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Asset Market View of the Exchange Rate

Under complete markets, home and foreign SDFs pin down the exchange rate:

∆st+1︸ ︷︷ ︸
change in FX

= m∗t+1︸︷︷︸
log foreign SDF

− mt+1︸︷︷︸
log home SDF

More generally, if we know home and foreign returns {rt+1} and {r∗t+1} and

SDFs mt+1 and m∗t+1 pricing them, how much can we say about the exchange rate?

I Macro: mt+1 representative Home household SDF, e.g. mt+1 = −γ∆ct+1

I Finance: representation of risk-return relation among assets, e.g. mt+1 = λλλ′trrrt+1

For every economy that satisfies no arbitrage — General AMV of FX
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Components of the Exchange Rate

FX depreciation rate:

∆st+1 = Et∆st+1︸ ︷︷ ︸
expected depriciation

+ ∆̃st+1︸ ︷︷ ︸
surprise depriciation

FX decomposition:

∆st+1 = Et∆st+1︸ ︷︷ ︸
≈2%

+

∆̃st+1︷ ︸︸ ︷
vGt+1︸︷︷︸
≈20%

+ vLt+1︸︷︷︸
≈20%

+ ut+1︸︷︷︸
≈60%
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Graphical Representation

Data

CMvar(m∗ −m)

Cyclicality

cov(m∗ −m,∆s)

Volatility

var(∆s)
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Market structure and Shock structure

1 Market structure:

I traded links — who trades assets with whom

2 Shock structure:

I traded risks — what risks (assets) can be traded

• E.g., complete markets: all agents trade all risks (states) with each other.

Departures along two dimensions:

1 not all risks (states) are traded

2 not all agents can trade assets (directly vs via intermediary)
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Market structure

Financial Autarky

H F

Integrated

H F

H F

Intermediated
I

H F

H set of assets with returns {rt+1} in home currency priced by mt+1, includes rft

F set of assets with returns {r∗t+1} in foreign currency priced by m∗t+1, includes r∗ft
I combined set of assets {rt+1, r

∗
t+1 + ∆st+1} that must satisfy no arbitrage:

∀rp,t+1 ∈ I : vart(rp,t+1) = 0 ⇒ Et(rp,t+1) = rf,t
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Building FX from finance I: FX risk, ∆̃st+1

Step 1: Given SDFs (mt+1,m
∗
t+1) and traded returns {rt+1}, {r∗t+1}, construct:

vGt+1 = projection of m̃∗t+1 − m̃t+1 on {εGt+1} ≡ {r̃t+1} ∩ {r̃∗t+1}

Proposition 1 requires that the exchange rate surprise satisfies:

∆̃st+1 = vGt+1 + ηt+1 such that ηt+1 ⊥ {εGt+1}

Comments:

1 m̃∗t+1 − m̃t+1 = vGt+1 + εt+1, and (εt+1, ηt+1) ⊥ {εGt+1} are otherwise unconstrained

2 This step is agnostic of ∆st+1. We construct FX risk without knowing expected return

3 Implications for FX risk:

vart(∆st+1) ≥ var(vGt+1) = var(m̃∗t+1 −mt+1|{εGt+1})
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Illustration: FX volatility and cyclicality

Data

CMvar(m∗ −m)

var(E(m∗ −m|ϵG))

Cyclicality
cov(m∗ −m,∆s)

Volatility
var(∆s)

Proposition 1 implies a joint constraint on FX volatility and cyclicality:

vart(∆st+1) ≥ var(vGt+1) +

(
covt(∆st+1,m

∗
t+1 −mt+1)− var(vGt+1)

)2
vart(m∗t+1 −mt+1)− var(vGt+1) 7 / 22
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Intuition

Step 1 (Proposition 1) requires that:

proj
[
∆̃st+1|{εGt+1}

]
= proj

[
m̃∗t+1 − m̃t+1|{εGt+1}

]
— necessary (and sufficient) to eliminate arbitrage opportunities

Example: Arrow security for state ht+1 = (ht+1, h
t), traded directly or via intermediary:

m∗t+1(ht+1)︸ ︷︷ ︸
£ price of ht+1

− mt+1(ht+1)︸ ︷︷ ︸
$ price of ht+1

= ∆st+1(ht+1)︸ ︷︷ ︸
$ depreciation in ht+1

Proposition 1 generalizes this to any globally traded risk εGt+1 ∈ {r̃t+1} ∩ {r̃∗t+1}

— buy εGt+1 in $ and sell εGt+1 in £ prices ∆̃st+1|εGt+1 by no arbitrage (zero risk portfolio)
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Large Share of Global Shocks I: spanned risk

Spanned risk: m̃t+1, m̃
∗
t+1 ∈ {εGt+1} = {r̃t+1} ∩ {r̃∗t+1},

Therefore:

proj
[
∆̃st+1|{εGt+1}

]
= m̃∗t+1 − m̃t+1 = vGt+1

e.g., arises in models with small number of macro risks that are traded

— RBC models, including rare disaster and LR risk models

Implication: exacerbates complete market problems:

vart(m
∗
t+1 −mt+1) = covt(∆st+1,m

∗
t+1 −mt+1) ≤ vart(∆st+1)
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Large Share of Global Shocks II: spanned FX risk

Spanned FX risk: ∆̃st+1 ∈ {εGt+1} = {r̃t+1} ∩ {r̃∗t+1}
Therefore:

∆̃st+1 = vGt+1 = proj
[
m̃∗t+1 − m̃t+1|{εGt+1}

]
and ηt+1 = vLt+1 + ut+1 = 0

Arises when:

1 FX is traded directly (both risk free bonds are traded — integrated markets)

2 or FX is spanned by traded macro shocks

Implications:

I partially ameliorates complete market problems:

vart(∆st+1) = covt(∆st+1,m
∗
t+1 −mt+1) ≤ vart(m

∗
t+1 −mt+1)

I as we see next, necessarily leads to the risk premium puzzle
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Large Share of Global Shocks II: spanned FX risk
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Unspanned FX risk: e.g. single traded bond, vGt+1 = 0

Data

CMvar(m∗ −m)
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cov(m∗ −m,∆s)
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Unspanned FX risk: e.g. single traded bond, vGt+1 = 0

Data

CMvar(m∗ −m)

Cyclicality
cov(m∗ −m,∆s)

Volatility
var(∆s)

13 / 22



Summary: alternative market and shock structures

G
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b
al
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Data

CMvar(m∗ −m)

var(E(m∗ −m|ϵG))

var(E(m∗ −m|r, r∗))

Cyclicality
cov(m∗ −m,∆s)

Volatility
var(∆s)

Small share of global shocks vGt+1 requires both:

1 Sparce markets: lack of integration or non-traded FX risk (intermediation or one bond)

2 Sparce shocks: limited cross-border risk spanning (unspanned risks)
14 / 22



Building FX from ground up II: FX return Et∆st+1

Step 2: Given ∆st+1 and {rt+1}, {r∗t+1} construct:

vt+1 = projection of ∆̃st+1 on {r̃t+1} ∪ {r̃∗t+1}

1 if R2 = 1, then ∆̃st+1 = vt+1 is spanned and ut+1 = 0; note that vt+1 = vGt+1 + vLt+1

2 if R2 < 1, then ∆̃st+1 = vt+1 + ut+1 is unspanned; note that R2 = 1− var(ut+1)
vart(∆st+1)

Proposition 2 requires that the expected depreciation Et∆st+1 = xt + ψt, where:

xt = rft− r∗ft−
1

2
vart(∆st+1)− covt(mt+1,∆st+1)− covt(m∗t+1−mt+1−∆st+1, r

∗
p,t+1)

1 if R2 = 1, then ψt = 0 and xt is a function of (mt+1,m
∗
t+1, {rt+1}, {r∗t+1})

2 if R2 < 1, then ψt is unconstrained by pure arbitrage

— with max Sharpe ratio B bound, |ψt| ≤ B
√
var(ut+1)

— (1− ω)ut+1 = −
∑∞

j=0(Et+1 − Et)[ψt+j+1], where ω is LR persistence of ut+1

15 / 22
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vart(∆st+1)

Proposition 2 requires that the expected depreciation Et∆st+1 = xt + ψt, where:

xt = rft− r∗ft−
1

2
vart(∆st+1)− covt(mt+1,∆st+1)− covt(m∗t+1−mt+1−∆st+1, r

∗
p,t+1)

1 if R2 = 1, then ψt = 0 and xt is a function of (mt+1,m
∗
t+1, {rt+1}, {r∗t+1})

2 if R2 < 1, then ψt is unconstrained by pure arbitrage

— with max Sharpe ratio B bound, |ψt| ≤ B
√
var(ut+1)

— (1− ω)ut+1 = −
∑∞

j=0(Et+1 − Et)[ψt+j+1], where ω is LR persistence of ut+1
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A Look at the Data

Econometrician’s interpretation of H and F

— Use data on asset returns in their origin currency {rt+1} and {r∗t+1}
— How much can we learn about FX from the risk-return relation of financial assets?

Data:

I G10 countries, from 1988 to 2022, monthly

I Exchange rates (Bloomberg)

I Equity indices (MSCI): Large+Mid Cap, Value, Growth, 10 industries

I Sovereign bonds (central banks): maturities 2 to 10 years
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Is The Exchange Rate Spanned?
Estimate and report R2 for various subset of returns:

∆st+1 = α+ β′rrrt+1 + β∗′rrr∗t+1︸ ︷︷ ︸
global + local component

+ ut+1︸︷︷︸
unspanned component

Dependent Variable AU CA DE JP NO NZ SE CH UK

Bonds

10Y 0.25 0.33 7.49 5.36 4.73 1.05 4.79 4.01 0.92

All Maturities 7.23 7.89 15.72 10.15 13.66 5.67 13.95 11.52 13.65

Stocks

Mkt 21.67 26.56 6.96 4.44 11.24 16.56 16.20 12.34 12.71

Mkt + Value/Growth 21.60 27.98 6.75 5.06 12.47 17.16 15.91 12.71 13.68

Mkt + Value/Growth + Ind. 35.07 41.61 18.55 22.78 29.41 24.53 24.00 19.61 26.88

Bond + Equity 36.74 45.05 26.79 29.13 36.64 27.95 30.62 25.28 33.80

N 419 395 419 419 406 419 414 419 419

Financial FX disconnect ⇒ Et∆st+1 not constrained
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Identifying Global Shocks

Undirected approach: Canonical correlation analysis

- Look for portfolios of domestic and foreign assets that are maximally correlated

- Strict global shocks: correlation of 1

- Not much relation between assets: maximum correlation between 64% and 90%

- Generous approach: include all pairs with correlation above 60%

Directed approach: Use variables known to relate to global cycles

- VIX, Global Financial Cycle (Miranda-Aggripino and Rey), Excess Bond Premium (Gilchrist

and Zakrajsek)

- Implicit strong assumption: could find assets to replicate them in each country
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Do Global Shocks Explain the Exchange Rate?
Estimate fraction of variance due to global shocks

∆st+1 = α+ βG′εGt+1︸ ︷︷ ︸
global component

+ξt+1.

Decompose variance of exchange rate: global shocks, local shocks, unspanned shocks
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Do Global Shocks Explain the Exchange Rate? Not Much
Estimate fraction of variance due to global shocks

∆st+1 = α+ βG′εGt+1︸ ︷︷ ︸
global component

+ξt+1.
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Takeaways

Complete markets: Financial markets pin down FX... but counterfactual

(Partially) Integrated markets

- FX expectation (risk premium) close to complete markets

- FX risk becomes tightly constrained and close to complete markets if:

- Both representative households can trade the exchange rate, or

- Enough internationally traded assets to span SDFs

Intermediated markets

- Constraints depend on empirical properties of returns: exactly what we measured in data

- FX expectation: spanning of exchange rate → No

- FX shocks: presence of common shocks → Not much

- Difficult to find global shocks, explain even less of FX variation

⇒ FX variation not constrained by domestic and foreign pricing kernels
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Recipe for a Realistic Model of Exchange Rates

Intermediated markets

Small global shocks (∼10–20%)

- constrained by the presence of the many other assets

- must be positively related to relative household SDF m∗ −m
Some local shocks (∼10–30%)

- negatively related to relative SDF m∗ −m to offset global shocks and solve cyclicality puzzle

Mostly unspanned shocks (∼50–80%)

- respect the financial FX disconnect and macro FX disconnect

- allow FX risk premium dynamics (within Sharpe ratio bounds)

- e.g., demand shocks in specialized FX markets
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Conclusion

A general characterization of implications of financial markets for the exchange rate

- not just in our world, but what could be in any alternative world (with no arbitrage)

What do financial markets say about the exchange rate (FX)?

- Not much: properties of {rt+1} and {r∗t+1} do not pin down the FX ∆st+1

Upside:

- Intermediated market structure particularly well-suited to fit the data

- Need more information than asset prices to understand the exchange rate:

- who is trading? who is holding FX risk?

- demand shocks in specialized FX markets
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Related Literature

Euler equations as diagnostics: Hansen and Jagannathan; Alvarez and Jermann

FX puzzles: Backus and Smith; Brandt, Cochrane and Santa-Clara; Fama

Equlibrium explanations of FX puzzles: Verdelhan; Colacito and Croce; Farhi and Gabaix

Departures from complete markets: Lustig and Verdelhan

FX bond disconnect: Chernov and Creal

Intermediated markets and FX: Gabaix and Maggiori; Itskhoki and Mukhin; Jiang,

Krishnamurthy and Lustig; Gourinchas, Ray and Vayanos



Assets

Two countries: Home and Foreign (∗)
- H is the set of portfolios of home assets rrrt+1; risk-free rft ∈ H
- F is the set of portfolios of foreign assets rrr∗t+1 in foreign currency; r∗ft ∈ F
- Returns expressed in each country’s currency

- Log-normal returns and use log-linear portfolio algebra (Campbell Viceira 2002)

Examples

- Autarky: H has domestic stocks and bonds, F has foreign stocks and bonds

- Integrated markets: H and F have the same assets (converted in local currency)

- Complete markets: all Arrow-Debreu claims



Stochastic Discount Factors

Assumption 1: Domestic log SDF mt+1 prices all assets in H, foreign log SDF m∗t+1

prices all assets in F :

∀rt+1 ∈ H : Et exp(mt+1 + rt+1) = 1

∀r∗t+1 ∈ F : Et exp(m∗t+1 + r∗t+1) = 1

Interpretations

1. Macro: mt+1 representative Home household SDF, e.g. mt+1 = −γ log(Ct+1/Ct)

2. Finance: representation of risk-return relation among assets, e.g. mt+1 = λλλ′trrrt+1



Stochastic Discount Factors
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Connecting the Two Markets

Note: assets were defined without reference to exchange rate

st: log nominal exchange rate (price of one unit of foreign currency in domestic currency)

- ∆st+1 log home currency depreciation rate

Consider set I of portfolios in H = {rrrt+1} and F = {rrr∗t+1} with returns converted to

home currency:

rrrIt+1 = (rrrt+1, rrr
∗
t+1 + ∆st+1)

Assumption 2 No arbitrage opportunities in the set of international portfolios I:

∀rp,t+1 ∈ I, vart(rp,t+1) = 0 ⇒ Et(rp,t+1) = rf,t.

- Integrated markets (e.g., I = H): mt+1 ensures no arbitrage

- Intermediated markets (I ⊃ H): some mI
t+1 trades assets in I and ensures no arbitrage



Connecting the Two Markets

Note: assets were defined without reference to exchange rate

st: log nominal exchange rate (price of one unit of foreign currency in domestic currency)

- ∆st+1 log home currency depreciation rate

Consider set I of portfolios in H = {rrrt+1} and F = {rrr∗t+1} with returns converted to

home currency:

rrrIt+1 = (rrrt+1, rrr
∗
t+1 + ∆st+1)

Assumption 2 No arbitrage opportunities in the set of international portfolios I:

∀rp,t+1 ∈ I, vart(rp,t+1) = 0 ⇒ Et(rp,t+1) = rf,t.

- Integrated markets (e.g., I = H): mt+1 ensures no arbitrage

- Intermediated markets (I ⊃ H): some mI
t+1 trades assets in I and ensures no arbitrage



Connecting the Two Markets

Note: assets were defined without reference to exchange rate

st: log nominal exchange rate (price of one unit of foreign currency in domestic currency)

- ∆st+1 log home currency depreciation rate

Consider set I of portfolios in H = {rrrt+1} and F = {rrr∗t+1} with returns converted to

home currency:

rrrIt+1 = (rrrt+1, rrr
∗
t+1 + ∆st+1)

Assumption 2 No arbitrage opportunities in the set of international portfolios I:

∀rp,t+1 ∈ I, vart(rp,t+1) = 0 ⇒ Et(rp,t+1) = rf,t.

- Integrated markets (e.g., I = H): mt+1 ensures no arbitrage

- Intermediated markets (I ⊃ H): some mI
t+1 trades assets in I and ensures no arbitrage



Connecting the Two Markets

Note: assets were defined without reference to exchange rate

st: log nominal exchange rate (price of one unit of foreign currency in domestic currency)

- ∆st+1 log home currency depreciation rate

Consider set I of portfolios in H = {rrrt+1} and F = {rrr∗t+1} with returns converted to

home currency:

rrrIt+1 = (rrrt+1, rrr
∗
t+1 + ∆st+1)

Assumption 2 No arbitrage opportunities in the set of international portfolios I:

∀rp,t+1 ∈ I, vart(rp,t+1) = 0 ⇒ Et(rp,t+1) = rf,t.

- Integrated markets (e.g., I = H): mt+1 ensures no arbitrage

- Intermediated markets (I ⊃ H): some mI
t+1 trades assets in I and ensures no arbitrage



Global and Local Shocks

General exchange rate decomposition:

∆st+1 = Et∆st+1 + vGt+1 + vLt+1 + ut+1

1. Expected depreciation δt = Et∆st+1

2. Depreciation shocks ∆̃st+1 = ∆st+1 − Et∆st+1

I Traded shocks: spanned by {rrrt+1} and {rrr∗t+1}

- Globally traded: vGt+1 ∈ {εGt+1} can be spanned separately in H and F

- Locally traded: vLt+1 can be spanned by one asset set but not the other

I Unspanned shocks: ut+1 ⊥ {rrrt+1, rrr
∗
t+1}



Exchange Rate Shocks, ∆̃st+1 = ∆st+1 − Et∆st+1

Depreciation rate coincides with difference of SDF projected on globally traded shocks

Proposition 1 For {εεεGt+1} = {rrrt+1} ∩ {rrr∗t+1}:

E(∆̃st+1|εεεGt+1) = E(m̃∗t+1 − m̃t+1|εεεGt+1) = vGt+1,

that is m̃∗t+1 − m̃t+1 = vGt+1 + εt+1 and ∆̃st+1 = vGt+1 + ηt+1.

- No restriction for exposure to local shocks or to unspanned shocks, ηt+1 = vLt+1 + ut+1

- Restriction on conditional volatility and conditional Backus-Smith correlation

- Generalization: |cov(m̃∗t+1 − m̃t+1 − ∆̃st+1, rt+1)| ≤ B
√

1− corrt(rt+1, r∗t+1)



Assets and Portfolios

Two technical assumptions:

Vector of log returns:

rrrt+1 = (r1,t+1, . . . , rN,t+1) ∼MVN(µµµt,ΣΣΣt)

Campbell-Viceira (2002) approximation for log portfolio excess returns relative to a

risk-free rate rft:

rp,t+1 − rft = log
(
www′te

rrrt+1−rft)
≈ www′t(rrrt+1 − rft) +

1

2
www′t diag(ΣΣΣt)−

1

2
www′tΣΣΣtwwwt

Back



Global and Local Shocks

Decomposition in globally traded shock εεεGt+1 and local shocks (εεεt+1, εεε
∗
t+1):

r̃rrt+1 = PPPεεεt+1 +PPPGεεεGt+1,

r̃rr∗t+1 = PPP ∗εεε∗t+1 +PPPG∗εεεGt+1

1. Globally-traded shocks can be replicated in each country:

εεεGt+1 = AAAGr̃rrt+1 = AAAG∗r̃rr∗t+1

2. Local shocks:

εεεt+1 = AAAr̃rrt+1, εεε∗t+1 = AAA∗r̃rr∗t+1 : (εεεt+1, εεε
∗
t+1) ⊥ εεεGt+1

Back



Proof of Proposition 1

1. Quanto property

- Trading simple returns across borders induces exchange rate risk

log(er
∗
t+1+∆st+1) = r∗t+1 + ∆st+1

- Trading excess returns across borders only induces a quanto adjustment:

log
(
erf + (er

∗
t+1 − er∗f,t)e∆st+1

)
≈ rf − r∗f + r∗t+1 + covt(r

∗
t+1,∆st+1)

2. No international arbitrage: consider rt+1 ∈ H and r∗t+1 ∈ F that each replicate a

global shock, go long-short in excess returns:

rdiff,t+1︸ ︷︷ ︸
no risk so mean 0

= (rt+1 − rft)︸ ︷︷ ︸
cov(m,εG)

− (r∗t+1 − r∗ft)︸ ︷︷ ︸
cov(m∗,εG)

− covt(r∗t+1,∆st+1)︸ ︷︷ ︸
cov(εG,∆s)

Back
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The Quanto Property

Conversion of excess return does not introduce FX risk Back

Correlation of excess returns on U.S. industry portfolios in dollars and foreign currency

corr
(
ert+1 − erf,t , (ert+1 − erf,t) e∆st+1

)
AU CA DE JP NO NZ SE CH UK

US Market 99.88 99.94 99.95 99.96 99.87 99.90 99.92 99.94 99.94

US Value 99.90 99.95 99.96 99.96 99.87 99.91 99.92 99.95 99.95

US Growth 99.87 99.93 99.94 99.96 99.88 99.90 99.92 99.94 99.94

US Oil, Gas, Coal 99.90 99.96 99.97 99.98 99.92 99.92 99.94 99.96 99.96

US Basic Material 99.81 99.90 99.92 99.95 99.85 99.88 99.90 99.93 99.93

US Consumer Discretionary 99.91 99.95 99.95 99.96 99.9 99.91 99.92 99.95 99.95

US Consumer Products, Services 99.93 99.97 99.97 99.97 99.92 99.93 99.94 99.96 99.96

US Industrials 99.86 99.93 99.94 99.96 99.84 99.90 99.90 99.94 99.94

US Health Care 99.90 99.96 99.95 99.96 99.88 99.93 99.93 99.95 99.96

US Financials 99.91 99.95 99.95 99.94 99.87 99.93 99.91 99.92 99.94

US TeleCom 99.87 99.93 99.95 99.95 99.9 99.91 99.93 99.96 99.95

US Technology 99.88 99.93 99.94 99.96 99.89 99.91 99.92 99.94 99.94

US Utilities 99.84 99.92 99.94 99.96 99.85 99.88 99.91 99.96 99.94


