Monetary Policy, Segmentation, and the Term Structure

Rohan Kekre Chicago Booth Moritz Lenel Princeton Federico Mainardi Chicago Booth

June 2023

Monetary policy and the term structure

- Effect of change in short rates on (real) long rates is central to monetary transmission.
- Transmission operates in part through term premia.
 - Long rate = $\sum E[\text{short rates}] + \text{term premium}$.
 - Expansionary MP \Rightarrow long rates fall more than $\sum E$ [short rates]. Cochrane-Piazzesi (02), Gertler-Karadi (15), Hanson-Stein (15), Abrahams-Adrian-Crump-Moench-Yu (16), Hanson-Lucca-Wright (21), ...
- Challenge to rationalize using existing models.
 - Rep. agent: MP shocks have negligible effects on term premia.
 - Preferred habitat: MP easing *raises* term premia.

Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
What we	e do			

Propose a model of term structure consistent with effects of MP.

- As in preferred habitat tradition: habitat investors + arbs.
- As in intermediary AP tradition: arb wealth is state variable.
- Key mechanism: when arbs have positive duration, fall in short rate revalues wealth in arbs' favor and compresses term premia.
- \Rightarrow Accounts for effects of MP shock on real term structure.
- \Rightarrow State-dependence, price volatility, and trends from declining r^* .

Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
Outline	► Related literature			

- 2 Analytical insights
- 3 Empirical analysis
- Quantitative analysis

5 Conclusion

Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
Model	(1/2)			

Preferred habitat meets intermediary asset pricing.

Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
Model	(1/2)			

Preferred habitat meets intermediary asset pricing.

- Continuous time t.
- Zero coupon bonds with maturities $\tau \in (0,\infty)$.
- Two types of agents:

• Habitat investors:
$$Z_t^{(au)} = -lpha(au) \log \left(\mathcal{P}_t^{(au)}
ight) - heta_t(au).$$

• Arbitrageurs born and dying at rate ξ , solving:

$$v_t(w_t) = \max_{\{x_{t+s}^{(\tau)}\}_{ au,s}} \mathbb{E}_t \int_0^\infty \exp(-\xi s) \log w_{t+s} ds$$

subject to

$$dw_t = r_t w_t dt + \int_0^\infty x_t^{(\tau)} \left(\frac{dP_t^{(\tau)}}{P_t^{(\tau)}} - r_t dt \right) d\tau.$$

Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
Model	(1/2)			

Preferred habitat meets intermediary asset pricing.

- Continuous time t.
- Zero coupon bonds with maturities $\tau \in (0,\infty)$.
- Two types of agents:

• Habitat investors:
$$Z_t^{(au)} = -lpha(au) \log \left(P_t^{(au)}
ight) - heta_t(au).$$

Arbitrageurs born and dying at rate ξ, solving:

$$v_t(w_t) = \max_{\{x_{t+s}^{(\tau)}\}_{\tau,s}} \mathbb{E}_t \int_0^\infty \exp(-\xi s) \log w_{t+s} ds$$

subject to

$$dw_t = r_t w_t dt + \int_0^\infty x_t^{(\tau)} \left(\frac{dP_t^{(\tau)}}{P_t^{(\tau)}} - r_t dt \right) d\tau.$$

Optimal policies linear in w_t . Define $X_t^{(\tau)}$, W_t as aggregates.

Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
Model (2	2/2)			

- Market clearing: $Z_t^{(au)} + X_t^{(au)} = 0$ at each $au \in (0,\infty)$.
- Driving forces:
 - Short rate: $dr_t = \kappa_r (\bar{r} r_t) dt + \sigma_r dB_{r,t}$.
 - Habitat demand: $d\beta_t = -\kappa_\beta \beta_t dt + \sigma_\beta dB_{\beta,t}$, where

$$\theta_t(\tau) = \theta_0(\tau) + \theta_1(\tau)\beta_t.$$

Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
Model (2	2/2)			

- Market clearing: $Z_t^{(au)} + X_t^{(au)} = 0$ at each $au \in (0,\infty)$.
- Driving forces:
 - Short rate: $dr_t = \kappa_r (\bar{r} r_t) dt + \sigma_r dB_{r,t}$.
 - Habitat demand: $d\beta_t = -\kappa_\beta \beta_t dt + \sigma_\beta dB_{\beta,t}$, where

$$\theta_t(\tau) = \theta_0(\tau) + \theta_1(\tau)\beta_t.$$

• Remarks:

- Vayanos-Vila (21) + CRRA + perpetual youth.
- Real interpretation.
- Monetary shocks as inducing real short rate shocks.

• First simplify to discrete time, two bonds traded $\tau = \{1, 2\}$.

- First simplify to discrete time, two bonds traded $\tau = \{1, 2\}$.
- Given $\{r_t, \theta_t, W_t\}$, equilibrium described by six equations:

- First simplify to discrete time, two bonds traded $\tau = \{1, 2\}$.
- Given $\{r_t, \theta_t, W_t\}$, equilibrium described by six equations:

$$r_{t+1}^{(2)} = -r_{t+1} - \log P_t,$$

- First simplify to discrete time, two bonds traded $\tau = \{1, 2\}$.
- Given $\{r_t, \theta_t, W_t\}$, equilibrium described by six equations:

$$\begin{aligned} r_{t+1}^{(2)} &= -r_{t+1} - \log P_t, \\ E_t r_{t+1}^{(2)} &= r_t + \frac{1}{2} \sigma_r^2 \approx \frac{X_t}{W_t} \sigma_r^2. \end{aligned}$$

- First simplify to discrete time, two bonds traded $\tau = \{1, 2\}$.
- Given $\{r_t, \theta_t, W_t\}$, equilibrium described by six equations:

$$\begin{aligned} r_{t+1}^{(2)} &= -r_{t+1} - \log P_t, \\ E_t r_{t+1}^{(2)} &- r_t + \frac{1}{2} \sigma_r^2 \approx \frac{X_t}{W_t} \sigma_r^2, \\ X_t &= \alpha \log P_t + \theta_t, \end{aligned}$$

- First simplify to discrete time, two bonds traded $\tau = \{1, 2\}$.
- Given $\{r_t, \theta_t, W_t\}$, equilibrium described by six equations:

$$\begin{aligned} r_{t+1}^{(2)} &= -r_{t+1} - \log P_t, \\ E_t r_{t+1}^{(2)} &= r_t + \frac{1}{2} \sigma_r^2 \approx \frac{X_t}{W_t} \sigma_r^2, \\ X_t &= \alpha \log P_t + \theta_t, \\ W_{t+1} &= \exp(-\xi) \left[W_t \exp(r_t) + X_t \left(\frac{\exp(-r_{t+1})}{P_t} - \exp(r_t) \right) \right] + (1 - \exp(-\xi)) \, \bar{W}, \end{aligned}$$

- First simplify to discrete time, two bonds traded $\tau = \{1, 2\}$.
- Given $\{r_t, \theta_t, W_t\}$, equilibrium described by six equations:

$$\begin{split} r_{t+1}^{(2)} &= -r_{t+1} - \log P_t, \\ E_t r_{t+1}^{(2)} - r_t + \frac{1}{2} \sigma_r^2 \approx \frac{X_t}{W_t} \sigma_r^2, \\ X_t &= \alpha \log P_t + \theta_t, \\ W_{t+1} &= \exp(-\xi) \left[W_t \exp(r_t) + X_t \left(\frac{\exp\left(-r_{t+1}\right)}{P_t} - \exp\left(r_t\right) \right) \right] + (1 - \exp(-\xi)) \, \bar{W}, \\ r_{t+1} - \bar{r} &= (1 - \kappa_r) \left(r_t - \bar{r} \right) + \sigma_r \epsilon_{r,t+1}, \\ \theta_{t+1} - \bar{\theta} &= (1 - \kappa_\theta) \left(\theta_t - \bar{\theta} \right) + \sigma_\theta \epsilon_{\theta,t+1}, \end{split}$$

- First simplify to discrete time, two bonds traded $\tau = \{1, 2\}$.
- Given $\{r_t, \theta_t, W_t\}$, equilibrium described by six equations:

$$\begin{split} r_{t+1}^{(2)} &= -r_{t+1} - \log P_t, \\ E_t r_{t+1}^{(2)} - r_t + \frac{1}{2} \sigma_r^2 \approx \frac{X_t}{W_t} \sigma_r^2, \\ X_t &= \alpha \log P_t + \theta_t, \\ W_{t+1} &= \exp(-\xi) \left[W_t \exp(r_t) + X_t \left(\frac{\exp\left(-r_{t+1}\right)}{P_t} - \exp\left(r_t\right) \right) \right] + (1 - \exp(-\xi)) \, \bar{W}, \\ r_{t+1} - \bar{r} &= (1 - \kappa_r) \left(r_t - \bar{r} \right) + \sigma_r \epsilon_{r,t+1}, \\ \theta_{t+1} - \bar{\theta} &= (1 - \kappa_\theta) \left(\theta_t - \bar{\theta} \right) + \sigma_\theta \epsilon_{\theta,t+1}, \end{split}$$

in six unknowns $\{r_{t+1}^{(2)}, P_t, X_t, W_{t+1}, r_{t+1}, \theta_{t+1}\}.$

• Focus on effects of monetary shock $d\epsilon_{r,t}$.

Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
Effect o	on arb wealth			

• For simplicity, focus on responses around stoch. steady-state.

Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
Effect or	n arb wealth			

• For simplicity, focus on responses around stoch. steady-state.

Proposition

In response to a monetary shock

$$d\log W_t = -\exp(-\xi)\omega\sigma_r d\epsilon_{r,t},$$

where ω is the duration of arbitrageurs' wealth and satisfies $\omega \propto \frac{X}{W}$.

• Hence, arbs' wealth is revalued upwards if short rate falls and their portfolio has positive duration.

Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
Effect of	n yield curve			

Proposition

The response of the one-period ahead forward rate to a monetary shock is

$$df_t = \left[\frac{1 - \kappa_r - \frac{1}{W}\alpha\sigma_r^2}{1 + \frac{1}{W}\alpha\sigma_r^2}\right] \sigma_r d\epsilon_{r,t},$$

- Yield falls as short rate falls and habitat investors borrow more.
- When $\xi \to \infty$, arbs' wealth is constant at \bar{W} .
 - Underreaction: $df_t < (1 \kappa_r)\sigma_r d\epsilon_{r,t} = dE_t r_{t+1}$ if $\alpha > 0$.

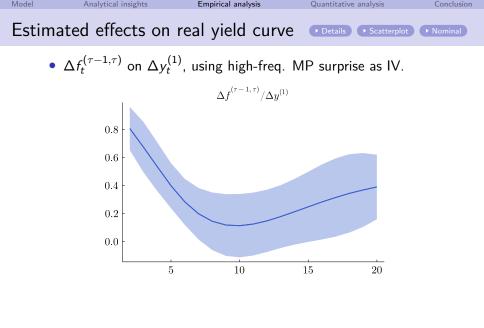
Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion

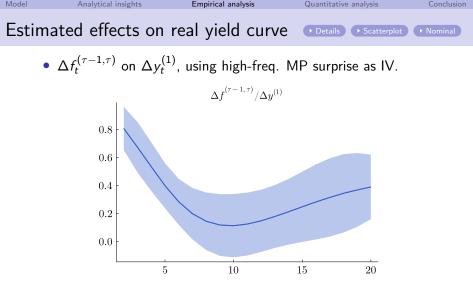
Effect on yield curve

Proposition

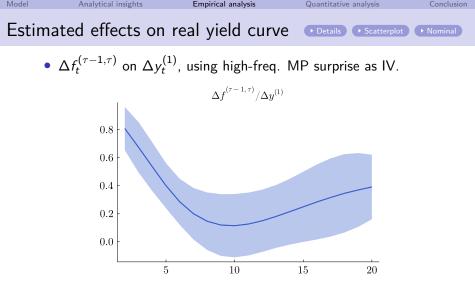
The response of the one-period ahead forward rate to a monetary shock is

$$df_t = \left[\frac{1 - \kappa_r - \frac{1}{W}\alpha\sigma_r^2}{1 + \frac{1}{W}\alpha\sigma_r^2} + \exp(-\xi)\frac{\frac{1}{W}X\sigma_r^2}{1 + \frac{1}{W}\alpha\sigma_r^2}\omega\right]\sigma_r d\epsilon_{r,t},$$


- Yield falls as short rate falls and habitat investors borrow more.
- When $\xi \to \infty$, arbs' wealth is constant at \bar{W} .
 - Underreaction: $df_t < (1 \kappa_r)\sigma_r d\epsilon_{r,t} = dE_t r_{t+1}$ if $\alpha > 0$.
- When ξ finite, arbs' wealth revalued upwards.
 - Overreaction: term premium falls if X/W sufficiently high vs. α .


Taking stock and rest of paper

- When $\xi \to \infty$, forward rate underreacts to monetary shock.
- Given finite ξ , forward rate overreacts to monetary shock if portfolio duration is high relative to α .


Taking stock and rest of paper

- When $\xi \to \infty$, forward rate underreacts to monetary shock.
- Given finite ξ , forward rate overreacts to monetary shock if portfolio duration is high relative to α .
- Now:
 - 1 Estimates of monetary shock on yield curve.
 - 2 Estimates of arb duration.
 - **3** Assessing whether full model can quantitatively account for #1.
 - Arb duration disciplined by novel evidence in #2.
 - α disciplined by large literature on QE.
 - 4 Additional implications of endogenous arb wealth for yield curve.

• Bridges Hanson-Stein (15) and Nakamura-Steinsson (18).

- Bridges Hanson-Stein (15) and Nakamura-Steinsson (18).
- Challenge to explain with existing models.

Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
Estimat	ed arb durati	on		

- Who are the arbs?
 - Following literature, broker/dealers and hedge funds.
 - By market clearing, habitat: households, other fin. institutions (pension funds, life insurance), non-financials, govt, and ROW.
- Two approaches to measure dealer + hedge fund duration:
 - 1 Balance sheets and asset-specific duration. Detail
 - 2 High-freq. response of dealers to MP surprises.
- Punchline: duration between 5 and 20.

- Add MP surprise $\times dur_{t-1}$ to high freq. regressions.
- Use 3 proxies for arb duration avail. over sample: Figures

	Proxy for arb duration				
	5-yr fwd, 5-yr TP	Log dealer dur.	—Dealer income gap		
$\Delta f_t^{(19,20)}$ on $\Delta y_t^{(1)} imes dur_{t-1}$	0.50	0.65	2.0		
	(0.25)	(0.27)	(1.7)		

	0		

- Add MP surprise $\times dur_{t-1}$ to high freq. regressions.
- Use 3 proxies for arb duration avail. over sample: Figures

	Proxy for arb duration				
	5-yr fwd, 5-yr TP	Log dealer dur.	—Dealer income gap		
$\Delta f_t^{(19,20)}$ on $\Delta y_t^{(1)} imes \textit{dur}_{t-1}$	0.50	0.65	2.0		
	(0.25)	(0.27)	(1.7)		

• Thus, response of $f_t^{(19,20)}$ to 100*bp* increase in $y_t^{(1)}$ rises by

	0		

- Add MP surprise $\times dur_{t-1}$ to high freq. regressions.
- Use 3 proxies for arb duration avail. over sample: Figures

	Proxy for arb duration				
	5-yr fwd, 5-yr TP	Log dealer dur.	—Dealer income gap		
$\Delta f_t^{(19,20)}$ on $\Delta y_t^{(1)} imes dur_{t-1}$	0.50	0.65	2.0		
	(0.25)	(0.27)	(1.7)		

• Thus, response of $f_t^{(19,20)}$ to 100*bp* increase in $y_t^{(1)}$ rises by

• 50*bp* if term premium higher by 1*pp* (SD: 0.4*pp*).

- Add MP surprise $\times dur_{t-1}$ to high freq. regressions.
- Use 3 proxies for arb duration avail. over sample: Figures

	Proxy for arb duration				
	5-yr fwd, 5-yr TP	Log dealer dur.	—Dealer income gap		
$\Delta f_t^{(19,20)}$ on $\Delta y_t^{(1)} imes dur_{t-1}$	0.50	0.65	2.0		
	(0.25)	(0.27)	(1.7)		

- Thus, response of $f_t^{(19,20)}$ to 100*bp* increase in $y_t^{(1)}$ rises by
 - 50*bp* if term premium higher by 1*pp* (SD: 0.4*pp*).
 - 0.65*bp* if log dealer dur higher by 1*pp* (SD: 40*pp*).

- Add MP surprise $\times dur_{t-1}$ to high freq. regressions.
- Use 3 proxies for arb duration avail. over sample: Figures

	Proxy for arb duration				
	5-yr fwd, 5-yr TP	Log dealer dur.	—Dealer income gap		
$\Delta f_t^{(19,20)}$ on $\Delta y_t^{(1)} imes dur_{t-1}$	0.50	0.65	2.0		
	(0.25)	(0.27)	(1.7)		

- Thus, response of $f_t^{(19,20)}$ to 100*bp* increase in $y_t^{(1)}$ rises by
 - 50*bp* if term premium higher by 1*pp* (SD: 0.4*pp*).
 - 0.65*bp* if log dealer dur higher by 1*pp* (SD: 40*pp*).
 - 2.0bp if dealer income gap lower by 1pp (SD: 8pp).

- Add MP surprise $\times dur_{t-1}$ to high freq. regressions.
- Use 3 proxies for arb duration avail. over sample: Figures

	Proxy for arb duration				
	5-yr fwd, 5-yr TP	Log dealer dur.	—Dealer income gap		
$\Delta f_t^{(19,20)}$ on $\Delta y_t^{(1)} imes dur_{t-1}$	0.50	0.65	2.0		
	(0.25)	(0.27)	(1.7)		

- Thus, response of $f_t^{(19,20)}$ to 100*bp* increase in $y_t^{(1)}$ rises by
 - 50*bp* if term premium higher by 1*pp* (SD: 0.4*pp*).
 - 0.65*bp* if log dealer dur higher by 1*pp* (SD: 40*pp*).
 - 2.0*bp* if dealer income gap lower by 1*pp* (SD: 8*pp*).
- Add'l evidence: High freq. dealer return as RHS in first stage

Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
Return	ing to full mod	el PDE		

• Now: can calibration matching arb duration account for effects of monetary shocks on yield curve?

Aodel

Returning to full model •••••

- Now: can calibration matching arb duration account for effects of monetary shocks on yield curve?
- · Generalizing simple model, equilibrium in full model given by

$$\begin{split} E_t \left(\frac{dP_t^{(\tau)}}{P_t^{(\tau)}} \right) &- r_t dt = \frac{1}{W_t} \int_0^\infty X_t^{(s)} Cov_t \left(\frac{dP_t^{(\tau)}}{P_t^{(\tau)}}, \frac{dP_t^{(s)}}{P_t^{(s)}} \right) ds, \\ X_t^{(\tau)} &= -Z_t^{(\tau)} = \alpha(\tau) \log\left(P_t^{(\tau)}\right) + \theta_0(\tau) + \theta_1(\tau)\beta_t, \\ dW_t &= W_t r_t dt + \int_0^\infty X_t^{(\tau)} \left[\frac{dP_t^{(\tau)}}{P_t^{(\tau)}} - r_t dt \right] d\tau + \xi(\bar{W} - W_t) dt, \end{split}$$

and evolution of driving forces.

Model

Returning to full model

- Now: can calibration matching arb duration account for effects of monetary shocks on yield curve?
- · Generalizing simple model, equilibrium in full model given by

$$\begin{split} E_t \left(\frac{dP_t^{(\tau)}}{P_t^{(\tau)}} \right) &- r_t dt = \frac{1}{W_t} \int_0^\infty X_t^{(s)} Cov_t \left(\frac{dP_t^{(\tau)}}{P_t^{(\tau)}}, \frac{dP_t^{(s)}}{P_t^{(s)}} \right) ds, \\ X_t^{(\tau)} &= -Z_t^{(\tau)} = \alpha(\tau) \log\left(P_t^{(\tau)}\right) + \theta_0(\tau) + \theta_1(\tau)\beta_t, \\ dW_t &= W_t r_t dt + \int_0^\infty X_t^{(\tau)} \left[\frac{dP_t^{(\tau)}}{P_t^{(\tau)}} - r_t dt \right] d\tau + \xi(\bar{W} - W_t) dt, \end{split}$$

and evolution of driving forces.

• Solve numerically on discretized grid (τ, r, β, W) .

del

Returning to full model

- Now: can calibration matching arb duration account for effects of monetary shocks on yield curve?
- · Generalizing simple model, equilibrium in full model given by

$$\begin{split} E_t \left(\frac{dP_t^{(\tau)}}{P_t^{(\tau)}} \right) &- r_t dt = \frac{1}{W_t} \int_0^\infty X_t^{(s)} Cov_t \left(\frac{dP_t^{(\tau)}}{P_t^{(\tau)}}, \frac{dP_t^{(s)}}{P_t^{(s)}} \right) ds, \\ X_t^{(\tau)} &= -Z_t^{(\tau)} = \alpha(\tau) \log \left(P_t^{(\tau)} \right) + \theta_0(\tau) + \theta_1(\tau) \beta_t, \\ dW_t &= W_t r_t dt + \int_0^\infty X_t^{(\tau)} \left[\frac{dP_t^{(\tau)}}{P_t^{(\tau)}} - r_t dt \right] d\tau + \xi (\bar{W} - W_t) dt, \end{split}$$

and evolution of driving forces.

• Solve numerically on discretized grid (τ, r, β, W) .

• Assume:
$$\alpha(\tau) \equiv \alpha \exp^{-\delta \tau}$$
, $\theta_0(\tau) \equiv \exp^{-\delta \tau}$, $\theta_1(\tau) \equiv \exp^{-\delta \tau}$.

Model	Analytical insights	Empirical analysis	Quantitative analysis
Calibra	ation: key para	meters and tar	gets • All calibrated parameter

• ξ (persistence arb wealth): yield spread.

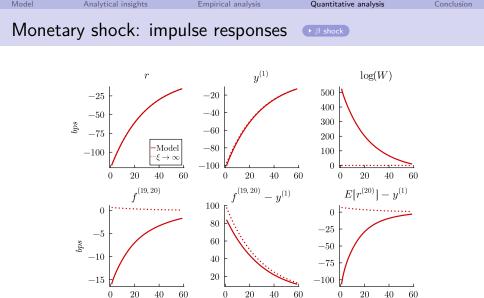
Ν		

Calibration: key parameters and targets

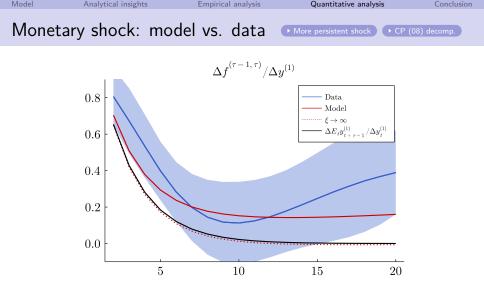
All calibrated parameters

- ξ (persistence arb wealth): yield spread.
- δ (shape habitat demand): asset duration of arbs.
- \bar{W} (arb endowment): wealth duration of arbs.

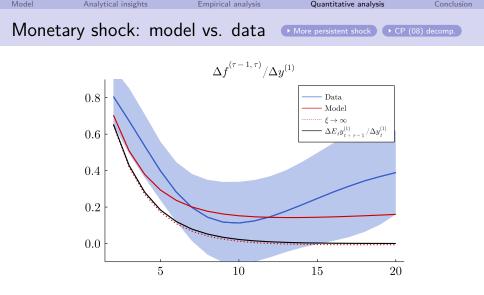
N			


Calibration: key parameters and targets

· All calibrated parameters


- ξ (persistence arb wealth): yield spread.
- δ (shape habitat demand): asset duration of arbs.
- \bar{W} (arb endowment): wealth duration of arbs.
- α (habitat price elast.): responses to QE.

Calibration: key parameters and targets


- ξ (persistence arb wealth): yield spread.
- δ (shape habitat demand): asset duration of arbs.
- \bar{W} (arb endowment): wealth duration of arbs.
- α (habitat price elast.): responses to QE.
 - Simplified environment provides intuition: $\frac{d \log P_t}{d \theta_t} = -\frac{1}{\alpha + \frac{W_t}{2}}$.
 - Focus on 3/18/09 announcement: purchase \$300bn Treasuries; increase agency debt and MBS purchases by \$100bn, \$750bn.
 - Translate each security-level purchase through 3/31/10 into purchase of ZCBs and feed into model.
 - Initialize W_0 at 40% below average W, consistent with data.

Arbs' wealth rises and lowers term premia, unlike $\xi \to \infty$.

• Account for roughly half of $f^{(19,20)}$, unlike $\xi \to \infty$...

- Account for roughly half of $f^{(19,20)}$, unlike $\xi
 ightarrow \infty...$
- ...and all of $f^{(19,20)}$ given higher duration/lower α .

Monetary shock: state-dependence

	Proxy for arb duration				
	5-yr fwd, 5-yr TP	Log dealer dur.	—Dealer income gap		
Data	[0.09,0.91]	[0.21,1.09]	[0.6,5.2]		
Model	0.14	0.12	0.3		

- As in data, higher arb duration implies larger response of $f^{(19,20)}$ to monetary tightening.
- If anything, model understates effects of changes in arb wealth.

... beyond conditional response to monetary shocks.

... beyond conditional response to monetary shocks.

- 1 State-dependent effects of QE. Details
 - If arb wealth was W before 3/18/09 announcement, response of long-dated yields and forwards dampened by 20 - 30%.
 - Reflects more elastic demand and lower duration at higher W_0 .

... beyond conditional response to monetary shocks.

- 1 State-dependent effects of QE. Details
 - If arb wealth was W before 3/18/09 announcement, response of long-dated yields and forwards dampened by 20 - 30%.
 - Reflects more elastic demand and lower duration at higher W₀.
- 2 Bond price volatility.

Details

- Endog. arb wealth accounts for > 1/2 of long-dated price vol.
- ... generates stochastic vol. in bond prices.

... beyond conditional response to monetary shocks.

- 1 State-dependent effects of QE. Details
 - If arb wealth was W before 3/18/09 announcement, response of long-dated yields and forwards dampened by 20 - 30%.
 - Reflects more elastic demand and lower duration at higher W₀.
- 🥑 Bond price volatility. 💽

Details

- Endog. arb wealth accounts for > 1/2 of long-dated price vol.
- ... generates stochastic vol. in bond prices.
- 3 Secular decline in natural rate. Details
 - Decline in \bar{r} accounts for > 20% of decline in real term premia.
 - Complements explanations focused on changing comovements.

Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
Conclu	ision			

Propose a model of term structure consistent with effects of MP.

- As in preferred habitat tradition: habitat investors + arbs.
- As in intermediary AP tradition: arb wealth is state variable.
- Key mechanism: when arbs have positive duration, fall in short rate revalues wealth in arbs' favor and compresses term premia.
- \Rightarrow Accounts for effects of MP shock on real term structure.
- \Rightarrow State-dependence, price volatility, and trends from declining r^* .

Model Analytical	insights
------------------	----------

Empirical analysis

Quantitative analysis

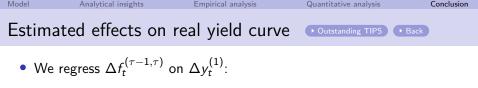
Conclusion

APPENDIX

Related literature • Back	Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
	Related	d literature	▶ Back		

• Preferred habitat models of term structure.

Vayanos-Vila (21), Greenwood-Hanson-Stein (10), Guibaud-Nosbusch-Vayanos (13), Gourinchas-Ray-Vayanos (21), Greenwood-Hanson-Stein-Sunderam (20), Ray (21), ...

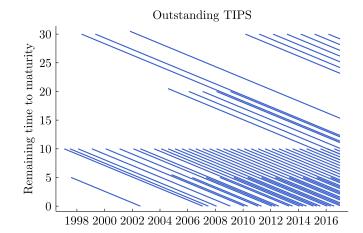

Here: resolve counterfactual responses to short rate.

Intermediary asset pricing and financial accelerator.
 Bernanke-Gertler-Gilchrist (99), He-Krishnamurthy (13), Brunnermeier-Sannikov (14), Haddad-Sraer (20), He-Nagel-Song (22), Schneider (22), ...
 Here: application to term structure and monetary transmission.

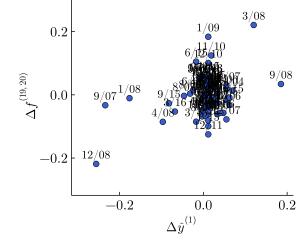
"Reaching for yield" or changing policy rules.
 Hanson-Stein (15), Bianchi-Lettau-Ludvisgon (21), Hanson-Lucca-Wright (21),
 Bianchi-Ludvigson-Ma (22), Bauer-Pflueger-Sunderam (22), ...

Here: wealth revaluation channel with distinct predictions.

• Our prior work on macro, wealth distribution, and price of risk.

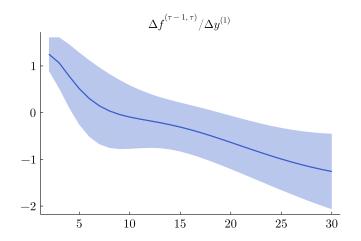



- Δ is one-day change around FOMC meetings 2004–2016.
- IV: high freq. change in FF future (Jarocinski-Karadi (20)).
- Following Nakamura-Steinsson (18), use high freq. IV because of other news even on FOMC days. Comparing FOMC vs. non-FOMC days
- Following Jarocinski-Karadi (20), focus on meetings around which IV and S&P 500 return have opposite signs.
- Robustness:



- Sample: all FOMC meetings, excl. 7/2008–6/2009, excl. LSAP news (Cieslak-Schrimpf (19)).
- IV: Bauer-Swanson(22), Nakamura-Steinsson(18), Swanson(21).

Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
Outsta	anding TIPS	• Back		


Model Analytical ins	ghts
----------------------	------

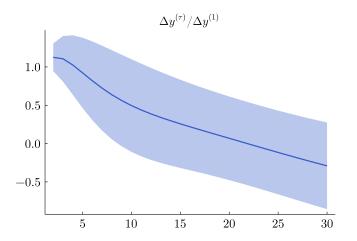
Estimated effects on real yield curve (2/2) \longrightarrow Back

Specification	$\Delta f_t^{(4,5)}$	$\Delta f_t^{(9,10)}$	$\Delta f_t^{(14,15)}$	$\Delta f_t^{(19,20)}$
Baseline	0.40	0.11	0.25	0.39
	(0.10)	(0.14)	(0.15)	(0.14)
All FOMC announcements	0.38	0.11	0.13	0.27
	(0.10)	(0.11)	(0.15)	(0.13)
Excl. 7/08-6/09	0.46	-0.26	0.21	0.50
	(0.22)	(0.30)	(0.21)	(0.29)
Excl. announcements with LSAP news	0.28	-0.12	0.07	0.30
	(0.12)	(0.17)	(0.14)	(0.19)
Swanson (21) Fed funds IV	0.31	0.15	0.30	0.41
	(0.13)	(0.13)	(0.16)	(0.17)
Swanson (21) forward guidance IV	1.05	0.44	0.25	0.23
	(0.23)	(0.13)	(0.13)	(0.12)
Bauer-Swanson (22) IV	0.64	0.27	0.17	0.23
	(0.14)	(0.11)	(0.14)	(0.13)
Nakamura-Steinsson (18) IV	0.64	0.27	0.35	0.40
	(0.15)	(0.13)	(0.11)	(0.13)
NS (18) IV, excl. 7/08-6/09	0.72	-0.07	0.13	0.29
	(0.32)	(0.26)	(0.19)	(0.26)

Estimated effects on nominal yield curve (1/3)

Model

Analytical insights


Empirical analysis

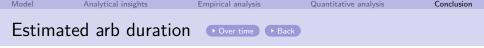
Quantitative analysis

Conclusion

▶ Back

Estimated effects on nominal yield curve (2/3)

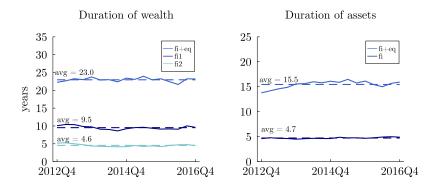
Model Analytical insights Empirical analysis
--


Estimated effects on nominal yield curve (3/3) \bigcirc Back

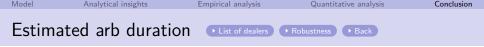
Specification	$\Delta f_t^{(4,5)}$	$\Delta f_t^{(9,10)}$	$\Delta f_t^{(14,15)}$	$\Delta f_t^{(19,20)}$
Baseline	0.51	-0.09	-0.31	-0.64
	(0.47)	(0.41)	(0.31)	(0.34)
All FOMC announcements	0.42	-0.09	-0.23	-0.42
	(0.26)	(0.23)	(0.17)	(0.19)
Excl. 7/08-6/09	0.10	-0.49	-0.59	-0.84
	(0.34)	(0.33)	(0.43)	(0.51)
Excl. announcements with LSAP news	-0.02	-0.52	-0.51	-0.74
	(0.30)	(0.27)	(0.35)	(0.40)
Swanson (21) Fed funds IV	0.41	0.00	-0.18	-0.64
	(0.57)	(0.47)	(0.35)	(0.46)
Swanson (21) forward guidance IV	2.30	0.87	0.09	-0.20
	(0.94)	(0.48)	(0.23)	(0.29)
Bauer-Swanson (22) IV	0.87	0.15	-0.20	-0.50
	(0.36)	(0.30)	(0.22)	(0.28)
Nakamura-Steinsson (18) IV	0.91	0.27	-0.12	-0.48
	(0.46)	(0.40)	(0.28)	(0.33)
NS (18) IV, excl. 7/08-6/09	0.27	-0.29	-0.37	-0.66
	(0.29)	(0.29)	(0.32)	(0.41)

• Dealer balance sheets from FA, hedge funds from Form PF.

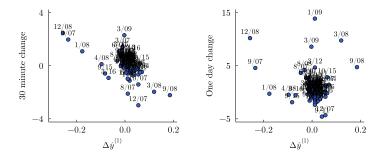
	Q4 2012	balance sh	eet (\$bn)
	Broker/ Hedge		Sum
	dealers	funds	Sum
Cash, deposits, MMFs	128	553	681
Repo and other ST loans	-448	-1,231	-1,679
Treasuries	185	654	839
Corp and foreign bonds	40	994	1,034
Other debt securities	302	61	363
Loans	-35	133	99
Corp equities	127	1,148	1,275
Wealth	299	2,313	2,612


- Dealer balance sheets from FA, hedge funds from Form PF.
- Duration from Bloomberg indices and Greenwald et al (22).

Broker/ dealers	Hedge		Duration
ucalers	funds	Sum	Duration (years)
128	553	681	0.25
-448	-1,231	-1,679	0.083
185	654	839	5.4
40	994	1,034	7.2
302	61	363	3.2
-35	133	99	5
127	1,148	1,275	35
299	2,313	2,612	
	-448 185 40 302 -35 127	-448 -1,231 185 654 40 994 302 61 -35 133 127 1,148	-448 -1,231 -1,679 185 654 839 40 994 1,034 302 61 363 -35 133 99 127 1,148 1,275


- Dealer balance sheets from FA, hedge funds from Form PF.
- Duration from Bloomberg indices and Greenwald et al (22).
- Estimate duration with/without corporate equities.

	Q4 2012	balance sh	eet (\$bn)	
	Broker/ dealers	Hedge funds	Sum	Duration (years)
Cash, deposits, MMFs	128	553	681	0.25
Repo and other ST loans	-448	-1,231	-1,679	0.083
Treasuries	185	654	839	5.4
Corp and foreign bonds	40	994	1,034	7.2
Other debt securities	302	61	363	3.2
Loans	-35	133	99	5
Corp equities	127	1,148	1,275	35
Wealth	299	2,313	2,612	22.2 (fi+eq)
				10.1 (fi,1)
				5.2 (fi,2)


Estimated arb duration over time o

- Average duration of wealth between 4.6-23.0.
- Ignoring repo + ST loans ("duration of assets"), 4.7-15.5.

• Complementary approach: high freq. response of publicly traded dealer stock prices to monetary shocks.

- 1pp increase in 1y yield \Rightarrow 9.8pp decline in dealer equity prices.
- High freq. window needed for power.

N			

List of dealers (1/2)

▶ Back

		CRSP/TAQ		FR Y9-C
Dealer	Ticker	Availability	RSSD	Availability
Bank of America	BAC	1/2/2004-12/30/2016	1073757	2004Q1-2016Q4
Barclays	BCS	1/2/2004-12/30/2016	2914521	2004Q4-2010Q3*
BMO	BMO	1/2/2004-12/30/2016	1245415	2004Q1-2016Q4
Bank of Novia Scotia	BNS	1/2/2004-12/30/2016	1238967	
Bear Stearns	BSC	1/2/2004-5/30/2008	1573257	
Citigroup	С	1/2/2004-12/30/2016	1951350	2004Q1-2016Q4
CIBC	СМ	1/2/2004-12/30/2016	2797498	2004Q1-2004Q3
Credit Suisse	CS	1/2/2004-12/30/2016	1574834	2016Q3-2016Q4
Deutsche Bank	DB	1/2/2004-12/30/2016	1032473	2004Q1-2016Q4*
Goldman Sachs	GS	1/2/2004-12/30/2016	2380443	2009Q1-2016Q4
HSBC	HSBC	1/2/2004-12/30/2016	3232316	2004Q1-2016Q4
Jefferies	JEF	1/2/2004-2/28/2013	2046020	
JP Morgan	JPM	1/2/2004-12/30/2016	1039502	2004Q1-2016Q4
Lehman Brothers	LEH	1/2/2004-9/17/2008	2380144	

N			

Empirical analysis

Quantitative analysis

Conclusion

List of dealers (2/2)

▶ Back

		CRSP/TAQ		FR Y9-C
Dealer	Ticker	Availability	RSSD	Availability
Merrill Lynch	MER	1/2/2004-12/31/2008		
MF Global	MF	7/19/2007-10/28/2011	4236731	2016Q3-2016Q4
Mizuho	MFG	11/8/2006-12/30/2016	5034792	2016Q3-2016Q4
Morgan Stanley	MS	1/2/2004-12/30/2016	2162966	2009Q1-2016Q4
Nomura	NMR	1/2/2004-12/30/2016	1445345	
Banc One	ONE	1/2/2004-6/30/2004	1068294	2004Q1-2004Q2
Prudential	PRU	1/2/2004-12/30/2016	2441728	
RBS	RBS	10/18/2007-12/30/2016	1851106	
RBC	RY	1/2/2004-12/30/2016	3226762	2010Q4-2016Q4*
TD	TD	1/2/2004-12/30/2016	3606542	2015Q3-2016Q4
UBS	UBS	1/2/2004-12/30/2016	4846998	2016Q3-2016Q4
Wells Fargo	WFC	1/2/2004-12/30/2016	1120754	2004Q1-2016Q4
Zions First National	ZION	1/2/2004-12/30/2016	1027004	2004Q1-2016Q4

High frequency response of dealer equities • Back

Specification	30 minute change	One day change
Baseline	-9.8	-8.0
	(3.2)	(9.9)
All FOMC announcements	-1.4	-2.7
	(4.5)	(8.2)
Excl. 7/08-6/09	-19.4	-2.6
	(11.2)	(20.0)
Excl. announcements with LSAP news	-12.4	4.0
	(5.8)	(10.1)
Swanson (21) Fed funds IV	-10.0	-4.2
	(3.6)	(10.5)
Swanson (21) forward guidance IV	-11.4	-13.1
	(5.0)	(5.3)
Bauer-Swanson (22) IV	-7.7	-14.8
	(3.2)	(6.7)
Nakamura-Steinsson (18) IV	-12.2	-21.3
	(4.0)	(6.6)
NS (18) IV, excl. 7/08-6/09	-24.2	-20.6
	(10.0)	(17.6)

Nodel	Analytical insights	Empirical analysis	Quantitative analys	is Conclusion
Comparir	ng measures o	of arb duration	ON Back	
) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.25 0.00 0.75 0.50 0.25 0.00 0.75 0.25 0.00	WWW VY	www.win	$ \begin{array}{c} 1.5 \\ 1.0 \\ 0.5 \\ 0.0 \end{array} $
8	2004 2006 1.5 1.0 0.5 0.0 2004 2006	2008 2010	www.	2016 2.0 1.5 1.0 0.5 2016
	2.004 2000 2.0 Log dealer dur, le Dealer income gay 0.5 Log dealer dur, le Dealer income gay	ft A	WANT MAN MAN MAN	$\begin{array}{c} 0.40\\ 0.35\\ 0.30\\ 0.25\\ 0.20\\ 0.15\\ \end{array}$

Μ

Relating yield curve responses and arb duration • Back

Specification	5-yr fwd,	Log dealer	-Dealer
Specification	5-yr TP	dur.	income gap
Baseline	0.50	0.65	2.0
	(0.25)	(0.27)	(1.7)
All FOMC announcements	0.11	0.31	1.4
	(0.43)	(0.24)	(1.7)
Excl. 7/08-6/09	1.08	2.67	6.5
	(0.63)	(4.99)	(5.7)
Excl. announcements with LSAP news	0.43	0.64	1.6
	(0.38)	(0.51)	(1.6)
Swanson (21) Fed funds IV	0.70	0.68	2.1
	(0.42)	(0.32)	(2.7)
Swanson (21) forward guidance IV	0.08	0.15	1.4
	(0.20)	(0.23)	(1.7)
Bauer-Swanson (22) IV	0.65	0.37	2.1
	(0.73)	(0.31)	(2.2)
Nakamura-Steinsson (18) IV	0.56	0.72	16.2
	(0.55)	(0.37)	(10.2)
NS (18) IV, excl. 7/08-6/09	1.11	2.76	14.2
	(0.70)	(4.97)	(9.5)

High frequency dealer return in first stage **Pack**

Specification	$\Delta f_t^{(4,5)}$	$\Delta f_{t}^{(9,10)}$	$\Delta f_t^{(14,15)}$	$\Delta f_t^{(19,20)}$
Baseline	-0.041	-0.011	-0.025	-0.040
Dasenne				
	(0.018)	(0.016)	(0.017)	(0.016)
All FOMC announcements	-0.275	-0.082	-0.094	-0.199
	(0.915)	(0.269)	(0.262)	(0.608)
Excl. 7/08-6/09	-0.024	0.013	-0.011	-0.025
	(0.020)	(0.010)	(0.012)	(0.017)
Excl. announcements with LSAP news	-0.023	0.010	-0.006	-0.025
	(0.016)	(0.010)	(0.011)	(0.013)
Swanson (21) Fed funds IV	-0.031	-0.015	-0.030	-0.041
	(0.019)	(0.016)	(0.016)	(0.017)
Swanson (21) forward guidance IV	-0.092	-0.038	-0.022	-0.020
	(0.034)	(0.019)	(0.012)	(0.012)
Bauer-Swanson (22) IV	-0.084	-0.035	-0.022	-0.030
	(0.036)	(0.021)	(0.020)	(0.021)
Nakamura-Steinsson (18) IV	-0.052	-0.022	-0.029	-0.033
	(0.018)	(0.017)	(0.016)	(0.017)
NS (18) IV, excl. 7/08-6/09	-0.030	0.003	-0.005	-0.012
	(0.017)	(0.010)	(0.009)	(0.011)

High frequency dealer return and duration (1/2) \bigcirc Back

Specification	5-yr fwd,	Log dealer	-Dealer
Specification	5-yr TP	dur.	income gap
Baseline	-6.3	-9.4	-75.3
	(7.8)	(7.0)	(37.2)
All FOMC announcements	1.6	8.5	-6.9
	(13.3)	(9.1)	(51.8)
Excl. 7/08-6/09	-33.2	-81.1	-257.8
	(29.7)	(194.3)	(289.4)
Excl. announcements with LSAP news	-13.4	-17.9	-81.6
	(10.4)	(14.7)	(51.2)
Swanson (21) Fed funds IV	0.6	-9.4	-74.9
	(9.8)	(5.9)	(51.3)
Swanson (21) forward guidance IV	-5.0	-9.0	-132.7
	(8.5)	(10.9)	(113.1)
Bauer-Swanson (22) IV	-9.5	0.0	-51.2
	(8.5)	(6.9)	(44.2)
Nakamura-Steinsson (18) IV	17.5	-0.0	-282.2
	(11.2)	(8.0)	(257.9)
NS (18) IV, excl. 7/08-6/09	1.0	-89.1	-296.1
	(14.6)	(232.1)	(365.7)

High frequency dealer return and duration (2/2)

Specification	—Income gap
Baseline	-11.8
	(7.9)
All FOMC announcements	1.4
	(10.4)
Excl. 7/08-6/09	-60.8
	(30.4)
Excl. announcements with LSAP news	-24.6
	(13.4)
Swanson (21) Fed funds IV	-5.0
	(9.4)
Swanson (21) forward guidance IV	-22.5
	(12.2)
Bauer-Swanson (22) IV	-3.8
	(7.0)
Nakamura-Steinsson (18) IV	-4.0
	(9.1)
NS (18) IV, excl. 7/08-6/09	-22.6
	(22.2)

Quarterly dealer returns and income gap

	Dealer	Dealer	Dealer	Dealer
	return	return	return	return
Ex. 5-10 year bond return	-0.69	1.55	-0.69	1.55
	(2.31)	(1.24)	(2.34)	(1.24)
Lagged income gap	81.6	-6.58	72.9	-1.35
	(82.23)	(63.61)	(144.74)	(104.62)
Ex. 5-10 year bond return $ imes$	-5.99	-9.51	-6.02	-9.49
lagged income gap	(7.12)	(4.10)	(7.22)	(4.10)
Ex. S&P 500 return		1.35		1.35
		(0.23)		(0.24)
3-month Treasury return			-0.64	0.39
			(5.76)	(3.76)
N	52	52	52	52
R ²	0.35	0.67	0.35	0.67

Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
PDE	• Back			

$$\begin{split} & \left[P_{r,t}^{(\tau)} \kappa_r \left(\bar{r} - r_t \right) + P_{W,t}^{(\tau)} \omega_t + P_{\beta,t}^{(\tau)} \kappa_\beta \left(\bar{\beta} - \beta_t \right) - P_{\tau,t}^{(\tau)} + \frac{1}{2} P_{rr,t}^{(\tau)} \sigma_r^2 \\ & + \frac{1}{2} P_{WW,t}^{(\tau)} \left(\eta_{r,t}^2 + \eta_{\beta,t}^2 \right) + \frac{1}{2} P_{\beta\beta,t}^{(\tau)} \sigma_\beta^2 + P_{rW,t}^{(\tau)} \sigma_r \eta_{r,t} + P_{\betaW,t}^{(\tau)} \sigma_\beta \eta_{\beta,t} - r_t P_t^{(\tau)} \right] dt \\ & = \frac{1}{W_t} \left[\left(P_{r,t}^{(\tau)} \sigma_r + P_{W,t}^{(\tau)} \eta_{r,t} \right) \int_0^\infty \left(\alpha(s) \log \left(P_t^{(s)} \right) + \theta_0(s) \right) \frac{1}{P_t^{(s)}} \left(P_{r,t}^{(s)} \sigma_r + P_{W,t}^{(s)} \eta_{\beta,t} \right) ds \\ & + \left(P_{\beta,t}^{(\tau)} \sigma_\beta + P_{W,t}^{(\tau)} \eta_{\beta,t} \right) \int_0^\infty \left(\alpha(s) \log \left(P_t^{(s)} \right) + \theta_0(s) \right) \frac{1}{P_t^{(s)}} \left(P_{\beta,t}^{(s)} \sigma_\beta + P_{W,t}^{(s)} \eta_{\beta,t} \right) ds \\ & + \beta_t \left[\left(P_{r,t}^{(\tau)} \sigma_r + P_{W,t}^{(\tau)} \eta_{r,t} \right) \int_0^\infty \theta_1(s) \frac{1}{P_t^{(s)}} \left(P_{r,t}^{(s)} \sigma_r + P_{W,t}^{(s)} \eta_{\beta,t} \right) ds \\ & + \left(P_{\beta,t}^{(\tau)} \sigma_\beta + P_{W,t}^{(\tau)} \eta_{\beta,t} \right) \int_0^\infty \theta_1(s) \frac{1}{P_t^{(s)}} \left(P_{s,t}^{(s)} \sigma_\beta + P_{W,t}^{(s)} \eta_{\beta,t} \right) ds \right] \right] dt. \end{split}$$

$$dW_t = \omega(r_t, \beta_t, W_t)dt + \eta_r(r_t, \beta_t, W_t)dB_{r, t} + \eta_\beta(r_t, \beta_t, W_t)dB_{\beta, t}$$


where

$$\begin{split} \omega_t &= \xi \left(\bar{W} - W_t \right) + W_t r_t + \int_0^\infty \left(\alpha(\tau) \log \left(P_t^{(\tau)} \right) + \theta_0(\tau) + \theta_1(\tau) \beta_t \right) \left(\mu_t^{(\tau)} - r_t \right) d\tau \\ \eta_{r,t} &= \int_0^\infty \left(\alpha(\tau) \log \left(P_t^{(\tau)} \right) + \theta_0(\tau) + \theta_1(\tau) \beta_t \right) \frac{1}{P_t^{(\tau)}} \left(P_{r,t}^{(\tau)} \sigma_r + P_{W,t}^{(\tau)} \eta_{r,t} \right) d\tau \\ \eta_{\beta,t} &= \int_0^\infty \left(\alpha(\tau) \log \left(P_t^{(\tau)} \right) + \theta_0(\tau) + \theta_1(\tau) \beta_t \right) \frac{1}{P_t^{(\tau)}} \left(P_{\beta,t}^{(\tau)} \sigma_\beta + P_{W,t}^{(\tau)} \eta_{\beta,t} \right) d\tau. \end{split}$$

- CUSIP-level Treasuries and agency debt purchases from SOMA, agency MBS purchases from Fed Board.
- Transform purchases into panel dataset of purchases of ZCBs purchased at each maturity $\tau \in (0, 30]$ on each date t:
 - Treasuries and agency debt: strip and compute market values using ZCB yield curve.
 - MBS: assume ZCB with maturity = effective duration of Bloomberg MBS index.
- \Rightarrow Over \$600bn in ten-year equivalent ZCBs purchased in QE1.

Model

Empirical analysis

Quantitative analysis

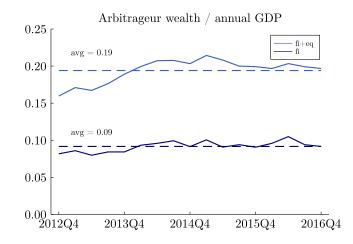
Conclusion

QE price impact in data • Back

	$\Delta y_t^{(10)}$	$\Delta y_t^{(20)}$	$\Delta f_t^{(10)}$	$\Delta f_t^{(20)}$
11/25/2008	-39	-19	-48	22
12/1/2008	-34	-39	-10	-98
12/16/2008	-58	-39	-31	-17
1/28/2009	9	14	16	21
3/18/2009	-61	-41	-46	-25
Sum to date	-183	-124	-119	-98
8/12/2009	-0	-0	-1	-1
9/23/2009	-1	1	1	4
11/4/2009	-3	-6	2	-6
Sum to date	-188	-129	-117	-100

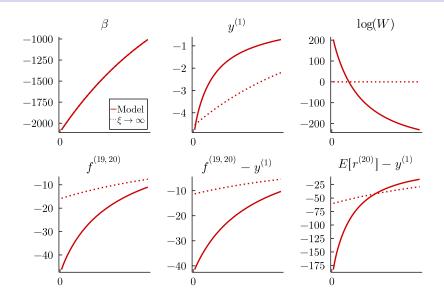
Arb wealth from Q407 to Q109 • Back

	Q4 2007	Q1 2009	Percent
	Q4 2007	Q1 2009	change
Broker/dealers	285	293	3
Hedge funds: distressed securities	176	69	-61
Hedge funds: fixed income	160	69	-57
Hedge funds: macro	91	61	-33
Broker/dealers + core FI hedge funds	712	492	-31
Hedge funds: convertible arbitrage	42	11	-74
Hedge funds: emerging markets	353	125	-65
Hedge funds: equity strategies	538	303	-44
Hedge funds: event-driven	162	57	-65
Hedge funds: merger arbitrage	39	5	-87
Hedge funds: multistrategy	224	122	-46
Hedge funds: other	61	20	-67
Hedge funds: sector specific	130	58	-55
Broker/dealers + hedge funds	2,261	1,193	-47

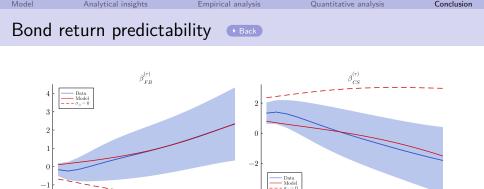

- Focus on 3/18/09 surprise: all Treasuries, \$100bn agency debt, \$750bn MBS.
- Translate purchases into model scale:
 - Over 2012-16, arb wealth 9% of GDP (next slide).
 - \Rightarrow In month 0, agents learn $heta_t(au)$ will fall by

$$\frac{\mathsf{purchases}(\tau)_t}{\mathsf{gdp}_{2007}}\frac{W}{0.09},$$

where purchases(τ)_t is t months after 4/09, gdp₂₀₀₇ is annual GDP prior to crisis, and W is average value of arbitrageur wealth in model.

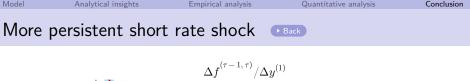

• Simulate in model starting from $\{r = \overline{r}, \beta = 0, W_0 = 0.6W\}$.

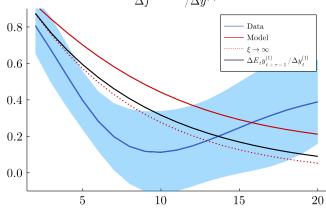
Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
Simula	ating QE in mo	del (2/2) 📭	=k	


Habitat demand shock

▶ Back

Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
Calibra	tion: details	► Fama-Bliss (87) and Campb	oell-Shiller (91) coefficients • Back	


	Description	Value	Moment	Target	Model
Unc	onditional moments of yie	lds			
ī	mean short rate	-0.0024	$y_t^{(1)}$	0.06%	0.06%
κr	mean rev. short rate	0.42	$\sigma(y_t^{(1)})$	1.66%	1.67%
σ_r	std. dev. short rate	0.023	$\sigma(\Delta y_{t+1}^{(1)})$	1.75%	1.74%
κ_{eta}	mean rev. demand	0.15	$\beta_{FB}^{(10)}$	0.68	0.73
σ_{eta}	std. dev. demand	0.72	$\beta_{FB}^{(20)}$	2.34	2.35
ξ	persistence arb. wealth	0.07	$y_t^{(20)} - y_t^{(1)}$	1.54%	1.61%
Dur	ation of arbitrageurs				
Ŵ	arb. endowment	0.01	wealth duration	9.5	9.8
δ	shape habitat demand	0.19	asset duration	4.7	4.8
Yiel	d curve responses to QE a	nnouncem			
α	habitat price elast.	1	$df_t^{(19,20)}$	-0.25%	-0.26%



• Model also consistent with FB (87), CS (91) evidence:

$$\begin{aligned} r_{t+1}^{(\tau)} - y_t^{(1)} &= \alpha_{FB}^{(\tau)} + \beta_{FB}^{(\tau)} \left(f_t^{(\tau-1,\tau)} - y_t^{(1)} \right) + \epsilon_{FB,t+1}^{(\tau)}, \\ y_{t+1}^{(\tau-1)} - y_t^{(\tau)} &= \alpha_{CS}^{(\tau)} + \beta_{CS}^{(\tau)} \frac{1}{\tau-1} \left(y_t^{(\tau)} - y_t^{(1)} \right) + \epsilon_{CS,t+1}^{(\tau)}. \end{aligned}$$

• Relies on demand shocks (indeed, disciplines σ_r , κ_r).

• Set $\kappa_r = 0.125$ as in nominal calibration of VV (21).

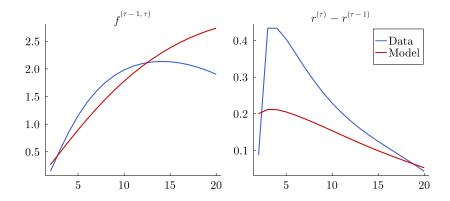
• Amplified underreaction if $\xi \to \infty$, but overreaction in model.

 Model
 Analytical insights
 Empirical analysis
 Quantitative analysis
 Conclusion

 Cochrane-Piazzesi decomposition
 •Back

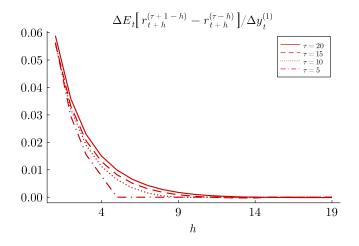
• As derived in Cochrane-Piazzesi (08),

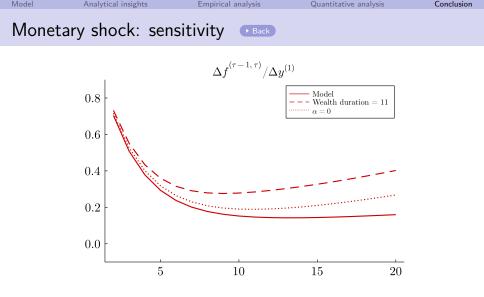
$$\begin{aligned} & f_t^{(\tau-1,\tau)} - y_{t+\tau-1}^{(1)} = \\ & \left[r_{t+1}^{(\tau)} - r_{t+1}^{(\tau-1)} \right] + \left[r_{t+2}^{(\tau-1)} - r_{t+2}^{(\tau-2)} \right] + \ldots + \left[r_{t+\tau-1}^{(2)} - y_{t+\tau-2}^{(1)} \right], \end{aligned}$$


where

$$r_{t+1}^{(\tau)} \equiv \log P_{t+1}^{(\tau-1)} - \log P_t^{(\tau)}.$$

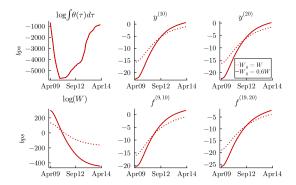
• Ex-ante, this implies


$$f_t^{(\tau-1,\tau)} - E_t y_{t+\tau-1}^{(1)} = E_t \left[r_{t+1}^{(\tau)} - r_{t+1}^{(\tau-1)} \right] + E_t \left[r_{t+2}^{(\tau-1)} - r_{t+2}^{(\tau-2)} \right] + \ldots + E_t \left[r_{t+\tau-1}^{(2)} - y_{t+\tau-2}^{(1)} \right].$$


Forward curve and excess returns • Back

Back

Decomposing forward rate response

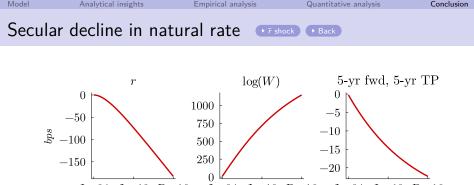


- Fully account for $f^{(19,20)}$ given higher duration and/or lower α .
- "Reach for yield" suggests lower α conditional on r shock.

Model Analytical insights Empirical analysis Quantitative analysis Conclusion

State-dependent effects of QE

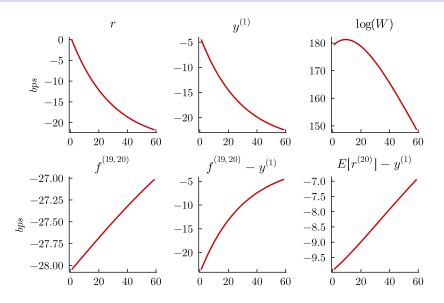
• Reconsider 3/18/09 announcement but set W_0 to avg level:



- Long-dated yields, forwards fall by 20 30% less:
 - More elastic demand (recall $\frac{d \log P_t}{d \theta_t} = -\frac{1}{\alpha + \frac{W_t}{d t}}$).
 - Lower duration and thus recapitalization from QE.

Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
Bond	price volatility	• Back		

Moment	Model	$\xi ightarrow \infty$
$\sigma(y_t^{(2)})$	1.44%	1.35%
$\sigma(y_t^{(5)})$	1.10%	0.84%
$\sigma(y_t^{(10)})$	1.04%	0.49%
$\sigma(y_t^{(20)})$	1.20%	0.26%
$y_t^{(20)} - y_t^{(1)}$	1.61%	0.16%
$\sigma(\sigma_{t-1}(y_t^{(20)}))$	0.27%	0%

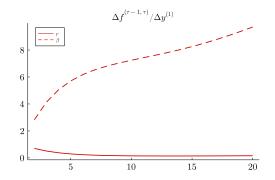

- Setting $\xi \to \infty$ while recalibrating \bar{W} to match average W:
 - long-dated bond price vol. falls by more than half, so average slope of yield curve substantially flattens;
 - no longer any stochastic vol. in bond prices.

Jan
04 Jun10 Dec16 Jan04 Jun10 Dec16 Jan04 Jun10 Dec16

- Decline in \bar{r} from Laubach-Williams (2003) / FRB NY.
- Decline recapitalizes arbs and accounts for > 20% of decline in term premium from D'Amico-Kim-Wei (2018) / Fed Board.
- Complements explanations focused on changing comovements.

Model	Analytical insights	Empirical analysis	Quantitative analysis	Conclusion
<i>r</i> shock	▶ Back			

Comparing FOMC vs. non-FOMC days (1/3)


• Alternative approach to studying effects of monetary policy on yield curve considered in literature:

	$\Delta f_t^{(4,5)}$	$\Delta f_t^{(9,10)}$	$\Delta f_t^{(14,15)}$	$\Delta f_t^{(19,20)}$
$\Delta y_t^{(1)}$	0.11	-0.01	0.01	0.11
	(0.02)	(0.02)	(0.02)	(0.02)
FOMCt	-0.01	-0.00	-0.00	-0.00
	(0.01)	(0.01)	(0.01)	(0.01)
$\Delta y_t^{(1)} imes \textit{FOMC}_t$	0.25	0.14	0.00	-0.04
	(0.14)	(0.11)	(0.08)	(0.06)
N	3,252	3,252	3,252	3,252
R^2	0.07	0.00	0.00	0.03

• Small (even negative) interaction coefficients suggest monetary tightening does not raise (and may reduce) long forward rates.

Comparing FOMC vs. non-FOMC days (2/3)

- Model clarifies two reasons why this is incorrect.
- Underlying reason: β shocks have small effect on short yields.
- Estimated interaction coefficients will be *negative* even though monetary tightening raises term premia:

Comparing FOMC vs. non-FOMC days (3/3) \bigcirc Back

 2 Estimated interaction coefficients will be *small* unless proportion of r vs. β shocks change massively on FOMC days:

σr	$\Delta f_t^{(4,5)}$	$\Delta f_t^{(9,10)}$	$\Delta f_t^{(14,15)}$	$\Delta f_t^{(19,20)}$
Baseline	0.37	0.23	0.22	0.24
$1.2 imes { m Baseline}$	0.35	0.21	0.19	0.20