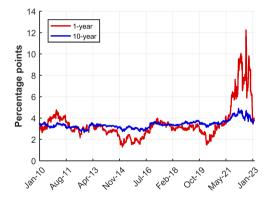
THE MARKET FOR INFLATION RISK

Saleem Bahaj^{1,2} Robert Czech² Sitong Ding³ Ricardo Reis³

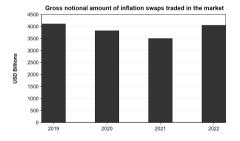
 1 UCL

²Bank of England

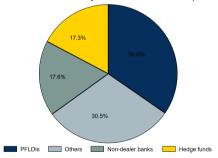
³LSE


June 2023

PRICES OF INFLATION SWAPS


United States

United Kingdom



The quantities and the who behind the prices

Gross notional market share by client sector in the inflation swap market

OUR CONTRIBUTIONS

1) UK inflation swaps: a segmented market

- \rightarrow Dealer banks are not neutral, hold large net positions (beyond holdings of indexed bonds, and uncorrelated with them).
- $\rightarrow\,$ In long horizon market (=>10y), pension funds hold large positive net positions, actively trade.
- $\rightarrow\,$ In short horizon market (<=3y), informed traders hold small net positions, very actively trade

OUR CONTRIBUTIONS

- 1) UK inflation swaps: a segmented market
- 2) Model and identification strategies for the demand for inflation risk
 - $\rightarrow\,$ Portfolio model, segmented long/short markets with common dealer banks, separate pension and hedge funds
 - $\rightarrow\,$ Price of swaps: fundamentals (expectations and risk) and liquidity premium (frictions)
 - → Propose three identification strategies: (i) using high frequency, differential responsiveness and separation of banks' desks, (ii) using cross section per institution, instrument from granularity of positions, (iii) using time series, heteroskedasticity in data release dates.

OUR CONTRIBUTIONS

1) UK inflation swaps: a segmented market

2) Model and identification strategies for the demand for inflation risk

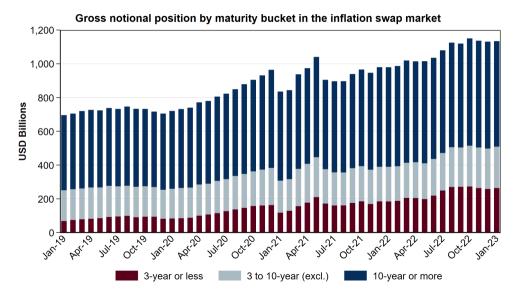
3) Empirical estimates

- $\rightarrow\,$ Daily data 01/2019 02/2023 for UK.
- $\rightarrow~{\rm Prices}$ incorporate information very quickly
- ightarrow Dealers supply to pensions funds very elastic, unlike supply to hedge funds
- ightarrow Short horizon prices driven by liquidity, long horizon by fundamentals
- \rightarrow Liquidity of dealers not the dominant driver of liquidity premium
- $\rightarrow\,$ Pandemic, Energy crisis, Trussonomics, state of the anchor

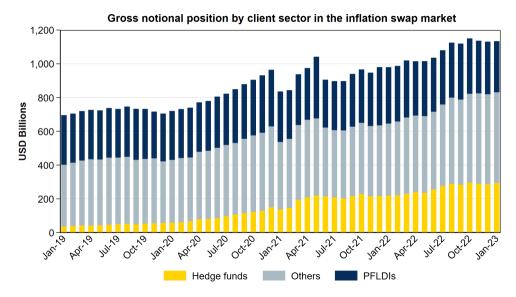
CONNECTIONS TO THE LITERATURE

- Segmented markets (Vayanos Vila, 2021)
 - \rightarrow A market that is strikingly segmented so the preferred habitat agents are easy to spot. Three identification strategies for this literature.
- Asset demand systems (Koijen Yogo, 2019)

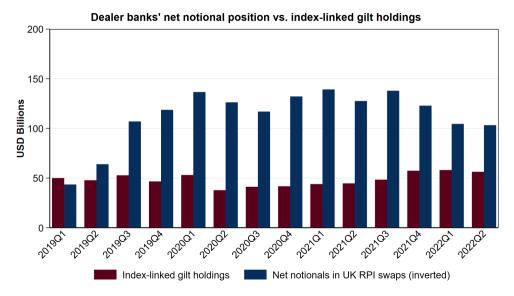
 \rightarrow New market, connection to macro-monetary question, identification strategies.

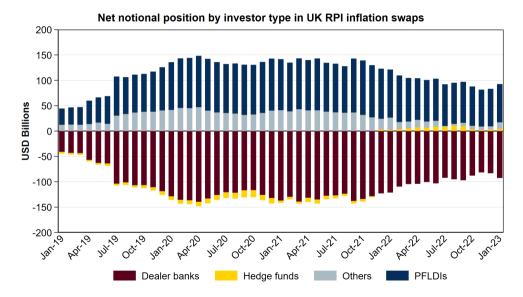

- Swap markets and dealers (Jiang Matvos Piskorski Seru, 2023, McPhail Schanbl Tuckman, 2023, Hanson Malkhozov Venter, 2022)
 - \rightarrow Banks hold large net positions, liquidity shocks to clients, cross validation.
- Expected inflation and liquidity premium (Cieslak Pflueger, 2020, Reis, 2020)
 - \rightarrow Structural model of liquidity premia, cleaned measures of expected inflation
- EMIR trade respository data (Cenedense et al, 2020, 2021)

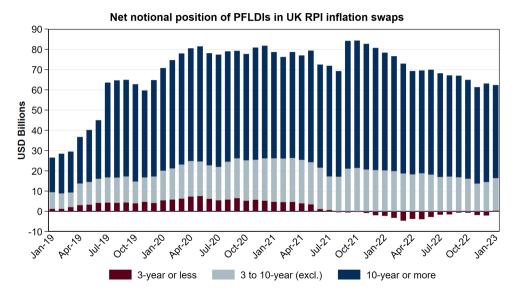
1. Data, summary statistics, stylised facts

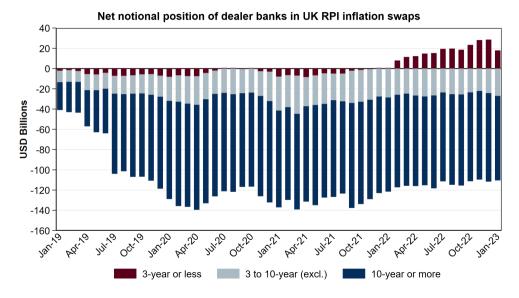

THE EMIR TRADE REPOSITORY DATA

- **Data source:** European Market Infrastructure Regulation, post-2008 reporting requirements for all transactions in almost real time.
- The market: OTC, centrally cleared, focus on dealer banks.
- **Observations:** all derivative transactions where a UK-regulated institution (including UK branches/subsidiaries of global banks) is a counterparty, includes hedge funds, pension funds and others.
- **Information:** counterparties' names and contract terms like length, price, index. Will focus on UK RPI today, but also have HICP for EA and CPI-U for US.
- **Frequency and span:** 3.5 billion observations since 31 Oct 2017, 25 million cleaned inflation swaps. Use daily observations from January 2, 2019 to February 10, 2023.

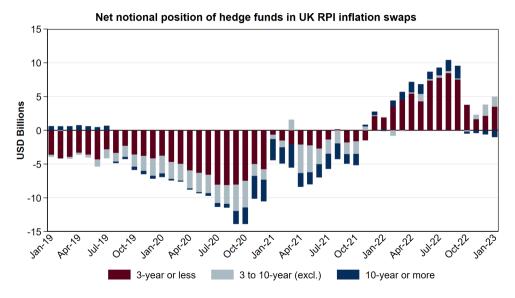

MATURITY BREAKDOWN


CLIENT BREAKDOWN

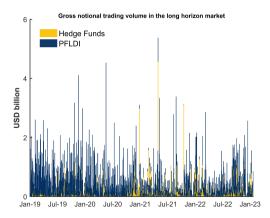

FACT 1: DEALERS ARE NOT NEUTRAL MARKET MAKERS

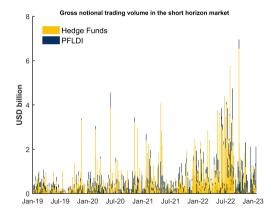

WHICH SIDE, AND WHO IS ON THE OTHER SIDE?

FACT 2: PFLDIs BUY INFLATION PROTECTION AT LONG HORIZONS



FACT 2: DEALERS BUT NO HEDGE FUNDS ON OTHER SIDE




11/36

FACT 3: HEDGE FUNDS TRADE INFLATION RISK IN SHORT HORIZON

SEGMENTATION IN TRADING ACTIVITY

2. A model of the demand for inflation risk

PENSION FUNDS PROBLEM

$$\max \mathbb{E}_{f,i} \left[-\exp\left(-\widetilde{\gamma}_{f,i}a'_{f,i}\right) \right] \quad \text{with} \quad \widetilde{\gamma}_{f,i} = \gamma_{f,i}/a_{f,i}$$
s.t. $a'_{f,i} = a_{f,i} + (\pi - p)q_{f,i} + (d - s)e_{f,i} + y_{f,i}$

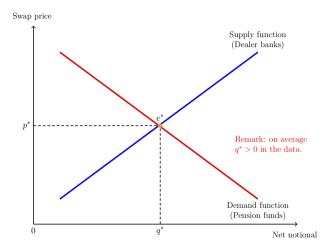
$$\mathbb{E}_{f,i}(\pi) = \mu_{f,i}\pi^e \quad \text{with} \quad \sum_{i \in \Theta_f} \mu_{f,i} = 1$$
normally distributed π, d, y

$$G_f(q_{f,i}, z_{f,i}) \ge 0 \quad \text{with} \quad g_{f,i} \equiv \partial G_f(q^*_{f,i}, z_{f,i})/\partial q_{f,i}$$

- Assumption 1: Segmented markets. Pension funds do not participate in the short-horizon market $Q_{f,i} = 0$ and hedge funds do not participate in the long horizon market $q_{h,i} = 0$.

DEALERS' PROBLEM

- Dealers similar but in both markets:


$$a'_{b,i} = a_{b,i} + (\pi - p)q_{b,i} + (\Pi - P)Q_{b,i} + (d - s)e_{b,i} + y_{b,i}$$

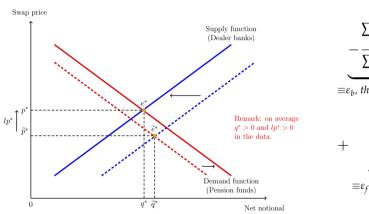
- **Assumption 2: Desk separation within the day.** *Dealers face separate capacity constraints:*

$$G_b^S(Q_{b,i}, z_{b,i}) \ge 0$$
 and $G_b^L(q_{b,i}, z_{b,i}) \ge 0$

so that $\partial G_b^S(\cdot, \cdot) / \partial q_{b,i} = 0$ and $\partial G_b^L(\cdot, \cdot) / \partial Q_{b,i} = 0$.

THE LONG MARKET

Why $q_{h_i}^* < 0 < q_{f_i}^*$ in data? Because pension funds are: (i) more risk averse: $\gamma_{f,i} > \gamma_{b,i}$ (ii) have more hedging need for their other assets: $rho_{\pi d}$ (iii) more exposed to inflationcovarying background risk $\sigma_{\pi,y_{f,i}} > \sigma_{\pi,y_{b,i}}$ (iv) more tightly regulated on inflation risk $\lambda_{f,i} < \lambda_{h,i}^L$


FRICTIONLESS MARKET EQUILIBRIUM

- Complete markets so no background risk: $\sigma_{\pi,y_{b,i}} = \sigma_{\pi,y_{f,i}} = \sigma_{\pi,y_{h,i}} = 0$
- Non-binding capacity constraints: $\lambda_{b,i}^L = \lambda_{f,i} = \lambda_{b,i}^S = \lambda_{h,i} = 0$
- If \tilde{p} is the frictionless price of a long horizon inflation swap, in equilibrium, it is:

$$\widetilde{p}^{*} = \underbrace{\left[\frac{\sum_{i \in \Theta_{f}} \widetilde{\gamma}_{f,i}^{-1} \mu_{f,i}}{\sum_{i \in \Theta_{f}} \widetilde{\gamma}_{f,i}^{-1} + \sum_{i \in \Theta_{b}} \widetilde{\gamma}_{b,i}^{-1}} + \frac{\sum_{i \in \Theta_{b}} \widetilde{\gamma}_{b,i}^{-1} \mu_{b,i}}{\sum_{i \in \Theta_{f}} \widetilde{\gamma}_{f,i}^{-1} + \sum_{i \in \Theta_{b}} \widetilde{\gamma}_{b,i}^{-1}}\right]}_{size-weighted dispersion of beliefs}} \underbrace{\frac{\pi^{e}}{\sum_{i \in \Theta_{f}} \widetilde{\gamma}_{f,i}^{-1} + \sum_{i \in \Theta_{b}} \widetilde{\gamma}_{f,i}^{-1}}}_{expected inflation}} - \underbrace{\frac{\theta_{d} - \widetilde{s}^{*}}{\sigma_{d}^{2}}}_{risk premium}$$

LIQUIDITY PREMIUM

Figure 9 The Frictionless Equilibrium

$$-\underbrace{\frac{\sum_{i\in\Theta_{b}}\left\{\sigma_{\pi,y_{b,i}}+\frac{\lambda_{b,i}^{L}g_{b,i}^{L}}{\widetilde{\gamma}_{b,i}}\right\}}{\sum_{i\in\Theta_{f}}\widetilde{\gamma}_{f,i}^{-1}+\sum_{i\in\Theta_{b}}\widetilde{\gamma}_{b,i}^{-1}}}_{=\varepsilon_{b}, \text{ the supply friction from dealer banks}} + \underbrace{-\frac{\sum_{i\in\Theta_{f}}\left\{\sigma_{\pi,y_{f,i}}+\frac{\lambda_{f,i}g_{f,i}}{\widetilde{\gamma}_{f,i}}\right\}}{\sum_{i\in\Theta_{f}}\widetilde{\gamma}_{f,i}^{-1}+\sum_{i\in\Theta_{b}}\widetilde{\gamma}_{b,i}^{-1}}}_{=\varepsilon_{f}, \text{ the demand friction from pension funds}}$$

 $lp^* =$

3. Identification strategies

THE PROBLEM

- Observe (p, P) that are driven by $\boldsymbol{\varepsilon} = (\varepsilon_h, \varepsilon_f, \varepsilon_b, \varepsilon_\pi)$
- We have data $\mathbf{Y} = (Q, P, q, p)$ on prices and quantities 2 Jan 19 to 10 Feb 23, so 879 daily observations of:
 - \rightarrow *q*: net purchases of swaps by PFLDI with \geq 10 year maturity.
 - $\rightarrow \, p$: daily price of 10-year zero-coupon RPI inflation swap.
 - \rightarrow *Q*: net purchases of swaps by hedge funds \leq 3year maturity.
 - \rightarrow *P*: daily price of 1-year zero-coupon RPI inflation swap.
- Identification problem: Need to learn about 4x4 matrix Ψ

$$\mathbf{Y} = \mathbf{\Psi} \boldsymbol{\varepsilon}$$

FIRST IDENTIFICATION STRATEGY: HETEROGENEITY IN REACTIVITY

- Assumption 3a) Differential reactiveness to fundamental news about inflation. Dealer banks respond more to fundamental long-horizon expected inflation than pension funds but less to fundamental short-horizon expected inflation than hedge funds:

$$\frac{\sum_{i\in\Theta_h}\widetilde{\gamma}_{h,i}^{-1}\mu_{h,i}}{\sum_{i\in\Theta_h}\widetilde{\gamma}_{h,i}^{-1}+\sum_{i\in\Theta_b}\widetilde{\gamma}_{b,i}^{-1}} > \frac{\sum_{i\in\Theta_b}\widetilde{\gamma}_{b,i}^{-1}\mu_{b,i}}{\sum_{i\in\Theta_f}\widetilde{\gamma}_{f,i}^{-1}+\sum_{i\in\Theta_b}\widetilde{\gamma}_{b,i}^{-1}} > \frac{\sum_{i\in\Theta_f}\widetilde{\gamma}_{f,i}^{-1}\mu_{f,i}}{\sum_{i\in\Theta_f}\widetilde{\gamma}_{f,i}^{-1}\sum_{i\in\Theta_b}\widetilde{\gamma}_{b,i}^{-1}}$$

- Exploit high frequency of data

FIRST IDENTIFICATION STRATEGY: HETEROGENEITY IN REACTIVITY

- Shock ε_{π} : supply function shifts more than demand function, *p* rises and *q* falls.
- Shock ε_f : shifts out demand, raises *p* and *q*.
- Shock ε_d : shift supply down, raises *p* and lowers *q*. But, in short market would also see *P* rise and *Q* fall. Use the other market to separate it (and assumption 1)
- Finally, assumption 2 rules out spillovers across markets from capacity constraints binding.

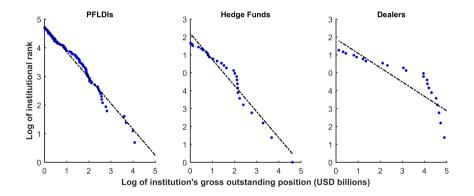
$$\Psi = \begin{pmatrix} + & 0 & - & + \\ + & 0 & + & + \\ 0 & + & - & - \\ 0 & + & + & + \end{pmatrix}$$

SECOND IDENTIFICATION STRATEGY: GRANULARITY

- Write asset demand system as an interactive fixed effects factor model:

$$\frac{q_{f,i,t}}{a_{f,i,t}} = \boldsymbol{\omega}_{f,i}' \mathbf{F}_t + \widetilde{\varepsilon}_{f,i,t}$$

- Construct instrument as a weighted sum of the residuals:


$$GIV_{f,t} = \sum_{i \in \Theta_f} a_{f,i,t} \tilde{\varepsilon}_{f,i,t}$$

F_{*f*,*t*} spans demand: $\mathbb{E}(GIV_{f,t}\varepsilon_{\pi,t}) = \mathbb{E}(GIV_{f,t}\varepsilon_{b,t}) = 0$. Ass. 1: $\mathbb{E}(GIV_{f,t}\varepsilon_{h,t}) = 0$.

- Assumption 3b: Granularity of the institutions. Asset positions are granular:

 $\mathbb{E}(GIV_{f,t}\varepsilon_{f,t}) \neq 0 \text{ and } \mathbb{E}(GIV_{b,t}\varepsilon_{b,t}) \neq 0 \text{ and } \mathbb{E}(GIV_{h,t}\varepsilon_{h,t}) \neq 0$ (1)

SECOND IDENTIFICATION STRATEGY: GRANULARITY

PFLDIs: 210 institutions, Pareto parameter 0.13, power law coefficient -0.9, first-stage F-stat of 18. For hedge funds, -.73 and 66, for dealer banks, -0.40 and 38.

THIRD IDENTIFICATION STRATEGY: HETEROSKEDASTICITY

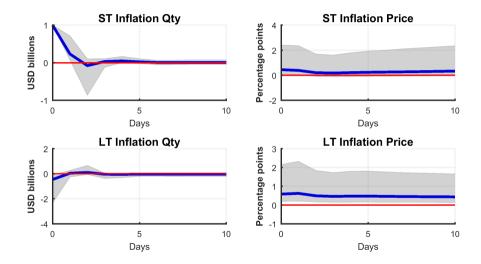
- 48 dates (out of 879) where monthly inflation data is released plus September 6th 2022 (Truss energy cap). In total 51 days out of 879 where swap prices move a lot, lumpy arrival of news.
- Assumption 3c: Heteroskedascity at known dates due to fundamentals. If Σ_h is the variance-covariance matrix of the shocks ε at data release dates, and Σ_l the one at other dates, then the largest diagonal element of $\Sigma'_h \Sigma_l$ is the one associated with the variance of the fundamentals ε_{π} .
- In data, the maximum eigenvalue is 7.6. Wald test Lutkepohl (2021): reject null of no heteroskedasticity at 0.1% significance level.

DYNAMICS AND IMPLEMENTATION FOR ALL STRATEGIES

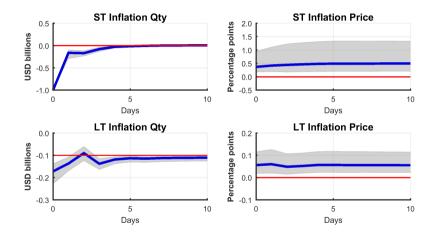
- For dynamics: VAR, implemented as Bayesian VAR with diffuse priors and 3 lags:

$$\mathbf{Y}_t = \mathbf{c} + \sum_{\ell=1}^{L} \mathbf{\Phi}_{\ell} \mathbf{Y}_{t-\ell} + \mathbf{u}_t$$
 and $\mathbf{u}_t = \mathbf{\Psi} \boldsymbol{\varepsilon}_t$

- Timing identification: as in Arias, Rubio-Ramirez and Waggoner (2018), sign restrictions on Ψ for set identification.
- Granularity identification: as in Stock and Watson (2018), using *GIV* as proxy instrumental variables
- Heteroskedasticity identification: VAR as in Brunnermeier, Palia, Sastry, Sims (2021),


CROSS CHECKS OF IDENTIFICATION STRATEGIES

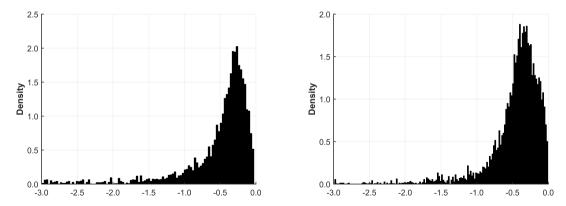
- IRF under the other two identification strategies has *p*, *P*, *q*, *Q* satisfy sign restrictions of timing strategy
- Timing strategy fundamental shocks variance at release dates are 1.3 more volatile than at other dates, and above one 91% of the times.
- The shocks $\hat{\varepsilon}_{\pi,t}$ estimated from the other two approaches $\frac{1}{T} \sum_{t=1}^{T} GIV_{\nu,t} \hat{\varepsilon}_{\pi,t}$ is -0.006, 0.030, and 0.032 for $\nu = f, h$, and b
- Correlations of estimated fundamental shocks from each of the three strategies.


$$\begin{bmatrix} 1 & 0.979 & 0.842 \\ \cdot & 1 & 0.783 \\ \cdot & \cdot & 1 \end{bmatrix}$$

4. Estimates and applications

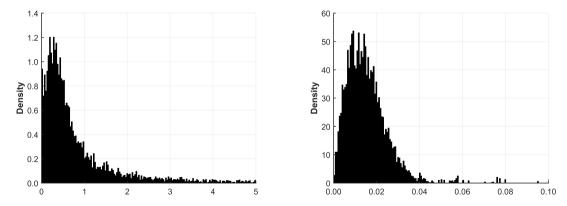
1. Speed of adjustment to fundamentals

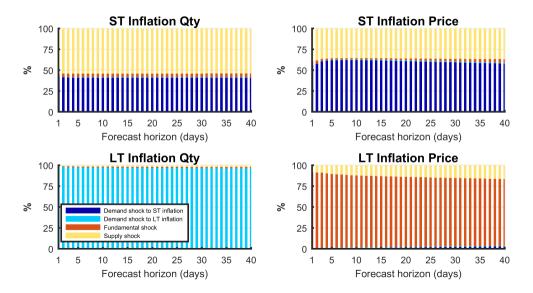
2A. RESPONSE TO LIQUIDITY SHOCKS TO DEALERS



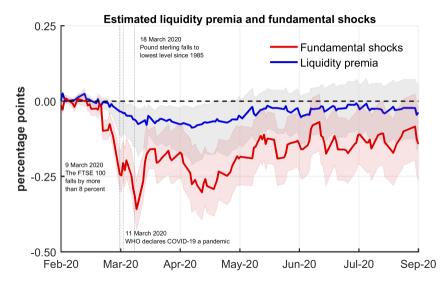
2B. SLOPE OF DEMAND FUNCTIONS

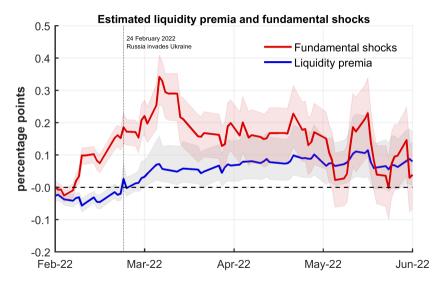
Hedge fund demand function

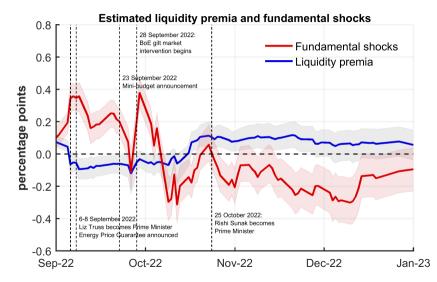

PFLDI demand function


2B. SLOPE OF SUPPLY FUNCTIONS

Dealers' supply function


Dealers' supply function

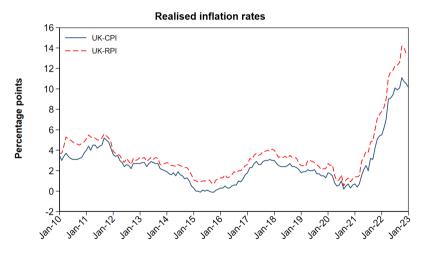

3. FORECAST ERROR VARIANCE DECOMPOSITION


4A. HISTORY: COVID

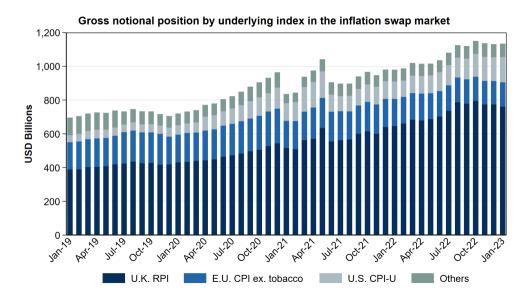
4B. HISTORY: UKRAINE

4C. HISTORY: MINI BUDGET AND LDIS

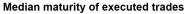
4D. HISTORY: CURRENT ANCHORING

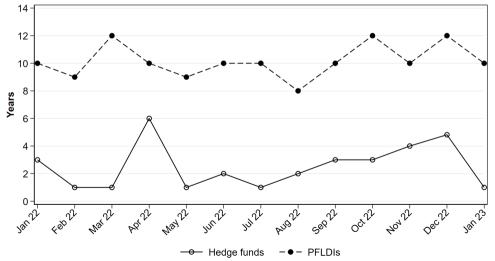

5. Conclusion

LESSONS

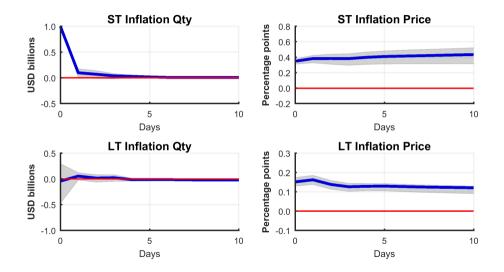

- 1) High-frequency trading data at the institution-level, for four years with many news, using three separate identification strategies gives robust results.
- 2) In short horizons, hedge funds and dealers alternate between negative and positive net positions. In long horizons, dealers provide inflation protection to pension funds.
- 3) Prices seem to fully reflect information after two to three days.
- 4) Slope of the supply function of dealers is much smaller at long than short horizons.
- 5) Fundamental shocks drive the long-horizon swap prices, while liquidity shocks drive the short-horizon prices.
- 6) New measure of expected inflation at longer horizons cleaned of liquidity frictions.

Appendix

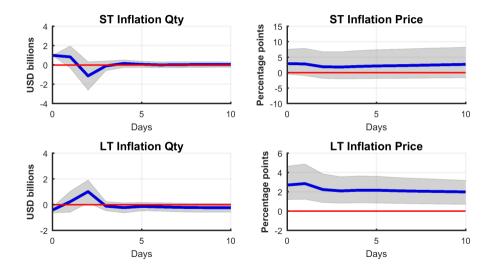

RPI VERSUS CPI

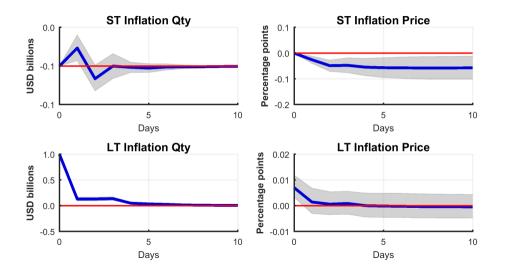


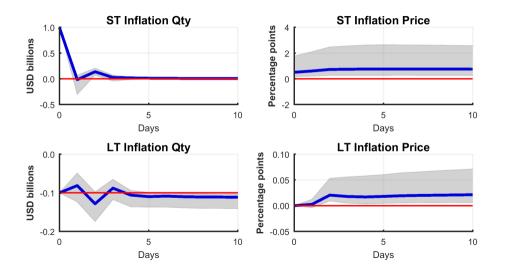
TYPE OF CONTRACT



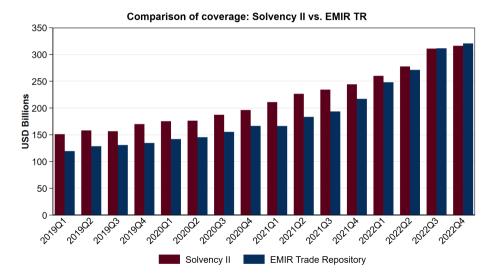
TRADES




IRF TO FUNDAMENTAL WITH GIV


IRF TO FUNDAMENTAL WITH HETEROSKEDASTICITY

RESPONSE TO LIQUIDITY SHOCK TO PENSION FUNDS



RESPONSE TO LIQUIDITY SHOCK TO HEDGE FUNDS

REPRESENTATIVENESS OF DATA

Comparison of Solvency II insurance holdings and EMIR TR data

