A Monetary Policy Asset Pricing Model

Ricardo J. Caballero (MIT) Alp Simsek (Yale SOM)

Summer 2023

Caballero (MIT) and Simsek (Yale) ()

Monetary Policy Asset Pricing

Summer 2023 1 / 26

Chair Powell, September 2022 FOMC press conference:

- "Monetary policy does, famously, work with long and variable lags..."
- "Our policy decisions affect financial conditions immediately..."
- "Financial conditions begin to affect activity...within a few months"

Financial conditions: Summary measure of aggregate asset prices

• Stock/house valuations, interest rates/spreads... (Goldman's FCI)

We reverse engineer the Fed's policy problem to solve for "pystar"

Under optimal policy, asset prices can't deviate much from "pystar"...

Source: Bloomberg

Neel Kashkari (Pres. Minneapolis Fed): "I was actually happy to see how Chair Powell's Jackson Hole speech was received..."

Results: Fed's belief about macro needs drives "pystar"

Baseline (standard) model without lags: CB ensures AD=AS

• Macro (AD vs AS) drives "pystar" (finance drives relative prices)

Main model with transmission lags: CB needs to anticipate future

- "pystar" is driven by the CB's beliefs about future AD vs AS
- More precise news >>> Less output volatility, more market volatility

Inertia:

- CB overshoots asset prices in opposite direction of output gaps
- Demand and supply-driven inflation is bad news for asset prices

CB-market disagreements: Market perceives "mistakes"

• Market demands policy risk premium & thinks "behind the curve"

Baseline model: Macro vs finance drivers of asset prices

- 2 Asset pricing with transmission lags
- 3 Asset pricing with inertia
- ④ Disagreements: Policy risk premium and "behind-the-curve"

Supply side: Demand-driven output (Keynes)

• Potential output $Y_t^* \simeq A_t$. Subject to supply shocks (in logs):

$$y_{t+1}^* = y_t^* + z_{t+1}, \text{ where } z_{t+1} \sim N(0, \sigma_z^2)$$

- Nominal rigidities. Output is determined by aggregate demand
 - Fully sticky prices. In the paper, we introduce a Phillips curve
- Labor is supplied by hand-to-mouth agents. They generate multiplier but are otherwise uninteresting
- Capital is held by asset-holding households. They drive demand...

Demand depends on asset prices

- Asset-holding households have standard time-separable log utility
- But they do not **necessarily** make optimal decisions. Follow **rules**
 - Shortcut to introduce frictions such as transmission lags and inertia
- Baseline: Mostly follow the optimal consumption rule with log utility:

$$C_{t}^{H} = \underbrace{(1 - \beta)}_{\text{MPC}} \times \underbrace{(\alpha Y_{t} + P_{t} \exp(\delta_{t}))}_{\text{Wealth (Market portfolio)}} \text{ where } \underbrace{\delta_{t} \sim N\left(0, \sigma_{\delta}^{2}\right)}_{\text{demand shocks}}$$

Wealth effect captures channels that link demand to asset prices P_t

Demand depends on asset prices

- Asset-holding households have standard time-separable log utility
- But they do not **necessarily** make optimal decisions. Follow **rules**
 - Shortcut to introduce frictions such as transmission lags and inertia
- Baseline: Mostly follow the optimal consumption rule with log utility:

$$C_t^{H} = \underbrace{(1 - \beta)}_{\text{MPC}} \times \underbrace{(\alpha Y_t + P_t \exp(\delta_t))}_{\text{Wealth (Market portfolio)}} \text{ where } \underbrace{\delta_t \sim N\left(0, \sigma_{\delta}^2\right)}_{\text{demand shocks}}$$

Wealth effect captures channels that link demand to asset prices P_t

- Transmission lags: React to past asset prices P_{t-1}
- Inertia: Partly react to past spending C_{t-1}^H

Finance: Standard asset pricing with SDF driven by wealth

• Market portfolio: Claim on αY_t with log return (approximately):

$$r_{t+1} = \kappa + (1 - \beta) y_{t+1} + \beta p_{t+1} - p_t$$

• Risk-free asset is in zero net supply. Central bank sets $i_t = \log R_t^f$

Market: Managers choose portfolio weight ω_t to maximize log wealth

• Equilibrium is like CAPM: Risk premium is the variance of wealth:

$$i_{t} = E_{t}^{M}\left[r_{t+1}\right] + \frac{1}{2} \operatorname{var}_{t}^{M}\left[r_{t+1}\right] - \underbrace{\operatorname{var}_{t}^{M}\left[r_{t+1}\right]}_{\text{risk premium}}$$

CB tools: It controls the **aggregate asset price** p_t , by adjusting i_t

CB objectives: It minimizes the expected quadratic gaps:

$$\sum_{h=0}^{\infty} \beta^{h} E_{t}^{\mathsf{F}} \left[\tilde{y}_{t+h}^{2} \right] \quad \text{ where } \tilde{y}_{t} = y_{t} - y_{t}^{*}$$

In the baseline model, it closes the gaps at all times:

$$\tilde{y}_t = 0$$
 (or $Y_t = Y_t^*$)

$$C_t^H = (1 - \beta) (\alpha Y_t + P_t \exp(\delta_t)) \text{ and } Y_t = C_t^H / \alpha$$

$$\Longrightarrow$$

$$Y_t = \frac{1}{\alpha\beta} (1 - \beta) P_t \exp(\delta_t)$$

$$\Longrightarrow$$

$$y_t = m + p_t + \delta_t$$

• The Fed sets $y_t = y_t^* \Longrightarrow$

$$p_t^* \equiv y_t^* - m - \delta_t$$

Caballero (MIT) and Simsek (Yale) ()

Summer 2023 11 / 26

• Market belief shocks: Suppose $z_{t+1} \sim^{M} N(b_t, \sigma_z^2), b_t \sim N(0, \sigma_b^2)$ **Result:** Fed implements "pystar" by setting the appropriate rate:

$$p_t^* = y_t^* - m - \delta_t$$

$$i_t = \rho + \delta_t + b_t - \frac{1}{2}rp_t \text{ where } rp_t = \sigma_z^2 + \beta^2 \sigma_\delta^2$$

Corollary: AD shocks create "excess" policy-induced price volatility

• Note: This volatility plays a useful macroeconomic stabilization role

Corollary (Fed put): Financial forces (b_t) don't affect p_t . Absorbed by i_t

• Finance drives relative prices, e.g., P_t^s vs P_t^b where $P_t = P_t^s + P_t^b$

Baseline model: Macro vs finance drivers of asset prices

2 Asset pricing with transmission lags

3 Asset pricing with inertia

Oisagreements: Policy risk premium and "behind-the-curve"

Monetary policy works with long lags and inertia

- So far, monetary policy is powerful: It can set $y_t = y_t^*$ at all states
- In practice, MP has much weaker control over aggregate demand
- Important constraint: MP affects demand with lags and inertia

FIGURE 2. THE EFFECT OF MONETARY POLICY ON OUTPUT

Figure: Romer-Romer (2004), "A New Measure of Monetary Shocks"

Stock market wealth effect also works with very similar lags

• We capture lags by modifying the consumption rule:

$$C_t^H = (1 - \beta) (\alpha Y_t + P_{t-1} \exp(\delta_t))$$

$$\implies$$

$$y_t = m + p_{t-1} + \delta_t$$

• With lags, the Fed can't set $y_t = y_t^*$. Optimal policy implies:

$$\begin{aligned} E_t^F \left[y_{t+1} \right] &= E_t^F \left[y_{t+1}^* \right] \\ \tilde{y}_{t+1} &= \tilde{\delta}_{t+1} - E_t^F \left[\tilde{\delta}_{t+1} \right] \text{ where } \tilde{\delta}_{t+1} \equiv \delta_{t+1} - z_{t+1} \end{aligned}$$

Transmission lags: The Fed's belief drives asset prices

• The Fed targets
$$E_t^F[y_{t+1}] = E_t^F[y_{t+1}^*] \Longrightarrow$$

$$p_t^* = y_t^* - E_t^F \left[\tilde{\delta}_{t+1} \right] - m$$

Result: "pystar" is decreasing in the Fed's belief about future net AD

Transmission lags: The Fed's belief drives asset prices

• The Fed targets
$$E_t^F[y_{t+1}] = E_t^F[y_{t+1}^*] \Longrightarrow$$

$$p_t^* = y_t^* - E_t^F \left[\tilde{\delta}_{t+1} \right] - m$$

Result: "pystar" is decreasing in the Fed's belief about future net AD

Macro news: Suppose agents receive signal about future AD:

$$s_t = \delta_{t+1} + e_t$$

• Fed's posterior belief is $\delta_{t+1} \sim N\left(\gamma s_t, \sigma_{\overline{\delta}}^2\right)$ where $\sigma_{\overline{\delta}}^2 < \sigma_{\delta}^2$. Then:

$$p_t^* = y_t^* - \gamma s_t - m$$
 and $y_{t+1} = y_t^* + \delta_{t+1} - \gamma s_t$

Result: More precise news \Longrightarrow Less volatile y_{t+1} but more volatile p_t

Baseline model: Macro vs finance drivers of asset prices

- 2 Asset pricing with transmission lags
- 3 Asset pricing with inertia

Oisagreements: Policy risk premium and "behind-the-curve"

Inertia: The Fed overshoots asset prices opposite to gap

$$C_{t}^{H} \sim \begin{bmatrix} \eta \beta C_{t-1}^{H} + (1 - \eta) (1 - \beta) P_{t-1} \end{bmatrix} \exp(\delta_{t})$$

$$\Longrightarrow$$
$$y_{t} \sim \eta y_{t-1} + (1 - \eta) P_{t-1} + \delta_{t}$$

• The Fed still targets $E_t^F[y_{t+1}] = E_t^F[y_{t+1}^*] \Longrightarrow$

$$p_t^* = y_t^* - \underbrace{\frac{\eta}{1-\eta} \tilde{y}_t}_{\text{overshooting}} - \frac{E_t^F \left[\tilde{\delta}_{t+1}\right]}{1-\eta} - m$$

Result: With output gaps, Fed **overshoots** *p* & induces "**disconnect**"

Corollary: Output gap and aggregate asset price are negatively correlated

Inflation is bad news for asset prices and returns

• We introduce inflation via the standard NKPC

$$\pi_t = \kappa \tilde{y}_t + \beta E_t \left[\pi_{t+1} \right]$$

• The Fed now minimizes $E_t^F \left[\sum \beta^h \left(\tilde{y}_{t+h}^2 + \psi \pi_{t+h}^2 \right) \right]$

Result: With common beliefs:

• $E_t[\tilde{y}_{t+1}] = E_t[\pi_{t+1}] = 0$ ("divine coincidence" in expectation)

Inflation depends only on current demand & supply shocks:

$$\pi_t = \kappa \tilde{y}_t$$

Corollary of overshooting:

- Demand and supply-driven inflation is bad news for asset prices
- Inflation risk premium (extra return on i_t^n vs i_t) is typically positive

Baseline model: Macro vs finance drivers of asset prices

2 Asset pricing with transmission lags

3 Asset pricing with inertia

Disagreements: Policy risk premium and "behind-the-curve"

Markets disagree with the Fed and perceive "mistakes"

Figure 1: Which of the following do you think pose the biggest risks to the current relative market stability? Please select up to three

Markets Economics

Most Central Banks Seen as Behind the Curve in Global Survey

How do disagreements and perceived "mistakes" affect asset prices?

• Back to model without inflation. Suppose agent $j \in \{F, M\}$ thinks:

$$s_t + \mu_t^j =^j \delta_{t+1} + e_t$$

- Heterogeneous interpretations μ_t^F, μ_t^M with corr $(\mu_t^F, \mu_t^M) = 1 \frac{D}{2}$
- $D \ge 0$ captures the scope for **new disagreements**
- Posterior beliefs are not the same:

$$E_t^j \left[\delta_{t+1} \right] = \gamma \left(s_t + \mu_t^j \right)$$

• Agents think other agent's belief is a noisy version of own belief:

$$Var^{M}$$
 (Fed's belief) = Var^{M} (Own belief) + $\gamma^{2}D\sigma_{\mu}^{2}$

• The Fed targets the same "pystar" as before under its belief:

$$p_{t+1}^{*} = y_{t+1}^{*} - \frac{\eta}{1-\eta} \tilde{y}_{t+1} - \frac{\gamma \left(s_{t+1} + \mu_{t+1}^{F}\right)}{1-\eta} - m$$

- Market perceives "mistake": Price "should" depend on μ^M_{t+1}
- Market perceives excess price volatility $var_t^M\left(p_{t+1}\right) \sim rac{\gamma^2 D \sigma_{\mu}^2}{\left(1-\eta\right)^2}$

Policy risk premium is increasing in the scope for disagreement:

$$rp_t = rp_t^{common} + \beta^2 \frac{\gamma^2 D \sigma_{\mu}^2}{\left(1 - \eta\right)^2}$$

• A demand-optimistic market expects a positive gap/demand boom:

$$E_t^M\left[\tilde{y}_{t+1}\right] = \gamma\left(\mu_t^M - \mu_t^F\right) > 0$$

• It also expects policy reversal and a lower future asset price:

$$E_t^M[p_{t+1}] = y_t^* - \frac{\eta}{1-\eta} E_t^M[\tilde{y}_{t+1}] - m$$

Behind-the-curve: Dovish Fed will reverse and tighten to undo "mistake"

• Rates: Dovish Fed steepens the yield curve (hawkish \implies inverts)

$$i_{t} = E_{t}^{M}[r_{t+1}] - \frac{rp_{t}}{2}$$

where $E_{t}^{M}[r_{t+1}] \sim (\beta + \eta) \frac{\gamma \left(s_{t} + \mu_{t}^{F}\right)}{1 - \eta} + (1 - \beta - \eta) \frac{\gamma \left(s_{t} + \mu_{t}^{M}\right)}{1 - \eta}$

Result: Disagreements are absorbed by i_t (do not affect p_t)

- Higher policy risk premium (D) reduces i_t
- "Behind-the-curve" has subtle effects on i_t via $E_t^M[r_{t+1}]$

Þ

Disagreements affect relative asset prices $(rp_t \text{ and } i_t)$ but not "pystar"

Central banks affect the economy via aggregate asset prices

This leads to an asset pricing theory ("pystar") with several implications:

- Macro drives aggregate asset prices and finance drives relative prices
- Transmission lags: Fed's belief about future AD-AS drive "pystar"
 - More precise news: More stable output but more volatile asset prices
- Inertia: Fed overshoots asset prices & induces $cov_{t-1}(p_t, \tilde{y}_t) < 0$
 - Both demand and supply-driven inflation is bad news for asset prices
- Fed-market disagreements affect rp and rates but not "pystar"
 - Market demands policy risk premium and thinks "behind-the-curve"

Risk-centric macroeconomics (e.g., CS (2020), Pflueger et al. (2020)

- We focus on the spillback effects from macroeconomy to asset prices
- Similar to Lucas (1978), but with nominal rigidities and other frictions
- Similar to Bianchi et al. (2022), but with asset prices driving demand

Excess volatility: Time-varying risk premia/beliefs/supply-demand...

• We highlight AD shocks (& policy) as a source of "excess" volatility

Excess volatility in bonds and stock-bond market covariance

• We explain bond volatility. Covariance with stocks depends on shocks

Monetary policy works through markets (large empirical literature)

A key friction: Transmission delays from asset prices

• Chodorow-Reich et al. (2021): Long lags for stock wealth effect

Caballero (MIT) and Simsek (Yale) ()

Monetary Policy Asset Pricing

Summer 2023 28 / 26

Image: Image:

Wall/Main Street disconnect during Covid-19

- CS (2022a): Similar ingredients (inertia but no lags or risk) \implies Overshooting
- Quantitative: Overshooting via rates can explain high prices in 2021....

Caballero (MIT) and Simsek (Yale) ()

Monetary Policy Asset Pricing

Summer 2023

29 / 26

- "Behind-the-curve" affects $E_t^M[r_{t+1}]$ and $i_t = E_t^M[r_{t+1}] \frac{rp_t}{2}$
- Cash-flows vs capital gains

$$E_t^M[r_{t+1}] = \rho + \frac{\eta \tilde{y}_t + \gamma \left(s_t + \mu_t^F\right)}{1 - \eta} + \left[(1 - \beta) - \frac{\beta \eta}{1 - \eta}\right] \gamma \left(\mu_t^M - \mu_t^F\right)$$

- $\bullet~{\rm Low}~\eta \Longrightarrow {\rm Fed}$ partially ${\it accommodates}$ the market's belief
- High $\eta \Longrightarrow$ Fed **doubles down** on its own belief \bigcirc

Disagreements microfound monetary policy shocks

 \bullet Suppose the market learns $\mu^{\rm F}_t$ later in the period. Initially thinks:

$$\mu_t^F \simeq \tilde{\beta} \mu_t^M + \tilde{\varepsilon}_t^F$$

Asset price before and after the market observes Fed's belief:

$$egin{aligned} \mathcal{E}_t^M\left[p_t
ight] &\sim & -rac{\gamma}{1-\eta} ilde{eta} \mu_t^M \ p_t &\sim & -rac{\gamma}{1-\eta} \mu_t^F \end{aligned}$$

Result: Fed belief surprises drive asset prices & microfound MP shocks:

$$\Delta p_t = -rac{\gamma \widetilde{arepsilon}_t^F}{1-\eta}$$
 and $\Delta i_t = rac{eta + \eta}{1-\eta} \gamma \widetilde{arepsilon}_t^F$