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Nontechnical Summary

The movements of many economic time series—asset prices in fi-
nancial markets, population of the old and young over historical
periods, relative incomes across countries and across people—
all share the property that some portion of those movements is
permanent, and the rest transitory. Identifying those perma-
nent and transitory movements is important for understanding
the significance of particular events: Does a certain change in
long term interest rates imply only short-run effects on the term
structure? Will a particular movement in income imply a new
increased steady growth path, or only a short-term change in em-
ployment opportunity? Does an observed change in population
age structure imply eventual difficulties for maintaining pensions
and social security, or is a particular demographic movement
only a mild, transitory change in child-bearing behavior? These
questions all come under the rubric of persistence in time se-
ries. The economics literature—macroeconomics and finance—
has recently seen a number of alternative characterizations of
persistence in a univariate time series. This paper examines the
extent to which those characterizations are useful. It establishes
that, without strong and unreasonable auxiliary assumptions,
none of those characterizations is capable of answering the orig-
inal question of economic interest: How relatively important are
the permanent and transitory components in that economic time
series? The paper therefore calls for new methods to shed light
on this important question, and points to some recent work in
macroeconomics that hold promise.
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Abstract

Much macroeconometric discussion has recently emphasized the
economic significance of the size of the permanent component in
GNP. Consequently, a large literature has developed that tries
to estimate this magnitude—measured, essentially, as the spec-
tral density of increments in GNP at frequency zero. This pa-
per shows that unless the permanent component is a random
walk this attention has been misplaged: in general, that quan-
tity does not identify the magnitude of the permanent compo-
nent. Further, by developing bounds on reasonable measures of
this magnitude, the paper shows that a random walk specifica-
tion is biased towards establishing the permanent component as
important.



1. Introduction

A large literature has recently developed that purports to es-
timate the magnitude of a time series’s permanent component,.
For GNP, this literature includes the influential papers by Nel-
son and Plosser (1982), Watson (1986), Campbell and Mankiw
(1987), and Cochrane (1988). Using non-parametric reasoning
Cochrane (1988) has, further, developed a measure that allows
arbitrary serial correlation in the transitory components. All
this research, however, has assumed either that there is only one
disturbance perturbing the time series under study, or that the
underlying permanent component has very special structure—for
instance, that it has serially uncorrelated increments.

More recently, other researchers, e.g., Shapiro and Watson
(1988) and Blanchard and Quah (1989), have argued that the
economic forces underlying GNP movements imply that multiple
disturbances perturb GNP and thal the underlying permanent
component has rich dynamics. In this paper 1 show that under
these circumstances the measures that had been earlier proposed,
in fact, cannot identify the magnitude of the permanent com-
ponent. In particular, I prove that the underlying permanent
component in every integrated time series can be taken to be
arbitrarily smooth, so that at all finite horizons it is the transi-
tory component that dominates that series’s fluctuations—these
permanent and transitory components can, further, be chosen to
be uncorrelated at all leads and lags. This arbitrary smoothness
is achievable regardless of the values taken by Campbell and
Mankiw’s “long-run effect of a shock” or Cochrane’s or Wat-
son’'s “size of the random walk component” for that integrated
time series. This proposition therefore casts serious doubt on

the usefulness of those measures for assessing the magnitude of
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a time series’s permanent component. Without explicitly identi-
fying the underlying economic disturbances, a researcher cannot
quantify the relative importance of permanent and transitory

components.

To see the implications of this arbitrary smoothness result,
recall some well-known assertions in the literature: Nelson and
Plosser (1982) and Campbell and Mankiw (1987) have criticized
traditional models of economic fluctuations by observing that US
GNP might be better characterized as integrated rather than
trend stationary. According to these investigators’ reasoning,
traditional macroeconomic models predict at most transitory ef-
fects of disturbances to output. In contrast, Nelson and Plosser
(1982) and Campbell and Mankiw (1987), separately, put for-
ward two claims—both claims based .on univariate characteriza-
tion of GNP’s time series properties: one, that GNP’s perma-
nent component is highly volatile and, two, that disturbances to
GNP have significant and long-lived effects. The accuracy of the
univariate time series models that these investigators used re-
mains controversial (see, e.g., Watson (1986), Cochrane (1988),
Perron (1989), and Christiano and Eichenbaum (1990)). But,
according to the results in the current paper the accuracy of
those measurements turns out to be irrelevant for whether per-
manent disturbances are important for GNP fluctuations and for
whether most disturbances to GNP have long-lived effects. The
analysis below shows that a time series can be integrated and can
show significant persistence in its innovations, but nevertheless
still have its fluctuations dominated by transitory disturbances.
Thus this paper makes explicit an important general message:
Because studying the univariate time series characterizations of
a variable leaves unidentified the sources of that variable’s fluc-
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tuations, without additional ad hoc restrictions those characteri-
zations are completely uninformative for the relative importance

of the underlying permanent and transitory components.

To sharpen understanding of the arbitrary smoothness prop-
erty, I derive below explicit lower bounds for two natural mea-
sures of the importance of a permanent component when that
permanent component is restricted to be an ARIMA sequence.
Choosing the permanent component to be a random walk—i.e.,
to have serially uncorrelated increments—turns out to maximize
both these lower bounds. This therefore makes precise a sense in
which a random walk specification for the permanent component
biases the analysis towards finding the permanent component to
be important.

Section 2 provides rigorous statements of our theoretical de-
composition results in a general setting; Section 3 does the same
for permanent components a priori restricted to be ARIMA pro-
cesses. While those two sections consider the lack of identifiabil-
ity of arbitrary permanent and transitory components, some pos-
itive results are in fact available. Section 4 considers permanent
and transitory components subject to certain orthogonality and
informational restrictions. I show that under those restrictions
these components are unique; further, whether such components
exist can be tested for by a Granger-causality characterization.
The paper then concludes with Section 5.

The reader will notice that the analysis of Sections 2 through
4 use moment-matching reasoning to construct permanent and
transitory components. Sometimes a researcher might wish to
go beyond this, i.e., to construct what—in the terminology of
stochastic differential equations—are called strong sense solu-

tions rather than only weak sense ones. The Appendix provides
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calculations that accomplish this. The Technical Appendix con-
tains all the proofs.

2. General Results

This section shows that every integrated sequence admits a de-
composition into permanent and transitory components with the
increments of the permanent component having arbitrarily small
variance—this decomposition is possible even when the perma-
nent and transitory components are uncorrelated at all leads and
lags.

First, establish notation: A random sequence

W = {W(t), non-negative integer { }

is integrated or difference stationary when its first difference
or increment AW(t) def W(t) — W(t — 1) is covariance station-
ary, but W itself is not. We use the method in Doob (1953)
pp. 461-463 to always extend definition of covariance stationary
sequences over all the integers, even if those sequences are ini-
tially defined only for integer t > 1. For the purposes of this
paper, we call an integrated sequence a random walk if its in-
crements are serially uncorrelated (not necessarily iid). Elements
of a sequence, stochastic or otherwise, are denoted by integer
arguments in parentheses; subscripts indicate either distinct se-
quences or the elements of a matrix. Thus, for example, Y; and
Yo are different stochastic sequences with the t-th element of each
written as Y1 (t) and Yy(t). Without loss of generality, all covari-
ance stationary sequences are taken to have mean zero. Since
there is some arbitrariness in a 27 normalization, we explicitly
specify the spectral density matrix to be the fourier transform
of the covariogram matrix sequence: When W is a jointly co-

variance stationary vector sequence, its spectral density matrix
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is Sw(w) &'

Yoo EIW()W(0)])e=*. Finally, all integrals
below are taken from —= to .
Next, make precise the decompositions that we are investi-

gating:

Definition 2.1: Suppose that Y is an integrated sequence. A
permanent-transitory (PT) decomposition for Y is a pair
(Y1,Yo) such that:

(i) Y1 is integrated and Y} is covariance stationary;
(ii) Var(AYi(t)) and Var(AYy(t)) are strictly positive; and
(iii) Y (t) = Yi(t) + Yo(?).

Further, if
(iv) AY; is uncorrelated with Yy at all leads and lags,
then the PT decomposition is said to be orthogonal.

Given a PT decomposition (Yj, Yp) for Y, call Y} a perma-
nent component for Y; similarly, call Yy a transitory compo-
nent. Permanent in this context indicates only that disturbances
to Y have long run effects on ¥, not that the increments of Y;
are serially uncorrelated. We will also say that (Y;,Y,) decom-
poses Y when (i)-(iii) of 2.1 hold, and that (Y, Yp) orthogonally
decomposes Y when in addition (iv) is true.

Condition (ii) rules out trivial cases. For instance, when Y
is a random walk, it might be natural to set Y; to Y. But if so,
there is no transitory component; the definition then sensibly
asserts that (Y7,Y — Y)) = (Y,0) is not a PT decomposition for
Y.

From Beveridge and Nelson (1981), we know that every inte-

grated sequence admits a decomposition into perfectly correlated
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permanent and transitory components where further the perma-
nent component has serially uncorrelated increments. Watson
(1986) and Cochrane (1988) have considered models where the
permanent component remains a random walk, but has incre-
ments that might be imperfectly correlated with the transitory
component. In all these, the variance of increments in the per-
manent component can be identified from the spectral density of
increments in the original sequence (see, e.g., Watson (1986) or
Cochrane (1988)).

By contrast, Shapiro and Watson (1988) and Blanchard and
Quah (1989) have considered models where permanent compo-
nents have richer dynamics than those in a random walk. In
these more general specifications, permanent components turn
out to have variances that can no longer be identified from just
the second moments of the original sequence. The extent of this

lack of identification can be seen in the following result.

Theorem 2.2: Fix S, a spectral density satisfying:
/|1 — exp(iw)|~? - |Say (w) — Say (0)] dw < oo

and
0< SA)'(O) < 0.

Let v be an arbitrary non-negative function on [—m, 7], symmet-
ric about 0, and such that:

(i) 0 < Y(w) <1 forw #0; and
(i) 11— exp(iw)|=2(1 — Y(w)) dw < oo.
Suppose that AX, and A X are stochastic sequences orthogonal

at all leads and lags, and have spectral densities Sax, = ¢S and
Sax, = (1 — ¥)S, respectively. Then (X, Xo) is an orthogonal
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PT decomposition for an integrated sequence whose increments
have the given spectral density S.

Theorem 2.2 asserts that under regularity conditions the
second moments of an arbitrary integrated sequence are consis-
tent with a wide range of dynamics in the underlying permanent

and transitory components.! Since the sum of orthogonal se-

quences has spectral density equal to the sum of the spectral den-
sities of the underlying sequences, it is obvious that AX; + A X
has spectral density S = ¥S + (1 — ¥)S. Thus, the only sub-
tlety in Theorem 2.2 is whether X, (a sequence with increments
A Xg) could be covariance stationary. But this follows from not-

ing that:
Var(Xo) = [ [1 = expli)| 2 Saxo(e) do

= [ 1= expio)| Sy (@)(1 - ¥w)) do

= Sav (0) [ 11 = explio)|2(1 - p()) do

+ j |1 = exp(iw)|~*(Say () — Say (0))
%x (1 — P(w)) dw

< .

Finiteness results from the first summand’s being finite by (i1),

! The alert reader will notice that Theorem 2.2 only gives a
pair (X, Xo) whose second moments sum correctly to match a
given spectral density S. The Theorem does not show how to
construct processes (X;, Xo) that will sum to a given process
Y, where the last has increments with spectral density S. In
the terminology of stochastic differential equations, Theorem 2.2
gives only a solution in the weak sense. The strong sense solution
is given below in Theorem A.1 in the Appendix.
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and the second summand’s being bounded from above by:

sup JL=9(A)|- [ 11=exp(i)|*(Say (w) = Sav (0)) dv < oo

-n<ALn

Thus, X, can in fact be chosen to be covariance stationary.

Because of (i), ¥ provides a cleaving of the given spectral
density S into two non-negative pieces ¥S and (1 - ¥)S. From
(ii), ¥(0) = 1, so that the spectral density of AX; coincides with
S at the origin; everywhere else, Sax, is strictly smaller than S.
In the Theorem, condition (ii) and its analogue for |S(w) — S(0)|
impose smoothness on ¢ and S at frequency zero: the conclusion
of the Theorem can be shown to remain true if certain time
domain restrictions replace these frequency domain conditions.
In particular, from Solo (1989) Lemma 1, we can instead use
“y is the spectral density of a randpm sequence that has 1/2-
summable Wold moving average coefficients, with ¥(0) = 1” and
“S is the spectral density of a random sequence that has 1/2-
summable Wold moving average coefficients.”?

Although we are interested in obtaining general PT decom-
positions, the formal discussion considers only the orthogonal
case. The reasons for doing so are two-fold: first, if we can find
an orthogonal PT decomposition satisfying certain properties,
then we will always be able to find a non-orthogonal PT decom-
position otherwise satisfying the same properties. Second, for
certain applications (e.g. Quah (1990)), that the PT decompo-
sition is orthogonal is essential.

Theorem 2.2 provides, for an integrated sequence with given
second moments, a range of feasible orthogonal PT decomposi-

2 Recall that a sequence b is m-summable if 25 1™ - 1b()1 <
0o, and that m-summability is preserved under addition and
convolution (see e.g. Brillinger (1981) Theorem 3.8.2.)
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tions. Significantly, that range always includes a decomposition
where the permanent component is arbitrarily smooth, i.e, where
the permanent component has increments with arbitrarily small

variance.

Corollary 2.3: Fix a spectral density S, satisfying the condi-
tions in Theorem 2.2. Then for every positive § there exists an
orthogonal PT decomposition (X, Xg), where S = Sax,+Saxq,
with Var(AX,) < 6.

This result requires only weak regularity assumptions on the
moment properties of the integrated sequence of interest. Sub-
ject to those conditions, we can always find an arbitrarily smooth
permanent component. Because we are interested in permanent
components with a rich dynamic structure, Watson’s (1986) non-
existence proposition—that not all integrated sequences will ad-
mit a random walk permanent component uncorrelated with the
transitory component—is irrelevant here,

Corollary 2.3 implies that without restricting further the
dynamics of the permanent component X; the lower bound on
Var(A X)) is simply zero. Therefore, the results here highlight
a similarity between integrated and trend stationary sequences:
both can have their stochastic dynamics dominated by transi-
tory components. This observation has been raised elsewhere in
the literature but our reasoning here diflers significantly from
those other arguments: (1) The results require only weak regu-
larity assumptions on the univariate dynamics of the integrated
sequence of interest. Thus, contrast the analysis here with, e.g.,
Clark (1988), Diebold and Rudebusch (1988), or West (1988),
who argue that for certain parameter values a trend-stationary

sequence is close to a difference-stationary one. (2) The results
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here rely neither on dynamics being only imprecisely estimated,
nor on a researcher’s misspecifying a Wold representation. Thus,
our analysis differs from Cochrane’s (1988) and Christiano and
Eichenbaum’s (1990) criticisms of Campbell and Mankiw (1987).
Arguments about imprecision and possible misspecification can
also be subsumed in the following: (3) The statements here ap-
ply to the underlying population probability model and are not
conclusions due to an investigator’s having only finite samples.
(4) What is not obvious from the above is that the transitory
component Xg can have its autoregressive roots bounded away
from 1 as Var(AX,) decreases. The truth of this is shown in
the numerical calculations in Quah (1990) where the transitory
component Xy has fixed autoregressive roots despite Var(A X))
growing arbitrarily small.

That the lower bound on the importance of the permanent
component is zero may at first seem puzzling. We can get some
intuition for this zero lower bound property by studying more
restricted and more explicit decompositions where the perma-
nent components are constrained to be ARIMA sequences—Iless
trivial bounds then result. That analysis forms the content of
the next section.
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3. Finite ARIMA Components

This section specializes the analysis to ARIMA permanent com-
ponents; doing so allows explicit formulas for the lower bounds
on Var(AY;). Some additional notation will be needed: If W is
covariance stationary, let innov(W) denote its innovation, i.e.,
the residual in the minimum mean square error linear predictor

of W based on its own lagged values.

Theorem 3.1: Suppose (Y,Ys) decomposes Y, with AY) a
moving average sequence of order q. Then (i) Var(innov(AYy)) >
4=9. Say(0); and (ii) Var(AY1) > (¢ + 1)7! - Say(0). Further,
there exist (different) PT decompositions with AY, moving av-
erage of order q having innovation variances and variances arbi-
trarily close to the bounds in (i) and (ii).

The lower bounds in Theorem 3.1 are strictly decreasing
in the moving average order of AY), and apply regardless of
the correlation between the components. Thus, letting AY) be
a random walk must maximize the theoretical lower bound on
Y1's contribution to Y.

The analysis for autoregressive models for AY; is even sim-
pler. A first order autoregressive model for AY; suffices to obtain
a theoretical lower bound of zero on both its variance and inno-
vation variance. To see this, apply the arguments in the proof
of Theorem 3.1 to

Say,(0) = |1 — C(1)]"* - Var(innov(AY;))
= Say(0)
=5 Var(innov(AY})) = |1 = C(1)]* - Say(0),
and

Var(AY1) = [(1 - C(1)) x (1+C(1))7}| - Sax (0),
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where now C(1) is the projection coefficient in a first order au-
toregression. Then simply let C(1) 1 1. The same conclusion
obviously applies to higher order autoregressive models. But
choosing the permanent component in this way does make the
transitory component more like an integrated sequence, in that
the largest autoregressive root in its ARMA representation ap-
proaches unity. On the other hand, this does not happen for the
moving average cases in Theorem 3.1.

Finally, since a purely autoregressive model is simply a re-
striction of a mixed moving average autoregressive model, the
result for a first order autoregression applies directly to general
ARMA models for AY;.

4. Identification under Orthogonality

In certain applications, e.g., Shapiro and Watson (1988) and
Blanchard and Quah (1989), a researcher wishes to explicitly
construct permanent and transitory components, where these
components are somehow restricted so that they are uniquely
identified. For instance, the researcher might be interested in
those orthogonal permanent and transitory components that are
contained in the history of output and unemployment or in that
of income and consumption. Such an informational restriction
will be made precise below.

This section answers two questions:

1. Can one test whether there exist any such permanent and
transitory components, and
2. If such PT decompositions do exist, how rich is their class?

We will see that a Granger-causality restriction characterizes the
existence property—thus, the usual exclusion tests in a vector

autoregression can be used to establish if a particular orthogonal
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PT decomposition exists. Further, under certain conditions, such
an orthogonal PT decomposition is unique and can be straight-
forwardly obtained from the Wold representation of the variables
of interest. This result drives the analysis in Blanchard and Quah
(1989), and is one way of allowing a researcher to uniquely iden-
tify permanent and transitory components. But Blanchard and
Quah (1989) never confronted the existence issue directly and
therefore never needed to discuss the Granger-causality charac-
terization. Finally, we will see that if such a PT decomposition
exists, then it can be used to construct all the PT decompositions
of Theorem 2,2—this is done in the Technical Appendix. That
construction therefore explicitly produces the arbitrarily smooth
permanent components as functions of observable variables.
Throughout, let Y be the integrated sequence of interest for
which we seek an orthogonal PT decomposition. First, following
Rozanov (1967), let H; (t) denote the space spanned by square-
summable linear combinations of {£(t),&(t — 1),&(t — 2),...},
complete under mean square norm. The convolution operator *
is such that for b and X sequences with X covariance stationary
and defined over all the integers, the t-th element of b * X is
2 b(4)X(t—j). Also, the discussion will be more transparent if
we use the frequency-zero smoothness conditions in time domain
form, as discussed above in Section 2. The following result gives
an equivalence between existence and uniqueness of a specific
orthogonal PT decomposition for ¥ and the failure of AY to be

Granger-causally prior in some system.

Theorem 4.1: Let Y be integrated and fix W, a stochastic
sequence. Call £ = (AY, WY, and assume: (i) € is jointly covari-
ance stationary and linearly regular with spectral density matrix

full rank at the origin; and (ii) in Wold representation, £ = C'xe,



- 14 -

each entry in C is 1/2-summable. Then there exists (Y;,Ys) or-
thogonally decomposing Y with both AY)(t) and Yy(t) contained
in He‘(t) if and only if AY is not Granger causally prior to W.
If such a decomposition exists, then it is unique.

The implications of Theorem 4.1 can be understood as fol-
lows: Let W be a given random sequence and assume that the
researcher is interested in the permanent and transitory compo-
nents in Y that contain only the information in the joint history
of Y with W. The Theorem asserts that the researcher can
first verify if such permanent and transitory components exist
by performing the usual test for Granger causal priority of AY
in (AY,W)'. If AY is found to be not Granger causally prior,
then the algorithm given in the proof (which is essentially the
same as the method in Blanchard and Quah (1989)) can be used
to calculate the permanent and transitory components in terms
of Y and W.

The reader should note that the construction given here has
AYi(t) and Yo(t) contained in Hg (¢); it is this that gives the
uniqueness result in Theorem 4.1. Since the first applications
of vector autoregressions (Sims (1980)), such an informational
restriction has been routinely used in going from the Wold de-
composition to moving average representations that are more
readily interpretable—Blanchard and Quah (1989) is one exam-
ple where that use was made explicit. But a growing literature—
for instance, Futia (1981), Hansen and Sargent (1991), Lippi and
Reichlin (1990), Quah (1990), and Townsend (1983)—questions
the appropriateness of this identifying restriction: explicit eco-
nomic models can be constructed where the representations that
result from this informational restriction bear no relation to the
true underlying dynamics. While this difficulty is not central
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to the current discussion, the applied researcher should note the
potential problem in more general contexts.

5. Conclusion

It is now well-known that integrated and trend stationary time
series produce different implications for classical econometric in-
ference. How does this difference extend to the observable dy-
namics of economic variables? What are the implications for
economic theorizing?

In this paper, I have approached these issues by considering
an integrated time series as the sum of permanent and transi-
tory components. I have characterized the range of such decom-
Positions for arbitrary integrated time series. That range turns
out to always include a smooth permanent component, i.e., a
permanent component with increments having arbitrarily small
variance. Further, the associated transitory component need not
have high persistence. Thus, the observable dynamics of an ar-
bitrary integrated sequence are similar to those of some trend
stationary sequence. While there are infinitely many permanent-
transitory decompositions, all share the same long run effect of
a disturbance in the permanent component in that their incre-
ments all have the same spectral density value at frequency zero.
That value is therefore uninformative for the importance of per-
manent components in a time serjes.

In summary, the attention that has been devoted to measur-
ing the size of the permanent component in GNP, as the spectral
density at frequency zero of its increments, is unwarranted—
without explicitly identifying the underlying economic distur-
bances, it is simply not possible to gauge the magnitude of the
permanent component in a time series.
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Finally, I have provided exact lower bounds on the magni-
tude of permanent components that are restricted to be ARIMA
processes. Those bounds imply that restricting the permanent
component to be a random walk maximizes its theoretical mini-

mum importance.
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Appendix: Explicit Construction of a Strong Sense Solution

This appendix shows how one can, beginning with the PT de-
composition of Section 4, explicitly compute other orthogonal PT
decompositions—decompositions having the properties specified
in Theorem 2.2. We use the notation for & and g established
below in the proof of Theorem 4.1.

Theorem A.l: Suppose that Y is a given integrated sequence,
with the spectral density of AY satisfying:

J 1= expi)lsay (@) - Sar O)]do < oo

and
0 < Say(0) < oo,

and that for some given W, (Y1, Yo) is the orthogonal PT decom-
position of Y given by A.1. Suppose further that 0 < Say, (w) <
Say(w) for all w in (0, 7). Let ¥ be a non-negative function on
[—m, x], symmetric about 0, and such that:

(i) 0 < $p(w) < 1 forw # 0; and
(i) []1 - exp(iw)|~2(1 — P(w)) dw < oo.

Define p get Say, /Say and choose sequences o and 8 so that

13]? = { P(l = P)p~ (1 —p)~t, forw #0;
0 forw =20
and
&=1 - fp.
IfAX, ¥ o« AY + B+ AY, and ANy £ AY — AXy, then

(X1,Xo) is an orthogonal PT decomposition for Y with Sax, =
¥Say.

The restrictions on Say and 3 in Theorem A.l are un-
changed from Theorem 2.2, but the result here gives an explicit
construction for an orthogonal PT decomposition for Y.
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Proofs

Proof of Theorem 2.2: Trivial, following discussion in the
text. Q.E.D.

Proof of Corollary 2.3: Clearly, ¢ in 2.1 can always be
selected so that [ Say (w)¥(w)dw < 276. Q.E.D.

Proof of Theorem 3.1: Since AY) is a moving average process
of order ¢,

9
AYy(t) = Y C(jinnov(AY1)(t - j),  for allt,
j=0

with C(0) = 1 and 3_{_, C(5)27 # 0 for || < 1. But because Y
Is a permanent component for Y, both AY; and AY have the
same spectral density at frequency zero:

. .
IZ C(j)|2 . Var(innov(AY})) = Say (0).

j=0

Thus the lower bound on Var(innov(AY})) is obtained by solv-
ing:

q 9 2
{30l =|(Se0)] [}

j=0

g
subject to C(0) = 1 and ZC(j)zj # 0 for 2] < 1.

j=0

Recall that any such polynomial E;?:(,C(j)zf can be written as
the product of ¢ monomials: 3_!_oC(j)2* = [1}.,(1 + D(j)2),
with |D(j)| <1, j=1,2,... 9, and D(j) appearing in complex
conjugate pairs if not real. Since

q g
1Y cG)2 2 =1T[(1+ DG)2)2 = [ 11 + DG)=I?,

j=t j=1
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its maximization at z = 1 is equivalent to the maximization of
I1 + D(5)I?, for each j = 1,2,...,q. This occurs at D(j) =
for each j. Therefore, the solution to the optimization problem
attains the value 49. The lower bound on the innovation vari-
ance is then 479 - Soy (0), and results when the moving average
representation for AY) is (1 + L)%innov(AY,), where L is the
lag operator. Next, the lower bound on Var(AY)) is obtained by
solving:
g

inf 02" C(j)

(Con) =3

%]

subject to

(i) C(0)=1,
(i) 23=0C(5)z? #0for |z < 1, and

2
(iii) |z;;=00(j)| o? = Say (0).
Substituting out for a%, we need to minimize
g g \
(Q_CH®/y_cn)l
j=0 j=0

subject to the boundary condiuons above. First notice that

IZJ DC‘{j)|2 IC(J)') Next apply the triangle and
Cauchy- Schwarz mequallues

|§cu)l25(§qj|cm-u) (Y 1c )(é)

j=0 j=

(Socu?) -+,

j=

o

o

so that:

(ZC(J) )/|ZC(1)| (g + 1)
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Notice that C(j) = 1 for j = 0,1,...,q, achieves this lower
bound, and because

f_: = lim (1 = A1 2041) /(1 = A2),

this satisfies the boundary conditions as well. Thus, Var(AYy) >
(g + 1)~1Say (0), and this theoretical lower bound is evidently
approached arbitrarily closely by finite moving average processes
of the form Y 1_o M innov(AY1)(t - j), where A< 1. Q.E.D.

For the next result, it is convenient to establish a little more
notation. If b is an absolutely summable sequence of numbers, b
denotes its fourier transform b(w) def Y b(j)e""7, and similarly
for sequences of matrices.

Proof of Theorem 4.1: In the Wold representation,

(AY,W) = Cxe,

take C(0) to be lower triangular with diagonal elements non-
negative and ¢ to have the identity covariance matrix. Such a
representation exists and is unique. Since C(O) has full rank,
there is a unique orthonormal matrix V such that C(0)V is
lower triangular (unique up to column sign changes). Define
D by D(3) et C(j)V and n = (n1,m2)" by n(t) & V'e(t), so that
(AY,W) = C+e¢ = Dxn. By construction, H, (t) = H¢ (t); fur-
ther, n has the identity covariance matrix. Also by construction,
such a (D, n) pair is unique, i.e., no other pair has a lower trian-
gular ﬁ(O) and a disturbance vector n fundamental for (AY, W)
having the identity covariance matrix. Define AY; to be Dy 1
and AYy to be Dy x 112. Since D,o(O) = 0 and D2 is 1/2-
summable, Yy can be chosen to be covariance stationary. Thus
(Y1,Yo) is potentially the orthogonal PT decomposition satisfy-
ing the desired conditions, and if it exists, it is also the only such
decomposition. Suppose then that AY is Granger-causally prior
to W. This implies that C(j) is lower triangular for all j, so
that V is the identity and D,a is zero. But then Var(Yp) = 0;
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consequently, a PT decomposition of the desired form does not
exist. Conversely, if AY is not Granger causally prior to W,
then C2(j) # 0 for some j, and Cy, is not proportional to C,,.
But then, neither D\, nor D\, can vanish, thus both AY, and
AYp have strictly positive variance. Q.ED.

Finally, for the last proof, if b is a complex-valued matrix
function, denote its point-wise complex conjugate transposed by
b*.

Proof of Theorem A.1: First, verify that AX, has the correct
spectral density:

Sax, =8|’ Say + |B*Say p + 2Re[af* Say p]
= Sav [lal* + |8 o+ 20Re(@)]
Completing the square,
Sax, = Say [Id + 8ol + 181 (p - pg)]
= Say [ + ¥(1 - ¥)] = Savv.

Next, check that AX, and A X, are uncorrelated at all leads and
lags; by direct calculation, the cross-spectral density is:

Saxcax, = Savax, — Sax, = Saya" + Say pB* — Say v = 0.

Finally, verify that AXy is the first diflerence of a covariance
stationary sequence. From the uncorrelatedness just shown, the
spectral density Sax, = Say — Sax, = Say (1 = ¥). Then,

/ 11 = exp(iw)| 25 xo (w) dw
= [11 = expliol~?Sar ()1 - viw) do
= Say(0) / 11— exp(iw)|~2(1 - Y(w)) dw

+ / 11~ exp(iw)|~2(Say (@) — Say (0))
x (1 = (w)) dw.
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From condition (ii), the first summand is finite. The result then
follows from noting that the second summand is bounded from

above by:
sup |1—1/)(/\)|~/|1—exp(iw)|""(SAy(w)—-SAy(O))dw < oo,
-r<ALn
using (i). This completes the proof. Q.E.D.
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