to relative SDF $m^{st}-m$ to offset global shocks and solve cyclicality puzzle
- Mostly unspanned shocks (~50–80%)
 - respect the financial FX disconnect and macro FX disconnect
 - allow FX risk premium dynamics (within Sharpe ratio bounds)
 - e.g., demand shocks in specialized FX markets

CONCLUSION

- A general characterization of implications of financial markets for the exchange rate
 - not just in our world, but what could be in any alternative world (with no arbitrage)

CONCLUSION

- A general characterization of implications of financial markets for the exchange rate
 - not just in our world, but what could be in any alternative world (with no arbitrage)
- What do financial markets say about the exchange rate (FX)?
 - Not much: properties of $\{r_{t+1}\}$ and $\{r_{t+1}^*\}$ do not pin down the FX Δs_{t+1}

CONCLUSION

- A general characterization of implications of financial markets for the exchange rate
 - not just in our world, but what could be in any alternative world (with no arbitrage)
- What do financial markets say about the exchange rate (FX)?
 - Not much: properties of $\{r_{t+1}\}$ and $\{r_{t+1}^*\}$ do not pin down the FX Δs_{t+1}
- Upside:
 - Intermediated market structure particularly well-suited to fit the data
 - Need more information than asset prices to understand the exchange rate:
 - who is trading? who is holding FX risk?
 - demand shocks in specialized FX markets

APPENDIX

- Euler equations as diagnostics: Hansen and Jagannathan; Alvarez and Jermann
- FX puzzles: Backus and Smith; Brandt, Cochrane and Santa-Clara; Fama
- Equibrium explanations of FX puzzles: Verdelhan; Colacito and Croce; Farhi and Gabaix
- Departures from complete markets: Lustig and Verdelhan
- FX bond disconnect: Chernov and Creal
- Intermediated markets and FX: Gabaix and Maggiori; Itskhoki and Mukhin; Jiang, Krishnamurthy and Lustig; Gourinchas, Ray and Vayanos

Assets

- Two countries: Home and Foreign (*)
 - H is the set of portfolios of home assets $oldsymbol{r}_{t+1}$; risk-free $r_{ft}\in H$
 - F is the set of portfolios of foreign assets r^*_{t+1} in foreign currency; $r^*_{ft} \in F$
 - Returns expressed in each country's currency
 - Log-normal returns and use log-linear portfolio algebra (Campbell Viceira 2002)
- Examples
 - Autarky: ${\boldsymbol{H}}$ has domestic stocks and bonds, ${\boldsymbol{F}}$ has foreign stocks and bonds
 - Integrated markets: H and F have the same assets (converted in local currency)
 - Complete markets: all Arrow-Debreu claims

STOCHASTIC DISCOUNT FACTORS

Assumption 1: Domestic log SDF m_{t+1} prices all assets in H, foreign log SDF m_{t+1}^* prices all assets in F:

$$\forall r_{t+1} \in H: \quad E_t \exp(m_{t+1} + r_{t+1}) = 1$$

$$\forall r_{t+1}^* \in F : E_t \exp(m_{t+1}^* + r_{t+1}^*) = 1$$

Interpretations

- 1. *Macro:* m_{t+1} representative Home household SDF, e.g. $m_{t+1} = -\gamma \log(C_{t+1}/C_t)$
- 2. Finance: representation of risk-return relation among assets, e.g. $m_{t+1} = \lambda'_t r_{t+1}$

STOCHASTIC DISCOUNT FACTORS

Assumption 1: Domestic log SDF m_{t+1} prices all assets in H, foreign log SDF m_{t+1}^* prices all assets in F:

$$\forall r_{t+1} \in H: \quad E_t(r_{t+1}) + \frac{1}{2}var_t(r_{t+1}) = r_{ft} - cov_t(m_{t+1}, r_{t+1})$$

$$\forall r_{t+1}^* \in F: \quad E_t(r_{t+1}^*) + \frac{1}{2}var_t(r_{t+1}^*) = r_{ft}^* - cov_t(m_{t+1}^*, r_{t+1}^*)$$

- Interpretations
 - 1. *Macro:* m_{t+1} representative Home household SDF, e.g. $m_{t+1} = -\gamma \log(C_{t+1}/C_t)$
 - 2. Finance: representation of risk-return relation among assets, e.g. $m_{t+1} = \lambda'_t r_{t+1}$

■ *Note:* assets were defined without reference to exchange rate

- *Note:* assets were defined without reference to exchange rate
- \bullet s_t: log nominal exchange rate (price of one unit of foreign currency in domestic currency)
 - Δs_{t+1} log home currency depreciation rate

- *Note:* assets were defined without reference to exchange rate
- s_t: log nominal exchange rate (price of one unit of foreign currency in domestic currency)
 ∆s_{t+1} log home currency depreciation rate
- Consider set I of portfolios in $H = \{r_{t+1}\}$ and $F = \{r_{t+1}^*\}$ with returns converted to home currency:

$$\mathbf{r}_{t+1}^{I} = (\mathbf{r}_{t+1}, \mathbf{r}_{t+1}^{*} + \Delta s_{t+1})$$

Assumption 2 No arbitrage opportunities in the set of international portfolios *I*:

$$\forall r_{p,t+1} \in I, \ var_t(r_{p,t+1}) = 0 \quad \Rightarrow \quad E_t(r_{p,t+1}) = r_{f,t}.$$

- *Note:* assets were defined without reference to exchange rate
- s_t: log nominal exchange rate (price of one unit of foreign currency in domestic currency)
 ∆s_{t+1} log home currency depreciation rate
- Consider set I of portfolios in $H = \{r_{t+1}\}$ and $F = \{r_{t+1}^*\}$ with returns converted to home currency:

$$\boldsymbol{r}_{t+1}^{I} = (\boldsymbol{r}_{t+1}, \boldsymbol{r}_{t+1}^{*} + \Delta s_{t+1})$$

Assumption 2 No arbitrage opportunities in the set of international portfolios *I*:

$$\forall r_{p,t+1} \in I, \ var_t(r_{p,t+1}) = 0 \quad \Rightarrow \quad E_t(r_{p,t+1}) = r_{f,t}.$$

- Integrated markets (e.g., I = H): m_{t+1} ensures no arbitrage
- Intermediated markets ($I \supset H$): some m_{t+1}^I trades assets in I and ensures no arbitrage

GLOBAL AND LOCAL SHOCKS

General exchange rate decomposition:

$$\Delta s_{t+1} = E_t \Delta s_{t+1} + v_{t+1}^G + v_{t+1}^L + u_{t+1}$$

- 1. Expected depreciation $\delta_t = E_t \Delta s_{t+1}$
- 2. Depreciation shocks $\Delta s_{t+1} = \Delta s_{t+1} E_t \Delta s_{t+1}$
 - ▶ Traded shocks: spanned by $\{r_{t+1}\}$ and $\{r_{t+1}^*\}$
 - Globally traded: $v_{t+1}^G \in {\epsilon_{t+1}^G}$ can be spanned *separately* in H and F
 - Locally traded: v_{t+1}^L can be spanned by one asset set but not the other
 - Unspanned shocks: $u_{t+1} \perp \{r_{t+1}, r_{t+1}^*\}$

EXCHANGE RATE SHOCKS, $\widetilde{\Delta s}_{t+1} = \Delta s_{t+1} - E_t \Delta s_{t+1}$

- Depreciation rate coincides with difference of SDF projected on globally traded shocks
- **Proposition 1** For $\{\epsilon_{t+1}^G\} = \{r_{t+1}\} \cap \{r_{t+1}^*\}$:

$$E(\widetilde{\Delta s}_{t+1}|\boldsymbol{\epsilon}_{t+1}^G) = E(\widetilde{m}_{t+1}^* - \widetilde{m}_{t+1}|\boldsymbol{\epsilon}_{t+1}^G) = v_{t+1}^G,$$

that is $\widetilde{m}_{t+1}^* - \widetilde{m}_{t+1} = v_{t+1}^G + \epsilon_{t+1}$ and $\widetilde{\Delta s}_{t+1} = v_{t+1}^G + \eta_{t+1}$.

- No restriction for exposure to local shocks or to unspanned shocks, $\eta_{t+1} = v_{t+1}^L + u_{t+1}$
- Restriction on conditional volatility and conditional Backus-Smith correlation
- Generalization: $|cov(\widetilde{m}_{t+1}^* \widetilde{m}_{t+1} \widetilde{\Delta s}_{t+1}, r_{t+1})| \le B\sqrt{1 corr_t(r_{t+1}, r_{t+1}^*)}$

Assets and Portfolios

Two technical assumptions:

Vector of log returns:

$$\boldsymbol{r}_{t+1} = (r_{1,t+1},\ldots,r_{N,t+1}) \sim MVN(\boldsymbol{\mu}_t,\boldsymbol{\Sigma}_t)$$

Campbell-Viceira (2002) approximation for log portfolio excess returns relative to a risk-free rate r_{ft}:

$$r_{p,t+1} - r_{ft} = \log \left(\boldsymbol{w}_t' e^{\boldsymbol{r}_{t+1} - r_{ft}} \right)$$
$$\approx \boldsymbol{w}_t' (\boldsymbol{r}_{t+1} - r_{ft}) + \frac{1}{2} \boldsymbol{w}_t' \operatorname{diag}(\boldsymbol{\Sigma}_t) - \frac{1}{2} \boldsymbol{w}_t' \boldsymbol{\Sigma}_t \boldsymbol{w}_t$$

GLOBAL AND LOCAL SHOCKS

Decomposition in globally traded shock ϵ_{t+1}^G and local shocks $(\epsilon_{t+1}, \epsilon_{t+1}^*)$:

$$egin{aligned} & ilde{m{r}}_{t+1} = m{P}m{\epsilon}_{t+1} + m{P}^Gm{\epsilon}^G_{t+1}, \ & ilde{m{r}}_{t+1}^* = m{P}^*m{\epsilon}^*_{t+1} + m{P}^{G*}m{\epsilon}^G_{t+1}. \end{aligned}$$

 $1. \ \mbox{Globally-traded shocks can be replicated in each country:}$

$$\boldsymbol{\epsilon}_{t+1}^G = \boldsymbol{A}^G \tilde{\boldsymbol{r}}_{t+1} = \boldsymbol{A}^{G*} \tilde{\boldsymbol{r}}_{t+1}^*$$

2. Local shocks:

$$\boldsymbol{\epsilon}_{t+1} = \boldsymbol{A} \tilde{\boldsymbol{r}}_{t+1}, \ \ \boldsymbol{\epsilon}_{t+1}^* = \boldsymbol{A}^* \tilde{\boldsymbol{r}}_{t+1}^* \ : \quad (\boldsymbol{\epsilon}_{t+1}, \boldsymbol{\epsilon}_{t+1}^*) \perp \boldsymbol{\epsilon}_{t+1}^G$$

Proof of Proposition 1

$1. \ \textbf{Quanto property}$

- Trading simple returns across borders induces exchange rate risk

$$\log(e^{r_{t+1}^* + \Delta s_{t+1}}) = r_{t+1}^* + \Delta s_{t+1}$$

- Trading excess returns across borders only induces a quanto adjustment:

$$\log\left(e^{r_f} + (e^{r_{t+1}^*} - e^{r_{f,t}^*})e^{\Delta s_{t+1}}\right) \approx r_f - r_f^* + r_{t+1}^* + cov_t(r_{t+1}^*, \Delta s_{t+1})$$

PROOF OF PROPOSITION 1

$1. \ \textbf{Quanto property}$

- Trading simple returns across borders induces exchange rate risk

$$\log(e^{r_{t+1}^* + \Delta s_{t+1}}) = r_{t+1}^* + \Delta s_{t+1}$$

- Trading excess returns across borders only induces a quanto adjustment:

$$\log\left(e^{r_f} + (e^{r_{t+1}^*} - e^{r_{f,t}^*})e^{\Delta s_{t+1}}\right) \approx r_f - r_f^* + r_{t+1}^* + cov_t(r_{t+1}^*, \Delta s_{t+1})$$

2. No international arbitrage: consider $r_{t+1} \in H$ and $r_{t+1}^* \in F$ that each replicate a global shock, go long-short *in excess returns*:

$$\underbrace{r_{\text{diff},t+1}}_{\text{no risk so mean 0}} = \underbrace{(r_{t+1} - r_{ft})}_{cov(m,\epsilon^G)} - \underbrace{(r_{t+1}^* - r_{ft}^*)}_{cov(m^*,\epsilon^G)} - \underbrace{cov_t(r_{t+1}^*, \Delta s_{t+1})}_{cov(\epsilon^G, \Delta s)}$$

The Quanto Property

- Conversion of excess return does not introduce FX risk Back
- Correlation of excess returns on U.S. industry portfolios in dollars and foreign currency

2011 (8		0.	, (c		C) e)		
	AU	CA	DE	JP	NO	NZ	SE	CH	UK
US Market	99.88	99.94	99.95	99.96	99.87	99.90	99.92	99.94	99.94
US Value	99.90	99.95	99.96	99.96	99.87	99.91	99.92	99.95	99.95
US Growth	99.87	99.93	99.94	99.96	99.88	99.90	99.92	99.94	99.94
US Oil, Gas, Coal	99.90	99.96	99.97	99.98	99.92	99.92	99.94	99.96	99.96
US Basic Material	99.81	99.90	99.92	99.95	99.85	99.88	99.90	99.93	99.93
US Consumer Discretionary	99.91	99.95	99.95	99.96	99.9	99.91	99.92	99.95	99.95
US Consumer Products, Services	99.93	99.97	99.97	99.97	99.92	99.93	99.94	99.96	99.96
US Industrials	99.86	99.93	99.94	99.96	99.84	99.90	99.90	99.94	99.94
US Health Care	99.90	99.96	99.95	99.96	99.88	99.93	99.93	99.95	99.96
US Financials	99.91	99.95	99.95	99.94	99.87	99.93	99.91	99.92	99.94
US TeleCom	99.87	99.93	99.95	99.95	99.9	99.91	99.93	99.96	99.95
US Technology	99.88	99.93	99.94	99.96	99.89	99.91	99.92	99.94	99.94
US Utilities	99.84	99.92	99.94	99.96	99.85	99.88	99.91	99.96	99.94

 $corr\left(e^{r_{t+1}} - e^{r_{f,t}}, \left(e^{r_{t+1}} - e^{r_{f,t}}\right)e^{\Delta s_{t+1}}\right)$