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Abstract

This paper considers unit root regressions in data having simultaneously
extensive cross-section and time-series variation. The standard least
squares estimators in such data structures turn out to have an asymp-
totic distribution that is neither Op(T~') Dickey-Fuller, nor O,(N~1/2)
normal and asymptotically unbiased. Instead, the estimator turns out to
be consistent and asymptotically normal, but has a nonvanishing bias in

its asymptotic distribution.
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1. Introduction

It has long been known that panel data structures allow an empirical researcher
to identify effects that would otherwise be unavailable using only cross-section or
time-series data. Many such applications, however, really exploit only the large
cross-section aspect to panels (e.g., Chamberlain, 1984; Hausman and Taylor,
1981; Holtz-Eakin, Newey, and Rosen, 1988). In fact, a number of important
techniques in panel data econometric analysis quickly become intractable if the
time dimension grows large. Think, for instance, of techniques that model each
time period as a separate equation in a simultaneous system.

Yet, for certain economic questions and data sets, it is quite natural and ap-
propriate to view the time dimension as being large along with that of the cross-
section: For instance, in the study of macroeconomic growth and fluctuations,
there is often great interest in the long-run effects of particular disturbances (e.g.,
Blanchard and Quah, 1989). At the same time, however, one might also be in-
terested in the dynamic effects of those disturbances across a rich cross-section
of observation units (e.g., Blanchard and Katz, 1992; Barro and Sala-i-Martin,
1991). The currently available data sets for studying the dynamics of different
regions, industries, or asset prices often span time and cross-section dimensions
having approximately the same order of magnitude: researchers then end up dis-
carding useful information by pooling across time (e.g., Barro and Sala-i-Martin,
1991) or by aggregating cross sections into portfolios (e.g., Lo and McKinlay,
1988) so that they can then apply standard econometric ideas.

This paper investigates, for the canonical unit root time series regression, es-

timation and inference for data structures where the time-series and cross-section
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dimensions are comparable in magnitude. To focus on the issues that are novel
in such analysis, I confine study to the simplest possible case, and use easily in-
terpretable regularity conditions which are stronger than absolutely necessary.!
Even so, interesting subtleties will arise: the principal result of the paper shows
that the unit root regression coefficient estimator is asymptotically distributed
neither (unbiased) normal at rate O,(N~1/?), as one might expect from standard
panel data analysis, nor standard Dickey-Fuller at rate O,(T"!), as one might ex-
pect from standard time series analysis. Instead, the estimator is consistent and
asymptotically normal, but with a nonvanishing bias in the asymptotic distribu-
tion.

The remainder of this paper is organized as follows. Section 2 calculates the
asymptotic distribution of the least squares estimator for the lag coefficient when
the data have a unit root in the time series dimension, and where both cross-
section and time series dimensions are comparable in magnitude (i.e., the data
are a random field). Differences from the standard time series case are described
more carefully there. Section 3 reports the results of a Monte Carlo study to eval-
uate the accuracy of the Monte Carlo approximation. Section 4 briefly concludes;

an appendix gives the proof of the main result.

! Quah (1992) has studied the more general case, with correspondingly more
complicated proofs and manipulations. The proof for the simple case below makes
the intuition in the general case transparent.



2. Asymptotic Approximation
Unit root regression for univariate time series is now well understood (Phillips,
1987). We briefly present it here only to establish notation. Suppose {€(t) :
integer ¢ } is a mean zero random sequence satisfying a functional central limit
theorem, i.e., for

[rT]

Br(r) € T25 ¢(t), allrin(0,1]

t=1

(by the usual convention, [ ] denotes integer part, and S0 () is taken to be

zero), there exists a finite positive constant s such that:
s1Br=B asT — oo

(with = denoting weak convergence, and ‘B standard Brownian motion or Wiener
process). It will be convenient in the sequel to define the normalized version Br =
s~1By so that we have By = B as T — oo.

A weak law of large numbers for € follows from the preceding, since
T
Tt Z e(t) =T~ Y2sBp(1) 250 as T — oo (by Markov inequality),
t=1

aud,' by application of a continuous mapping theorem (Billingsley, 1968, p. 30}, so

does an ordinary central limit theorem:
T
s~ir—1/2 Ee(t) = Bp(l) =, B(1) =N(0,1) asT — o0
t=1

(where = denotes equivalence in distribution).
When {e(t)} is serially uncorrelated with variance positive and identical across
t, then s simply equals ¢(1)'s standard deviation. In general, however, s is analo-

gous to the square root of €'s spectral density at frequency zero,

T
: 7. -1/2
Thm Var <T ; e(t)) :

— 00
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We will also assume that a weak law of large numbers applies to {¢(t)?} so
that
T
T‘IZE( )2 Pro?>0 asT — x.

t=1

(This will typically follow from the same set of regularity conditions giving a
functional central limit theorcm.)
Suppose that the observed time series { X (t) : integer ¢ } is generated by:
X)) =X(Et-1)+elt), t>1;
X (0) a given random variable.
If the observed sample is { X(¢) : ¢ = 0,1,...,T}, then the least squares estima-

tor for the regression coefficient of X on its first lag is

bT=<Z (t-1) >_1<iX(t)X(t—1)).

t=1 t=1

so that

Ty —1)= <T EiXt—l )_I(T_IXT:X(t—l)e(t)).

Recalling that
X(t) = X(0)+ > e(t) = X(0) + sT/*Br(t/T),

it is straightforward to show (e.g., Phillips, 1987):

T
2'37“ Z :l +Op )

1
1 —
T ZXt De(t) = 5
t=1
and
T 1
T72) X(t—-1) = s?/ Br(r):dr + o,(1).
t=1 0

Applying the observations above, we immediately have:
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Theorem 2.1: As T — oo, the estimator by behaves as:

T(br —1) = (/01 B(r)? dr) o %(3(1)2 - 02/32).

A number of features in this result are useful to note here, for comparison
with those below. First, the least squares estimator br converges to the correct
value of unity at rate T, faster than the usual 71/2 rate in ordinary regression.
Second, the initial condition X (0) is asymptotically irrelevant. Third, the approx-
imating random variable on the left hand side bears a non-normal distribution,
one that does not in general have expectation zero. Fourth, the numerator ran-
dom variable is a shifted x?(1) with mean 1 — 02/s2 (zero when e is serially un-
correlated, but not otherwise), while the denominator is a nondegenerate positive
random variable. Nevertheless, the distribution of the ratio is easily generated by
Monte Carlo simulation; its critical points have been tabulated, for instance, in
Fuller (1976) Table 8.5.1.

We turn now to the situation of interest, where we have an extensive cross-

section of observations
{X;@t):7=1,2,... ,N;t=0.1,... T},

which, for each j, is generated by
Xi(t) = X;(t - 1)+ (), t>1;
X;(0) a given random variable.
The shuplest case arises when observations are independent in the cross-section:

this is standard in panel data analysis, although in time series econometrics, posit-
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ing independence across observations is unusual. Modelling cross-sectional depen-
dence is complicated considerably by the fact that, unlike in a time series, indi-
vidual observations in a cross section need display no natural ordering. Thus,
the interpretation of mixing conditions (say) in cross-section economic data is
unclear—it is not evident what is meant by independence for observations “suf-
ficiently far apart”. One possibility for modelling dependence in dynamic cross
sections might be a structure like that in Quah and Sargent (1993), although as
Geweke (1993) emphasizes, a rigorous inference theory there too has yet to be
developed. Yet another possibility in such data sets with rich cross-section and
time-series variation is to eschew regression analysis altogether and to model the
data as a dynamically evolving distribution. [Some economic models even suggest
this as the natural econometric structure to investigate particular questions (see
Quah, 1993a, b, ¢).|

Instead of the standard panel data setting where the researcher is concerned
with unobservable individual effects and a fixed, finite time dimension T, here
we ignore the first issue, and take N and T to be the same order of magnitude,
N = N(T) = O(T). We do this to focus on how this new data structure affects
the time series results given above in Theorem 2.1 and its surroundings.

By analogy with the time series case, take the estimator for the regression

coefficient of X on its own first lag to be:

by (zzx< B} 1)2)‘1(§>ng(t)xja )

Notice that the terms that appear on the right hand side are not those that would

obtain by stacking the data as in, e.g., Holtz-Eakin, Newey, and Rosen (1988).
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These terms are instead, when appropriately normalized, sample analogues of cer-
tain (conditional) population moments.

For random variable Y with finite p-th absolute moment, E|Y [P < oo, define
p-norm as
1Y llp = BV = /7Y,

The asymptotic distribution of bt is then given in the following.
Theorem 2.2: Assume that { ¢;(t) : integer j, t} is a collection of independent
random variables, and {X;(0) : integer j } is a sequence of independent random
variables such that:

(i) Ee;(t) = 0 and 0 < Var(e;(t)) = 0% < oo for all j and t; and

(ii) for all j,

T
E (Xj(o)' T-1/2ij(t)] ) —p asT — oo with |u] < 0.
t=1

Further, assume that for some positive number 6,
(iii) sup; [l (t)llass < 00

(iv) sup, 7 |72 Ti, & (t)lla+s < 00 and;

(v) sup; [|X;(0)||246 < o0 .

Then, for N = N(T) = kT with & > 0, we have:

212N (T)/2T (bT 11— Z%T‘?’/Z) £.N(0,1) asT — 0.

The proof of this result is given in the Appendix, but some remarks are ap-
propriate here: notice that the convergence rate is N(T)l/QT, or simply T3/2 un-

der our assumption that N(T) is k7. In any application, N and T are fixed and
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given; thus any assumption we make on the relation between them as each gets
large is necessarily arbitrary. I have chosen what seems to me the natural normal-
ization. The assumption could be relaxed to be N = O(T') without loss, but some

such assumption will certainly be needed.

The resulting rate of T2 can be viewed as multiplying the rate N/2 from
standard regression with the rate T from unit root time series regression. The
theorem asserts that the estimator br is consistent for the correct value of unity,
but the asymptotic distribution has a nonzero mean of 24/ o2 which depends on
the covariances of the initial condition X(0) with subsequent €’s as well as the
variance of the e's. Thus, unlike the time series case of Theorem 2.1, initial condi-

tions do matter here—even as T gets arbitrarily large.

In the time series case, the numerator random variable of the asymptotic
approximation has zero mean when the €'s are serially uncorrelated; here, how-
ever, the mean of the asymptotic distribution is nonzero even when the €'s are
serially independent. Notice that in condition (i), under the other assumptions,
the product’s second term T=2 5" ¢;(t) is O5(1). The moment conditions
(iii)—(v) require only a little more than bounded fourth and second moments on
¢ and X (0) respectively. In (iv), the term T'~1/2 ST €(2) is, again, seen to be
just O4(1), and converges to a normal random variable; the last of course has all
moments finite. While more primitive conditions might be available that would
imply (iv), they would add no further insight in the current discussion. Finally,

notice that if e were iid normal, then (iii) and (iv) would automatically hold.

These conditions are not the weakest possible, but they are easy to verify;

further, in the proof, they illustrate the reasoning giving rise to the result without
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unnecessary and distracting complications.

3! Monte Carlo Results

This section reports the results from a Monte Carlo study to assess the small-
sample accuracy of Theorem 2.2. The Table gives the critical values for different
tail probabilities from a Monte Carlo sample of 10,000 draws. The experiments
here take the (nuisance) parameters p and o—for which it is easy to get consis-
tent estimators—as known.

I consider 25 different settings for N and T, each ranging from 25 to 1000.
Looking down the columns of Table 1 gives—for varying values of N and T—
Monte Carlo critical values for different tail probabilities, the latter ranging across
the rows. The last two rows also show the asymptotic critical values for the stan-
dard cross-section/panel data regression (N = oo, T = 1) and for the standard
Dickey-Fuller time series regression (N = 1, T = o00). Thus, the last but one row
simply tabulates the standard normal, while the last row reproduces Table 8.5.1
from Fuller (1976).

This table makes clear that large N and T drive the distribution of the esti-
mator towards the normal: Small N and T give rise to the same asymmetry that
describes the Dickey-Fuller (1, 00) distribution, while both the large N, small T
and simultaneously large N and T cases are well-approximated by the standard
normal distribution.?

Note that the table already corrects for the asymptotic bias, and thus large

.N— with both small and large T—should (and does) have the same asymptotics.

2 The unit roots case with large N and small T had also been suggested on page
1373 of Holtz-Eakin, Newey, and Rosen (1988).
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More extensive cxperiments have been carried out—all verifying the asymp-

totic approximations of the previous section and the appendix. For reasons of

space, however, they are not presented here. (See Quah, 1992.)

4. Conclusion

This paper has begun analysis of the subtleties that arise in unit-roots regression
in data that have simultaneously extensive cross-section and time-series variation.
The asymptotic distribution derived here can be understood as a mixture of the
standard normal and Dickey-Fuller-Phillips asymptotics.

Economists {macroeconomists in particular) are now considering progres-
sively richer models where the natural datasets to study are no longer time series
or standard cross-sections or panels. The analytical results in this note should
serve as a useful beginning to allow more complete and rigorous econometric anal-

ysis of such situations.
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5. Appendix

This appendix contains the proof of the Theorem in the paper.
Proof of Theorem 2.2: Define for each j the Brownian motion approximant

[T)
Bir(r) E o7 TV " ¢(t), forrin [0,1]

(recognizing that s = o when, for fixed j, the sequence {¢;()} comprises uncorre-

lated random variables). Note that (ii) implies
Vi EB(X;(0)B7(1)) » o'y as T — oo.

From the definition of b we have:

T —
br—1- 20%T_3/2 = <ZZXJ.(t_ 1)2)
<ZZX (t—1)e;(t) - 2= T‘3/2ZZX(t—1))

j t=1
Take the-denominator: performing the usual time series calculations for each j
gives

ZZX(t—l TZX(O

g 1
+20T%%Y " X;(0) [/0 Bjr(r)dr - T‘lfBjT(l)]

+ 0?72 Z [/01 Bip(r)2dr — T—193]-T(1)2] .

Normalizing by T2?N, this obeys

N(T)

(T2N(T)™ ZX (t-1° 25 062/2 as T — co. (5.1)

j=1 t=1
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To see this, consider each of the summands in turn. First,

N(T) N(T)

(CNET)T Y X072 =T 'NT) ™ Y X0 £50 as T — oo,

j=1 j=1
from Markov inequality combined with
N
STINTYY IX;(0)2)

1 j=1
< T lsup || X;(0))3 =0 asT — oo
7

N
HT-lN—1 > X;(0)?
j=1

given (v) (using Liapounov inequality). Next, we show that

N(T)

T—_I/ZJV(T)_1 Z Xj(o) [/01 3]'7‘(1”) dr — T_lng(l) E? 0.

This follows from:

T
/1 3_7"1"(7“) dr — T_lgj'r(l) = ZBjT((t - 1)/T) s
4]

t=1
T ,i-1
=g lp—3/2 Z(Z e]-(l))
t=1 M=1
T
= oTITTVEY (1~ t/T)ei(t),
t=1
so that
N(T) 1
T-V2N(T)YT Y Xj(O)[/ 93jT('r)d7‘—T_193jT(1)]
=1 0

(5.2)

N(T) T
=07 TTIAN(T) T Y X;(0) <T-‘/2 Sa- t/T)e.ja)) .

i=1 t=1
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But N -
HN“ > X;(0) (T-W > (- t/Te(t) ) ”
j=1 t=1 1

T
T2 %" ¢5(t)
t=1

N
< NS NX(0)]2 -
j=1 2

T
T2 " ¢j(t)

t=1

< sup [|X;(0)]l2 - sup
J 3T 2

by the Minkowski and Hélder inequalities. From (iv) and (v) and the Liapounov
inequality, the right hand side above is finite independent of j and T; combined
with the Markov inequality, this establishes (5.2). Finally, it only remains to ver-
ify

N(T) 1
N(T)™! Z [/() Bir(r)*dr — T B;r(1)? RiN % as T — co. (5.3)
j=1

Notice that for all T, the individual summands fol Bir(r)2dr — T~1B;r(1)? are

independent across j. Expanding each summand,
1 T
/ BjT(r)Zdr - T_IBJ'T(I)Z = ZT—lng((t - 1)/T)2
0 t=1

T t—1
=o? Ty ( T=Y23 " e;(1) >
t=1 =1

so that the expectation of each satisfies:

2
)

1 T
E [/ 3jT(T)2dT — T_IBJ'T(].)Z:‘ =272 Z(t — 1)0’2
0 t=1
=%(1—T—1)—>% as T — oo

uniformly in j, using the uncorrelatedness of { ¢;(t) : t}. Further, there exists
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some positive § such that:
1 T t—1 2
/ Bir(r)?dr — T7'Br(1)* || <o7?TT (T—W Zej(z)>
o 1+6 =1 1+6
S 0_—2T— ( —-1/2 >
Z 2(1+6)
<o~ sup -1/2 Z

T 2(1+6)

<0

by the Minkowski and Liapounov inequalities and assumption (iv). Thus the
family {fo B,r(r)?dr — _IBjT(l)Q} is uniformly integrable in j and T (e.g.,
Billingsley 1968, p. 32). The result (5.3) then follows by a weak law of large num-
bers (Andrews 1988, p. 462, item 1).

Turn next to the numerator. Normalized by TN/2, this is:
TINTV2YT S X (- Dej(t) - 2%T‘5/2N‘1/2 SN X(t-1)?

it ot

= 772N Y X5(0) (0Byr (1))
+ %N‘I/Q [02 S Bi(1)P =Ty > ej(t)ﬂ
i J ot
_ 2;‘%T—l/2N1/2 [(T"’N)‘l ; ij(t - 1)2].
Adding and subtracting the term —pT~Y2N1/2, this is

TN 1/22[ ) B (1) - 1
+§N—1/2[0223ﬂ(1)2 ZZQU)Q]
-2 T 1/2N1/2{( N)—IZZXj(t—l)Q-—%JZ}
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But from T~'/2N1/2 = k!/2, and the previous convergence result (5.1) for the

denominator, the last term is op(1). Further, the first term too is 0,(1) from

N(T)
TV2N(T)™2 S [ X5(0) (0B,r(1)) — 2]
ji=1
N(T)
= k72N Y [ X5(0) (0B5r(1)) — nl,
i=1

with the individual summands being independent and uniformly integrable, and
the limiting relation limr_, o E[X;(0) (6B;r(1)) — 1] = 0. To see uniform inte-

grability, calculate for positive &,

E|X;(0) (oB;r(1))|"*°
< B (1X;(0)["**oBsr(1)*+)

= [[1X;(0)]**4|oBr(1) |1+6||
T‘WZ (t)

1+6
< <St§p ||Xj(0)f|2+26> ( sup||T
7

< oo independent of j and T.

+46

< NX; (0)”;135 (by Holder inequality)

) 1+6
2426

Thus, the numerator after normalization is asymptotically equivalent to

2426

1/226

1/22[(0317(1 -T" lzfy(i) ]
v S S G- m)

1i=m+1

Each summand is independent across j, and by the serial uncorrelatedness in ¢;,
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has expectation zero. Further, there is a positive § such that:

(0B;r(1)) =T > 6(t)?

2

246
T
_ 2
<sup|T 1/2Z€j(t) +S}1P||5j(t)||2(2+6)
5T t=1 22+8) T

< oo independent of j and T by (iii) and (iv).

Finally, it is straightforward to calculate:

V(TTZ S e m) ) =

m=1{=m+1

T‘Q%T(T - 1)o*

ot as T — oo.

N~

—

Consequently, by Wooldridge and White (1988, 3.1, p.219), the normalized nu-

merator converges in distribution to N(0, %04). Recalling that the normalized de-

nominator converges in probability to %02, we have

9~ Y/2N(T)/2T (bT —1- 2%T‘3/2) £, N0, 1),

Q.E.D.

as was to be shown.




Table: Monte Carlo CDF: 10,000 draws (Known p, o)

27VIN(T)V2T (b — 1 — 24T773/2)

Probability no greater than:

(N.T}) 1%  2.5% 3% 10% 90% 95% 97.5% 99%
(25,25) -3.13 —2.60 -2.14 -1.64 111 1.42 1.66 1.93
(25,50) -3.19 -2.60 -2.12 -1.60 1.10 140 167 194
(25, 100) -3.17 —2.57 -2.06 —-1.58 1.08 138 165 1.95
(25,250) -3.19 -262 -2.14 -1.60 1.07  1.36 1.58 1.85
(25,1000) -3.25 —2.62 -2.13 -1.62 1.08 1.38 1.65 1.92
(50, 25) —2.87 -246 -2.00 -1.35 1.16 147 1.76 2.06
(50, 50) -2.86 —2.36 -1.93 —1.49 118 1.50 1.75 2.02
(50,100) —-296 —2.37 —1.91 -1.48 114 144 170 2.01
(50, 250) —-2.83 -2.36 -1.93 -—-147 1.12  1.43 1.69 1.99
(50, 1000) —2.88 —-2.37 -197 -1.51 1.14 147 1.75 2.04
(100, 25) -2.74 =229 -190 -—-1.47 1.20 1.51 1.80 2.13
(100, 50) -2.65 —220 -1.82 -1.39 1.22  1.57 1.89 2.17
(100, 100) —-2.36 -2.15 -1.81 -—-1.39 .19 1.51  1.80 2.12
(100, 250) -2.65 -2.20 -1.81 -1.39 1.18 147 1.77 2.08
(100, 1000) -2.68 —-2.22 —-1.83 -1.40 1.18 1.50 1.80 2.13
(250, 25) -2.61 =217 -—-1.85 -143 1.24 1.57 1.87 2.23
(250, 50) —2.45 -2.06 —-1.73 -1.31 1.29 167 196 2.31
(250, 100) -246 -2.05 -1.70 -1.31 1.24 158 190 223
(250, 250) -2.44 -208 -1.75 -1.34 1.23 155 183 216
(250, 1000) —2.54 —2.07 -1.73 -1.33 1.19 1.54 1.84 2.16
(1000, 25) —2.44 -2.04 -1.74 -1.36 1.27 161 189 2.24
(1000, 50) -236 -1.94 -1.59 -1.20 137 1.74  2.02 237
(1000, 100) -2.39 —-1.94 -163 -—-1.25 1.33 169 195 226
(1000, 250) ~2.44 -2.02 -1.70 -1.31 1.28 162 191 226
(1000, 1000) -2.39 -2.04 -1.73 -1.31 1.23 1.58 1.85 2.18
(00,1) -2.33 —-196 -1.64 —1.29 1.29 1.64 1.96 233

(1,00) | —13.8 —-10.5 -81 5.7 0.93 128 1.60 2.03
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