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1 Introduction

A long tradition in monetary economics emphasizes the role of the revaluation of real
and financial assets in shaping the economy’s response to changes in monetary policy.
Its importance can be traced back to both classical and Keynesian economists.1 Keynes
himself described the effects of interest rate changes as follows:

There are not many people who will alter their way of living because the rate of interest has
fallen from 5 to 4 per cent, if their aggregate income is the same as before. [...] Perhaps the
most important influence, operating through changes in the rate of interest, on the readiness to
spend out of a given income, depends on the effect of these changes on the appreciation or depreciation
in the price of securities and other assets.
- John Maynard Keynes, The General Theory of Employment, Interest, and Money (emphasis
added).

These revaluation effects caused by monetary policy have been documented by an ex-
tensive empirical literature. Bernanke and Kuttner (2005) study the effects of monetary
shocks on stock prices. Gertler and Karadi (2015) and Hanson and Stein (2015) consider
the effects on bonds. A robust finding of this literature is that changes in asset prices are
explained mainly by fluctuations in future excess returns, related to changes in the risk
premia, rather than changes in the risk-free rate.2

The extent to which changes in asset prices play a relevant role in the transmission of
monetary policy to the real economy, however, has been controversial. One view high-
lights the importance of wealth effects. For instance, Cieslak and Vissing-Jorgensen (2020)
show that policymakers track the behavior of stock markets because of their impact on
households’ consumption, while Chodorow-Reich et al. (2021) study the importance of
this channel empirically. An alternative view defends that changes in asset valuations
have no real implications. Cochrane (2020) and Krugman (2021) argue that movements
in discount rates lead to changes in "paper wealth," without an impact on consumption.

In this paper, we study how monetary policy affects the real economy through changes
in asset prices. We provide a new framework that generates rich asset-pricing dynamics
and heterogeneous portfolios while preserving the simplicity of the textbook New Key-
nesian model. In particular, we propose a new solution technique that enable us to obtain
time-varying risk premium and precautionary savings motive without having to resort to
higher-order approximations.3 We derive necessary conditions for changes in risk premia

1The revaluation of government liabilities was central to Pigou (1943) and Patinkin (1965), while Metzler
(1951) considered stocks and money. Tobin (1969) focused on the revaluation of real assets.

2For a recent review of this work, see Bauer and Swanson (2023).
3As shown in e.g. Schmitt-Grohé and Uribe (2004), a standard perturbation around the non-stochastic

steady state can only generate time-varying risk premia with a third-order approximation.
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to affect the real economy. Under very special conditions, we obtain a risk-neutrality result,
where changes in risk premia caused by monetary shocks affect asset prices, but it has no
effect on output and inflation. These conditions are, however, very stringent. We then
assess quantitatively the importance of this channel and find that changes in risk premia
account for a large fraction of the response of output and inflation to changes in monetary
policy.

We consider an economy populated by workers and savers with two main ingredients:
i) rare disasters, and ii) heterogeneous beliefs. Rare disasters enable us to capture both a
precautionary savings motive and realistic risk premia. Barro (2009) and Gabaix (2012)
argue that the risk of a rare disaster can successfully explain major asset-pricing facts.4

Savers invest in stocks, government bonds, and household debt, and have heterogeneous
beliefs, as in Caballero and Simsek (2020). As a consequence, they hold heterogeneous
portfolios in equilibrium. This allows us to capture time-variation in risk premia in re-
sponse to monetary shocks. Workers are constrained in equilibrium, so borrowers and
savers have heterogeneous MPCs. Despite being stylized, the model captures quantita-
tively central aspects of the monetary transmission mechanism, including the term pre-
mium, the equity premium, and corporate spreads, as well as the differential responses
of borrowers and savers to monetary shocks observed in the data.

Our first contribution is methodological and consists of an aggregation result. Given
investor heterogeneity, we must characterize not only the dynamics of aggregate output
and inflation, but also the behavior of portfolios, asset prices, net worth, and individual
consumption. This increases the dimensionality of the problem and typically makes de-
riving analytical results infeasible. We show that our economy satisfies an as if result: the
economy with heterogeneous savers behaves as an economy with a representative saver,
but the probability of disaster, as implied by market prices, is time-varying and responds
to monetary policy. This market-implied disaster probability is a key determinant of asset
prices, and it is the main channel through which investor heterogeneity affects the real
economy.

Our second contribution identifies conditions under which time-varying risk premia
plays a role in the transmission of monetary policy to the real economy. Consistent with
the empirical evidence, a contractionary monetary shock leads to an increase in risk pre-
mia and a reduction in the price of risky assets. One could then conclude that this reduc-
tion in households’ wealth leads to a reduction in consumption. However, as the discount
rate increases, the present discounted value of consumption decreases as well. The net ef-

4Rare disasters have been widely used to explain a range of asset-pricing “puzzles”; see Tsai and
Wachter (2015) for a review.
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fect of changes in risk premium is ambiguous and depends on whether households are
net buyers or net sellers of risky assets. As recently articulated by Cochrane (2020) and
Krugman (2021), a household who just consumes the dividends from their financial as-
sets can still afford the same level of consumption after a change in discount rates. The
wealth effect should then be zero in this case.

Formally, we show that the aggregate wealth corresponds to the sum of all house-
holds’ wealth net of the change in the cost of the original consumption bundle. Naturally,
the aggregate wealth effect does not depend on private debt. While private debt matters
for individual households’ consumption, the gross positions cancel out when we aggre-
gate at the household sector level. More interestingly, the aggregate wealth effect does
not depend on the equity premium either. It turns out that the difference between the
revaluation of the households’ assets and liabilities (including consumption) is given by
the government’s liabilities. The intuition is simple: in a closed economy, only the gov-
ernment is a counterpart to the household sector taken as a whole.5 Thus, whether risk
affects the aggregate wealth effect depends on the characteristics of government debt. We
show that, in the absence of a precautionary motive, there are three cases in which risk
has no impact on aggregate wealth: i) when government debt is zero, ii) when govern-
ment debt is short term, and iii) when government debt is a consol. In these cases, either
the households’ net revaluation effect is zero or it is independent of risk premia.

The presence of risk also affects the households’ precautionary motives. This effect
arises from the redistribution among savers after a monetary shock. Because optimists
hold a larger fraction of their wealth in risky assets (long-term bonds and equity), an in-
crease in the interest rate disproportionately reduces their wealth. Holding the aggregate
wealth effect constant, this redistribution of wealth is then reflected in the market-implied
probability of disaster, which increases after the monetary shock as pessimist savers in-
crease their holdings of risky assets. This is the “as-if” result in action: redistribution
between optimists and pessimists is akin to an increase in the “objective” probability of
disaster risk in a model with a representative agent. Note that the precautionary savings
channel changes the timing of consumption but not the households’ aggregate wealth.

Putting together all these results, we obtain a complete characterization of the con-
sumption channel of monetary policy in this model. We show that the transmission
of monetary policy to aggregate consumption has two components, one that affects its
present value and one that affects its timing. The present value of consumption is given by
the aggregate wealth effect. The timing of consumption depends in a prominent way on
private debt and aggregate risk. For private debt, the intuition is that monetary policy re-

5In an open economy, the foreign sector would be an additional counterpart.
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distributes between borrowers and savers. Because borrowers and savers have different
MPCs with respect to transitory income shocks, a contractionary monetary policy reduces
aggregate consumption on impact. However, because all households in the economy
have an MPC of one for permanent changes in their income, savers eventually increase
their consumption so that the present value of the changes cancel out. For aggregate risk,
while precautionary savings increase on impact, they gradually decrease as the market-
implied risk in the economy transitions back to its steady-state level. The present value
of this effect is also zero.

In the absence of an aggregate wealth effect, monetary policy has then only a limited
effect on the economy. A reduction in interest rates stimulates the economy in the present
at the expense of a more depressed economy in the future. We also show that the central
bank is unable to affect inflation when the wealth effect is zero. Moreover, future inflation
rates respond positively to changes in nominal interest rates in this case. Therefore, the
central bank’s ability to stimulate the economy and control inflation is tightly connected
to its ability to generate aggregate wealth effects.

Finally, our solution method allows us to obtain time-varying risk premia in a lin-
earized setting and provide a complete analytical characterization of the channels in-
volved. The method consists on perturbing the economy around a stationary equilibrium
with positive aggregate risk instead of adopting the more common approach of approxi-
mating around a non-stochastic steady state. By perturbing around the stochastic station-
ary equilibrium, we are able to obtain time variation in precautionary motives and risk
premia using a first-order approximation, while the standard approach would require a
third-order approximation (see e.g. Andreasen 2012).6 This hybrid approach can prove
useful in other settings where capturing risk premia is important. It is well known that
business cycle fluctuations in TFP cannot generate large risk premia without assuming
implausible large risk aversion (see Mehra and Prescott, 1985). Disaster risk has been
successful on this front, and our method shows how to incorporate it into rich macroeco-
nomic models without sacrificing tractability.

Our calibration departs from the standard practice in three important ways. First, we
set the households’ intertemporal elasticity of substitution to 0.25 (which implies a risk
aversion coefficient of 4 given our CRRA specification). This choice is lower than the usual
value of 1 or 0.5. However, our choice is closer to recent studies using microdata, such
as Best et al. (2020) who find a value of 0.1. Second, we need to calibrate the parameters

6Moreover, by linearizing around an economy with zero monetary risk, we are able to solve for the
stochastic stationary equilibrium in closed form, avoiding the need to compute the risky steady state nu-
merically, as in Coeurdacier et al. (2011).
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associated with the disaster risk. For the parameters governing the steady-state levels,
we follow Barro (2009). This implies an annual probability of a disaster of 1.7%. For the
time-varying component of the risk premium, we calibrate the elasticity of the disaster
shock to monetary policy to match the initial response of the term premium in Gertler and
Karadi (2015). We show that this calibration generates a conditional equity premium and
corporate spread that is consistent with the literature. Finally, for the fiscal response to a
monetary shock, we augment the procedure in Christiano et al. (1999) to incorporate fiscal
variables. We use the yield on the 5-year government bond to compute the government’s
intertemporal budget constraint.

To quantify the importance of the channels present in the model, we start with the
standard RANK model and add risk and household debt one at a time. We find that
the forces in RANK explain less than 20% of the consumption response on impact to a
monetary shock, risk explain around 50%, household slightly more than 20%, and the
interaction of the two slightly less than 10% Thus, risk and household debt are crucial
components of the monetary transmission mechanism.

Literature review. Wealth effects have a long tradition in monetary economics. Pigou
(1943) relied on a wealth effect to argue that full employment could be reached even in a
liquidity trap. Kalecki (1944) argued that these effects apply only to government liabili-
ties, as inside assets cancel out in the aggregate, while Tobin highlighted the role of private
assets and high-MPC borrowers.7 Recently, wealth effects have regained relevance. In an
influential paper, Kaplan et al. (2018) build a quantitative HANK model and find only
a minor role for the standard intertemporal-substitution channel, leading the way to a
more important role for wealth effects. Much of the literature has focused on the role of
heterogeneous marginal propensities to consume (MPCs) in settings with idiosyncratic
income risk. Instead, our focus is on aggregate risk and private debt.

Our work is closely related to two strands of literature. First, it relates to the analytical
HANK literature, such as Werning (2015), Debortoli and Galí (2017), and Bilbiie (2018).
While this literature focuses primarily on how the cyclicality of income interacts with dif-
ferences in MPCs, we focus instead on how heterogeneous asset positions interact with
differences in MPCs. We see these two channels as mostly complementary: even though
Cloyne et al. (2020) does not find significant differences in income sensitivity across bor-

7Tobin (1982) describes the role of inside assets: “The gross amount of these ’inside’ assets was and is
orders of magnitude larger than the net amount of the base. Aggregation would not matter if we could be
sure that the marginal propensities to spend from wealth were the same for creditors and debtors. But if
the spending propensity were systematically greater for debtors, even by a small amount, the Pigou effect
would be swamped by this Fisher effect.”
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rowers and savers, Patterson (2019) finds a positive covariance between MPCs and the
sensitivity of earnings to GDP across different demographic groups, suggesting that the
income-sensitivity channel is operative for a different cut of the data. We share with Eg-
gertsson and Krugman (2012) and Benigno et al. (2020) the emphasis on private debt,
but they abstract from a precautionary motive and focus instead on the implications of
deleveraging. Iacoviello (2005) also considers a monetary economy with private debt but
focuses instead on the role of housing as collateral. Our work is also related to Auclert
(2019), which studies the redistribution channel of monetary policy arising from portfo-
lio heterogeneity. Our paper emphasizes the redistribution channel in the context of a
general equilibrium setting with aggregate risk.

The paper is also closely related to work on how monetary policy affects the economy
through changes in asset prices, including models with sticky prices, such as Caballero
and Simsek (2020), and models with financial frictions, such as Brunnermeier and San-
nikov (2016) and Drechsler et al. (2018). In recent contributions, Kekre and Lenel (2020)
consider the role of the marginal propensity to take risk in determining the risk premium
and shaping the response of the economy to monetary policy, and Campbell et al. (2020)
use a habit model to study the role of monetary policy in determining bond and equity
premia. Our model highlights instead the role of heterogeneous MPCs, positive private
liquidity, and disaster risk in an analytical framework that preserves the tractability of
standard New Keynesian models.

Finally, a recent literature studies rare disasters and business cycles. Gabaix (2011) and
Gourio (2012) consider a real business cycle model with rare disasters, while Andreasen
(2012) and Isoré and Szczerbowicz (2017) allow for sticky prices. They focus on the effect
of changes in disaster probability while we study monetary shocks in an analytical HANK
model with rare disasters.

2 D-HANK: A Rare Disasters Analytical HANK Model

In this section, we consider an analytical HANK model with two main ingredients: i)
the possibility of rare disasters, ii) heterogeneous beliefs. We first describe the non-linear
model and later consider a log-linear approximation around a stochastic stationary equi-
librium.
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2.1 The Model

Environment. Time is continuous and denoted by t ∈ R+. The economy is populated
by households, firms, and a government. There is a continuum of households which
can be of three types: workers, optimistic savers, and pessimistic savers (denoted by w, o
and p, respectively), who differ in their discount rates and beliefs about the probability of
aggregate shocks. Households can borrow or lend at a riskless rate subject to a borrowing
constraint, and they can invest on government bonds and corporate equity. Workers are
the only ones who supply labor, and they are relatively impatient, so their borrowing
constraint is binding in equilibrium.

Firms can produce final or intermediate goods. Final-goods producers operate com-
petitively and combine intermediate goods using a CES aggregator with elasticity ϵ > 1.
Intermediate-goods producers use labor as their only input and face quadratic (Rotem-
berg, 1982) pricing adjustment costs. Intermediate-goods producers are subject to an ag-
gregate productivity shock: with Poisson intensity λ ≥ 0, they receive a shock that per-
manently reduces their productivity. This shock is meant to capture the possibility of rare
disasters: low-probability, large drops in productivity and output, as in the work of Barro
(2006, 2009). We say that periods that predate the realization of the shock are in the no-
disaster state, and periods that follow the shock are in the disaster state. The disaster state
is absorbing, and there are no further shocks after the disaster is realized. Assuming an
absorbing disaster state simplifies the presentation, but it can be easily relaxed, as shown
in the appendix.8

The government sets fiscal policy, comprising of transfers to workers and savers, and
monetary policy, specified by an interest rate rule subject to a sequence of monetary
shocks. The government issues long-term nominal bonds that pay exponentially decay-
ing coupons. We denote by QL,te−ψLt the nominal price of the bond in the no-disaster
state, which pays coupons e−ψLs at all dates s ≥ 0. We denote by Q∗

L,t the corresponding
(normalized) price of the bond in the disaster state, where the star superscript is used
throughout the paper to denote variables in the disaster state. The rate of decay ψL is
inversely related to the bond’s duration, where a perpetuity corresponds to ψL = 0 and
the limit ψL → ∞ corresponds to the case of short-term bonds.

Savers’ problem. Savers face a portfolio problem where they choose how much to in-
vest in short-term bonds, long-term bonds, and corporate equity. In this section, we as-

8Allowing for partial recovery, as in Barro et al. (2013) and Gourio (2012), introduces dynamics in the
disaster state, but it does not change the main implications for the no-disaster state, which is our focus.
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sume that households issue only short-term risk-free bonds and the government issues
only long-term bonds. We study the case of defaultable long-term household debt in
Section 5. The nominal return on the long-term bond is given by9

dRL,t =

[
1

QL,t
+

Q̇L,t

QL,t
− ψL

]
dt +

Q∗
L,t − QL,t

QL,t
dNt,

where Nt is a Poisson process with arrival rate λ (under the objective measure).
The price of a claim on real aggregate corporate profits is denoted by QE,t and the real

return on equities evolves according to

dRE,t =

[
Πt

QE,t
+

Q̇E,t

QE,t

]
dt +

Q∗
E,t − QE,t

QE,t
dNt,

where Πt denotes real profits and Q∗
E,t is the equity price in the disaster state.

Importantly, savers have heterogeneous beliefs regarding the probability of a disaster.
Savers’ subjective beliefs about the arrival rate of the aggregate productivity shock are
given by λj, for j ∈ {o, p}, where we assume that λo ≤ λp. We follow e.g. Chen et
al. (2012) and assume that savers are dogmatic in their beliefs about disaster risk, so we
abstract from any learning process. We also assume that ρo − ρp = λp −λo, which ensures
that both types of savers are unconstrained in the long run.

Savers face a constant hazard rate of death ξ ≥ 0. Newborn savers inherit the wealth
from parents and they are optimistic with probability µo

µo+µp
and pessimistic with prob-

ability µp
µo+µp

. Let Cj,t(s) denote the time t consumption of a type-j saver born at date

s ≤ t and Cj,t =
´ t
−∞ ξe−ξ(t−s)Cj,t(s)ds denote average consumption of type-j savers,

where similar notation applies to other variables. For ease of notation, we often drop the
dependence on s and simply write Cj,t instead of Cj,t(s).10

Let Bj,t = BS
j,t + BL

j,t + BE
j,t denote the net worth of a type-j saver, the sum of short-term

bonds (BS
j,t), long-term bonds (BL

j,t), and equity holdings (BE
j,t). A type-j saver chooses

consumption Cj,t, long-term bonds BL
j,t, and equity holdings BE

j,t, given an initial net worth
Bj,t > 0, to solve the following problem:

Vj,t(Bj,t) = max
[Cj,z,BL

j,z,BE
j,z]z≥t

Ej,t

[ˆ t∗

t
e−ρj(z−t)

C1−σ
j,z

1 − σ
dz + e−ρj(t∗−t)V∗

j,t∗(B∗
j,t∗)

]
,

9This expression follows from dRL,t =
e−ψLt

QL,te−ψLt dt + d(QL,te−ψLt)

QL,te−ψLt and dQL,t = Q̇L,tdt + (Q∗
L,t − QL,t)dNt.

10The perpetual youth assumption pins down the long-run wealth distribution among optimistic and
pessimistic savers, but it is otherwise not central to our results.
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subject to the flow budget constraint

dBj,t =
[
(it − πt)Bj,t + rL,tBL

j,t + rE,tBE
j,t + Tj,t − Cj,t

]
dt+

[
BL

j,t
Q∗

L,t − QL,t

QL,t
+ BE

j,t
Q∗

E,t − QE,t

QE,t

]
dNt,

as well as borrowing and short-selling constraints

Bj,t ≥ 0, BL
j,t ≥ 0, BE

j,t ≥ 0,

where it is the nominal interest rate, πt is the inflation rate, rL,t ≡ 1
QL,t

+
Q̇L,t
QL,t

−ψL − it is the

excess return on long-term bonds conditional on no disasters, rE,t ≡ Πt
QE,t

+
Q̇E,t
QE,t

− (it − πt)

is the excess return on equities conditional on no disasters, and Tj,t denote government
transfers. The random (stopping) time t∗ represents the period in which the aggregate
shock hits the economy. V∗

j,t∗(·) and B∗
j,t∗ denote, respectively, the value function and net

worth in the disaster state. The savers’ problem in the disaster state corresponds to a
deterministic version of the problem above, as the disaster happens only once. The non-
negativity constraint on BL

j,t captures the assumption that only the government can issue
long-term bonds. The discount rate for savers can be written as ρj ≡ ρ̃j + ξ, where ρ̃j

captures subjective discounting and ξ captures the effect of mortality risk.
Savers are unconstrained at all times in equilibrium. The Euler equation for short-term

bonds, derived in Appendix B, is given by

Ċj,t

Cj,t
= σ−1(it − πt − ρj) +

λj

σ

[(
Cj,t

C∗
j,t

)σ

− 1

]
, (1)

where C∗
j,t is the consumption of a type-j saver in the disaster state. The first term captures

the usual intertemporal-substitution force present in RANK models. The second term
captures the precautionary savings motive generated by the disaster risk, and it is analogous
to the precautionary motive that emerges in HANK models with idiosyncratic risk.

The Euler equation for long-term bonds is given by

rL,t = λj

(
Cj,t

C∗
j,t

)σ

︸ ︷︷ ︸
price of

disaster risk

QL,t − Q∗
L,t

QL,t︸ ︷︷ ︸
quantity of

risk

. (2)

This expression captures a risk premium on long-term bonds, which pins down long-term
interest rates in equilibrium. The premium on long-term bonds is given by the product
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of the price of disaster risk, the compensation for a unit exposure to the risk factor, and the
quantity of risk, the loss the asset suffers conditional on switching to the disaster state.

Similarly, the Euler equation for equities is given by

rE,t = λj

(
Cj,t

C∗
j,t

)σ
QE,t − Q∗

E,t

QE,t
. (3)

The expression above pins down the (conditional) equity premium in equilibrium. As
stocks and long-term bonds are exposed to the same aggregate shock, average returns by
unit of risk (the price of risk) is the same for both assets. Differences in expected returns
are then driven by differences in the quantity of risk.

Workers’ problem. In contrast to savers, workers supply labor and have GHH prefer-
ences (Greenwood et al., 1988) over consumption and labor. Their problem is given by

Vw,t(Bw,t) = max
[Cw,z,Nw,z]z≥t

Ew,t

ˆ t∗

t

e−ρw(z−t)

1 − σ

(
Cw,z −

N1+ϕ
w,z

1 + ϕ

)1−σ

dz + e−ρw(t∗−t)V∗
w,t∗(Bw,t∗)

 ,

subject to the flow budget constraint

dBw,t =

[
(it − πt)Bw,t +

Wt

Pt
Nw,t + Tw,t − Cw,t

]
dt,

and the borrowing constraints Bw,t ≥ 0, where Wt is the nominal wage, Pt is the price
level, and Tw,t denotes fiscal transfers to workers.

We focus on the case where the initial condition is Bw,0 = 0 and ρb is sufficiently large,
so borrowers are constrained at all periods. For simplicity, we have already imposed
that BS

w,t = BE
w,t = 0, given that short-selling constraints would otherwise be binding if

borrowers could choose BS
w,t and BE

w,t. As borrowers are constrained, their beliefs about
the disaster probability play no role in the determination of equilibrium.

The labor supply is determined by the standard condition:

Wt

Pt
= Nϕ

w,t.

GHH preferences imply that there is no income effect on labor supply, roughly in line
with the evidence (see e.g. Auclert et al., 2021), and simplifies the model aggregation.11

11GHH preferences also avoid the counterfactual implications caused by income effects on labor supply
in heterogeneous-agent models with sticky prices emphasized by Broer et al. (2020).
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Market-implied probabilities and the SDF. From Equations (2) and (3), we can see that,
even though savers disagree on the probability of a disaster, they agree on the value of a
unit of consumption in that state.12 We can then price any cash flow using the beliefs
and marginal utility of either optimistic or pessimistic savers. Instead of using the be-
liefs of a specific saver, it is convenient to define the economy’s stochastic discount factor
(SDF) using the aggregate consumption of savers, Cs,t ≡ µo

µo+µp
Co,t +

µp
µo+µp

Cp,t, and the
corresponding disaster probability implied by asset prices, as shown in Proposition 1.13

Proposition 1 (Market-implied disaster probability). Define the market-implied disaster prob-
ability λt as follows:

λt ≡
[

µoCo,t

µoCo,t + µpCp,t
λ

1
σ
o +

µpCp,t

µoCo,t + µpCp,t
λ

1
σ
p

]σ

, (4)

and let Et[·] denote the expectation operator associated with the arrival rate λt for the disaster
shock. Then, ηt = e−

´ t
0 ρs,zdzC−σ

s,t is a valid stochastic discount factor, i.e., ηt correctly prices all
tradeable assets given the disaster probability λt and the process ρs,t ≡ ρj + λj − λt.

Proof. To ensure that ηt correctly prices long-term bonds and equities, consistent with
Equations (2) and (3), the market-implied disaster probability must satisfy the condition:

λt

(
Cs,t

C∗
s,t

)σ

= λj

(
Cj,t

C∗
j,t

)σ

⇒ C∗
j,t =

(
λj

λt

) 1
σ C∗

s,t

Cs,t
Cj,t.

Plugging C∗
j,t into the definition of savers’ average consumption in the disaster state,

C∗
s,t ≡ µo

µo+µp
C∗

o,t +
µp

µo+µp
C∗

p,t, and rearranging gives Equation (4). By setting ρs,t = ρj +

λj − λt, we ensure that ηt correctly prices risk-free bonds, i.e., Et[dηt]/ηt = −(it − πt)dt.

The market-implied probability λt is a CES aggregator of individual probabilities,
weighted by the corresponding consumption share. Expression (4) is reminiscent of the
complete-markets formula with heterogeneous beliefs in e.g. Varian (1985). However, un-
der complete markets, the consumption shares of optimistic and pessimistic savers would
be constant. In contrast, consumption shares can potentially move over time in our set-
ting, which leads to endogenous time-variation in the perceived probability of a disaster,

12The value of a consumption unit in the disaster state for saver j is λj(C∗
j,t/Cj,t)

−σ, the continuous-time
version of the standard expression for state prices, which is equalized for all savers from Equations (2)-(3).

13A long tradition in asset-pricing relates the consumption of stockholders, savers in our economy, and
asset prices. See e.g. Mankiw and Zeldes (1991) and Parker (2001).

11



even though the objective disaster probability is constant. We can then price assets as-if
the economy has a representative saver with (endogenous) time-varying beliefs.

Firms’ problem. Intermediate-goods producers are indexed by i ∈ [0, 1] and operate in
monopolistically competitive markets. Final good producers are price takers and combine
intermediate goods to produce the final good. Their demand for variety i is given by

Yi,t =
(

Pi,t
Pt

)−ϵ
Yt, and the equilibrium price level is given by Pt =

(´ 1
0 P1−ϵ

i,t di
) 1

1−ϵ .
Intermediate-goods producers operate the linear technology Yi,t = AtNi,t. Productiv-

ity in the no-disaster state is given by At = A, and productivity in the disaster state is
given by At = A∗, where 0 < A∗ < A. Intermediate-goods producers choose the rate-
of-change of prices πi,t = Ṗi,t/Pi,t, given the initial price Pi,0, to maximize the expected
discounted value of real profits subject to Rotemberg quadratic adjustment costs:

Qi,t(Pi,t) = max
[πi,z]z≥t

Et

[ˆ t∗

t

ηz

ηt

(
Pi,z

Pz
Yi,z −

Wz

Pz

Yi,z

A
− φ

2
π2

i,t

)
dz +

ηt∗

ηt
Q∗

i,t∗(Pi,t∗)

]
, (5)

the demand Yi,t =
(

Pi,t
Pt

)−ϵ
Yt, and Ṗi,t = πi,tPi,t, where Q∗

i,t(Pi) denotes the firms’ value
function in the disaster state. The price Pi,t is a state variable and πi,t is a control variable.
The parameter φ controls the magnitude of the pricing adjustment costs. These costs are
rebated to households, so they do not represent real resource costs. Profits are discounted
using the economy’s SDF, and expectations are computed using the market-implied prob-
ability λt, consistent with savers’ valuation of the firm.

Combining the first-order condition and the envelope condition for problem (5), we
obtain the non-linear New Keynesian Phillips curve:

π̇t =

(
it − πt + λt

η∗
t

ηt

)
πt −

ϵ

φA

(
Wt

Pt
− (1 − ϵ−1)A

)
Yt, (6)

assuming a symmetric initial condition Pi,0 = P0, for all i ∈ [0, 1], and π∗
i,t = 0.

Government. The government is subject to a flow budget constraint

ḊG,t = (it − πt + rL,t)DG,t + ∑
j∈{w,o,p}

µjTj,t,

and a No-Ponzi condition limt→∞ E0[ηtDG,t] ≤ 0, where DG,t denotes the real value of
government debt, DG,0 = DG is given, and analogous conditions hold in the disaster state.
Transfers to workers are given by the policy rule Tw,t = Tw(Yt). We assume To,t = Tp,t, and
the government adjusts transfers to savers such that the No-Ponzi condition is satisfied.
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In the no-disaster state, monetary policy is determined by the policy rule

it = rn + ϕππt + ut, (7)

where ϕπ > 1, ut is a monetary shock, and rn denotes the real rate when πt = ut = 0
at all periods. We assume that in the disaster state there are no monetary shocks, that is,
i∗t = r∗n + ϕππ∗

t . By abstracting from the policy response after a disaster, we isolate the
impact of changes in monetary policy during “normal times.”

Market clearing. The market-clearing conditions for goods, bonds, and equities are
given by

∑
j∈{w,o,p}

µjCj,t = Yt, ∑
j∈{w,o,p}

µjB
S
j,t = 0, ∑

j∈{w,o,p}
µjB

L
j,t = DG,t, ∑

j∈{w,o,p}
µjB

E
j,t = QE,t,

and labor market clearing is µbNb,t = Nt, where Yt =
(´ 1

0 Y
ϵ

ϵ−1
i,t di

) ϵ−1
ϵ

and Nt =
´ 1

0 Ni,tdi.

2.2 Equilibrium dynamics

Stationary equilibrium. We define a stationary equilibrium as an equilibrium in which
all variables are constant in each aggregate state. In particular, the economy will be in a
stationary equilibrium in the absence of monetary shocks, that is, ut = 0 for all t ≥ 0.
Since variables are constant in each state, we drop time subscripts and write, for instance,
Cj,t = Cj and C∗

j,t = C∗
j . For ease of exposition, we follow Bilbiie (2018) and assume that

Tw implements Cw = Y and C∗
w = Y∗, and discuss the general case in Appendix B.

The natural interest rate, the real rate in the stationary equilibrium, is given by

rn = ρs − λ

[(
Cs

C∗
s

)σ

− 1
]

,

where ρs and λ are the values of ρs,t and λt in the stationary equilibrium, and 0 < C∗
s < Cs.

We assume that the natural rate is positive, rn > 0. The precautionary motive depresses
the natural interest rate relative to the one that would prevail in a non-stochastic economy.

From Equation (2), we can pin down the term spread, the difference between the yield
on the long-term bond and the short-term rate, in this economy:

rL = λ

(
Cs

C∗
s

)σ QL − Q∗
L

QL
,
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and Q∗
L < QL. It can be shown that rL = iL − rn, where iL is the yield on the long-term

bond in the stationary equilibrium.14 Thus, our model generates an upward-sloping yield
curve, where long-term yields exceed the short rate, consistent with the data.15

Similarly, the equity premium (conditional on no-disaster) is given by16

rE = λ

(
Cs

C∗
s

)σ QE − Q∗
E

QE
,

and Q∗
E < QE. Therefore, the equity premium is positive in the stationary equilibrium.

Households have heterogeneous portfolios in equilibrium. Workers are against the
borrowing constraint and hold no equities or long-term bonds. Optimistic savers are
more exposed to disaster risk than pessimist investors. The exact composition of their
portfolio is indeterminate, as we have one redundant asset. For concreteness, we focus
on the case BE

o = BE
p , so optimists hold more long-term bonds, i.e. BL

o > BL
p . This leads to

a simpler presentation in the analysis that follows.

Log-linear dynamics. Following the monetary policy literature, we focus on a log-linear
approximation of the equilibrium conditions. However, instead of linearizing around the
non-stochastic steady state, we linearize the equilibrium conditions around the (stochas-
tic) stationary equilibrium described above. Formally, we perturb the allocation around
the economy where ut = 0 and λ > 0, while the standard approach would perturb around
the economy where ut = λt = 0. This enables us to capture the effects of (time-varying)
precautionary savings and risk premia in a linear setting, as shown below.17

Let lower-case variables denote log-deviations from the stationary equilibrium, e.g.,
yt ≡ log Yt/Y and cw,t ≡ log Cw,t/Cw. Workers’ consumption is given by

cw,t =
WNw

PY
(wt − pt + nw,t) + T′

w(Y)yt ⇒ cw,t = χyyt, (8)

using wt − pt = ϕyt and nw,t = yt, where χy ≡ WNw
PY (1 + ϕ) + T′

w(Y).
The coefficient χy controls the cyclicality of income inequality among workers and

14The yield on the long-term bond is given by iL,t = Q−1
L,t − ψL and, in a stationary equilibrium, Q̇L,t = 0,

so the expected excess return conditional on no disaster rL equals the term spread iL − rn.
15The upward-sloping yield curve is caused by the lack of precautionary savings in the disaster state.

We would obtain similar results by introducing expropriation and inflation in a disaster, as in Barro (2006).
16The unconditional equity premium equals rE minus the expected loss on a disaster. Using λ to compute

the expected loss, the (unconditional) equity premium would be given by λ
[
(Cs/C∗

s )
σ − 1

]
(QE −Q∗

E)/QE.
17This method differs from the procedure considered by Coeurdacier et al. (2011) or Fernández-

Villaverde and Levintal (2018), as we linearize around a stochastic steady state of an economy with no
monetary shocks, instead of the stochastic steady state of the economy with both shocks.
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savers. We focus on the case 0 < χy < µ−1
w , such that the consumption of savers, which is

given by cs,t =
1−µwχy

1−µw
yt from the market clearing for goods, is also increasing in yt.

Linearizing Equation (1), aggregating savers, and defining λ̂t ≡ log λt
λ , we obtain

ċs,t = σ−1(it − πt − rn) +
λ

σ

(
Cs

C∗
s

)σ [
λ̂t + σcs,t

]
. (9)

Combining condition (8) for borrowers’ consumption, equation (9) for savers’ Euler
equation, and the market-clearing condition for goods, we obtain the evolution of aggre-
gate output. Proposition 2 characterizes the dynamics of aggregate output and inflation,
given the paths of it and λ̂t. Proofs omitted in the text are provided in Appendix A.

Proposition 2 (Aggregate dynamics). Given [it, λ̂t]t≥0, the dynamics of output and inflation
is described by the conditions:

i. Aggregate Euler equation:

ẏt = σ̃−1(it − πt − rn) + δyt + χλλ̂t, (10)

where σ̃−1 ≡ 1−µw
1−µwχy

σ−1, δ ≡ λ
(

Cs
C∗

s

)σ
, and χλ ≡ σ̃−1δ.

ii. New Keynesian Phillips curve:

π̇t = ρπt − κyt, (11)

where ρ ≡ ρs + λ and κ ≡ φ−1(ϵ − 1)ϕY.

Condition (10) represents the aggregate Euler equation. This equation has three terms,
capturing the effects of heterogeneous MPCs, aggregate risk, and heterogeneous beliefs.
The first term is the product of the aggregate elasticity of intertemporal substitution (EIS),
σ̃−1, and the real interest rate. The aggregate EIS depends on the cyclicality of inequality
among workers and savers, as captured by χy. As in the work of Werning (2015) and Bil-
biie (2017), heterogeneous MPCs amplify the effect of changes in interest rates if workers’
consumption share is procyclical (i.e., χy > 1), as it implies that σ̃−1 > σ−1.

The second term, δyt, captures the effect of aggregate risk. In the absence of belief
heterogeneity, so λ̂t = 0, we can write output as yt = −σ̃−1 ´ ∞

t e−δ(s−t)(is − πs − rn)ds.
Hence, a positive δ dampens the effect of future real interest rates, as in the discounted
Euler equation of McKay et al. (2017). In our setting, this is the result of a precautionary
motive in response to aggregate disaster risk instead of idiosyncratic income risk.
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The third term in the aggregate Euler equation, χλλ̂t, captures the effect of heteroge-
neous beliefs. An increase in the market-implied disaster probability implies that pes-
simistic investors have a higher consumption share, as shown in Proposition 1. This in-
crease in average pessimism triggers a stronger precautionary motive in the aggregate.
Notice this effect is not present without investor heterogeneity, as λ̂t = 0 when savers
have homogeneous beliefs.

Finally, Proposition 2 derives the New Keynesian Phillips curve. The linearized Phillips
curve coincides with the one obtained from models with Calvo pricing. As in a textbook
New Keynesian model, inflation is given by the present discounted value of future output
gaps, πt = κ

´ ∞
t e−ρ(s−t)ysds. One distinction relative to the standard formulation is that

future output gaps are not discounted by the natural rate rn but by a higher rate ρ > rn,
as firm value is risky in our setting, which requires a higher discount rate.

2.3 Monetary policy and risk premia

Asset prices. The response of asset prices to monetary policy depends crucially on the
behavior of the price of disaster risk, as shown in Equations (2) and (3). In its log-linear
form, the price of disaster risk is given by

pd,t ≡ σ(cs,t − c∗s,t) + λ̂t. (12)

This expression has two terms. The first term captures the increase in the savers’ marginal
utility of consumption if the disaster shock is realized. The second term represents the
change in the market-implied disaster probability after a monetary shock.

Given the price of risk, we can price any financial asset in this economy. For example,
the (linearized) price of the long-term bond in period zero is given by18

qL,0 = −
ˆ ∞

0
e−(ρ+ψL)t(it − rn)dt︸ ︷︷ ︸

path of nominal interest rates

−
ˆ ∞

0
e−(ρ+ψL)trL pd,tdt︸ ︷︷ ︸
term premium

. (13)

The yield on the long-term bond, expressed as deviations from the stationary equilibrium,
is given by −Q−1

L qL,0, which can be decomposed into two terms: the path of nominal
interest rates, as in the expectations hypothesis, and a term premium, capturing variations
in the compensation for holding long-term bonds. The term premium depends on the

18Linearizing Equation (2) and rearranging, we obtain q̇L,t − (ρ + ψL)qL,t = it − rn + rL pd,t. Integrating
this condition forward gives us Equation (13).
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price of risk, pd,t, and the asset-specific loading rL. Because the term premium responds
to monetary shocks, the expectation hypothesis does not hold in this economy.

The pricing condition for equities is analogous to the one for long-term bonds:

qE,0 =
Y

QE

ˆ ∞

0
e−ρtΠ̂tdt︸ ︷︷ ︸

dividends

−
ˆ ∞

0
e−ρt [it − πt − rn + rE pd,t] dt︸ ︷︷ ︸

discount rate

, (14)

where Π̂t = yt − WN
PY (wt − pt + nt). Equity prices respond to changes in monetary policy

through two channels: a dividend channel, capturing changes in firms’ profits, and a dis-
count rate channel, capturing changes in real interest rates and risk premia. Risk premia
depends on the price of risk, pd,t, and the asset-specific loading rE.

Market-implied disaster probability. Log-linearizing Equation (4), we obtain

1
σ

λ
1
σ λ̂t = µc,oµc,p

(
λ

1
σ
p − λ

1
σ
o

) [
cp,t − co,t

]
, (15)

where µc,j ≡
µjCj

µoCo+µpCp
, for j ∈ {o, p}.

The market-implied disaster probability increases when the monetary shock redis-
tributes consumption towards pessimistic investors. We show in Appendix B.3 that the
relative consumption of the two types of savers evolves according to

ċp,t − ċo,t = −ξ̃(bp,t − bo,t), (16)

where ξ̃ ≥ 0 is proportional to the mortality parameter, and the law of motion of relative
net worth bp,t − bo,t is given by

ḃp,t − ḃo,t = −χb,c(cp,t − co,t) + χb,b(bp,t − bo,t) + χb,cs cs, (17)

where the coefficients χb,c, χb,b, and χb,cs are a function of portfolios and equilibrium re-
turns in the stationary equilibrium. Hence, the dynamics of relative consumption de-
pends on relative net worth bp,t − bo,t, while the dynamics of relative net worth bp,t − bo,t

depends on relative consumption and savers’ aggregate consumption. As cs depends on
yt, we must simultaneously solve for [cp,t − co,t, bp,t − bo,t]∞0 and [it, yt, πt]∞0 , which in-
volves a relatively large dynamic system. In this case, obtaining analytical results would
be infeasible. In the next proposition, we show that this system actually satisfies an ap-
proximate block recursivity property, where we can solve for cp,t − co,t (or λ̂t) and bp,t − bo,t
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independently of (yt, πt), provided that the effect of cs,t on risk premia is small.

Proposition 3 (Approximate block recursivity). Suppose rkcs,t is small for k ∈ {L, E}, i.e.
rkcs,t = O(||it − rn||2). Then, the market-implied probability of disaster λ̂t and relative net worth
bp,t − bo,t can be solved independently of the aggregate variables (yt, πt), and they are given by

λ̂t = e−ψλtλ̂0, (18)

and bp,t − bo,t = e−ψλt(bp,0 − bo,0), where ψλ ≥ 0 is strictly increasing in ξ, it is equal to zero if
ξ = 0 and it approaches infinity if ξ → ∞. If it − rn = e−ψmt(i0 − rn), then the initial value of
λ̂t is given by

λ̂0 = ϵλ(i0 − rn), (19)

where ϵλ ≥ 0 and the inequality is strict if λp > λo.

Note that the effect of changes in the price of risk on risk premia is given by rk pd,t =

rk(σcs,t + λ̂t), using c∗s,t = 0. If rkcs,t is second-order on the size of the monetary shock,
then this term can be ignored, and Proposition 3 shows that we can solve for λ̂t indepen-
dently of (yt, πt). As the dynamics of (yt, πt) depends on λ̂t, but λ̂t does not depend on
(yt, πt), we say the system is (approximately) block recursive. We show in the appendix
that the solution ignoring the terms rkcs,t tracks very closely the numerical solution where
these terms are taken into account.

An important implication of Equation (19) is that the price of risk increases after a
contractionary monetary shock. A monetary tightening redistributes wealth away from
optimistic investors, as they are more exposed to risky assets. The economy becomes
on average more pessimistic, which raises the required compensation for holding risky
assets. The increase in risk premia in response to contractionary monetary shocks is con-
sistent with the evidence in, e.g., Gertler and Karadi (2015) and Hanson and Stein (2015).
Notice that investor heterogeneity is necessary for this result, as λ̂t = 0 when λo = λp.

Market incompleteness is necessary for monetary policy to affect risk premia in our
setting. A first form of market incompleteness comes from the lack of hedging instru-
ments against monetary shocks. If savers could hedge monetary surprises, their con-
sumption share would not react to monetary shocks, and λt would be constant. A second
form of market incompleteness comes from mortality risk. Monetary shocks have a per-
manent effect on the wealth distribution when ξ = 0. Mortality risk implies that the
wealth distribution reverts to its long-run level, so the effects of monetary policy on risk
premia eventually die out.
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3 Monetary Policy and Wealth Effects

In the previous section, we considered the effects of monetary policy on risk premia and
asset prices through its impact on λ̂t. We study next how the revaluation of real and
financial assets induced by monetary policy affects the real economy.

3.1 The dynamic system

A monetary policy shock triggers two types of policy response: i) changes in the path
of nominal interest rates it; and ii) changes in the fiscal backing τt. Output and inflation
respond to the joint change in policy variables. To isolate the impact of nominal interest
rates on asset prices, it is important to disentangle the role of it and τt. This motivates the
following two-step procedure. First, we express output and inflation in terms of the path
of policy variables {it, τt}. Second, we derive an implementability result that shows how to
map policy variables to the underlying monetary shock ut in the interest rate rule (7).

We start by considering the system of differential equations in Proposition 2:[
ẏt

π̇t

]
=

[
δ −σ̃−1

−κ ρ

] [
yt

πt

]
+

[
νt

0

]
, (20)

where νt ≡ σ̃−1(it − rn) + χλλ̂t depends only on the path of nominal interest rates. The
eigenvalues of the system are given by

ω =
ρ + δ +

√
(ρ + δ)2 + 4(σ̃−1κ − ρδ)

2
, ω =

ρ + δ −
√
(ρ + δ)2 + 4(σ̃−1κ − ρδ)

2
.

The following assumption, which we assume holds for all subsequent analysis, guaran-
tees that the eigenvalues are real-valued and have opposite signs, i.e., ω > 0 and ω < 0.

Assumption 1. The following condition holds: ρδ < σ̃−1κ.

Assumption 1 implies that the system lacks exactly one boundary condition.19 The
missing boundary condition can be provided by an aggregate intertemporal budget con-
straint (IBC). From savers’ transversality condition, combined with workers’ budget con-
straint, we obtain the (non-linear) aggregate IBC:

E0

[ˆ ∞

0

ηt

η0
Ctdt

]
= DG,0 + QE,0 + E0

[ˆ ∞

0

ηt

η0

(
Wt

Pt
Nt + Tt

)
dt
]

,

19Assumption 1 implies that the equilibrium is indeterminate under an interest-rate peg. As shown in
Section 3.5, local determinacy requires ϕπ ≥ 1 − ρδ

σ̃−1κ
≡ ϕπ , and ϕπ > 0 under Assumption 1.
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where Ct ≡ µwCw,t + (1 − µw)Cs,t and Tt = µwTw,t + (1 − µw)Ts,t. See Appendix C for a
derivation. This expression says that the present value of aggregate consumption equals
the value of assets held by the household sector: government bonds, stocks, and human
wealth (i.e., the value of labor income after transfers).

To linearize the expression above, it is convenient to define QC,t ≡ Et

[´ ∞
t

ηz
ηt

Czdz
]
,

the value of the consumption claim, and QH,t ≡ Et

[´ ∞
t

ηz
ηt

(
Wz
Pz

Nz + Tt

)
dz
]
, the value

of human wealth. We can compute the price of these two claims in the same way as
we priced stocks and bonds (see Equations 13 and 14). For instance, the value of the
consumption claim satisfies the condition:

qC,0 =
C

QC

ˆ ∞

0
e−ρtctdt −

ˆ ∞

0
e−ρt (it − πt + rC pd,t) dt, (21)

where qC,0 ≡ log QC,0/QC and rC ≡ λ
(

Cs
C∗

s

)σ QC−Q∗
C

QC
.

The linearized intertemporal budget constraint can then be written as follows:

QCqC,0 = DGqL,0 + QEqE,0 + QHqH,0. (22)

From Equation (22), we have that the aggregate IBC is a necessary equilibrium condi-
tion. The next lemma establishes the sufficiency of the aggregate IBC for pinning down
the equilibrium. That is, it shows that if [yt, πt]∞0 satisfies system (20) and the IBC (in its
log-linear form), then we can determine the consumption, portfolio, labor supply as well
as wages and prices such that all equilibrium conditions are satisfied.

Lemma 1. Suppose that, given a path for the nominal interest rate and fiscal backing [it, τt]∞0 ,
[yt, πt]∞0 satisfy system (20) and the aggregate intertemporal budget constraint (22). Then, [yt, πt]∞0
can be supported as part of a competitive equilibrium.

Therefore, the equilibrium dynamics can be characterized as the solution to the dy-
namic system (20), subject to the boundary condition (22). Importantly, changes in asset
prices can affect output and inflation through its impact on the IBC.

3.2 Aggregate wealth effect and risk-premium neutrality

We define the aggregate wealth effect as (minus) the total compensation required for house-
holds’ initial consumption bundle to be just affordable. Thus, a monetary policy shock
generates a negative wealth effect if a positive compensation is required for households
to afford their pre-shock consumption level. Formally, we define the aggregate wealth
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effect, normalized by Y, as follows:

Ω0 ≡ − 1
Y ∑

j∈{w,o,p}

(
E0

[ˆ ∞

0

ηt

η0
µjCjdt

]
− E0

[ˆ ∞

0

ηt

η0
µjCj,tdt

])
. (23)

We show in Appendix C.4 that this definition corresponds to (minus) the sum of the Slut-
sky wealth compensation, as defined in Mas-Colell et al. (1995), which justifies referring
to Ω0 as a wealth effect.

Linearizing Equation (23), we obtain

Ω0 =

ˆ ∞

0
e−ρtctdt, (24)

so the aggregate wealth effect determines the present discounted value of consumption.
Combining the intertemporal budget constraint (22) and the pricing condition for con-
sumption (21), we obtain

Ω0 =
DG

Y
qL,0 +

QE

Y
qE,0 +

QH

Y
qH,0 +

QC

Y

ˆ ∞

0
e−ρt (it − πt + rC pd,t) dt. (25)

The expression above shows that the aggregate wealth effect equals the revaluation of
real and financial assets net of the discount rate effect on consumption. This implies that
the wealth effect is not simply given by the change in financial wealth, a fact that plays an
important role in understanding the impact of changes in risk premia on the real economy.
The next lemma shows how the net discount rate effect depends on the level and riskiness
of government debt.

Lemma 2. The aggregate wealth effect Ω0 is given by

Ω0 =

ˆ ∞

0
e−ρt

[
Π̂t +

WN
PY

(wt − pt + nt) + T̂t

]
dt + dGqL,0 + dG

ˆ ∞

0
e−ρt (it − πt − rn + rL pd,t) dt,

where T̂t ≡ Tt−T
Y .

Proof. Using the pricing condition for qk,0, k ∈ {C, H, E}, and Equation (22), we obtain

ˆ ∞

0
e−ρtctdt − QC

Y

ˆ ∞

0
e−ρt [it − πt − rn + rC pd,t] dt =

ˆ ∞

0
e−ρt

[
Π̂t +

WN
PY

(wt − pt + nt) + T̂t

]
dt

−QH + QE

Y

ˆ ∞

0
e−ρt [it − πt − rn] dt −

[
QH

Y
rH +

QE

Y
rE

] ˆ ∞

0
e−ρt pd,tdt +

DG

Y
qL,0.

Using the fact that QC = QH + DG + QE and Q∗
C = Q∗

H + DG
Q∗

L
QL

+ Q∗
E, we obtain QC

Y −
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QH+QE
Y = DG

Y ≡ dG and QC
Y rC − QHrH+QErE

Y = dGrL, given rk = λ
(

Cs
C∗

s

)σ Qk−Q∗
k

Qk
. Combining

these expressions with the equation above, we obtain (24) after some rearrangement.

The first term in Ω0 captures the effect of changes in cash flows, namely (after-tax)
profits and wages. Naturally, households become wealthier if profits and wages increase
in response to a monetary shock, everything else constant. The last two terms capture the
net effect of changes in discount rates, i.e. interest rates and risk premia, which depends
on the level of government debt.

Risk-premium neutrality. Asset revaluations caused by monetary policy have received
significant attention recently. For instance, Cieslak and Vissing-Jorgensen (2020) show
that policymakers pay attention to the stock market due to its potential (consumption)
wealth effect. In contrast, Cochrane (2020) and Krugman (2021) argue that wealth gains
on "paper" are not relevant for households who simply consume their dividends. The
next proposition isolate the necessary conditions under which the latter view is correct.

Proposition 4 (Risk-premium neutrality). Suppose the government uses a consumption tax to
neutralize the precautionary motive induced by λ̂t, that is, consider τc

t satisfying ˙̂τc
t = λ

(
Cs
C∗

s

)
λ̂t,

where τ̂c
t ≡ log(1+ τc

t ), τc
t = τc,∗

t , and the revenue is rebated back to households. Then, [yt, πt]∞0
is independent of λ̂t if one of the following conditions are satisfied: i) dG = 0; ii) dG > 0 and
ψL = ∞; iii) dG > 0 and ψL = 0.

Proof. Savers’ Euler equation for the riskless bond is now given by ċs,t = σ−1(it − πt −
rn − ˙̂τc

t ) +
λ
σ

(
Cs
C∗

s

)σ [
λ̂t + σcs,t

]
, which is independent of λ̂t if ˙̂τc

t = λ
(

Cs
C∗

s

)σ
λ̂t. As τc

t =

τc,∗
t , Euler equations for risky assets are not affected. The aggregate Euler equation then

takes the same form as in Equation (10), but with χλ = 0. As the revenue is rebated back
to households, workers are not affected. If dG = 0, the last two terms in Ω0 are equal to
zero. If dG > 0 and ψL = 0, λ̂t in the last two terms in Ω0 exactly cancel out. If ψL = ∞,
government bonds are safe and rL = 0. Ω0 is independent of λ̂t in all three cases.

Proposition 4 provides conditions under which time variation in the market-implied
disaster probability λt does not impact the monetary transmission mechanism. Under
such conditions, heterogeneity in portfolios among savers may help improve the model’s
asset-pricing implications, but they have no bearing on how monetary shocks ultimately
affect the real economy. In particular, the solution is independent of λp −λo. Due to the in-
crease in risk premium, an economy with heterogeneous beliefs would have a larger drop
in asset prices after a monetary contraction than an economy where λp = λo . Despite
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the larger decline in the value of stocks and bonds, the response of output and inflation
would be the same as in the economy without belief heterogeneity.

But why do households in the economy that suffered a larger drop in asset prices con-
sume the same as households in the economy where asset prices did not drop as much?
Take for instance the case dG = 0, so savers only hold stocks in equilibrium. One could
expect that, as stock prices fall more sharply in the economy with λ̂t > 0, households
would feel poorer and cut consumption relative to the economy with λ̂t = 0. However,
this intuition does not take into account the fact that households can afford the same level
of consumption with less wealth now. As households do not need more resources to af-
ford their initial consumption bundle, this decline in asset prices do not create a negative
wealth effect. The fact that changes in financial wealth may translate into no wealth effect
provides a precise sense in which these changes may reflect "paper wealth."20

A similar point emerges in the discussion of taxation of capital gains. For instance,
discussing the impact of a drop in interest rates for an investor whose consumption equals
dividends every period, Cochrane (2020) says

"When the interest rate goes down, it takes more wealth to finance the same
consumption stream. The present value of liabilities – consumption – rises just
as much as the present value of assets, so on a net basis Bob is not at all better."

In our terms, the increase in financial wealth does not translate into a positive wealth
effect, as the drop in the price of stocks exactly cancels out the drop in the value of the
consumption claim when consumption equals dividends.

Proposition 4 shows that the impact of changes in risk premia on Ω0 can be zero even
when dG > 0. When government bonds are a perpetuity, ψL = 0, then savers’ consump-
tion equal dividends plus coupons from government bonds. In this case, the drop in
the value of stocks and long-term bonds exactly cancel out the drop in the value of the
consumption claim. When government bonds are short-term, ψL → ∞, stocks and the
consumption claim are equally risky, so the discount rate effect cancels out again. Risk
premia has a non-zero effect on Ω0 only in the intermediate case 0 < ψL < ∞.

We have focused so far on the impact of λ̂t on Ω0. However, λ̂t also enters the ag-
gregate Euler equation (10), as the redistribution between optimistic and pessimistic in-
vestors affect the average precautionary motive in the economy. For changes in λ̂t to be
neutral, in the sense of not affecting output and inflation, the government would have to
offset the movements in precautionary motive. Proposition 4 shows the required change

20For instance, Fagereng et al. (2022) says "For such an individual [who only consumes dividends], rising
asset prices are merely "paper gains," with no corresponding welfare implications."
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in taxes to exactly offset this precautionary motive.
One implication of Proposition 4 is that, even though the logic of Cochrane (2020) and

Krugman (2021) is present in our setting, it requires very stringent conditions to hold. In
the empirically relevant case, dG > 0 and 0 < ψL < ∞, movements in risk premia create a
wealth effect, i.e., they do not represent only "paper wealth." Moreover, changes in λ̂t may
lead to movements in precautionary motive. Therefore, in general, both the aggregate
wealth effect and the time-varying precautionary motive affect the real economy.

3.3 Intertemporal substitution, risk, and wealth effect

The next proposition characterizes the output response to a sequence of monetary policy
shocks for a given value of the aggregate wealth effect Ω0. We provide a full characteri-
zation of Ω0 in Section 3.4. For ease of exposition, we focus on the case of exponentially
decaying nominal interest rates; that is, we assume it − rn = e−ψmt(i0 − rn), where ψm

determines the persistence of the path of interest rates.

Proposition 5 (Aggregate output in D-HANK). Suppose that it − rn = e−ψmt(i0 − rn) and
ψk ̸= −ω, for k ∈ {m, λ}. The path of aggregate output is then given by

yt = σ̃−1ŷm,t︸ ︷︷ ︸
ISE

+ χpŷλ,t︸ ︷︷ ︸
time-varying

precautionary motive

+ (ρ − ω)eωtΩ0︸ ︷︷ ︸
GE multiplier×

aggregate wealth effect

, (26)

where χp ≡ χλϵλ, ŷk,t is given by

ŷk,t =
(ρ − ω) eωt − (ρ + ψk) e−ψkt

(ω + ψk) (ω + ψk)
(i0 − rn), (27)

and satisfies
´ ∞

0 e−ρtŷk,tdt = 0, ∂ŷk,0
∂i0

< 0, for k ∈ {m, λ}.

Proposition 5 shows that output can be decomposed into three terms: an intertemporal-
substitution effect (ISE), a time-varying precautionary motive, and the aggregate wealth
effect. These effects encompass some of main channels of transmission considered by the
literature. By setting λp = λo = 0, the model behaves as a TANK model with zero liquid-
ity, as in Bilbiie (2019) and Broer et al. (2020). Positive disaster probability λp = λo > 0 in-
troduces a precautionary motive, analogous to HANK models (Kaplan et al. 2018), while
λp > λo > 0 enable us to capture the effect of time-varying risk premia, as in Caballero
and Simsek (2020) and Kekre and Lenel (2020).
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The first term captures the standard intertemporal substitution channel present in
RANK models. It depends on the aggregate EIS σ̃−1 = 1−µw

1−µwχy
σ−1 and ŷm,t given in

(27). Notice that, even though only a fraction 1 − µw of agents substitute consumption
intertemporally, the ISE does not necessarily gets weaker as we reduce the mass of savers
in the economy. As we reduce 1 − µw, less agents are capable of intertemporal substi-
tution, but the amplification from hand-to-mouth agents gets stronger. The two effects
exactly cancel out when χy = 1. Another important property of the ISE is that it is equal
to zero on average, i.e.

´ ∞
0 e−ρtŷm,t = 0. An increase in interest rates shifts demand from

the present to the future, but it does not change by itself the overall level of aggregate
demand.

The second term captures the effect of the time-varying precautionary motive. It is
equal to zero in the absence of belief heterogeneity, i.e. λo = λp. As with the EIS, the
precautionary motive shifts demand from the present to the future without changing its
overall level, that is,

´ ∞
0 e−ρtŷλ,tdt = 0. In contrast to the EIS, the persistence of the pre-

cautionary effects is controlled by ψλ instead of ψm, as it depends on the rate at which the
balance sheet of optimistic investors recover after a contractionary shock.

The third term in expression (26) plays an important role, as the aggregate wealth ef-
fect determines the average response of output to the monetary shock. The GE multiplier
captures the fact that an increase in Ω0 has a disproportionate effect on initial output. Ev-
erything else constant, an increase in Ω0 would tend to raise output in all periods by ρΩ0,
creating a parallel shift in output over time. In general equilibrium, a positive aggregate
wealth effect leads to inflation on impact, which reduces the real rate and shift consump-
tion to the present. The GE multiplier shows that the effect of Ω0 on y0 exceeds the effect
on average consumption, ρΩ0, by the factor ρ−ω

ρ > 1.

Inflation. The next proposition characterizes the behavior of inflation.

Proposition 6 (Inflation in D-HANK). Suppose it − rn = e−ψmt(i0 − rn) and ψk ̸= −ω for
k ∈ {m, λ}. The path of inflation is given by

πt = σ̃−1π̂m,t + χpπ̂λ,t + κeωtΩ0, (28)

where π̂k,t =
κ(eωt−e−ψkt)

(ω+ψk)(ω+ψk)
(i0 − rn), π̂k,0 = 0 and ∂π̂k,t

∂i0
≥ 0, for k ∈ {m, λ}.

Inflation can be analogously decomposed into three terms. The first two terms capture
the impact of the ISE and time-varying precautionary motive, while the last term captures
the impact of the aggregate wealth effect. Because π̂k,0 = 0, the first two terms are initially
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zero. This implies that initial inflation is determined entirely by the aggregate wealth
effect. Moreover, πt is actually increasing in i0 if Ω0 = 0.

In a nutshell, Proposition 5 and 6 imply that monetary policy has a very limited impact
on the economy in the absence of an aggregate wealth effect, i.e. if Ω0 = 0. In this case,
a stimulus on output in the short run would come at the expense of a more depressed
economy in the future, while the central bank would lose its ability to affect initial infla-
tion. Therefore, the aggregate wealth effect plays a key role in the central bank’s ability to
control inflation or stimulate the economy.

3.4 The determination of the aggregate wealth effect

We consider next the determination of the aggregate wealth effect Ω0. The aggregate
wealth effect can be written as

Ω0 ≡
ˆ ∞

0
e−ρt [(1 − χτ)yt − τt] dt + dGqL,0 + dG

ˆ ∞

0
e−ρt (it − πt − rn + rL pd,t) dt,

where χτ ≡ −µwT′
w(Y) is the cyclicality of tax revenues.

The expression above shows that Ω0 depends on the path of policy variables [it, τt]∞0
as well as the path of output and inflation [yt, πt]∞0 . Propositions 5 and 6 show that yt and
πt depend on both policy variables and Ω0. By combining Equations (26) and (28) with
the expression for Ω0, we can solve for Ω0 in terms of policy variables.

Proposition 7. Suppose χτ +
dGκ
ρ−ω > 0. Then, Ω0 is a function of [it, τt]∞0 given by

Ω0 =
ρ − ω

(ρ − ω)χτ + dGκ

[
−
ˆ ∞

0
e−ρtτtdt + dG

(
qL,0 +

ˆ ∞

0
e−ρt(it − π̂t − rn + rLλ̂t)dt

)]
, (29)

where π̂t ≡ σ̃−1π̂m,t + χpπ̂λ,t is a function of [it]∞0 .

Proof. Using
´ ∞

0 e−ρtytdt = Ω0 and
´ ∞

0 e−ρtπtdt =
´ ∞

0 e−ρtπ̂tdt + κ
ρ−ω Ω0, we obtain

(
χτ +

dGκ

ρ − ω

)
Ω0 = −

ˆ ∞

0
e−ρtτtdt + dGqL,0 + dG

ˆ ∞

0
e−ρt (it − π̂t − rn + rL pd,t) dt,

after rearranging the expression for Ω0. Given our assumption, we can divide both sides
by χτ +

dGκ
ρ−ω . This gives Equation (29), using the fact that rL pd,t = rLλ̂t up to a first-order

approximation. From Equation (13) and rL pd,t = rLλ̂t, qL,0 is a function of only [it]∞0 .

Proposition 7 shows that Ω0 is uniquely pin down by [it, τt]∞0 , given χτ +
dGκ
ρ−ω > 0.

This assumption simply states that monetary policy affects the fiscal authority either
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through tax revenues or through the cost of servicing the debt (or both). This proposi-
tion has an important implication: there is only two ways through which monetary policy
impacts the aggregate wealth effect. First, monetary policy affects Ω0 through its fiscal
backing. Second, monetary policy affects Ω0 through a net discount rate effect, similar to
the one discussed in the context of Proposition 4. Importantly, this net revaluation effect
is only present when dG > 0.

Net discount rate effect. Suppose
´ ∞

0 e−ρtτtdt = 0. If we also assume that dG = 0, then
the household sector consumes the dividends on stocks and human wealth (i.e., profits
and wages) every period. The intuition in Cochrane (2020) and Krugman (2021) then
applies in this case and changes in discount rates generate no aggregate wealth effect. In
the empirically relevant case dG > 0, changes in nominal interest rates create a wealth
effect. Moreover, it can be shown that one obtains ∂Ω0

∂i0
< 0 when government debt is

sufficiently long, and this effect gets stronger with ϵλ. Therefore, heterogeneous beliefs
amplify the effect of changes in nominal rate on the aggregate wealth rate.

Fiscal backing. Suppose dG = 0. In this case, a monetary tightening creates a negative
wealth effect, and ultimately reduces π0, if and only if

´ ∞
0 e−ρtτtdt > 0. A monetary tight-

ening must necessarily be followed by a fiscal tightening. Notice that the fiscal backing
can in principle amplify or dampen the impact of changes in nominal interest rates, which
depends on dG. This illustrates the importance of disciplining monetary policy’s fiscal
backing empirically, as otherwise the model can generate an arbitrarily large response to
monetary shocks based on a (potentially counterfactual) fiscal response.

The case χτ + dGκ
ρ−ω = 0. The analysis above relied on the assumption χτ + dGκ

ρ−ω > 0.
In the commonly assumed case χτ = dG = 0, this implies that the fiscal backing is zero.
Moreover, Ω0 would be independent of [it, τt]∞0 . In the case χτ = dG = 0, monetary policy
can effectively choose Ω0 in the absence of a net discount rate effect even without the help
of the fiscal authority. Proposition 7 shows this is possible only in this knife-edge case. If
χτ > 0 and/or dG > 0, the empirically relevant case, then monetary policy requires the
help of fiscal policy in the absence of a net discount rate effect.

3.5 Implementability condition

Propositions 5 to 7 demonstrate how policy variables [it, τt]∞0 affect output and inflation.
However, both the nominal interest rate and the associated fiscal backing are endogenous
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variables. The next proposition shows how the monetary policy shock ut uniquely pins
down the equilibrium path of nominal interest rates and fiscal backing.

Proposition 8 (Determinacy and implementability). Consider a given monetary shock [ut]∞0 .

i. (Determinacy) If ϕπ ≥ ϕπ ≡ 1 − ρδ

σ̃−1κ
, then there exists a unique bounded solution to

the system comprised of the Taylor rule (7), the aggregate Euler equation (10), the New
Keynesian Phillips curve (11), the market-implied disaster probability (15), and the law of
motion of relative consumption (16) and relative net worth (17). We denote this solution by
[i⋆t , y⋆t , π⋆

t , λ̂⋆
t , c⋆p,t − c⋆o,t, b⋆p,t − b⋆o,t] and the associated path of taxes by τ⋆

t .

ii. (Implementability) For a given path of nominal interest rates it − rn = e−ψmt(i0 − rn),
ψm ̸= −ω, and fiscal backing

´ ∞
0 e−ρtτtdt, let λ̂t be given by (18), yt be given by (26), and

πt be given by (28), where Ω0 is given by (29). If the monetary shock ut is given by

ut = it − rn − ϕππt, (30)

then i⋆t = it and
´ ∞

0 e−ρtτ⋆
t dt =

´ ∞
0 e−ρtτtdt. Moreover, y⋆t = yt, π⋆

t = πt, and λ̂⋆
t = λ̂t.

The first part of Proposition 8 shows that there is a unique bounded solution to the
equilibrium conditions if ϕπ ≥ ϕπ. As in Bilbiie (2018) and Acharya and Dogra (2020), the
threshold for determinacy satisfies ϕπ < 1 due to a precautionary motive, so uniqueness
is obtained under a weaker condition than in the textbook model.

The second part of Proposition 8 shows that there is no loss in generality involved in
our two-step procedure. Given any path of policy variables, one can find the monetary
shock that implements [it, τt]∞0 in equilibrium. Intuitively, one can easily back out the
value of ut necessary to implement a given equilibrium from the policy rule. Therefore,
one can equivalently express the solution in terms of policy variables or in terms of ut.
Equivalence results as this one are well-known in the literature on fiscal-monetary inter-
actions (see e.g. Chapter 22 in Cochrane 2023). In our context, this approach is useful
because the fiscal backing can either amplify or dampen the impact of the net revalua-
tion of real and financial assets. By expressing the solution directly in terms of policy
variables, we are able to isolate the role of asset revaluations from the response of fiscal
policy.21

21Another advantage of this approach is that we can readily obtain λ̂t in terms of it, given the block
recursivity property, while solving for λ̂t in terms of ut requires solving the entire dynamic system.
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4 The Quantitative Importance of Wealth Effects

In this section, we study the quantitative importance of wealth effects in the transmission
of monetary shocks. We calibrate the model to match key unconditional and conditional
moments, including asset-pricing dynamics and the fiscal response to a monetary shock.
We find that household heterogeneity and time-varying risk are the predominant chan-
nels of transmission of monetary policy.

4.1 Calibration

The parameter values are chosen as follows. The discount rate of savers is chosen to
match a natural interest rate of rn = 1%. We assume a Frisch elasticity of one, ϕ = 1, and
set the elasticity of substitution between intermediate goods to ϵ = 6, common values
adopted in the literature. The fraction of workers is set to µw = 30%. The parameter
dG is chosen to match a public debt-to-GDP ratio of 66%, and we assume a duration of
five years, consistent with the historical average for the United States. The parameter
T′

w(Y) is chosen such that χy = 1, which requires countercyclical transfers to balance the
procyclical wage income. A value of χy = 1 is consistent with the evidence in Cloyne
et al. (2020) that the net income of mortgagors and non-mortgagors reacts similarly to
monetary shocks. The pricing cost parameter φ is chosen such that κ coincides with its
corresponding value under Calvo pricing, and it consistent with an average period be-
tween price adjustments of three quarters. The half-life of the monetary shock is set to
three and a half months to roughly match what we estimate in the data. We set the Taylor
rule parameter to ϕπ = 1.5.

We calibrate the disaster risk parameters in two steps. For the stationary equilibrium,
we choose a calibration mostly based on the parameters adopted by Barro (2006). We set
λ (the steady-state disaster intensity) to match an annual disaster probability of 1.7%. For
our quantitative exercise, we assume that the size of the disaster shock, Y∗

Y is stochastic,
and calibrate the distribution of disaster shocks to match the empirical distribution es-
timated by Barro (2006).22 The risk-aversion coefficient is set to σ = 4, a value within
the range of reasonable values according to Mehra and Prescott (1985), but substantially
larger than σ = 1, a value often adopted in macroeconomic models. Our calibration im-
plies an equity premium in the stationary equilibrium of 6.1%, in line with the observed
equity premium of 6.5%. Moreover, by setting σ = 4 we obtain a micro EIS of σ−1 = 0.25,

22The model is virtually unchanged under this extension, except that E[(Cs/C∗
s )

σ] replaces (Cs/C∗
s )

σ in
all expressions. Using Cs/C∗

s = Y/Y∗, we can calibrate E[(Cs/C∗
s )

σ] using the distribution estimated by
Barro (2006).
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Figure 1: Estimated fiscal response to a monetary policy shock

Note: IRFs computed from a VAR identified by a recursiveness assumption, as in Christiano et al. (1999). Variables included: real
GDP per capita, CPI inflation, real consumption per capita, real investment per capita, capacity utilization, hours worked per capita,
real wages, tax revenues over GDP, government expenditures per capita, federal funds rate, 5-year constant maturity rate and the real
value of government debt per capita. We estimate a four-lag VAR using quarterly data for the period 1962:1-2007:3. The real value of
government debt and the 5-year rate are ordered last, and the fed funds rate is ordered third to last. Gray areas are bootstrapped 95%
confidence bands. See Appendix D for the details.

in the ballpark of an EIS of 0.1 as recently estimated by Best et al. (2020). We discuss the
calibration of ϵλ, which determines the elasticity of asset prices to monetary shocks, in
the next subsection.

For the policy variables, we estimate a standard VAR augmented to incorporate fiscal
variables and compute empirical IRFs applying the recursiveness assumption of Chris-
tiano et al. (1999). From the estimation, we obtain the path of monetary and fiscal vari-
ables: the path of the nominal interest rate, the change in the initial value of government
bonds, and the path of fiscal transfers. We provide the details of the estimation in Ap-
pendix D. Figure 1 shows the dynamics of fiscal variables in the estimated VAR in re-
sponse to a contractionary monetary shock. Government revenues fall in response to the
contractionary shock, while government expenditures fall on impact and then turn posi-
tive, likely driven by the automatic stabilizer mechanisms embedded in the government
accounts. The present value of interest payments increases by 69 bps and the initial value
of government debt drops by 50 bps.23 In contrast, the present value of transfers Tt drops
by 12 bps.24 Moreover, we cannot, at the 95% confidence level, reject the possibility that
the present discounted value of the primary surplus does not change in response to mon-
etary shocks and that the increase in interest payments is entirely compensated by the

23The present discounted value of interest payments is calculated as ∑T
t=0

(
1−λ
1+ρs

) t
4
[
d

g
t (îL,t − π̂t)

]
, where

T is the truncation period, îL,t is the IRF of the 5-year rate estimated in the data, and π̂t is the IRF of inflation.
We choose T = 60 quarters, when the main macroeconomic variables, including government debt, are back
to their pre-shock values. Other present value calculations follow a similar logic.

24In the data, expenditures also include the response of government consumption and investment. When
run separately, however, we cannot reject the possibility that the sum of these two components is equal to
zero in response to monetary shocks.
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Figure 2: Asset-pricing response to monetary shocks with time-varying risk.

initial reaction in the value of government bonds.

4.2 Asset-pricing implications of time-varying risk

Recall that the price of the long-term government bond is given by

qL,0 = −
ˆ ∞

0
e−(ρ+ψL)t(it − rn + rL pd,t)dt,

where pd,t = σcs,t + ϵλ(it − rn) is the price of the disaster risk. We use this expression
and calibrate ϵλ to match the initial response of the 5-year yield on government bonds.
Consistent with Gertler and Karadi (2015) and our own estimates reported in Appendix
D, we find that a 100 bps increase in the nominal interest rate leads to an increase in the
5-year yield of roughly 20 bps. This procedure leads to a calibration of ϵλ of 2.25, which
implies an annual increase in the probability of disaster of roughly 95 bps after a 100 bps
increase in the nominal interest rate. Figure 2 shows the response of the yield on the long
bond and the contributions of the path of future interest rates and the term premium.
We find that the bulk of the reaction of the 5-year yield reflects movements in the term
premium, a finding that is consistent with the evidence.

The model is also able to capture the responses of asset prices that were not directly
targeted in the calibration. Consider first the response of the corporate spread, the differ-
ence between the yield on a corporate bond and the yield on a government bond (without
risk of default) with the same promised cash flow. This corresponds to how the GZ spread
is computed in the data by Gilchrist and Zakrajšek (2012). Let e−ψFt denote the coupon
paid by the corporate bond. We assume that the monetary shock is too small to trigger a
corporate default, but the corporate bond defaults if a disaster occurs, where lenders re-
cover the amount 1− ζF in case of default. We calibrated ψF and ζF to match a duration of
6.5 years and a credit spread of 200 bps in the stationary equilibrium, which is consistent
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with the estimates reported by Gilchrist and Zakrajšek (2012). Note that the calibration
targets the unconditional level of the credit spread. We evaluate the model on its ability to
generate an empirically plausible conditional response to monetary shocks.

The price of the corporate bond can be computed analogously to the computation of
the long-term government bond:

qF,0 = −
ˆ ∞

0
e−(ρ+ψF)t(it − rn)dt −

ˆ ∞

0
e−(ρ+ψF)t

[
λ

(
Cs

C∗
s

)σ QF − Q∗
F

QF
pd,t

]
dt,

where QF and Q∗
F denote the price of the corporate bond in the stationary equilibrium in

the no-disaster and disaster states, respectively. Given the price of the corporate bond,
we can compute the corporate spread. Figure 2 shows that the corporate spread responds
to monetary shocks by 8.9 bps. We introduce the excess bond premium (EBP) in our VAR
and find an increase in the EBP of 6.5 bps and an upper bound of the confidence interval
of 10.9 bps, consistent with the model’s prediction. Thus, even though this was not a tar-
geted moment, time-varying risk is able to produce quantitatively plausible movements
in the corporate spread.

Another moment that is not targeted by the calibration is the response of stocks to
monetary shocks. We find a substantial response of stocks to changes in interest rates,
which is explained mostly by movements in the risk premium. In contrast to the em-
pirical evidence, we find a positive response of dividends to a contractionary monetary
shock. This is the result of the well-known feature of sticky-prices models that profits
are strongly countercyclical. This counterfactual prediction could be easily solved by in-
troducing some form of wage stickiness. Despite the positive response of dividends, the
model generates a decline in stocks of 2.15% in response to a 100 bps increase in interest
rates, which is smaller than the point estimate of Bernanke and Kuttner (2005) but is still
within their confidence interval.25 Fixing the degree of countercyclicality of profits would
likely bring the response of stocks closer to their point estimate.

4.3 Wealth effects in the monetary transmission mechanism

Figure 3 (left) presents the response of output and its components to a monetary shock
in the New Keynesian model with heterogeneous agents and time-varying risk. We find
that output reacts by −1.05% to a 100 bp increase in the nominal interest rate, which
is consistent with the empirical estimates of e.g. Miranda-Agrippino and Ricco (2021).

25We follow standard practice in the asset-pricing literature and report the response of a levered claim
on firms’ profits, using a debt-to-equity ratio of 0.5, as in Barro (2006).
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Figure 3: Output in RANK and HANK.

Note: In both plots, the path of the nominal interest rate is given by it − rn = e−ψm t(i0 − rn), where i0 − rn equals 100 bps, and the
fiscal backing corresponds to the value estimated in Section 4.1.

In terms of its components, time-varying risk (TVR) and the outside wealth effect are
the two main components determining the output dynamics, representing 39% and 47%
of the output response, respectively. In contrast, the ISE accounts for only 6.5% of the
output response, indicating that intertemporal substitution plays only a minor role in the
monetary transmission mechanism.

These findings stand in sharp contrast to the dynamics in the absence of heterogeneity
and time-varying risk. Figure 3 (right) plots the response of output for different combina-
tions of heterogeneity (µb > 0 and µb = 0) and time-varying risk (ϵλ > 0 and ϵλ = 0). By
shutting down the two channels, denoted by “RANK” in the figure, the initial response
of output would be −0.14%, a more than a sevenfold reduction in the impact of monetary
policy. There are two reasons for this result. First, our calibration of σ = 4 implies an EIS
that is one fourth of the standard calibration. This significantly reduces the quantitative
importance of the ISE, even if the intertemporal substitution channel represents a large
fraction of the output response in the RANK model. Second, our estimate of the fiscal re-
sponse is substantially lower than the one implied by a standard Taylor equilibrium that
imposes an AR(1) process for the monetary shock. We discuss the role of fiscal backing
and the implications for the New Keynesian model in Section 4.5 below.

Figure 3 (right) also plots the response of output when there is household heterogene-
ity but not time-varying risk (“HANK” in the figure), and the response of output when
there is time-varying risk but not household heterogeneity (“TVR-RANK” in the figure).
We find that heterogeneity increases the response of output by 22 bps while time-varying
risk increases it by 54 bps. Notably, by combining both features, we get an increase in the
response of output of 86 bps, which is 10 bps larger than the sum of the individual effects.
Thus, heterogeneity and time-varying risk reinforce each other. In terms of the fraction
of the response of output that can be attributed to each channel, we find that 20.5% can
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Figure 4: Consumption of borrowers and savers with constant risk and time-varying risk.

Note: In both plots, the path of the nominal interest rate is given by it − rn = e−ψm t(i0 − rn), where i0 − rn equals 100 bps, and the
fiscal backing corresponds to the value estimated in Section 4.1.

be attributed to household heterogeneity, 51.5% corresponds to time-varying risk, and
9.7% is the amplification effect of heterogeneity together with time-varying risk (which is
around 50% larger than the contribution of the ISE), while the remainder represents the
channels in the RANK model.

Finally, time-varying risk is essential for properly capturing the heterogeneous re-
sponse of borrowers and savers to monetary policy. Figure 4 shows that borrowers are
disproportionately affected by monetary shocks. However, the magnitude of the relative
response of borrowers and savers is too large in the economy without time-varying risk.
The drop in borrowers’ consumption is 7 times greater than the decline in savers’ con-
sumption with a constant disaster probability, while it is 3 times greater in the economy
with time-varying risk. Cloyne et al. (2020) estimate a relative peak response of mort-
gagors and homeowners of roughly 3.6. Therefore, allowing for time-varying risk is also
important if we want to capture the heterogeneous impact of monetary policy.

4.4 The limitations of the constant disaster risk model

Consider the response of asset prices to a monetary shock in an economy that features
constant disaster risk (i.e. λ > 0 but ϵλ = 0). Figure 5 (left) shows that the yield on the
long bond increases by 6.5 bps, which implies a decline of the value of the bond of 32 bps
(given a 5-year duration), less than half of the response estimated by the VAR in Section
4.1. Moreover, movements in the long bond yield are almost entirely explained by the
path of nominal interest rates, while the term premium is indistinguishable from zero.
This stands in sharp contrast to the evidence reported in Gertler and Karadi (2015) and
Hanson and Stein (2015). Similarly, it can be shown that most of the response of stocks in
the model is explained by movements in interest rates instead of changes in risk premia,
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Figure 5: Long-term bond yields and output for economies with and without risk.

Note: In both plots, the path of the nominal interest rate is given by it − rn = e−ψm t(i0 − rn), where i0 − rn equals 100 bps, and the
fiscal backing corresponds to the value estimated in Section 4.1. D-HANK and D-RANK correspond to heterogeneous-agent and
representative agent economies with constant disaster risk (i.e. λ > 0 and ϵλ = 0). HANK and RANK correspond to economies with
no disaster risk (i.e. λ = 0).

a finding that is inconsistent with the evidence documented in e.g. Bernanke and Kuttner
(2005).

Figure 5 (right) shows how the presence of constant disaster risk affects the response
of output to monetary shocks for the HANK and RANK economies. We find that risk has
only a minor impact on the response of output. Aggregate risk increases the value of the
discounting parameter δ, which reduces the GE multiplier and dampens the initial impact
of the monetary shock. Given that the term premium barely moves, disaster risk plays
only a small role in determining the outside wealth effect. In contrast, the important role
of heterogeneity can be seen by comparing the response of the D-HANK and D-RANK
economies.

Therefore, while introducing a constant disaster probability allows the model to cap-
ture important unconditional asset-pricing moments, such as the (average) risk premium
or the upward-sloping yield curve, the model is unable to match key conditional moments,
in particular, the response of asset prices to monetary policy. The limitations of the model
with constant disaster probability in matching conditional asset-pricing moments were
recognized early on in the literature, leading to an assessment of the implications of
time-varying disaster risk, as in Gabaix (2012) and Gourio (2012). This justifies our focus
on time-varying disaster risk and how it affects the asset-pricing response to monetary
shocks and, ultimately, its impact on real economic variables.

4.5 The role of fiscal backing and the EIS

We have found that time-varying risk and heterogeneity substantially amplify the im-
pact of monetary policy on the economy. To properly assess the importance of these two
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Figure 6: Output in RANK vs D-HANK with time-varying risk.

Note: The first two panels show output in RANK (µb = λ = 0) with unit EIS (σ−1 = 1). In the left panel, fiscal backing is determined
by a Taylor rule, while in the middle panel fiscal backing corresponds to the value estimated in the data. The right panel corresponds
to the D-HANK economy with time-varying risk and the estimated fiscal backing.

channels, however, it was crucial to control for the implicit fiscal backing, as discussed in
Section 3.4.

Figure 6 illustrates this point. In the three panels, we show the impact of a monetary
shock that leads to an increase in nominal interest rates on impact of 100 bps. In the left
panel, we consider a RANK economy (µb = λ = 0) with the standard value for the EIS
(σ−1 = 1) and fiscal backing implicitly determined by a Taylor rule with a monetary
shock that follows a standard AR(1) process, corresponding to the textbook New Keyne-
sian model. In the middle panel, we consider the same economy but the fiscal backing
is set to the value estimated in the data, corresponding to a Taylor equilibrium with a
monetary shock that follows the more general specification from equation (30). The right
panel shows our D-HANK model with time-varying risk and the calibrated value of the
EIS, σ−1 = 0.25.

The response of the textbook economy is only slightly smaller than that of our D-
HANK economy despite the lack of time-varying risk or heterogeneous agents. An im-
portant reason for this is the difference in the value of the (implicit) fiscal backing, which
is almost ten times larger in the textbook economy compared with the one we estimated
in the data. When the fiscal backing is the same as in the data, the response of output
drops by almost half. The EIS also plays an important role. Even with fiscal backing di-
rectly from the data, the response of output is still significant, only slightly less than that
in our D-RANK with time-varying risk (see Figure 3). But this same response comes from
very different channels. In the RANK economy, the ISE accounts for roughly 40% of the
output response, while in our D-RANK the ISE accounts for less than 7% of that response.

These results suggest that the quantitative success of the RANK model is likely the
result of a counterfactually large fiscal backing in response to monetary shocks and a
strong intertemporal-substitution channel, which compensate for missing heterogeneous
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agents and risk channels. Once we discipline the fiscal backing with data and calibrate
the EIS to the estimates obtained from microdata, our model suggests that heterogeneous
agents and, in particular, time-varying risk are crucial for generating quantitatively plau-
sible output dynamics. However, it is important to note that our model made several
simplifications to incorporate indebted agents and time-varying aggregate risk without
sacrificing the tractability of standard macro models. A natural extension would be to
incorporate these channels into a medium-sized DSGE model to better assess the quanti-
tative properties of the New Keynesian model.

5 The Effect of Risk and Maturity of Household Debt

We have focused so far on how monetary policy affects the value of households’ assets,
such as stocks and bonds. However, movements in risk premia induced by monetary
policy can also affect the real economy through its impact on household debt. In this
section, we extend the baseline model to allow workers to borrow a positive amount using
long-term risky debt. In this case, the effect of monetary policy on workers depends on
how the term spread and credit spread, the compensation for holding interest rate and
default risk, respond to changes in the short-term interest rate.

5.1 The model with long-term risky household debt

We describe next the model with long-term risky household debt. We highlight only the
main differences with respect to the model described in Section 2. Households issue long-
term debt that promises to pay exponentially decaying coupons given by e−ψPt at period
t ≥ 0, where ψP ≥ 0. Importantly, households cannot commit to always repay their
debts. In response to a large shock, i.e. the occurrence of a disaster, households default
and lenders receive a fraction 1 − ζP of the promised coupons, where 0 ≤ ζP ≤ 1. We
assume that fluctuations in the no-disaster state are small enough such that they do not
trigger a default. Thus, households default only in the disaster state.

We denote the price of household (or private) debt in the no-disaster state by QP,t, and
Q∗

P,t in the disaster state, so the nominal return on household debt is given by

dRP,t =

[
1

QP,t
+

Q̇P,t

QP,t
− ψP

]
dt +

Q∗
P,t − QP,t

QP,t
dNt,

where iP,t ≡ 1
QP,t

− ψP is the yield on the bond.
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In a stationary equilibrium, the spread between the interest rate on household debt
and the short-term interest rate controlled by the central bank is given by

rP = λ

(
Cs

C∗
s

)σ QP − Q∗
P

QP
,

where rP = iP − rn. Note that the interest rate on household debt incorporates both a
credit and a term spread.26 Households can borrow up to DP,t = QP,tF, which effectively
puts a limit on the face value of private debt F.27 In a log-linear approximation of the
economy around a zero-inflation stationary equilibrium, workers are constrained at all
periods, and their consumption is given by

cw,t = χyyt −
(

ψP

iP + ψP
(iP,t − iP)− πt

)
dP, (31)

where dP ≡ DP
Y is the debt-to-income ratio in the stationary equilibrium. Equation (31)

generalizes the expression for workers’ consumption given in Section 2. Monetary policy
affects workers indirectly through its effect on the yield on private debt iP,t. If we assume
that debt is short-term, ψP → ∞, and riskless, ζP = 0, we obtain iP,t = it. At the other
extreme, we have the case of a perpetuity, ψP = 0. In this case, households simply pay
the coupon every period and there is no need to issue new debt. Therefore, they are
completely insulated from movements in nominal interest rates. For intermediate values
of maturity and risk, 0 < ψP < ∞ and 0 < ζP < 1, monetary policy affects borrowers
through changes in the nominal interest rate it and the spread rP,t.

The price of household debt evolves according to

q̇P,t = (ρ + ψP)qP,t + it − rn + rP pd,t.

The price of the bond depends on the future path of short-term interest rates and the
price of disaster risk, pd,t = σcs,t + λ̂t. Quantitatively, fluctuations in pd,t are dominated
by movements in λ̂t, while σcs,t gives a negligible contribution, as shown in Figure 5.
Therefore, we assume that rPσcs,t = O(||it − rn||2), analogous to the assumption used in

26Let iND
P,t denote the yield on a non-defaultable bond with coupons decaying at rate ψP. The term spread

corresponds to iND
P,t − it and the credit spread to iP,t − iND

P,t , so rP = (iND
P − rn) + (iP − iND

P ).
27This formulation guarantees that, after an increase in nominal rates, the value of household debt and

the borrowing limit decline by the same amount. This specification of the borrowing constraint, combined
with the assumption of impatient borrowers, guarantees that borrowers are constrained at all periods.
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Proposition 3. In this case, we can solve for the price of the bond in closed-form:

qP,t = − 1
ρ + ψP + ψm

(it − rn)−
rP

ρ + ψP + ψλ
λ̂t, (32)

where the nominal interest rates is given by it − rn = e−ψmt(i0 − rn).
Combining workers’ consumption with savers’ Euler equation (9) and the Phillips

curve (11), we obtain the response of aggregate output to monetary shocks. In particular,
we can extend the decomposition in Proposition 5 to the case of long-term risky debt.

Proposition 9 (Aggregate output with long-term risky household debt). Suppose that it −
rn = e−ψmt(i0 − rn) and rDσcs,t = O(||it − rn||2). Aggregate output is then given by

yt = σ̃−1ŷm,t︸ ︷︷ ︸
ISE

+ χpŷλ,t︸ ︷︷ ︸
time-varying

precautionary motive

+
µwdP

1 − µwχy

ψP [ψ̃mŷm,t + rPψ̃λŷλ,t]

ρ + ψP + ψm︸ ︷︷ ︸
household-debt effect

+ (ρ − ω)eωtΩ0,︸ ︷︷ ︸
GE multiplier×

aggregate wealth effect

where ψ̃k = ψk + ρ − rn for k ∈ {m, λ}.

Proposition 9 shows that household debt effectively amplifies the ISE and the time-
varying precautionary motive effect. If household debt is safe and short term (i.e, ζP = 0
and ψP → ∞), then the household-debt effect loads on ŷm,t, amplifying the ISE. When
debt is long-term or when households can default, then rP > 0 and the household-debt
effect also loads on ŷλ,t, amplifying the precautionary motive effect.

An important implication of Proposition 9 is that default risk amplifies the household-
debt effect, while an increase in the duration of household debt weakens the effect. The
spread rP is increasing in ζP, so the interest rate on private debt responds more strongly to
an increase in λ̂t when debt is riskier. In contrast, an increase in the duration of household
debt (i.e., a reduction in ψP) means that households issue less debt at the new rates, so the
impact of the change in the cost of serving the debt gets attenuated. In the limit case of a
perpetuity, ψP = 0, the household-debt effect goes to zero. Given that households do not
issue new debt, they are not affected by changes in interest rates.

5.2 Quantitative implications

We consider next the quantitative implications of default risk and maturity on household
debt. As shown in Proposition 9, these two features have opposing effects on the response
of output to monetary policy. To assess the quantitative impact of risk and maturity,
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Figure 7: Household-debt effect and output at t = 0 as a function of duration.

Figure 7 shows the initial response of the household-debt effect (left panel) and aggregate
output (right panel) as a function of the duration of private debt for different values of
the haircut parameter ζP. Greenwald et al. (2021) estimate the duration of mortgage debt
as 5.2 years, the duration of student debt as 4.50, and the duration of consumer debt as
1.0 year. Therefore, we focus on values of duration up to five years. We consider three
different values for the haircut parameter: riskless debt (ζP = 0); risky debt with a spread
in the stationary equilibrium of roughly 4.0% with a 5-year duration (ζP = 0.10); risky
debt with a spread of 5.0% with a 5-year duration (ζP = 0.25).

Default risk substantially amplifies the effect of monetary policy on output when debt
is short term. The household-debt effect is almost three times larger in the case of ζP =

0.25 compared to ζP = 0.0, which corresponds to an increase in the initial response of
output of almost 25%. However, this effect is strongly attenuated when household debt
is long term. For even relatively small values of duration, the household-debt effect with
long-term risky debt is smaller than in the case of short-term riskless debt. For instance,
in the case of a five-year duration, the response of output is roughly 10% smaller than the
response in the case of short-term riskless debt. The response of output when household
debt is zero is roughly 35% smaller than in the economy with (positive) riskless debt, a
much larger drop relative to the one caused by introducing long-term bonds.

6 Conclusion

In this paper, we provide a novel unified framework to analyze the role of heterogeneity
and risk in a tractable linearized New Keynesian model. The methods introduced can be
applied beyond the current model. For instance, they can be applied to a full quantitative
HANK model with idiosyncratic risk, extending the results of Ahn et al. (2018) to allow
for time-varying risk premia. Alternatively, one could introduce a richer capital structure
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for firms and study the pass-through of monetary policy to households and firms. These
methods may enable us to bridge the gap between the extensive existing work on het-
erogeneous agents and monetary policy and the emerging literature on the role of asset
prices in the transmission of monetary shocks.
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Appendix: For Online Publication

A Proofs

Proof of Proposition 2. Consider first the New Keynesian Phillips curve

π̇t =

(
it − πt + λt

η∗
t

ηt

)
πt −

ϵ

φA

(
W
P

ewt−pt − (1 − ϵ−1)A
)

Yeyt .

Linearizing the above expression, and using W
P = (1 − ϵ−1)A, we obtain

π̇t =

(
rn + λ

(
Cs

C∗
s

)σ)
πt − φ−1(ϵ − 1)Y(wt − pt).

Using the fact that wt − pt = ϕyt, we obtain π̇t = (ρs + λ)πt − κyt, where κ ≡ φ−1(ϵ −
1)ϕY and we used that rn + λ

(
Cs
C∗

s

)σ
= ρs + λ.

Consider next the generalized Euler equation. From the market-clearing condition for
goods and borrowers’ consumption, we obtain cs,t =

1−µbχy
1−µb

yt. Combining this condition
with the Phillips Curve and savers’ Euler equation, and using the fact that rn = ρ −
λ
(

Cs
C∗

s

)σ
, we obtain ẏt = σ̃−1(it − π − rn) + δyt + χλλ̂t, where the constants σ̃−1, δ, and

χλ are defined in the proposition.

Proof of Lemma 1. Suppose [yt, πt]∞0 satisfies system (20) and the intertemporal budget
constraint (22) in the no-disaster state. We will show that [yt, πt]∞0 can be supported as an
equilibrium, that is, we can find the remaining variables such that all equilibrium condi-
tions are satisfied. Consider first the disaster state. The savers’ budget constraint implies
Ts,t = −ρsbsbs,t∗ . All remaining variables are equal to zero in the disaster state.

Consider now the no-disaster state. The real wage is given by wt − pt = ϕyt and
workers’ labor supply is given by nw,t = ϕ−1(wt − pt). Workers’ consumption is given
by cw,t = χyyt, while savers’ consumption is given by cs,t =

1−µwχy
1−µw

yt. Consumption and
net worth of optimistic and pessimistic savers is given by the expressions in Appendix
B.3. By construction, the market-clearing conditions for goods and labor are satisfied. Be-
cause yt satisfies the aggregate Euler equation, the savers’ Euler equation is also satisfied.
Because πt satisfies the New Keynesian Phillips curve, the optimality condition for firms
is satisfied.

We set bE
s,t = qE,t and bS

s,t = 0, which implies that the market clearing condition for
stocks and short-term bonds hold. It remains to check that the market-clearing condi-

1



tions for long-term bonds hold. Savers’ financial wealth and government debt evolve
according to

Bsḃs,t = rnBsbs,t + (Ts,t − Ts) + (i − πt − rn)Bs + (rL,t − rL)BL
s + rLBL

s bL
s,t

+ (rE,t − rE)BE
s + rEBE

s bE
s,t − Ycs,t,

DGḋG,t = DG(rn + rL)dG,t + (Tt − T) + (it − πt − rn + rL,t − rL)DG,

where bs,0 = BL
s

Bs
qL,0 +

BE
s

Bs
qE,0 and dG,0 = qL,0.

Aggregating the budget constraint of workers and savers, using the market-clearing
conditions, and the expression for equity returns, we obtain

(1 − µw)BL
s ḃL

s,t = (Tt − T) + (1 − µw)
[
(i − πt − rn + rL,t − rL)BL

s + (rn + rL)BL
s bL

s,t

]
,

where we used Bsbs,t = BS
s bS

s,t + BL
s bL

s,t + BE
s bE

s,t. Subtracting the government’s flow budget
constraint from the condition above, we obtain

(1 − µw)BL
s ḃL

s,t − DGḋG,t = (rn + rL)((1 − µw)BL
s bL

s,t − DGdG,t),

using (1−µw)BL
s = DG . Integrating this expression, we obtain (1−µw)BL

s bL
s,t − DGdG,t =

e(rn+rL)t
[
(1 − µw)BL

s bL
s,0 − DGdG,0

]
= 0, where the equality uses the market clearing con-

dition in period 0. Therefore, the market clearing condition for long-term bonds is satis-
fied in all periods. The only condition that remains to be checked is the No-Ponzi condi-
tion for the government or, equivalently, the aggregate intertemporal budget constraint.
Because condition (22) is satisfied, the No-Ponzi condition for the government is also sat-
isfied.

Proof of Propositions 5 and 6. We can write dynamic system (20) in matrix form as Żt =

AZt + Bνt, where B = [1, 0]′. Applying the spectral decomposition to matrix A, we obtain

A = VΩV−1 where V =

[
ρ−ω

κ
ρ−ω

κ

1 1

]
, V−1 = κ

ω−ω

[
−1 ρ−ω

κ

1 − ρ−ω
κ

]
, and Ω =

[
ω 0
0 ω

]
.

Decoupling the system, we obtain żt = Ωzt + bνt, where zt = V−1Zt and b = V−1B.
Solving the equation with a positive eigenvalue forward and the one with a negative

2



eigenvalue backward, and rotating the system back to the original coordinates, we obtain

yt = V12

(
V21y0 + V22π0

)
eωt − V11V11

ˆ ∞

t
e−ω(z−t)νzdz + V12V21

ˆ t

0
eω(t−z)νzdz

πt = V22

(
V21y0 + V22π0

)
eωt − V21V11

ˆ ∞

t
e−ω(z−t)νzdz + V22V21

ˆ t

0
eω(t−z)νzdz,

where Vi,j is the (i, j) entry of matrix V−1. Integrating e−ρtyt and using the intertemporal
budget constraint,

Ω0 = V12

(
V21y0 + V22π0

) 1
ρ − ω

− 1
ρ − ω

V11V11
ˆ ∞

0

(
e−ωt − e−ρt

)
νtdt +

1
ρ − ω

V12V21
ˆ ∞

0
e−ρtνtdt.

Rearranging the above expression, we obtain

V12

(
V21y0 + V22π0

)
= (ρ − ω)Ω0 +

ρ − ω

ρ − ω
V11V11

ˆ ∞

0
e−ωtνtdt,

where we used the fact V11V11

ρ−ω + V12V21

ρ−ω = 0. Output is then given by yt = ỹt + (ρ −
ω)eωtΩ0, where ỹt = − ω−ρ

ω−ω

´ ∞
t e−ω(z−t)νzdz + ω−δ

ω−ω

´ t
0 eω(t−z)νzdz − ρ−ω

ω−ω eωt ´ ∞
0 e−ωzνzdz.

Inflation is given by πt = π̃t + κeωtΩ0, where π̃t =
κ

ω−ω

´ ∞
t e−ω(z−t)νzdz+ κ

ω−ω

´ t
0 eω(t−z)νzdz−

κ
ω−ω eωt ´ ∞

0 e−ωzνzdz.
If it − rn = e−ψmt(i0 − rn), then νt = σ̃−1e−ψmt(i0 − rn) + χλϵλe−ψλt(i0 − rn). We

then obtain ỹt = σ̃−1ŷm,t + χpŷλ,t and π̃t = σ̃−1π̂m,t + χpπ̂λ,t, where χp ≡ χλϵλ, ŷk,t =[
− ψk+ρ

(ψk+ω)(ψk+ω)
e−ψkt + ρ−ω

(ψk+ω)(ψk+ω)
eωt
]
(i0 − rn), and π̂k,t =

κ(eωt−e−ψkt)
(ω+ψk)(ω+ψk)

(i0 − rn). Note

that
´ ∞

0 e−ρtŷk,tdt = 0, ∂ŷk,0
∂i0

= − 1
ψk+ω < 0, and limt→∞ ŷk,t = 0. Moreover, π̂0 = 0,

∂π̂k,t
∂i0

≥ 0 with strict inequality if t > 0.

Proof of Proposition 8. We divide this proof in three steps. First, we derive the condition
for local uniqueness of the solution under the policy rule (7). Second, we derive the path
of [yt, πt, λ̂t, bp,t − bo,t, it]∞0 for a given path of monetary shocks. Third, we show how to
implement a given path of nominal interest rates it − rn = e−ψmt(i0 − rn) and a given
value of fiscal backing

´ ∞
0 e−ρtτtdt.

Equilibrium determinacy. First, using the Taylor rule, we can write νt in Equation 20 as
νt = σ̃−1(ϕπ − 1)πt + χλλ̂t + σ̃−1ut. Combining the Phillips curve (11) with the system

3



(B.62), we obtain a dynamic system in the variables [yt, π, λ̂t, bp,t − bo,t]:
ẏt

π̇t
˙̂λt

ḃp,t − ḃo,t

 =


δ σ̃−1(ϕπ − 1) χλ 0
−κ ρ 0 0
0 0 0 −ξ̃χλ,∆c

0 0 −χ∆b,λ χ∆b,∆b




yt

πt

λ̂t

bp,t − bo,t

+


σ̃−1

0
0
0

 ut,

where λ̂t = χλ,∆c(co,t − cp,t) and χ∆b,λ = χ∆b,∆c/χλ,∆c, given the boundary condition

bp,0 − bo,0 = −
(

BL
p

Bp
− BL

o
Bo

) ˆ ∞

0
e−(ρ+ψL)t(ϕππt + ut + rLλ̂t)dt.

There is a unique bounded solution of the system above if the matrix of coefficients
above has three eigenvalues with positive real parts and one eigenvalue with a negative
real part. Denote the matrix of coefficients by A and consider the eigendecomposition of
the matrix A = VΩV−1, where Ω is the diagonal matrix of eigenvalues and V the matrix
of eigenvectors. The eigenvalues are given by

ω1 =
ρ + δ +

√
(ρ + δ)2 − 4 (σ̃−1(ϕπ − 1)κ + ρδ)

2
, ω3 =

χ∆b,∆b +
√

χ2
∆b,∆b + ξ̃χλ,∆cχ∆b,λ

2

ω2 =
ρ + δ −

√
(ρ + δ)2 − 4 (σ̃−1(ϕπ − 1)κ + ρδ)

2
, ω4 =

χ∆b,∆b −
√

χ2
∆b,∆b + ξ̃χλ,∆cχ∆b,λ

2
.

Notice that ω3 > 0 and ω4 < 0. Therefore, equilibrium determinacy requires ω1 > 0
and ω2 > 0. A necessary condition is ϕπ > 1 − ρδ

σ̃−1κ
≡ ϕπ, as otherwise the first two

eigenvalues are real-valued and ω2 ≤ 0. For ϕπ sufficiently large, the eigenvalues are
complex, but their real part is still positive. So, the condition ϕπ > ππ is sufficient to
ensure determinacy.

Solution of the dynamic system. In matrix form, the dynamic system is given by Żt =

AZt + But, where Zt = [yt, πt, λ̂t, bp,t − bo,t]′ and B = [σ̃−1, 0, 0, 0]′. Let zt = V−1Zt

and b = V−1B, which gives the system żt = Ωzt + but. For i = 1, 2, 3, we can solve
the equation forward, zi,t = −bi

´ ∞
t e−ωi(s−t)usds, and for i = 4 we solve it backwards:

z4,t = eω4tz4,0 + b4
´ t

0 eω4(t−s)usds. Rotating to the original coordinates, we obtain:

Zt = v4eω4tz4,0 −
3

∑
i=1

vibi

ˆ ∞

t
e−ωi(s−t)usds + v4b4

ˆ t

0
eω4(t−s)usds,
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where vi denotes the ith eigenvector, which are given by

v1 =
[
κ−1(ρ − ω1), 1, 0, 0

]′
, v3 =

[
v3,1,

κv3,1

ρ − ω3
,

χ∆b,∆b − ω3

χ∆b,λ
, 1
]′

v2 =
[
κ−1(ρ − ω2), 1, 0, 0

]′
, v4 =

[
v4,1,

κv4,1

ρ − ω4
,

χ∆b,∆b − ω4

χ∆b,λ
, 1
]′

,

vi,1 = − (ρ−ωi)χλ

(δ−ωi)(ρ−ωi)+κσ̃−1(ϕπ−1)
χ∆b,∆b−ωi

χ∆b,λ
for i = 3, 4, and b = [− κσ̃−1

ω1−ω2
, κσ̃−1

ω1−ω2
, 0, 0]′. Using

the fact that ψλ = −ω4, we obtain bp,t − bo,t = e−ψλt(bp,0 − bo,t) and λ̂t =
χ∆b,∆b+ψλ

χ∆b,λ
e−ψλt(bp,0 −

bo,0), which coincides with the results from Proposition 3. yt and πt are given by

yt =
2

∑
i=1

(−1)i σ̃−1(ωi − ρ)

ω1 − ω2

ˆ ∞

t
e−ωi(s−t)usds − χλ(ρ + ψλ)

(ω1 + ψλ)(ω2 + ψλ)
λ̂t

πt =
2

∑
i=1

(−1)i−1 σ̃−1

ω1 − ω2

ˆ ∞

t
e−ωi(s−t)usds − κχλ

(ω1 + ψλ)(ω2 + ψλ)
λ̂t.

If ut = ∑K
k=1 φkuk,t, where uk,t = e−ψktuk,0, then

yt = −
K

∑
k=1

φk
ρ + ψk

(ω1 + ψk)(ω2 + ψk)
σ̃−1uk,t −

χλ(ρ + ψλ)

(ω1 + ψλ)(ω2 + ψλ)
λ̂t

πt = −
K

∑
k=1

φk
κ

(ω1 + ψk)(ω2 + ψk)
σ̃−1uk,t −

κχλ

(ω1 + ψλ)(ω2 + ψλ)
λ̂t.

The nominal interest rate is given by

it − rn =
K

∑
k=1

φk
(δ + ψk)(ρ + ψk)− σ̃−1κ

(ω1 + ψk)(ω2 + ψk)
uk,t −

ϕπκχλ

(ω1 + ψλ)(ω2 + ψλ)
λ̂t.

The initial value of λ̂0 satisfies the condition:

λ̂0 = −χ∆b,∆b + ψλ

χ∆b,λ

(
BL

p

Bp
− BL

o
Bo

)[ˆ ∞

0
e−(ρ+ψL)t(it − rn)dt +

rL

ρ + ψL + ψλ
λ̂0

]
,

solving for λ̂0, we obtain

λ̂0 =

χ∆b,∆b+ψλ

χ∆b,λ

(
BL

o
Bo

− BL
p

Bp

)
1 − χ∆b,∆b+ψλ

χ∆b,λ

(
BL

o
Bo

− BL
p

Bp

)
rL

ρ+ψL+ψλ

ˆ ∞

0
e−(ρ+ψL)t(it − rn)dt.

5



Combining the expression above with the expression for it, we obtain

λ̂0 =

χ∆b,∆b+ψλ

χ∆b,λ

(
BL

o
Bo

− BL
p

Bp

)
∑K

k=1 φk
(δ+ψk)(ρ+ψk)−σ̃−1κ
(ω1+ψk)(ω2+ψk)

uk,0
ρ+ψL+ψk

1 + χ∆b,∆b+ψλ

χ∆b,λ

(
BL

o
Bo

− BL
p

Bp

) [
ϕπκχλ

(ω1+ψλ)(ω2+λ)
1

ρ+ψL+ψλ
− rL

ρ+ψL+ψλ

] .

Implementability condition. Take it − rn = e−ψmt(i0 − rn) and
´ ∞

0 e−ρtτtdt as given, let
Ω0 be given by (29), yt be given by (26) and πt be given by (28). Define ut as follows:

ut = it − rn − ϕππt. (A.1)

Let [y⋆t , π⋆
t , λ̂⋆

t , b⋆p,t − b⋆o,t]
∞
0 be the solution to the four-dimensional dynamic system dis-

cussed above and [i⋆t , τ⋆
t ] the associated interest rate and fiscal backing. We show next

that y⋆t = yt, π⋆
t = πt, λ̂⋆

t = λ̂t and i⋆t = it. First, notice that ut = ∑3
i=1 φke−ψktuk,0, where

uk,0 = i0 − rn, and φk and ψk are given by

φ1 = 1 +
ϕπσ̃−1κ

(ω + ψm)(ω + ψm)
, ψ1 = ψm, φ2 =

ϕπ
1−µw

1−µwχy
χpκ

(ω + ψλ)(ω + ψλ)
, ψ2 = ψλ,

φ3 = −κϕπ

 σ̃−1κ

(ω + ψm)(ω + ψm)
+

1−µw
1−µwχy

χpκ

(ω + ψλ)(ω + ψλ)
+

Ω0

i0 − rn

 , ψ3 = −ω.

As uk,0 is proportional to i0 − rn, for k = 1, 2, 3, and λ̂⋆
0 is proportional to a linear combi-

nation of the uk,0, then λ̂⋆
t = ϵ⋆λe−ψλt(i0 − rn) = ϵ⋆λu2,t, for some constant ϵ⋆λ. If it − rn =

e−ψmt(i0 − rn) =, then ϵ⋆λ = ϵλ. We guess that ϵ⋆λ = ϵλ and verify that nominal interest
rates are exponentially decaying with rate ψm. The nominal interest rate is given by

i⋆t − rn =
3

∑
k=1

(δ + ψk)(ρ + ψk)− σ̃−1κ

(ω1 + ψk)(ω2 + ψk)
φkuk,t −

ϕπκχλ

(ω1 + ψλ)(ω2 + ψλ)
ϵλu2,t.

Notice that (δ + ψk)(ρ + ψk)− σ̃−1κ = (ω + ψk)(ω + ψk), so the term multiplying u3,t is
equal to zero, as ψ3 = −ω. Using the fact that χλϵλ = 1−µw

1−µwχy
χp, the term multiplying u2,t

is also equal to zero. Finally, the term multiplying u1,t is equal to one, so i⋆t − rn = it − rn.
From the Taylor rule we have that ut = it − rn − ϕππt = i⋆t − rn − ϕππ⋆

t , so π⋆
t = πt.

If the nominal interest rate and λ̂t coincide in the two equilibria, then we must have

6



b⋆p,t − b⋆o,t = bp,t − bo,t. From the aggregate Euler equation, we obtain

y⋆t = −
ˆ ∞

0
e−δ(s−t)(i⋆s − rn − π⋆

s + χλλ̂⋆
s )ds = −

ˆ ∞

0
e−δ(s−t)(is − rn − πs + χλλ̂s)ds = yt,

so yt = yt. Finally, if output, inflation, nominal interest rates, and the market-implied dis-
aster probability coincide in the two equilibria, from the intertemporal budget constraint
we must have

´ ∞
0 e−ρtτ⋆

t dt =
´ ∞

0 e−ρtτtdt.

Proof of Proposition 9. The workers’ financial wealth in the no-disaster state evolves ac-
cording to Ḃw,t = (it − πt + rP,t)Bw,t + WtNw,t + Tw,t − Cw,t. Using the fact that Bw,t =

−QP,tF and qP,t = − iP,t−iP
iP+ψP

, we obtain Equation 31. From the market clearing condition for

goods, we obtain savers’ consumption: cs,t =
1−µwχy

1−µw
yt +

µwdP
1−µw

(
ψP

iP+ψP
(iP,t − iP)− πt

)
dP.

Assuming exponentially decaying interest rates, and using the yield on the private bond
iP,t − iP = iP+ψP

ρ+ψP+ψm
(it − rn) +

iP+ψP
ρ+ψP+ψλ

rPλ̂t, we can write savers’ consumption as follows

cs,t =
1 − µwχy

1 − µw
yt +

µwdP

1 − µw

[
ψP

ρ + ψP + ψm
(it − rn) +

ψPrP

ρ + ψP + ψλ
λ̂t − πt

]
. (A.2)

The Euler equation for savers can be written as

ċs,t = σ−1(it − πt − rn) + λ

(
Cs

C∗
s

)σ

cs,t + χpλ̂t. (A.3)

Combining equations (A.2) and (A.3), we obtain

ẏt =

[
1 − µw

1 − χyµw
σ−1 − µwdP

1 − χyµw
rn

]
(it − πt − rn) +

[
λ

(
Cs

C∗
s

)σ

− µwdP

1 − χyµw
κ

]
yt

+

[
1 − µw

1 − χyµw
χp +

µwdP

1 − χyµw

ψPrP(ρ − rn + ψλ)

ρ + ψP + ψλ

]
λ̂t +

µwdP

1 − χyµw

[
rn +

ψP(ρ − rn + ψm)

ρ + ψP + ψm

]
(it − rn),

We can then write the aggregate Euler equation as ẏt = σ̃−1(it −πt − rn)+ δyt + vt, where

σ̃−1 ≡ 1−µw
1−χyµw

σ−1 − µwdP
1−χyµw

rn, δ ≡ λ
(

Cs
C∗

s

)σ
− µwdP

1−χyµw
κ, and vt ≡ µwdP

1−χyµw

[
rn +

ψP(ρ−rn+ψm)
ρ+ψP+ψm

]
(it −

rn) +
[

1−µw
1−χyµw

χp +
µwdP

1−χyµw

ψPrP(ρ−rn+ψλ)
ρ+ψP+ψλ

]
λ̂t. Therefore, following a derivation analogous

to the one in Proposition 5, output is given by

yt = σ−1ŷm,t + χpŷλ,t +
µwdP

1 − µb

ψP[ψ̃mŷm,t + rPψ̃λŷλ,t]

ρ + ψP + ψm
+ (ρ − ω)eωtΩ0,

7



where ψ̃k ≡ ψk + ρ − rn for k ∈ {m, λ}.

B Derivations for Section 2

B.1 The non-linear model

Savers’ problem. Let Cj,t(s) denote the consumption at time t of a saver of type j ∈
{o, p} and denote the aggregate consumption of a type-j saver by Cj,t =

´ t
−∞ ξe−ξ(t−s)Cj,t(s)ds,

where a similar notation applies to the other variables. Given that the problem of all type-
j savers is the same, except for the value of net worth, we drop the dependence on s and
write Cj,t instead of Cj,t(s) to ease notation.

The HJB for the savers’ problem is given by

ρ̃jVj,t = max
Cj,t,BL

j,t,B
E
j,t

C1−σ
j,t

1 − σ
− ξVj,t +

∂Vj,t

∂t
+ λj

[
V∗

j,t − Vj,t

]
+ (B.1)

∂Vj,t

∂Bj,t

[
(it − πt)Bj,t + rL,tBL

j,t + rE,tBE
j,t + Tj,t − Cj,t

]
.

where V∗
j,t is evaluated at B∗

j,t = Bj,t + BL
j,t

Q∗
L,t−QL,t

QL,t
+ BE

j,t
Q∗

E,t−QE,t
QE,t

and Bj,t > −Dp.
The corresponding HJB in the disaster state is given by

ρ̃∗j V∗
j,t = max

C∗
j,t,B

L,∗
j,t ,BE,∗

j,t

(C∗
j,t)

1−σ

1 − σ
− ξV∗

j,t +
∂V∗

j,t

∂t
+

∂V∗
j,t

∂B∗
j,t

[
(i∗t − π∗

t )Bj,t + T∗
j,t − C∗

j,t

]
,

where we imposed that r∗L,t = r∗E,t = 0, as there is no risk in the disaster state.
The first-order conditions are given by1

C−σ
j,t =

∂Vj,t

∂Bj,t
,

∂Vj,t

∂Bj,t
rk,t =

∂V∗
j,t

∂B∗
j,t

Qk,t − Q∗
k,t

Qk,t
, (C∗

j,t)
−σ =

∂V∗
j,t

∂B∗
j,t

, (B.2)

for k ∈ {L, E}, and savers are indifferent about the level of long-term bonds in the disaster
state.

Combining the expressions above, we obtain Equations (2) and (3). Differentiating the
HJB equation in the no-disaster state with respect to Bj,t, we obtain the envelope condi-

1Formally, the solution is also subject to the state-constraint boundary condition
∂Vj,t(−DP)

∂B ≥(
−(it − πt)DP +

Wj,t
Pt

Nj,t +
Πj,t
Pt

+ T̃j,t

)−σ
. See Achdou et al. (2017) for a discussion of state-constraint

boundary conditions in the context of continuous-time savings problems with borrowing constraints.
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tion:2

ρj
∂Vj,t

∂Bj,t
=

∂Vj,t

∂Bj,t
(it − πt) +

Ej,t[d
(

∂Vj,t
∂Bj,t

)
]

dt
, (B.3)

where ρj ≡ ρ̃j + ξ captures subjective discounting and mortality risk.
Using the optimality condition for consumption and the condition above, we obtain:

it − πt − ρj = −
Et[dC−σ

j,t ]

C−σ
j,t dt

=
σC−σ−1

j,t Ċj,t − λj

[
(C∗

j,t)
−σ − C−σ

j,t

]
C−σ

j,t
, (B.4)

using the fact that dCj,t = Ċj,tdt + [C∗
j,t − Cj,t]dNt and Ito’s lemma. Rearranging the ex-

pression above, we obtain Equation (1). A similar envelope condition holds in the disaster
state, which gives the Euler equation for the disaster state

Ċ∗
j,t

C∗
j,t

= σ−1(it − πt − ρ∗j ), (B.5)

where ρ∗j ≡ ρ̃∗j + ξ.

Total wealth. Let QTj,t denote the present discounted value of transfers:

dQTj,t =
[
(it − πt + rTj,t)QTj,t − Tj,t

]
dt +

[
Q∗

Tj,t
− QTj,t

QTj,t

]
dNt. (B.6)

where rTj,t = λj

(
Cj,t
C∗

j,t

)σ QTj ,t−Q∗
Tj ,t

QTj ,t
.

Define total wealth as B̃j,t = Bj,t + QTj,t and the sum of equities and the value of
transfers as Q̃E,t = QE,t + QTj,t, so we can write the law of motion of B̃j,t as follows

dB̃j,t =
[
(it − πt)B̃j,t + rL,tB̃L

j,t + r̃E,tB̃E
j,t − Cj,t

]
dt+

[
B̃L

j,t
QL,t − Q∗

L,t

QL,t
+ B̃E

j,t
Q̃E,t − Q̃∗

E,t

Q̃E,t

]
dNt,

(B.7)

where B̃L
j,t = BL

j,t, r̃E,t =
QE,t
Q̃E,t

rE,t +
QTj ,t

Q̃E,t
rTj,t, and B̃L

j,t =
rE,t
r̃E,t

BE
j,t +

rTj ,t

r̃E,t
QTj,t.

Therefore, the problem where savers receive transfers is equivalent to a problem where
savers do not receive transfers, but their wealth is B̃j,t and instead of investing on equities,
they invest on a claim on profits plus fiscal transfers. One implication of this observation

2Here we used the fact that Ej,t[dF(Bj,t, t)] =
[

Ft + λj[F∗ − F] + FB

(
(i − π)Bj + rLBL

j + rEBE
j − Cj

)]
dt

for any function F(Bj,t, t), according to Ito’s lemma.
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is that consumption is proportional to total wealth, B̃j,t, instead of Bj,t.

Savers’ aggregate behavior. Denote aggregate consumption and net worth of type-j
savers as follows

Cj,t =

ˆ t

−∞
ξe−ξ(t−s)Cj,t(s)ds, Bj,t =

ˆ t

−∞
ξe−ξ(t−s)Bj,t(s)ds, (B.8)

From the optimality condition for risky assets, we obtain

Cj,t(s)
C∗

j,t(s)
=

Cj,t(s′)
C∗

j,t(s
′)

⇒
Cj,t(s)
C∗

j,t(s)
=

Cj,t

C∗
j,t

. (B.9)

We can then write the optimality condition for risky assets as follows

rk,t = λj

(
Cj,t

C∗
j,t

)σ Qk,t − Q∗
k,t

Qk,t
, (B.10)

where k ∈ {L, E}.
The evolution of aggregate consumption of a type-j saver conditional on no-disaster

is given by

Ċj,t =

ˆ t

−∞
ξe−ξ(t−s)Ċj,t(s)ds + ξ(Cj,t(t)− Cj,t) (B.11)

= Cj,t

[
σ−1 (it − πt − ρj

)
+

λj

σ

[(
Cj,t

C∗
j,t

)σ

− 1

]
+ ξ

(
Cj,t(t)

Cj,t
− 1

)]
. (B.12)

The net worth of newborn savers is given by Bj,t(t) = µo
µo+µp

Bo,t +
µp

µo+µp
Bp,t. As the

consumption-total-wealth ratio is the same for all savers of the same type, we obtain

Cj,t(t)

Cj,t
=

µo
µo+µp

Bo,t +
µp

µo+µp
Bp,t + QTs,t

Bj,t + QTs,t
(B.13)

Combining the expressions above, we can derive the law of motion of aggregate con-
sumption for savers:

Ċs,t

Cs,t
= σ−1 (it − πt − ρs,t) +

λt

σ

[(
Cs,t

C∗
s,t

)σ

− 1

]
. (B.14)
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The parameter ξ does not affect the aggregate Euler equation for savers. However, ξ

controls the relative consumption of optimistic and pessimistic savers:

Ċo,t

Co,t
−

Ċp,t

Cp,t
= ξ

[
Bp,t − Bo,t

] µo
µo+µp

Bo,t +
µp

µo+µp
Bp,t + QTs,t

(Bo,t + QTs,t)(Bp,t + QTs,t)
(B.15)

The evolution of aggregate net worth of a type-j saver conditional on no-disaster is
given by

Ḃj,t =

ˆ t

−∞
ξe−ξ(t−s)Ḃj,t(s)ds + ξ(Bj,t(t)− Bj,t) (B.16)

= Bj,t

it − πt + rL,t
BL

j,t

Bj,t
+ rE,t

BE
j,t

Bj,t
−

Cj,t − Tj,t

Bj,t
+ ξ

(
Bj,t(t)

Bj,t
− 1

) . (B.17)

This implies that the aggregate net worth of savers evolves according to

Ḃs,t

Bs,t
= it − πt + rL,t

BL
s,t

Bs,t
+ rE,t

BE
s,t

Bs,t
− Cs,t − Ts,t

Bs,t
. (B.18)

The relative net worth of optimistic and pessimistic savers evolves according to

Ḃo,t

Bo,t
−

Ḃp,t

Bp,t
= ∑

k∈{L,E}
rk,t

BL
o,t

Bo,t
−

Bk
p,t

Bp,t

−
(

Co,t − Ts,t

Bo,t
−

Cp,t − Ts,t

Bp,t

)
+ ξ

(
Bo,t(t)

Bo,t
−

Bp,t(t)
Bp,t

)
.

(B.19)

Workers’ problem. The HJB for the workers’ problem is given by

ρ̃wVw,t = max
C̃w,t ,Nw,t ,BL

w,t

C̃1−σ
w,t

1 − σ
+

∂Vw,t

∂t
+ λw

[
V∗

w,t − Vw,t
]
+

∂Vw,t

∂Bw,t

[
(it − πt)Bw,t + rL,tBL

w,t +
Wt

Pt
Nw,t + T̃b,t − C̃w,t −

N1+ϕ
w,t

1 + ϕ

]
.

subject to the state-constraint boundary condition

∂Vw,t(0)
∂Bw,t

≥
(

Wt

Pt
Nw,t −

N1+ϕ
w,t

1 + ϕ
+ T̃w,t

)−σ

, (B.20)

where we adopted the change of variables C̃w,t ≡ Cw,t −
N1+ϕ

w,t
1+ϕ .

For simplicity, we have already imposed that BE
w,t = 0. We show below that BL

w,t = 0
and a similar argument shows that workers would be against the short-selling constraint
for equities when BE

w,t is a choice variable.
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The optimality condition for labor supply is given by

Nϕ
w,t =

Wt

Pt
. (B.21)

We focus on an equilibrium where workers are always constrained. To derive the con-
ditions that ensure this is indeed the case, we start by considering a stationary equilibrium
where all variables are constant conditional on the state. If workers are constrained in the
stationary equilibrium, then they will also be constrained if fluctuations are small enough.

In a stationary equilibrium, net consumption C̃b in the no-disaster state is given by

C̃w =
W
P

Nw − N1+ϕ
w

1 + ϕ
+ Tw, (B.22)

and an analogous expression holds in the disaster state. Notice that the expression above
does not depend on ρw or λw.

For workers to be unconstrained, the following condition would have to hold:

˙̃Cw,t

C̃w,t
= σ−1(rn − ρw) +

λw

σ

[(
C̃w,t

C̃∗
w,t

)σ

− 1

]
. (B.23)

For ρb sufficiently large, workers would want a declining path of consumption, so cur-

rent consumption would be above W
P Nw − N1+ϕ

w
1+ϕ + Tw, which would violate the state-

constraint. Hence, the constraint must be binding for ρw sufficiently large.
If the workers hold a positive amount of the long-term bonds, then the following con-

dition must hold

rL = λw

(
C̃w

C̃∗
w

)σ QL − Q∗
L

QL
. (B.24)

As Cw and C∗
w are independent of λw, the equation above would hold only if λw equals

the value λw ≡ rL(
Cw
C∗w

)σ QL−Q∗
L

QL

. For λw > λw, borrowers would want a smaller dispersion

between Cw and C∗
w, which requires holding less risky bonds, violating the non-negativity

constraint on long-term bonds. Therefore, borrowers will hold zero long-term bonds for
λw sufficiently large.

Firms’ problem. Final goods are produced according to the production function Yt =(´ 1
0 Y

ϵ
ϵ−1

i,t di
) ϵ−1

ϵ
. The solution to final-good producers problem is a demand for variety i

given by Yi,t =
(

Pi,t
Pt

)−ϵ
Yt. The price level is given by Pt =

(´ 1
0 P1−ϵ

i,t di
) 1

1−ϵ .
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The intermediate-goods producers’ problem is given by

Qi,t(Pi) = max
[πi,s]s≥t

Et

[ˆ t∗

t

ηs

ηt

(
Pi,s

Ps
Yi,s −

Ws

Ps

Yi,s

As
− φ

2
π2

s (j)
)

ds +
ηt∗

ηt
Q∗

i,t∗(Pi,t∗)

]
,

subject to Yi,t =
(

Pi,t
Pt

)−ϵ
Yt and Ṗi,t = πi,tPi,t, given Pi,t = Pi.

The HJB equation for this problem is

0 = max
πi,t

ηt

(
Pi,t

Pt
Yi,t −

Wt

Pt

Yi,t

A
− φ

2
π2

i,t

)
dt + Et[d(ηtQi,t)], (B.25)

where Et[d(ηtQi,t)]
ηtdt = −(it − πt)Qi,t +

∂Qi,t
∂Pi,t

πi,tPi,t +
∂Qi,t

∂t + λt
η∗

t
ηt

[
Q∗

i,t − Qi,t

]
.

The first-order condition is given by

∂Qi,t

∂Pi
Pi,t = φπi,t.

The change in πt conditional on no disaster is then given by(
∂2Qi,t

∂t∂Pi
+

∂2Qi,t

∂P2
i

πi,tPi,t

)
Pi,t +

∂Qi,t

∂Pi
πi,tPi,t = φπ̇i,t. (B.26)

The envelope condition with respect to Pi,t is given by

0 =

(
(1 − ϵ)

Pi,t

Pt
+ ϵ

Wt

Pt A

)(
Pi,t

Pt

)−ϵ Yt

Pi,t
+

∂2Qi,t

∂t∂Pi
+

∂2Qi,t

∂P2
i

πi,tPi,t+

∂Qi,t

∂Pi
πi,t − (it − πt)

∂Qi,t

∂Pi
+ λt

η∗
t

ηt

(
∂Q∗

i,t

∂Pi
− ∂Qi,t

∂Pi

)
. (B.27)

Multiplying the expression above by Pi,t and using Equation (B.26), we obtain

0 =

(
(1 − ϵ)

Pi,t

Pt
+ ϵ

Wt

Pt A

)(
Pi,t

Pt

)−ϵ

Yt + φπ̇t − (it − πt)φπi,t + λt φ
η∗

t
ηt

(
π∗

i,t − πi,t
)

.

Rearranging the expression above, we obtain the non-linear New Keynesian Phillips
curve

π̇t =

(
it − πt + λt

η∗

ηt

)
πt −

ϵφ−1

A

(
Wt

Pt
− (1 − ϵ−1)A

)
Yt,

where we have assumed that Pi,t = Pt for all i ∈ [0, 1] and that π∗
t = 0.
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B.2 The stationary equilibrium

Aggregate output. Consider a stationary equilibrium with zero inflation. From the New
Keynesian Phillips curve, we obtain

W
P

= (1 − ϵ−1)A,
W∗

P
= (1 − ϵ−1)A∗. (B.28)

Combining the expressions above with the labor supply condition, we obtain

Y = µw(1 − ϵ−1)
1
ϕ A

1+ϕ
ϕ , Y∗ = µw(1 − ϵ−1)

1
ϕ (A∗)

1+ϕ
ϕ . (B.29)

Disaster state. From the Euler equation for short-term bonds, the type-j saver will be
unconstrained in a stationary equilibrium only if r∗n = ρ∗j . To ensure this is the case, we
assume that ρ∗j = ρs for j ∈ {o, p}, where ρs is the effective discount rate implicit in the
SDF, so the real interest rate in the disaster state is given by i∗t − π∗

t = r∗n = ρs. The excess
return on long-terms bonds and equity are equal to zero, r∗L = r∗E = 0, so the price of the
long-term bond is given by

Q∗
L =

1
r∗n + ψL

, (B.30)

and the equity price is given by Q∗
E = Π∗

r∗n
.

The consumption of borrowers is given by

C∗
w = (1 − ϵ−1)

Y∗

µw
+ T∗

w. (B.31)

We assume that the government chooses fiscal transfers so workers have a given
share 0 < µY,w < 1 of output, so C∗

w = µY,w
Y∗
µw

. The parameter µY,w captures the gov-
ernment’s preference for redistribution. This requires that the government sets T∗

w =[
µY,w
µw

− 1−ϵ−1

µw

]
Y∗. In the main text, we focus on the case µY,w = µw.

Savers’ consumption is given by

C∗
j = r∗nB∗

j + T∗
j , (B.32)

where B∗
j = Bj + BL

j
Q∗

L−QL
QL

+ BE
j

Q∗
E−QE
QE

.
Aggregate consumption of savers is given by

C∗
s = r∗n

D∗
G

µs
+

Π∗

µs
+ Ts. (B.33)
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Transfers to savers must satisfy Ts = (1 − µY,w − ϵ−1)Y∗
µs

− r∗n
D∗

G
µs

such that the govern-
ment’s budget constraint is satisfied. This implies that the aggregate consumption of
savers is given by C∗

s = (1 − µY,w)Y∗.

No-disaster state. The consumption of workers is given by

Cw =
[
(1 − ϵ−1)A

] 1+ϕ
ϕ

+ Tw. (B.34)

As in the disaster state, the government chooses fiscal transfers so workers have a
given share 0 < µY,w < 1 of output, so Cw = µY,wY and Cs = (1 − µY,w)Y. This requires
that the government sets Tw =

[
µY,w
µw

− 1−ϵ−1

µw

]
Y. It remains to determine the relative

consumption of optimistic and pessimistic savers.
The consumption of individual savers is given by

Cj = rnBj + rLBL
j + rEBE

j − Tj (B.35)

The expression above ensures that total bond holdings of each individual saver is con-
stant over time. To ensure that the aggregate bond holdings of optimistic and pessimistic
savers is also constant, we must take into account the effect of births and deaths. Each
instant a mass ξµo of optimistic savers dies, which leads to a reduction in wealth for this
group of ξµoBo. Newborns inherit the wealth of their parents and a fraction µo

µo+µp
of

newborns is optimistic, so the influx of newborns raise the aggregate wealth of optimistic
savers by µo

µo+µp
ξ
[
µoBo + µpBp

]
. These two effects cancel each other if the following con-

dition is satisfied
ξµoBo =

µo

µo + µp
ξ
[
µoBo + µpBp

]
⇒ Bo = Bp, (B.36)

so Bj = Bs for j ∈ {o, p}, where Bs is the average net worth of savers. We then have
Bj(s) = Bj and Cj(s) = Cj.

From the market clearing condition for assets, we obtain

Bs =
DG + QE

1 − µw
, BL

s =
DG

1 − µw
, BE

s =
QE

1 − µw
. (B.37)

Using the fact that Bo = Bp and To = Tp in a stationary equilibrium, we can write the
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consumption of optimistic and pessimistic savers as follows:

Co = Cs + rL
µp

µo + µp
(BL

o − BL
p) + rE

µp

µo + µp
(BE

o − BE
p ) (B.38)

Cp = Cs − rL
µo

µo + µp
(BL

o − BL
p)− rE

µo

µo + µp
(BE

o − BE
p ). (B.39)

We can use the Euler equations for risky assets to eliminate rL and rE from the expres-
sions above, which gives us

Co = Cs

[
1 + λ

(
Cs

C∗
s

)σ µp

µo + µp
Ro

]
, C∗

o = C∗
s

[
1 −

µp

µo + µp

r∗nRo

1 − ζY

]
, (B.40)

Cp = Cs

[
1 − λ

(
Cs

C∗
s

)σ µo

µo + µp
Ro

]
, C∗

p = C∗
s

[
1 +

µo

µo + µp

r∗nRo

1 − ζY

]
, (B.41)

where Ro ≡
QL−Q∗

L
QL

BL
o −BL

p
Cs

+
QL−Q∗

L
QE

BE
o −BE

p
Cs

represents optimistic relative risk exposure.
Notice that Ro pins down the share of consumption of optimistic savers:

µoCo

µoCo + µpCp
=

µo

µo + µp

[
1 + λ

(
Cs

C∗
s

)σ µp

µo + µp
Ro

]
, (B.42)

which is an implicit function of the share of consumption of optimistic savers, as λ is also
a function of µoCo

µoCo+µpCp
. The left-hand is strictly increasing in µoCo

µoCo+µpCp
and it is zero if

µoCo
µoCo+µpCp

= 0. For Ro > 0 and λo < λp, the right-hand side is decreasing in µoCo
µoCo+µpCp

and it is positive if µoCo
µoCo+µpCp

= 0. Then, µoCo
µoCo+µpCp

is a strictly increasing function of R0,
in the range R0 > 0. This implies that λ is decreasing in Ro, but λRo is strictly increasing.

From the optimality condition for risky assets, we obtain the condition1 + λ (1 − ζY)
−σ µp

µo+µp
Ro

1 − µp
µo+µp

r∗nRo
1−ζY

σ

=
λp

λo

1 − λ (1 − ζY)
−σ µo

µo+µp
Ro

1 + µo
µo+µp

r∗nRo
1−ζY

σ

, (B.43)

where we used the fact that C∗
s

Cs
= 1 − ζY.

The left-hand side of the expression above is strictly increasing in Ro and it is equal
to 1 for Ro = 0. The right-hand side is strictly decreasing in Ro and it is equal to λp

λo
≥ 1.

Then, there exists a unique value of Ro solving the equation above and Ro ≥ 0, with
strict inequality if λp > λo.
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The value of Ro pins down µoCo
µpCp+µpCp

and the market-implied disaster probability:

λ =

[
µoCo

µpCp + µpCp
λ

1
σ
o +

µpCp

µpCp + µpCp
λ

1
σ
p

]σ

. (B.44)

From the Euler equations for short-term and long-term bonds, we obtain

rn = ρj − λj

[(
Cj

C∗
j

)σ

− 1

]
, rk = λj

(
Cj

C∗
j

)σ
Qk − Q∗

k
Qk

, (B.45)

for k ∈ {L, E}, where rL = 1
QL

− ψL − rn, rE = Π
QE

− rn, and Π = ϵ−1Y.

Notice that, given λo

(
Co
C∗

o

)σ
= λp

(
Cp
C∗

p

)σ
, the condition ρo + λo = ρp + λp is necessary

for the Euler equation for short-term bonds to be satisfied with constant consumption for
both types of savers.

Using the fact that λ
(

Cs
C∗

s

)σ
= λj

(
Cj
C∗

j

)σ

, we can write the Euler equations in terms of

aggregate savers’ consumption:

rn = ρs − λ

[(
Cs

C∗
s

)σ

− 1
]

, rk = λ

(
Cs

C∗
s

)σ Qk − Q∗
k

Qk
, (B.46)

for k ∈ {L, E}, where ρs satisfy the condition ρs + λ = ρj + λj for j ∈ {o, p}.
We solve next for the price of risky assets. Given rL, we can solve for QL:

1
QL

− ψL − rn = λ

(
Cs

C∗
s

)σ (
1 − Q∗

L
QL

)
⇒ QL = Q∗

L

r∗n + ψL + λ
(

Cs
C∗

s

)σ

rn + ψL + λ
(

Cs
C∗

s

)σ , (B.47)

where QL > Q∗
L, as rn < r∗n due to the precautionary motive in the no-disaster state.

The loss in long-term bonds in the disaster state is given by

QL − Q∗
L

QL
=

r∗n − rn

r∗n + ψL + λ
(

Cs
C∗

s

)σ , (B.48)

which is positive as r∗n > rn. This implies that long-term interest rates are higher than
short-term interest rates in the stationary equilibrium, i.e., the yield curve is upward slop-
ing in this economy.
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The equity price is given by

Π
QE

− rn = λ

(
Cs

C∗
s

)σ (
1 − Q∗

E
QE

)
⇒ QE =

Π + λ
(

Cs
C∗

s

)σ
Q∗

E

rn + λ
(

Cs
C∗

s

)σ , (B.49)

so the loss on equity in the disaster state is given by

QE − Q∗
E

QE
=

Π − rnQ∗
E

Π + λ
(

Cs
C∗

s

)σ
Q∗

E

= ζΠ + Q∗
E

Π∗
Q∗

E
−
(

rn + λ
(

Cs
C∗

s

)σ
ζΠ

)
Π + λ

(
Cs
C∗

s

)σ
Q∗

E

, (B.50)

where ζΠ ≡ 1 − Π∗
Π is the size of the drop in profits. It can be shown that the second

term is positive for σ > 1. Therefore, the equity premium is positive in the stationary
equilibrium. Notice that the drop in the values of equities in the disaster state comes from
both the reduction in dividends and the drop in the price-dividend ratio in the disaster
state due to higher natural rate.

Finally, given the quantity of risk for stocks and bonds, the value of Ro pins down a
linear combination of BL

o − BL
p and BE

o − BE
o , but it does not pin down their exact values.

For instance, we could assume that BE
o = BE

p , such that differences in beliefs translates
in differences in bond holdings. Alternatively, we could set BL

o − BL
p = BE

o − BE
p , so the

optimistic investors holds more of stocks and long-term bonds. All these configurations
are consistent with equilibrium and they do not affect prices or consumption.

B.3 Log-linear approximation

We consider next the effects of an unexpected monetary shock for an economy starting at
the stationary equilibrium described above.

Market-based disaster probability. Linearizing Equation (4) around the stationary equi-
librium, we obtain

λ
1
σ

σ
λ̂t = µc,oµc,p

(
λ

1
σ
p − λ

1
σ
o

) [
cp,t − co,t

]
, (B.51)

where µc,j ≡ µjCj

µoCo+µpCp
and cj,t ≡ log Cj,t/Cj, for j ∈ {o, p}. Note that cj,t denote the

log-deviation of average consumption of type-j savers.
The expression above implies that changes in the relative consumption of optimistic

and pessimistic investors affects the market-based probability of disaster. In particular,
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shocks that redistribute towards pessimistic investors at time t raise λ̂t.

Relative consumption. From the optimality condition for risky assets, we obtain

λ
1
σ
o

Co,t

C∗
o,t

= λ
1
σ
p

Cp,t

C∗
p,t

⇒ cp,t − co,t = c∗p,t − c∗o,t (B.52)

Relative consumption, in the no-disaster and disaster states, is given by

ċp,t − ċo,t = −ξ̃(bp,t − bo,t), ċ∗p,t − ċ∗o,t = −ξ̃(b∗p,t − b∗o,t), (B.53)

where ξ̃ ≡ ξ Bs
Bs+QTs

, and we used Equation (B.15) and the analogous condition in the
disaster state.

Relative net worth. Linearizing Equation (B.19), we obtain

ḃp,t − ḃo,t = ∑
k∈{L,E}

rk

r̂k,t

Bk
p

Bp
− Bk

o

Bo

+
Bk

p

Bp
(bk

p,t − bp,t)−
Bk

o

Bo
(bk

o,t − bo,t)


−
(

Cp

Bp
cp,t −

Co

Bo
co,t

)
+

Cp − Tp

Bp
bp,t −

Co − To

Bo
bo,t − ξ

(
bp,t − bo,t

)
, (B.54)

where r̂k,t = λ̂t + σcs,t +
Q∗

k
Qk−Q∗

k
qk,t.

Using the fact that
Cj−Tj

Bj
= rn + ∑k∈{L,E} rk

Bk
j

Bj
, we can write the expression above as

follows

ḃp,t − ḃo,t = ∑
k∈{L,E}

rk

r̂L,t

Bk
p

Bp
− Bk

o

Bo

+
Bk

p

Bp
bk

p,t −
Bk

o

Bo
bk

o,t

−
(

Cp

Bp
cp,t −

Co

Bo
co,t

)
+ (rn − ξ)(bp,t − bo,t). (B.55)

The relative net worth in the disaster state is given by

ḃ∗p,t − ḃ∗o,t = −ξ(b∗p,t − b∗o,t) ⇒ b∗p,t − b∗o,t = e−ξ(t−t∗)(b∗p,t∗ − b∗o,t∗), (B.56)

for t ≥ t∗, where b∗p,t∗ − b∗o,t∗ is given by

b∗p,t∗ − b∗o,t∗ = bp,t∗ − bo,t∗ − ∑
k∈{L,E}

[(
Bk

p

Bp
− Bk

o
Bo

)
Q∗

k
Qk

qk,t∗ +

(
Bk

p

Bp
bk

p,t∗ −
Bk

o
Bo

bk
o,t∗

)
Qk − Q∗

k
Qk

]
. (B.57)
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Relative risk exposure. Given that the consumption-wealth ratio for savers is constant
in the disaster state, we have that c∗j,t = b∗j,t, so we obtain that c∗p,t − c∗o,t = b∗p,t − b∗o,t. Using
the expression above and the fact that b∗p,t − b∗o,t = c∗p,t − c∗o,t = cp,t − co,t, we can solve for
the relative risk exposure:

∑
k∈{L,E}

Qk − Q∗
k

Qk

(
Bk

p

Bp
bk

p,t −
Bk

o
Bo

bk
o,t

)
= bp,t − bo,t − (cp,t − co,t)− ∑

k∈{L,E}

(
Bk

p

Bp
− Bk

o
Bo

)
Q∗

k
Qk

qk,t.

(B.58)

The dynamic system. Using the expression above to eliminate the relative risk expo-
sure, the relative net worth at the no-disaster state is given by

ḃp,t − ḃo,t = (λ̂t + (σ − 1)cs,t) ∑
k∈{L,E}

rk

(
Bk

p

Bp
− Bk

o
Bo

)
+ (ρs + λ − ξ)(bp,t − bo,t)

− (ρs + λ)(cp,t − co,t)− ∑
k∈{L,E}

rk

Bk
p

Bp
(cp,t − cs,t)−

Bk
o

Bo
(co,t − cs,t)

 . (B.59)

The deviation of consumption from average can be written as

cp,t − cs,t =
µoCo

µoCo + µpCp
(cp,t − co,t), co,t − cs,t = −

µpCo

µoCo + µpCp
(cp,t − co,t). (B.60)

Combining the expressions above, we can write ḃp,t − ḃo,t as follows

ḃp,t − ḃo,t = −χ∆b,∆c(cp,t − co,t) + χ∆b,∆b(bp,t − bo,t) + χ∆b,cs cs,t, (B.61)

where χ∆b,cs ≡ (σ − 1)∑k∈{L,E} rk

(
Bk

p
Bp

− Bk
o

Bo

)
, χ∆b,∆b ≡ ρs + λ − ξ, and

χ∆b,∆c ≡ σµc,oµc,p

λ
1
σ
p − λ

1
σ
o

λ

 ∑
k∈{L,E}

rk

(
Bk

o
Bo

−
Bk

p

Bp

)
+(ρs +λ)+ ∑

k∈{L,E}
rk

Bk
p

Bp

µoCo

µoCo + µpCp
+

Bk
o

Bo

µpCp

µoCo + µpCp

 .

In general, we would have to simultaneously solve for the aggregate variables and the
relative net worth and relative consumption of pessimistic savers, which would increase
the dimensionality of the problem relative to the standard New Keynesian. We assume
that rkcs,t = O(||it − rn||2), so this term is small and can be ignored in our approximate
solution. This implies that the system is now block recursive, where we can solve for the
dynamics of relative consumption and relative net worth before fully characterizing the
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behavior of other aggregate variables. Under this assumption, we can write the joint
dynamics of bp,t − bo,t and cp,t − co,t as follows:[

ċp,t − ċo,t

ḃp,t − ḃo,t

]
=

[
0 −ξ̃

−χ∆b,∆c χ∆b,∆b

] [
cp,t − co,t

bp,t − bo,t

]
(B.62)

Persistence of λ̂t. Given that χ∆b,∆c > 0, the system above has a positive and a negative
eigenvalue, so there is a unique bounded solution given by[

cp,t − co,t

bp,t − bo,t

]
=

[χ∆b,∆b+ψλ

χ∆b,∆c

1

]
e−ψλt(bp,0 − bo,0) (B.63)

where

ψλ ≡

√
χ2

∆b,∆b + 4ξ̃χ∆b,∆c − χ∆b,∆b

2
, (B.64)

where ψλ ≥ 0 is strictly increasing in ξ, it is equal to zero if ξ = 0 and it approaches
infinity as ξ → ∞.

We can then write the market-implied disaster probability as follows:

λ̂t = e−ψλtλ̂0, (B.65)

where

λ̂0 ≡ σµc,oµc,p

λ
1
σ
p − λ

1
σ
o

λ

 χ∆b,∆b + ψλ

χ∆b,∆c
(bp,0 − bo,0). (B.66)

Hence, ψλ captures the persistence of λ̂t. If ξ = 0, then ψλ = 0 and changes in λt

are permanent. For high values of ψλ, the effects on λt are transitory and ψλ controls the
speed of the convergence.

Wealth revaluation and λ̂0. The revaluation of the relative net worth is given by

bp,0 − bo,0 = ∑
k∈{L,E}

(
Bk

p

Bp
− Bk

o
Bo

)
qk,0. (B.67)

The price of the long-term bond satisfies the condition

− 1
QL

qL,t + q̇L,t − (it − rn) = rL

[
λ̂t + σcs,t +

Q∗
L

QL − Q∗
L

q∗L,t

]
(B.68)
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Rearranging the expression above, we obtain

q̇L,t − (ρ + ψL)qL,t = (it − rn) + rL(λ̂t + σcs,t). (B.69)

Solving the differential equation above, we obtain

qL,0 = −
ˆ ∞

0
e−(ρ+ψL)t(it − rn)dt −

ˆ ∞

0
e−(ρ+ψL)trL(λ̂t + σcs,t)dt. (B.70)

Suppose it − rn = e−ψmt(i0 − rn) and rLσcs,t = O(||it − rn||2), then

qL,0 = − i0 − rn

ρ + ψL + ψm
− rLλ̂0

ρ + ψL + ψλ
. (B.71)

We focus on the case
BE

p
Bp

= BE
o

Bo
, so the initial relative wealth revaluation is given by

bp,0 − bo,0 = −
(

BL
p

Bp
− BL

o
Bo

)[
i0 − rn

ρ + ψL + ψm
+

rLλ̂0

ρ + ψL + ψλ

]
. (B.72)

Plugging the expression above into the expression for λ̂0

λ̂0 ≡
σµc,oµc,p

(
λ

1
σ
p −λ

1
σ
o

λ

)
χ∆b,∆b+ψλ

χ∆b,∆c

(
BL

o
Bo

− BL
p

Bp

)

1 − σµc,oµc,p

(
λ

1
σ
p −λ

1
σ
o

λ

)
χ∆b,∆b+ψλ

χ∆b,∆c

(
BL

o
Bo

− BL
p

Bp

)
rL

ρ+ψL+ψλ

i0 − rn

ρ + ψL + ψm
. (B.73)

Notice that there is an amplification mechanism between the price of the long-term
bond and the change in disaster probability. A wealth redistribution towards pessimistic
investors tends to increase λ̂0. An increase in λ̂0 depresses the value of long-term bonds,
redistributing towards pessimistic investors, further increasing λ̂t.

Workers’ consumption. Log-linearizing workers’ budget constraint, we obtain

cw,t =
WNw

PCw
(wt − pt − nw,t) +

Y
Cw

T′
w(Y)yt. (B.74)

Using the fact that wt − pt − nw,t = (1 + ϕ)yt, we can write the expression above as
follows

cb,t = χyyt. (B.75)
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where χy ≡ WNw
PCw

(1 + ϕ) + Y
Cw

T′
w(Y).

Savers’ Euler equation. Linearizing the Euler equation for savers, we obtain

ċs,t = σ−1 (it − πt − rn) +
λ

σ

(
Cs

C∗
s

)σ [
σcs,t + λ̂t

]
. (B.76)

Phillips curve. Linearizing the Phillips curver, we obtain

π̇t = ρπt − κyt, (B.77)

where κ ≡ ϕϵ
φ

WN
P .

B.4 Asset prices

Stock prices. Linearizing the expression for rE,t, we obtain

Π
QE

(Π̂t − qE,t) + q̇E,t − (it − πt − rn) = rE

[
λ̂t + σcs,t +

Q∗
E

QE − Q∗
E

qE,t

]
. (B.78)

Rearranging the expression above, we obtain

q̇E,t − ρqE,t = − 1
QE

Π̂t + (it − πt − rn) + rE
[
λ̂t + σcs,t

]
, (B.79)

where τ̂t = − log 1−τt
1−τ and

Π̂t = −τ̂tΠ + (1 − τ)(yt − (1 − α)(wt − pt − nt))Y (B.80)

Solving the differential equation above, we obtain

qE,t =
1

QE

ˆ ∞

t
e−ρ(s−t)Π̂sds −

ˆ ∞

t
e−ρ(s−t) [(is + πs − rn) + rE(λ̂t + σcs,t)

]
ds. (B.81)
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C Derivations for Section 3

C.1 Equilibrium determinacy and the Taylor principle

Combining the dynamics of the output and inflation from Proposition 2 and the Taylor
rule it = rn + ϕπ + ϵt, we obtain the dynamic system[

ẏt

π̇t

]
=

[
δ −σ̃−1(1 − ϕπ)

−κ ρ

]
+

[
ν̃t

0

]
, (C.1)

where

ν̃t = σ̃−1ut +
1 − µw

1 − µwχy

λ

σ

(
Cs

C∗
s

)σ

e−ψλtλ̂0. (C.2)

The eigenvalues of the system incorporating the Taylor rule are given by

ωT =
ρ + δ +

√
(ρ + δ)2 + 4(σ̃−1(1 − ϕπ)κ − ρδ)

2
, ωT =

ρ + δ −
√
(ρ + δ)2 + 4(σ̃−1(1 − ϕπ)κ − ρδ)

2
.

(C.3)

The two eigenvalues above will be positive, and there will be a unique locally bounded
solution, if the following condition is satisfied

σ̃−1(1 − ϕπ)κ − ρδ̃ < 0 ⇒ ϕπ ≥ 1 − ρδ

σ̃−1κ
≡ ϕπ < 1 (C.4)

and ϕπ > 0 if Assumption 1 holds. As cs,t increases with yt, given (µbχy < 1), risk is pro-
cyclical for savers in our economy. Bilbiie (2018) and Acharya and Dogra (2020) show that
procyclical uninsurable idiosyncratic risk reduces the threshold on the response of mon-
etary policy to inflation required to achieve local determinacy. A similar phenomenon
happens in our case with aggregate disaster risk. Notice that the jump in marginal utility

in the disaster state is given by
(

Cs,t
C∗

s,t

)σ
, which in log-linear form is given by σcs,t. As cs,t is

increasing in yt if µbχy < 1, so the jump in marginal utility is procyclical in our economy.

C.2 Solving the dynamic system

We can write dynamic system (20) in matrix form as Żt = AZt + Bνt, where B = [1, 0]′.
Applying the spectral decomposition to matrix A, we obtain A = VΩV−1 where V =[

ρ−ω
κ

ρ−ω
κ

1 1

]
, V−1 = κ

ω−ω

[
−1 ρ−ω

κ

1 − ρ−ω
κ

]
, and Ω =

[
ω 0
0 ω

]
. Decoupling the system, we

obtain żt = Ωzt + bνt, where zt = V−1Zt and b = V−1B.
Solving the equation with a positive eigenvalue forward and the one with a negative
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eigenvalue backward, and rotating the system back to the original coordinates, we obtain

yt = V12

(
V21y0 + V22π0

)
eωt − V11V11

ˆ ∞

t
e−ω(z−t)νzdz + V12V21

ˆ t

0
eω(t−z)νzdz

πt = V22

(
V21y0 + V22π0

)
eωt − V21V11

ˆ ∞

t
e−ω(z−t)νzdz + V22V21

ˆ t

0
eω(t−z)νzdz,

where Vi,j is the (i, j) entry of matrix V−1. Integrating e−ρtyt and using the intertemporal
budget constraint,

Ω0 = V12

(
V21y0 + V22π0

) 1
ρ − ω

− 1
ρ − ω

V11V11
ˆ ∞

0

(
e−ωt − e−ρt

)
νtdt +

1
ρ − ω

V12V21
ˆ ∞

0
e−ρtνtdt.

Rearranging the above expression, we obtain

V12

(
V21y0 + V22π0

)
= (ρ − ω)Ω0 +

ρ − ω

ρ − ω
V11V11

ˆ ∞

0

(
e−ωt − e−ρt

)
νtdt − V12V21

ˆ ∞

0
e−ρtνtdt.

Output is then given by yt = ỹt + (ρ − ω)eωtΩ0, where ỹt = − ω−ρ
ω−ω

´ ∞
t e−ω(z−t)νzdz +

ω−δ
ω−ω

´ t
0 eω(t−z)νzdz − ρ−ω

ω−ω eωt ´ ∞
0 e−ωzνzdz. Inflation is given by πt = π̃t + κeωtΩ0, where

π̃t =
κ

ω−ω

´ ∞
t e−ω(z−t)νzdz + κ

ω−ω

´ t
0 eω(t−z)νzdz − κ

ω−ω eωt ´ ∞
0 e−ωzνzdz.

C.3 Intertemporal budget constraint

The following lemma characterizes the intertemporal budget constraint faced by savers.

Lemma 3 (Savers’ intertemporal budget constraint). The intertemporal budget budget con-
straint (IBC) for individual savers and the aggregate of all savers are given by

i. Individual IBC:
E0

[ˆ ∞

0

ηt

η0
Cj,t(s)

]
= Bj,t(s). (C.5)

ii. Savers’ aggregate IBC:

Et

[ˆ ∞

0

ηt

η0
Cs,tdt

]
= Bs,t, (C.6)

where Bs,t =
DG,t+QE,t

1−µw
.

Proof. We consider first the derivation of the individual intertemporal budget constraint.
The net worth of a type-j saver born at date s evolves according to

dBj,t(s) = (it − πt)Bj,t(s) + rL,tBL
j,t(s) + rE,tBE

j,t(s) + Tj,t − Cj,t(s) + ∑
k∈{L,E}

Bk
s,t

Q∗
k,t − Qk,t

Qk,t
dNt,

(C.7)

25



so the expected change in the net worth scaled by SDF is given by

Et[d(ηtBj,t(s))]
ηtdt

=

[
−(it − πt)− λt

(
η∗

t
ηt

− 1
)]

Bj,t(s) + (it − πt)Bj,t(s) + rL,tBL
j,t(s) + rE,tBE

j,t(s)

Tj,t − Cj,t(s) + λt

[
η∗

t
ηt

B∗
j,t(s)− Bj,t(s)

]
, (C.8)

using Ito’s lemma and Etdηt/ηt = −(it − πt)dt.
Integrating the expression above and using the fact that rk,t = λt

η∗
t

ηt

Qk,t−Q∗
k,t

Qk,t
, we obtain

Et[ηTBj,T(s)]
ηt

− Bj,t(s) = Et

[ˆ T

t

ηz

ηt
(Tj,z − Cj,z(s))dz

]
(C.9)

Given that the household problem with constant mortality rate ξ is identical to the
problem of an infinite-horizon household with an additional discount ξ, the standard
transversality condition holds3

lim
T→∞

Ej,t

[
e−ρjTC−σ

j,T (s)Bj,T(s)
]
= 0, (C.10)

where ρj ≡ ρ̃j + ξ.
We can change measure and price Bj,t(s) using the market-implied probabilities:

lim
T→∞

Et
[
ηTBj,T(s)

]
= 0, (C.11)

Combining the expressions above, we obtain the intertemporal budget constraint:

Et

[ˆ ∞

t

ηz

ηt
Cj,z(s)dz

]
= Bj,t(s) + Et

[ˆ ∞

t

ηz

ηt
Tj,zdz

]
. (C.12)

Notice that Cj,z(s) denotes planned consumption for time z for a type-j saver born at
date s, conditional on being alive. In particular, this equation implies that, for any date
for the household’s death t′ ≥ t, we obtain

Et

[ˆ t′

t

ηz

ηt
(Cj,z(s)− Tj,z)dz +

ηt′

ηt
Bj,t′(s)

]
= Bj,t(s), (C.13)

where Bj,t′(s) denotes the (involuntary) bequest.
To simplify the aggregation process, it is helpful to index savers in a different way. Let

3Merton (1992) provides a general proof of this equivalence for stochastic economies (see Chapter 5)
and Blanchard (1985) provides a discussion in the context of an otherwise deterministic model.
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i ∈ [µw, 1] index the family (or dynasty) of a given saver. At each point in time, a family
has a single member that derives no utility from bequests and faces mortality risk with
intensity ξ ≥ 0. As the member of the family dies, she is replaced by a new member
who inherits the wealth, but may have a different type. Let Ci,t denote the consumption
of family i’s member at time t, Ti,t the transfer to family i, Bi,t the net worth of family i,
j(i, t) ∈ {o, p} the type of the member of the family, and s(i, t) the birth date of the current
member.

Under this alternative notation, we can write the IBC of family i as follows:

Et

[ˆ t′

t

ηz

ηt
(Ci,z − Ti,z)dz +

ηt′

ηt
Bi,t′

]
= Bi,t, (C.14)

where t′ is the time of death and Bi,t′ is the involuntary bequest. Integrating this forward,
the IBC is then given by

Et

[ˆ ∞

t

ηz

ηt
Ci,zdz

]
= Bi,t + Et

[ˆ ∞

t

ηz

ηt
Ti,zdz

]
, (C.15)

The aggregate consumption and net worth of savers is given by Cs,t =
1

1−µw

´ 1
µw

Ci,tdi

and Bs,t =
1

1−µw

´ 1
µw

Bi,tdi. Aggregating the equation above across families, we obtain

Et

[ˆ ∞

t

ηz

ηt
Cs,zdz

]
= Bs,t + Et

[ˆ ∞

t

ηz

ηt
Ts,zdz

]
, (C.16)

where Bs,t =
DG,t+QE,t

1−µw
, using the market clearing condition for bonds and equities.

Aggregate IBC. Applying a similar argument to workers, we obtain

Et

[
ηT

ηt
Bw,T

]
− Bw,t = Et

[ˆ T

t

ηz

ηt

(
Wz

Pz
Nw,z + T̃w,z − Cw,z

)
dz

]
. (C.17)

Using the fact that Bw,t = 0, so limT→∞ Et

[
ηT
ηt

Bw,T

]
= 0, we obtain

Et

[ˆ ∞

t

ηz

ηt
Cw,zdz

]
= Et

[ˆ ∞

t

ηz

ηt

(
Wz

Pz
Nw,z + Tw,z

)
dz
]
+ Bw,t. (C.18)
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Combining the expression above with the IBC for savers, we obtain

Et

[ˆ ∞

t

ηz

ηt
Czdz

]
= Et

[ˆ ∞

t

ηz

ηt

(
Wz

Pz
Nz + Tz

)
dz
]
+ DG,t + QE,t, (C.19)

where Ct ≡ µwCw,t + (1 − µw)Cs,t and Tt = ∑j∈{w,o,p} µjTj,t.

Let QC,0 ≡ E0

[´ ∞
0

ηt
η0

Ctdt
]

denote the value of the aggregate consumption claim and

QH,0 ≡ E0

[´ ∞
0

ηt
η0

(
Wt
Pt

Nt + Tt

)
dt
]

denote the value of human wealth (after transfers).
These claims satisfy the following pricing conditions:

rC,t = λt

(
Cs,t

C∗
s,t

)σ
QC,t − Q∗

C,t

QC,t
, rH,t = λt

(
Cs,t

C∗
s,t

)σ
QH,t − Q∗

H,t

QH,t
, (C.20)

where rC,t ≡ Ct
QC,t

+
Q̇C,t
QC,t

− (it − πt) and rC,t ≡
Wt
Pt

Nt+Tt

QH,t
+

Q̇H,t
QH,t

− (it − πt).
The price of the consumption claim in the stationary equilibrium satisfies the condi-

tion

C
QC

− rn = λ

(
Cs

C∗
s

)σ [
1 −

Q∗
C

QC

]
⇒ QC =

C + λ
(

Cs
C∗

s

)σ C∗
r∗n

ρ
(C.21)

Linearizing the pricing condition, we obtain

q̇C,t − ρqC,t = − C
QC

ct + it − πt − rn + rC pd,t, (C.22)

where we used the fact that C
QC

= rn + λ
(

Cs
C∗

s

)σ QC−Q∗
C

QC
= ρ − λ

(
Cs
C∗

s

)σ Q∗
C

QC
.

Integrating the expression above forward, we obtain

qC,0 =
C

QC

ˆ ∞

0
e−ρtctdt −

ˆ ∞

0
e−ρt (it − πt + rC pd,t) dt. (C.23)

Similarly, the initial price of the claim on human wealth is given by

qH,0 =
Y

QH

ˆ ∞

0
e−ρt [(1 − α)(wt − pt + nt) + T̂t

]
dt −

ˆ ∞

0
e−ρt (it − πt + rH pd,t) dt,

(C.24)
where 1 − α ≡ WN

PY and T̂t =
Tt−T

Y
The linearized intertemporal budget constraint is given by

QCqc,0 = QHqH,0 + DGqL,0 + QEqE,0. (C.25)
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We can write the expression above as follows

ˆ ∞

0
e−ρtctdt − QC

Y

ˆ ∞

0
e−ρt (it − πt − rn + rC pd,t) dt =

ˆ ∞

0
e−ρt [(1 − α)(wt − pt + nt) + T̂t

]
dt

− QH

Y

ˆ ∞

0
e−ρt (it − πt − rn + rH pd,t) dt +

DG

Y
qL,0 +

ˆ ∞

0
e−ρtΠ̂tdt

− QE

Y

ˆ ∞

0
e−ρt[it − πt − rn + rE pd,t]dt (C.26)

Rearranging the expression above, we obtain

ˆ ∞

0
e−ρtctdt =

ˆ ∞

0
e−ρt [Π̂t + (1 − α)(wt − pt + nt) + T̂t

]
dt +

DG

Y
qL,0

QC − QH − QE

Y

ˆ ∞

0
e−ρt (it − πt − rn) dt +

ˆ ∞

0
e−ρt

[
QC

Y
rC − QH

Y
rH − QE

Y
rE

]
pd,tdt.

(C.27)

From the aggregate IBC in the no-disaster and disaster state, we obtain QC = QH +

DG + QE and Q∗
C = Q∗

H + D∗
G + Q∗

E, where D∗
G ≡ DG

Q∗
L

QL
. We then obtain the following

condition

QC

Y
rC − QH

Y
rH − QE

Y
rE = λ

(
Cs

C∗
s

)σ

[QC − Q∗
C − (QH − Q∗

H)− (QE − Q∗
E)]

1
Y

=
DG

Y
rL. (C.28)

We can then write the discount value of consumption as follows:

ˆ ∞

0
e−ρtctdt = Ω0, (C.29)

where

Ω0 ≡
ˆ ∞

0
e−ρt [Π̂t + (1 − α)(wt − pt + nt) + T̂t

]
dt+ dGqL,0 + dG

ˆ ∞

0
e−ρt (it − πt − rn + rL pd,t) dt.

(C.30)

C.4 Wealth effects and Hicksian compensation

In this subsection, we show that Ω0 corresponds to (minus) the sum of the Hicksian wealth
compensation for each household. Let ej(η, U) define the expenditure function

ej(η, U) = min
{Cj}

E0

[ˆ t∗

0

ηt

η0
Cj,tdt +

ˆ ∞

t∗

η∗
t

η0
C∗

j,tdt

]
, (C.31)
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subject to E0

[´ t∗
0 e−ρjt

C1−σ
j,t

1−σ dt +
´ ∞

t∗ e−ρt (C
∗
j,t)

1−σ

1−σ dt
]
= U. The solution to this problem is

the Hicksian demand Ch
j,t(η, U) and Ch,∗

j,t (η, U) in the no-disaster and disaster states.
Let η′ denote an alternative price process and U′ the corresponding utility under

the new equilibrium. Mas-Colell et al. (1995) (see page 62) defines the Hicksian wealth
compensation as ej(η

′, U) − ej(η
′, U′). We focus on a first-order approximation, that is,

η′
t/η′

0 = ηt/η0 + η̃t, where η̃t is small. Let c̃j,t ≡ log Ch
j,t(η

′, U)/Ch
j,t(η, U). Plugging the

expression for Ch
j,t(η

′, U) into the constraint and linearizing, we obtain

E0

[ˆ t∗

0
e−ρjtCh

j,t(η, U)1−σ c̃j,tdt +
ˆ ∞

t∗
e−ρjtCh,∗

j,t (η, U)1−σ c̃∗j,tdt

]
= 0. (C.32)

Notice this implies that E0

[´ t∗
0

ηt
η0

Ch
j,t(η, U)c̃j,tdt +

´ ∞
t∗

η∗
t

η0
Ch,∗

j,t (η, U)c̃∗j,tdt
]
= 0. As workers

do not engage in intertemporal substitution, we set c̃w,t = c̃∗w,t = 0, so this equation would
hold for them as well. We can then write ej(η

′, U) as follows

ej(η
′, U) = E0

[ˆ t∗

0

η′
t

η′
0

Ch
j,t(η, U)dt +

ˆ ∞

t∗

η′
t

η′
0

C∗,h
j,t (η, U)dt +

ˆ t∗

0

ηt

η0
Ch

j,t(η, U)c̃j,tdt +
ˆ ∞

t∗

η∗
t

η0
Ch,∗

j,t (η, U)c̃∗j,tdt

]
,

= E0

[ˆ t∗

0

η′
t

η′
0

Ch
j,t(η, U)dt +

ˆ ∞

t∗

η′
t

η′
0

C∗,h
j,t (η, U)dt

]
. (C.33)

We assume that the initial equilibrium corresponds to the stationary equilibrium, so
Ch

j,t(η, U) = Cj and Ch,∗
j,t (η, U) = C∗

j . Therefore, the Hicksian wealth compensation is
given by

ej(η
′, U)− ej(η

′, U′) = E0

[ˆ t∗

0

η′
t

η′
0

Cjdt +
ˆ ∞

t∗

η′
t

η′
0

C∗
j dt

]
−E0

[ˆ t∗

0

η′
t

η′
0

Cj,tdt +
ˆ ∞

t∗

η′
t

η′
0

C∗
j,tdt

]
,

(C.34)
which corresponds to the definition given in the text after aggregation.

Let Q̃C,0 ≡ E0

[´ t∗
0

η′
t

η′
0
Cdt +

´ ∞
t∗

η′
t

η′
0
C∗dt

]
and QC,0 ≡ E0

[´ t∗
0

η′
t

η′
0
Ctdt +

´ ∞
t∗

η′
t

η′
0
C∗

t dt
]
. In a

stationary equilibrium, we have that Q̃C = QC. Linearizing these two expressions, we
obtain

QC q̃C,0 = −QC

ˆ ∞

0
e−ρt[it − πt − rn + rC pd,t]dt (C.35)

QC q̃C,0 = Y
ˆ ∞

0
e−ρtctdt − QC

ˆ ∞

0
e−ρt[it − πt − rn + rC pd,t]dt. (C.36)
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Figure D.1: Estimated IRFs.

This implies that, up to first order, the Hicksian wealth compensation is given by

∑
j∈{w,o,p}

µj
[
ej(η

′, U)− ej(η
′, U′)

]
= −Y

ˆ ∞

0
e−ρtctdt = −YΩ0. (C.37)

Therefore, Ω0 corresponds to (minus) the sum of the Hicksian wealth compensation
for all households.

D Estimation of Fiscal Response to a Monetary Shock

We estimate the empirical IRFs using a VAR identified by a recursiveness assumption,
as in Christiano et al. (1999), extended to include fiscal variables. The variables included
are: real GDP per capita, CPI inflation, real consumption per capita, real investment per
capita, capacity utilization, hours worked per capita, real wages, tax revenues over GDP,
government expenditures per capita, the federal funds rate, the 5-year constant maturity
rate, and the real value of government debt per capita. We estimate a four-lag VAR using
quarterly data for the period 1962:1-2007:3. The identification assumption of the mone-
tary shock is as follows: the only variables that react contemporaneously to the monetary
shock are the federal funds rate, the 5-year rate and the value of government debt. All
other variables, including tax revenues and expenditures, react with a lag of one quarter.

Data sources. The data sources are: Nominal GDP: BEA Table 1.1.5 Line 1; Real GDP:
BEA Table 1.1.3 Line 1, Consumption Durable: BEA Table 1.1.3 Line 4; Consumption
Non Durable: BEA Table 1.1.3 Line 5; Consumption Services: BEA Table 1.1.3 Line 6; Pri-
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(1) (2) (3) (4) (5) (1) - (2) - (3) + (4) - (5)
Revenues Interest Payments Transfers & Debt in T Initial Debt Residual

Expenditures

Data -26 68.88 -12.09 2.91 -49.74 30.13
[-72.89,20.89] [30.01,107.75] [-48.74,24.56] [-12.79,18.62] [-68.03,-31.46] [-4.74,65]

Table D.1: The impact on fiscal variables of a monetary policy shock
Note: Calculations correspond to a a 100 bps unanticipated interest rate increase. Confidence interval at 95% level.

vate Investment: BEA Table 1.1.3 Line 7; GDP Deflator: BEA Table 1.1.9 Line 1; Capacity
Utilization: FRED CUMFNS; Hours Worked: FRED HOANBS; Nominal Hourly Com-
pensation: FRED COMPNFB; Civilian Labor Force: FRED CNP16OV; Nominal Rev-
enues: BEA Table 3.1 Line 1; Nominal Expenditures: BEA Table 3.1 Line 21; Nominal
Transfers: BEA Table 3.1 Line 22; Nominal Gov’t Investment: BEA Table 3.1 Line 39;
Nominal Consumption of Net Capital: BEA Table 3.1 Line 42; Effective Federal Funds
Rate (FF): FRED FEDFUNDS; 5-Year Treasury Constant Maturity Rate: FRED DGS5;
Market Value of Government Debt: Hall et al. (2018).

All the variables are obtained from standard sources, except for the real value of debt,
which we construct from the series provided by Hall et al. (2018). We transform the series
into quarterly frequency by keeping the market value of debt in the first month of the
quarter. This choice is meant to avoid capturing changes in the market value of debt
arising from changes in the quantity of debt after a monetary shock instead of changes in
prices.

VAR estimation. Figure D.1 shows the results. As is standard in the literature, we find
that a contractionary monetary shock increases the federal funds rate and reduces output
and inflation on impact. Moreover, the contractionary monetary shock reduces consump-
tion, investment, and hours worked.

The Government’s Intertemporal Budget Constraint. The fiscal response in the model
corresponds to the present discounted value of transfers over an infinite horizon, that is,

∑∞
t=0 β̃tTt, where β̃ = 1−λ

1+ρs
. We next consider its empirical counterpart. First, we calculate
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a truncated intertemporal budget constraint from period zero to T :

byb0︸︷︷︸
debt

revaluation

=
T
∑
t=0

β̃t

 τyt + τt︸ ︷︷ ︸
tax revenue

− β̃−1by(im
t−1 − πt − rn)︸ ︷︷ ︸

interest payments

− T0,T + β̃T bybT︸ ︷︷ ︸
other transfers/expenditures

& final debt

(D.1)

The right-hand side of (D.1) is the present value of the impact of a monetary shock on
fiscal accounts. The first term represents the change in revenues that results from the real
effects of monetary shocks. The second term represents the change in interest payments
on government debt that results from change in nominal rates. The last two terms are
adjustments in transfers and other government expenditures, and the final debt position
at period T , respectively. In particular, T0,T represents the present discounted value of
transfers from period 0 through T . Provided that T is large enough, such that (yt, τt, it)

have essentially converged to the steady state, then the value of debt at the terminal date,
bT , equals (minus) the present discounted value of transfers and other expenditures from
period T onward. Hence, the last two terms combined can be interpreted as the present
discounted value of fiscal transfers from zero to infinity. Finally, the left-hand side repre-
sents the revaluation effect of the initial stock of government debt.

Table D.1 shows the impact on the fiscal accounts of a monetary policy shock, both in
the data and in the estimated model. We first apply equation (D.1) to the data and check
whether the difference between the left-hand side and the right-hand side is different
from zero. The residual is calculated as

Residual = Revenues - Interest Payments - Transfers + Debt in T - Initial Debt

We truncate the calculations to quarter 60, that is, T = 60 (15 years) in equation (D.1).
The results reported in Table D.1 imply that we cannot reject the possibility that the resid-
ual is zero and, therefore, we cannot reject the possibility that the intertemporal budget
constraint of the government is satisfied in our estimation.

The adjustment of the fiscal accounts in the data corresponds to the patterns we ob-
served in Figure 1. The response of initial debt is quantitatively important, and it accounts
for the bulk of the adjustment in the fiscal accounts.

EBP. To estimate the response of the corporate spread in the data, we add the EBP mea-
sure of Gilchrist and Zakrajšek (2012) into our VAR (ordered after the fed funds rate).
Since the EBP is only available starting in 1973, we reduce our sample period to 1973:1-
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Figure D.2: IRFs for the federal funds rate and excess bond premium.

2007:7. The estimated IRFs are in line with those obtained for the longer sample. We find
a significant increase of the EBP on impact, of 6.5 bps, in line with the estimates in the
literature.
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