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Non-Technical Summary

In the Black-Scholes option pricing model, the underlying asset price
has a lognormal distribution. This assumes in particular that the asset
price will leave any given bounded range with positive probability. In
many situations, however, it will be more accurate to describe the
underlying variable as being confined to some bounded interval. Target
zone regimes for exchange rates are prominent examples. Indeed, if
such a regime were perfectly credible, then the exchange rate would
never leave the band which is set by the monetary authorities. The
valuation of currency options in a target zone regime can therefore not
rely on the standard Black-Scholes model.

A second area where the assumptions of the Black-Scholes model
run into difficulties is the pricing of options on discount bonds. While
usually not traded themselves, these options can be regarded as
important building blocks for widely traded derivatives such as forward
rate agreements, caps and floors. Given that nominal interest rates are
always positive, the price of a discount bond must be strictly decreasing
in its time to expiry. This means in particular that the forward price of
a discount bond must always stay below par. Neglecting this upper
bound by applying the Black-Scholes formula can potentially lead to
significant errors in the valuation of discount bond options.

For these reasons, a number of authors have studied valuation
models which impose strict upper and lower bounds on the underlying
asset prices. The first contribution of the present paper is an analysis
of the structure of option prices in such an environment. As usual, all
the information relevant for derivative asset pricing is contained in a set
of so-called state prices. Moreover, for any given numeraire portfolio,
these state prices give rise to a risk-adjusted probability measure under
which all asset prices, expressed in units of that numeraire, are
martingales. Two particular numeraire portfolios, whose construction
reflects the presence of the upper and lower bound on asset prices, turn
out to be most useful. In fact, the price of a standard option can be
decomposed in terms of the probability that the option will end ‘in the



money’, calculated under the martingale measures associated with these
two numeraires.

This decomposition is of particular use in models where the
underlying financial variable follows a diffusion process whose diffusion
coefficient is quadratic in the current value of the variable, It is
remarkable that such a specification preserves one of the most attractive
features of the Black-Scholes model, namely the existence of closed-
form expressions for the prices of standard call and put options. The
second contribution of the paper is a new derivation of the option price
in this class of models, based on the above choice of numeraires and
martingale measures. Thus, the paper illustrates how the choice of
appropriate numeraires can simplify a pricing problem considerably and
make the structure of the resulting option prices more transparent.
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Several authors have derived closed-form option prices in models where the
underlying financial variable follows a diffusion process with the following
two characteristics: (i) the process has natural upper and lower boundaries;
(i) its diffusion coefficient is quadratic in the current value of the variable.
The present paper uses a probabilistic change-of-numeraire technique to com-
pute the corresponding option price formula. In particular, it shows how to
interpret the formula in terms of exercise probabilities which are calculated
under the martingale measures associated with two specific numeraire port-
folios.

Introduction

In the option pricing model of Black and Scholes (1973), the underlying
stock price is lognormally distributed, hence has the full positive half-axis
as its support. This makes it difficult to apply the Black-Scholes model
in situations where the underlying financial variable possesses upper and
lower bounds. Ingersoll (1989a, b) for example argues that central bank
intervention in the foreign exchange markets will tend to moderate exchange
rate fluctuations. He then develops an exchange rate model with strict upper
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and lower stabilisation bounds, i.e., a model of a perfectly credible target zone
regime. .

A second area where the assumptions of the Black-Scholes model run into
difficulties is the pricing of options on zero-coupon bonds. Indeed, it is well
known that modelling bond prices (or bond forward prices) as lognormal vari-
ables is tantamount to introducing negative interest rates. This lead Biihler
and Kisler (1989) to construct a bond price model within the framework of
Merton (1973) where the forward price of the underlying zero-coupon bond
is always strictly smaller than 1, so that the corresponding forward inter-
est rate remains positive throughout. More recently, Miltersen, Sandmann
and Sondermann (1994) have proposed a model of the term structure of in-
terest rates where the forward price of the underlying bond for delivery at
the maturity date of the option has risk-neutral dynamics as in the Biihler-
Kisler model, while the associated once compounded forward rate follows a
lognormal diffusion process.

The structure of the models of Ingersoll (1989a, b), Biihler and Kasler
(1989) and Miltersen, Sandmann and Sondermann (1994) is identical in so
far as the underlying financial variable is modelled as a diffusion process with
the following two characteristics: (i) the process has natural upper and lower
boundaries; (ii) its diffusion coefficient is quadratic in the current value of
the variable. This specification is easily seen to generalise the Black-Scholes
model; in fact, the latter is obtained on choosing zero as lower and +oco as
upper bound.

It is remarkable that this generalisation preserves one of the most attrac-
tive features of the Black-Scholes model, namely the existence of analytic
formulae for the prices of European call and put options. Ingersoll (1989a,
b) and Biihler and Kasler (1989) compute these formulae by applying a judi-
cious change of variable to the corresponding fundamental partial differential
equation for pricing derivatives.! The present paper, by contrast, applies a
probabilistic technique involving a simultaneous change of martingale mea-
sure and numeraire which goes back to Jamshidian (1987) and El Karoui and

In fact, there is a slight difference in the approach taken. Ingersoll transforms the
fundamental PDE into Merton’s (1973) variation of the standard Black-Scholes PDE and
then just uses the Black-Scholes solution. Biihler and Kasler transform the fundamental
PDE directly into the heat equation and solve the latter in the usual way; see Kisler
(1991) or Rady and Sandmann (1994) for details. This is also the approach adopted by
Miltersen, Sandmann and Sondermann (1994).



Rochet (1989). This technique makes the different steps in the calculation of
the option price more transparent and easier to interpret in financial terms.
Moreover, it elucidates the structure of the pricing formula by decompos-
ing the option price in terms of two particular numeraire portfolios and the
risk-neutral probabilities associated with these.

The paper is organised as follows. Section 1 sets out the framework of
our analysis and introduces the change-of-numeraire technique. Section 2
presents a general expression for the price of a call option in the presence
of strict upper and lower bounds on the underlying relative price. Applying
this result, Section 3 calculates the call price in models where the underly-
ing relative price has a quadratic diffusion term. Section 4 then shows how
the general result applies to the models of Biihler and Kasler (1989), Mil-
tersen, Sandmann and Sondermann (1994) and Ingersoll (1989a, b). Section
5 concludes the paper.

1 Martingale Measures, Numeraires,
and Contingent Claims

Fix a finite time interval 7 = [0,7}, a probability space (2, F,P) and a
filtration (F;)icr satisfying the usual conditions. Fy is assumed to be almost
trivial, and Fr = F.

Consider a financial market with continuous and frictionless trade in two
primitive assets, labelled 0 and 1, which pay no dividends in 7. Let their
price processes S¢ (i = 0, 1) be positive semimartingales on (Q, F, P, (Ft)e7)-
Relative security prices are given by the process X = S!/S°.

A probability measure @) equivalent to P is called a martingale measure
with respect to asset 0 if X is a QQ-martingale, i.e., if each X, is ()-integrable
and

X, = E° [X7|F)

for all t € 7. Alternatively, such a measure @ is said to be risk-neutral with
respect to asset 0. Let JP, denote the set of these measures.

Assumption (M) IF, is non-empty.

One element of IP,, denoted Qg and called the reference measure, will be held
fixed throughout the paper.



As in Harrison and Pliska (1983), a vector process § = (6°, 6') is called
an admissible trading strategy if the following properties (i) — (iv) hold:

(i) 6 is predictable.

This expresses the informational restriction that trades can only be based
on information obtained prior to trading. To formulate the remaining two

conditions, let
Ve = 650+ s}

denote the value process corresponding to 6.
(ii) V? is non-negative.

(i1) 6" is integrable with respect to X and the normalised value process
satisfies
1
S° = S° + / 6, dX,.

(iv) The normalised value process V?/S0 is a Qo-martingale.

Condition (ii) rules out negative portfolio values. Condition (iii) states that
all changes in portfolio value are due to the assets’ performance rather than
to injection or withdrawal of funds. In other words, admissible strategies are
self-financing.? Condition (iv) says that there are no expected gains from
trade. It rules out arbitrage opportunities and certain foolish strategies that
throw away money.® The space of admissible strategies will be denoted by
0.

A positive process N is called a numeraire if there is a trading strategy
§ € © such that N = V? Extending our previous definition, we call a
probability measure ) equivalent to P a martingale measure for numeraire

ZA straightforward integration-by-parts argument shows that (iii) implies the more
intuitive representation

1 t
vf=v(,9+/ 02d52+/ 6! ds!
0 0

for the value process, provided the integrals exist.
3Note that (iv) is the only condition that might depend on the choice of reference
measure.



N (or risk-neutral with respect to V) if V?/N, the portfolio value expressed
in units of the numeraire, is a Q-martingale for any strategy f € ©. We shall
write PPy for the set of all such measures, and IP; if N = S*.

Given the measure Qo and a numeraire NN, define a probability measure
Qn equivalent to Qo (and hence to P) via the Radon-Nikodym derivative

diy_ N 5% 0

dQy ~ Np SY°
Note that N/S° is a Qo-martingale by definition, so the right hand side of
(1) has indeed expectation equal to one under Q. In case N = S', we shall
write @; for the measure defined by (1).

Lemma 1.1 Let N be a numeraire and Y a random variable such that
E?[|Y]/S2] < co. Then
S0 Y
:Ft:| = —t EQOI:—- ft]
forallteT.

TN S9.
PROOF: The expectation on the left hand side is clearly well-defined and, by
a version of the Bayes rule,

Y
Qn| 2
E [NT

Qo[ don Y

EQN[YU__]_EO 2 | 7
— || = .
Nr EQo[:ii%ou }}}

Using (1) and the fact that E®°[Np/S3|F] = N/ S? completes the proof. B

Applying this lemma to Y = V£, we see immediately that Qy € Py. We
call it the martingale measure obtained from @)y by change of numeraire. If
Qv and Qg are obtained from @)y by changing the numeraire to NV and IV,
respectively, then (1) implies
dQn _ Nr & 2)
dQN Ny NT '
Equations (1) and (2) are at the heart of the change-of-numeraire technique
in derivative asset pricing.*

4Cf. El Karoui and Rochet (1989) or Geman, El Karoui and Rochet (1995). For a more
detailed examination of the relationship between numeraires and martingale measures see
Conze and Viswanathan (1991).



A contingent claim is a non-negative random variable I' on (2, F) such
that I'/S% is Qo-integrable. A contingent claim is attainable if there exists a
trading strategy € © that replicates the claim, i.e., that satisfies VJ =T.
In this case, the portfolio value V;’ determines the time ¢ arbitrage price m,(T)
of the claim. By property (iv) above, this price can be calculated as

r
m(T) = S? EQ"[@

ft:la

that is, without reference to the replicating strategy. More generally, consider
an arbitrary measure @ € IPy under which I'/S%. is integrable. Independent
of whether T is attainable or not,

r

T2 (T) = S? EQ[ 5

7

is called the price under @ of the claim at time ¢.°

2 European Call Options

Consider an option to receive at time T' one unit of asset 1 in exchange for
K > 0 units of asset 0. This is a slight generalisation of a classical European
call option. Indeed, the latter is just the special case where asset 0 is a
default-free zero-coupon bond of maturity 7'.

The option has the following value at the exercise date:$

=[S} - KS4]™*

or, equivalently,
L= (S, - KS) 1

where

E={we: Spw)> KSh(w)}

*Jacka (1992) shows that a contingent claim I is attainable if and only if it has the
same initial price mo(I") under all Q@ € Py for which both d@Q, /dQ and dQ/dQ are
bounded. Moreover, he shows that for bounded I/ S9., the attainability of the claim does
not depend on which reference measure @ was used to define the space of admissible
trading strategies.

8By definition, [z]* = max{z, 0} for all real numbers z.



is the event that the option ends ‘in the money’ and is exercised.

Tt is well known that the price of a European option can be expressed in
terms of exercise probabilities calculated under certain martingale measures.
A variant of the following result was derived by El Karoui and Rochet (1989).

Proposition 2.1 The option price under Qo 1
WtQO(F) = Stl Qi (E|F) - KS? Qo (£|F)

where Q1 € IP; is the measure obtained from Qo by changing the numeraire
to asset 1.
PROOF: By definition,

r

() = SPE% | o

T

Lemma, 1.1 implies that

1
.7-}] = S} E% [§§— 1¢
ST

J-'t] — K SPE[1,|F].

Sl
Sy E® [S—?r le ]-'t] = S E?[1¢|F],
hence the proposition. [ |

A different decomposition of the option price gan be obtained when the
relative price X = S!/S° is bounded.

Assumption (B) There are constants 0 < £ < u < 400 such that
£8? < 8! < uS}
forallteT.

Consider two portfolios, the first of which is long one unit of asset 0 and
short u~! units of asset 1, while the second is long one unit of asset 1 and
short £ units of asset 0.7 Let

U=28"—uis"

and
L =8'—45°

denote the corresponding value processes. Under Assumption (B), these are
positive processes, hence numeraires.

70f course, 4! is understood to be zero if u = +o0.

7



Proposition 2.2 Under Assumption (B), the option price under Gy 15
1) = o {1 = W) LQu(E1F) — (K~ O U Qu(E1F) |

where Qu € IPU and Q € IPy, are the measures obtained from Qo by changing
the numeraire to U and L, respectively.

ProoF: It is straightforward to check that

(1 - u‘lK) Ly — (K - Z) Ur
Sh— KSY = ) .
Thus,
1—u'K LT K Ur
Q — 0@ _ 0@
ﬂt°(I‘)—1_u_l£SE°[SO ft} _I€SE°[5015}']
Lemma 1.1 now implies
L
SE% [—f 1¢ }}] = LB (1| F]
St
and o
SYE [S—;” le ﬁ] = U, E%[1¢|R].
T
This is the desired result. |

We have again expressed the call price as a function of certain exercise prob-
abilities, this time evaluated under martingale measures associated with the
numeraires U and L.

The exercise event £ can be characterised in terms of the random variable
Yr = Ly/Uy or its inverse Zp = Ur/Lr:

£ {wEQ Yr(w) > f"*f}

1—u'K
= {DJEQ ZT[UJ)<-—W}'

Ingersoll (1989a, b), Biihler and Késler (1989) and Miltersen, Sandmann and
Sondermann (1994) propose models where the law of the processes Y = L/U
and Z = U/L under Qu and @y is very simple, so that the above exercise
probabilities are easy to determine.



3 Models with a Quadratic Diffusion
Coefficient

The following assumption postulates that after a change of measure, relative
asset prices follow a diffusion process with quadratic diffusion coefficient. We
shall see later that the models mentioned at the end of the previous section
are of this type. Let constants ¢ > 0 and 0 < ¢ < u < +o0 be given.

Assumption (Q) There ezists a Q- Wiener process WO such that the process
of relative asset prices X = S'/S° solves the stochastic differential equation

dXt =0 (.Xt - E)(l - u_lXt) thO

with inatial value £ < Xy < u.

Standard results from the theory of stochastic processes imply that the above
stochastic differential equation has in fact a solution. This solution is unique
both in the strong and weak sense, satisfies Assumption (B) and is a martin-
gale; see for example Revuz and Yor (1991) and Karlin and Taylor (1981).
In particular, @ is indeed risk-neutral with respect to asset 0.

Note that the lognormal dynamics of Black and Scholes (1973) and Mer-
ton (1973) are obtained as the special case where £ = 0 and u = +oc0.

3.1 Characterisation

It turns out that Assumption (Q) can be formulated equivalently in terms
of the processes Y = L/U or Z = UJ/L. Let Qu € Py and Q; € P
be the measures obtained from )y by changing the numeraire to U and L,
respectively, and define 6 = (1 — u™¢)o.

Lemma 3.1 Assumption (Q) is equivalent to each of the following two prop-
erties:

(i) There exists a Qu-Wiener process WY such that Y solves
dY; =6 Y, dw/r

with nitial value Yy > 0.



(i) There ezists a Q- Wiener process WYL such that Z solves
dZ, = 6 Z; AW}

with initial value Zy > 0.

PROOF: Suppose Assumption (Q) holds. By Ité’s lemma and some algebra,®
dY, = 6Y; {dW} + 5 (X, — ) dt}

where & = u~10. Define a process WV by dW/ = dW} + 7 (X; — {) dt with
WU = 0. We want to show that WV is a Wiener process under Qu. By

equation (2),
dQy _ Ur Sg _ 1—u1Xyp

dQo  Up 8% 1—-ulXy '
On the other hand,

dll —u~ Xt]

A S DL

hence, by the formula for the martingale exponential,
t ~2 ot
1—w X, =(1—u"'Xo) exp (—6/ (X, — £)dW? - %/ (X, —£)?° ds) ;
0 0

In particular,

”2
= exp X, —¢ dWO—— X, —0%ds
o —exp (-5 [ .- [ x.-0
8The following facts are used in the calculations. If
_z—4
VT
then
dy  1- ule and &y 2u'(1-u"le)
de ~ (1~-ula)? de?2 = (1—wulz)® 7
Moreover,
dz _ (1-u'a) an d’z _ —2u'(1-u"x)’
dy ~ 1—u U4 dy? (1—u-l£)? ’

10



The Girsanov theorem now implies that WY is indeed a QU-Wiener process;

cf. Revuz and Yor (1991).
To prove the converse implication (i) = (Q), suppose we have WV as in
the lemma. It6’s lemma and some straightforward computations yield

dX; =0 (X, — )1 — v X;) {dW/ — & (X, — £) dt}.

Let WP be the process defined by dW? = dW! ~ & (X; — £) dt with W = 0.

As
ﬁi[l = 'H._IXg] _

1 — U."] .X—p:
the formula for the martingale exponential now implies

¢ =2t
1—u™'X, = (1 —u"'X) exp (—6/ (X, — ) aw?l + %/ (X, - 07 ds)
0 0

—5 (Xy — 0)dWY + 5% (X, — £)* dt,

and

dQu  1-uX, _ (T v 2 [T )
W00 = l_u_]XT—exp(a/o (Xs =€) dW; 3 ), (Xs = 1) ds).

By the Girsanov theorem, W9 is a Wiener process under Q.

Next, we want to show that (i) implies (ii). Let WU be a Qu-Wiener
process as in the statement of the lemma. By the formula for the martingale
exponential,

Yr=Y; exp <&W1L«' — %“ZT) .
Define a process Wt by dW} = —dW/[ + 6 dt with W = 0. As

dQr _ Uy Ly _ Y7 52
dQU_Lo UT Yo —exp(aWT — =0T

the Girsanov theorem implies that W is a Wiener process under Q;. By
construction,

Yr =Y, exp (—5’ W% + %&2T> ;
hence

Zp = Zy exp (&W} - %”2T> :

11



In other words, dZ; = ¢ Z, dW[.
The converse implication (ii) = (i) follows in the same way. |

Thus, Assumption (Q) holds if and only if there is a change of measure that
makes the process Y (or Z) a driftless geometric Brownian motion whose
‘volatility’ (i.e., instantaneous standard deviation of returns) is 4. This is
the key to our calculation of the option price.

3.2 The Option Price

Let (Gy)ier be the filtration generated by the process X, and set § = Gr.
The following result is well known.

Proposition 3.1 Under Assumption (Q), any contingent claim T’ with G-
measurable normalised payoff T'/SY is attainable.

PrOOF: This is an immmediate consequence of the martingale representation
property of X on (©2,G, Qo, (G:)ier); see Revuz and Yor (1991). |

This guarantees in particular attainability of the option to receive one unit
of asset 1 in exchange for X units of asset 0, as its normalised payoff [S} —
KS83]*t/83 = [Xr — K]* is clearly measurable with respect to G.° Let ®
denote the standard normal distribution function.

Proposition 3.2 Under Assumption (Q), the option to receive one unit of
asset 1 in ezchange for K units of asset 0 is attainable. For { < K < u, its
time t arbitrage price is

m(D) = pmrg { (-0 K (81— 47) 8(6) ~ (- 0) (S-S a(ep)

where
1 SH—¢8? K—¢ 1
:l:= 1 1 i _ 242 _
K &m[og S sy BT g Tgd T

and & = (1 — u=)o.

"Moreover, the normalised payoff of the option is bounded, so attainability does not
depend on which reference measure was chosen to define the space of admissible trading
strategies; see Jacka (1992).

12



PrOOF: We want to apply Proposition 2.2, so let Qy and @y be the measures
obtained from Qo by changing the numeraire to U and L, respectively. To
calculate the probability of exercise under Qy and Qp, let WY and W’ be
Wiener processes as in Lemma 3.1, so that

Yr=Y, exp (&W,}]-— —;—”2T>

and .
Zp = Zy exp (a Wi - 5“2T)

by the formula for the martingale exponential.
The properties of the Wiener process WY now imply

K -7 Yt)

Qu€lF) = Qv<Yr>m
= QullogYr —logY; > lo —{{—_—f——loY
= Gu|log I'r g1t gl—u“‘fi’ 8 Iy

) K- 1,
Qu (U Wy -Ww/) > log 7= —7 ~log¥i + 56 T - t))

1 K—¢
= ¢ ——— _log—=t _loap_ )
(&\/T—t [l°gy‘ logr— o —37 (@ t)])
In the same way, we find
zt>
g
= QL (6’ (Wfll"; - WtL) < log%—:\—

1 K-t 1
= o—~— |1g¥, +ieaoy).
(&\/'T—' [°g‘ ey g T30 t)])

This completes the proof. |

o
Qi&|FR) = QL(ZT< Ii_FK

—log Z; + %&2 (T - t))

Standard arguments'® show that the trading strategy
(1- w7 K) £8(ef) - (K — ) o(ef) }

0 = o

0 = o {1 K) B + (K - Hu o(e) )

10See for instance Harrison and Pliska (1981).

13



is admissible and replicates the option.
For ¢ = 0 and u = +00, We obtain of course the option price formula of

Black and Scholes (1973) and Merton (1973) with & = 0. Setting u = 00 but
¢ > 0 leads to a formula proposed by Rubinstein (1983).

The result is easily extended to allow a time-dependent, but deterministic,
parameter function o(t) >0 in Assumption (Q). Lemma 3.1 then holds with
o replaced by () = (1 —ut)o(t), and the term &+/T — t in Proposition
3.2 must be replaced with

(1-u"'e) /tT o2(s)ds.

The price of a generalised put option, that is, an option to gwe up one
unit of asset 1 in exchange for K units of asset 0, can be calculated in the
same way. Alternatively, one can use a version of put-call parity.

4 Examples

This section shows how the models of Biihler and Kasler (1989), Miltersen,
Sandmann and Sondermann (1994) and Ingersoll (1989a, b) fit into the frame-
work developed in the previous sections.

4.1 Options on Zero-Coupon Bonds

Fix dates T' > T > 0 and let assets 0 and 1 be pure discount bonds without
defanlt risk, maturing at T and T', respectively. Without loss of generality,
their face values can be normalised to 1, i.., S8 =1 and S3 = 1. Consider
a standard European call option written on bond 1 with exercise price K
and exercise date T. As S% =1, this call can be considered as an option to
receive one unit of bond 1 in exchange for K units of bond 0.

Biihler and Késler (1989) propose a model where the bond prices satisfy
S0 < 1fort < T and Sl < 8 for t < T. These inequalities follow directly
from the postulate that interest rates implied by bond prices ought to be
positive. In fact, the former inequality means that the inferest rate for a
loarn from t to T is positive, while the latter states that the forward interest
rate, as seen at time ¢, for the period from T to T" is positive. In particular,
Assumption (B) holds with u =1 and £ =0.

14



More specifically, the relative price X; = S;/S; has the form

B L=h(t) _ow] ™
where h : T —]0,1[ is a continuously differentiable function, o a positive
constant and W a standard Wiener process under the measure P. The
process S° is defined similarly, but need not be specified here. Note that X
is the time ¢ forward price of bond 1 for delivery at time T'. It is easily seen
that h(t) is the median value of this forward price.

We want to show that this model satisfies Assumption (Q). Itd’s lemma
yields

dXt = O'Xt (1 - Xt) {Olt dt + th}

with the bounded process

R0 1
= G - k@] (2 X’)'

Define a process W0 by

Qg

thO = Q4 dt + th
and W = 0, and let Qp be the measure obtained via the Radon-Nikodym

derivative 00 r -
Qo _ _ _L e
Ip = &P ( /0 a, dW, 5 /0 o d8>

(as o is a bounded process, the random variable on the right hand side has
indeed expectation equal to 1). The Girsanov theorem implies that W° is
a Wiener process under Q. By construction, dX; = o X; (1 — X,)dW}, so
Assumption (Q) holds.

By Proposition 3.2, the arbitrage price of the call option with exercise
price 0 < K < 1is

m(T) = (1 - K) 8; ®(ef) - K (S] = 57) ®(e7)

with

1 83 K 1
+ i 2
== | -1 +Z02(T -]
€ oI —1 [Og 5P — 8} Ogl—-K 2 ( t)]

This is the pricing formula derived by Biihler and Kasler (1989).

15



Miltersen, Sandmann and Sondermann (1994) obtain the same option
price formula in a model of the term structure of interest rates. To see how
their approach fits into the framework studied in the present paper, note that

the variable

t

can be interpreted as the once compounded forward rate, as seen at time ¢, for
a loan given at T' and repaid at T'. Miltersen, Sandmann and Sondermann
start from lognormal diffusion dynamics for the forward rate Z:

dZt = }L(t)Zt dt + U(t)Zt th

with deterministic functions p and ¢ > 0, and a Wiener process W under
some measure P. This can be rewritten as

dZt = U(t)Zt thL

where W is the process defined by

AWE = dw, + g% dt

with W = 0. Granted sufficient regularity of the parameter functions,'! the
Girsanov theorem implies that WL is a Wiener process under the measure
@y obtained via the Radon-Nikodym derivative

dQ1 / 0) 1 / T K3(s)

== - Do dW, — = T .

dpP P ( o (s) 2 Jy o%(s) o

According to our earlier results, this implies Assumption (Q) with the time-

dependent parameter function o(t), hence the time-dependent volatility ver-
sion of the Biithler-Kasler bond option formula.

4.2 Currency Options in a Target Zone Regime

Consider an option to buy at some future date T one unit of a foreign currency
for K units of the domestic currency. If asset 0 is a default-free domestic

11Boundedness of the ratio p/o will do.
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discount bond paying one domestic currency unit at time T, and asset 1 its
foreign counterpart, then the currency option can be interpreted as the right
to receive one unit of asset 1 in exchange for K units of asset 0. Note that S,
the domestic price of asset 1, is the product of two factors: the spot exchange
rate s, giving the number of domestic currency units needed to purchase one
unit of the foreign currency, and S*/, the price of asset 1 in foreign units.
Assuming for simplicity that the domestic interest rate rq and the foreign
interest rate r; are constant, we clearly have

S0 =m0 Ghf =71 (T=) and Sp=sie”" -1,

By covered interest rate parity, X; = S;/S; is now just the time ¢ forward
rate for currency exchange at time T'.

Ingersoll (1989a) models a perfectly credible target zone regime by im-
posing the condition

£(t) < s <E(t)

with deterministic functions ¢ and Z. He shows that not every pair of bound-
ary functions is admissible. Given £(0) and Z(0), the tightest possible bounds
are in fact

1) = 0y,
E(t) = Z(0)elremt,

For these functions, the above condition translates into
E(T)S} < 8 <E(D)S,

that is, Assumption (B) with £ = ¢(T') and u = E(T).
As for the spot rate dynamics, one of the models studied in Ingersoll
(1989a) has
dsy = wese dt + o [se — E(@)][1 — s¢/E(t)] AW
with an unspecified drift rate process g, a Wiener process W and the above
boundary functions. By It6’s lemma, the corresponding forward rate dynam-
ics are

dXe = (pe+ 1 — ra) X dt + o [Xy — E(D)][L — X /E(T)] dW4,
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which, under suitable conditions on g, implies Assumption (Q). If so, the
arbitrage price of the currency option is given by Proposition 3.2 and can be

written as
— s — Lf _E_Z‘E/_E_(D_ et
- /20 S e )
with

1 s—&t) K- &T)
P = [bg 1—s/2() log TR /=)
and & = [1 — £(T)/E(T)]o. This is the same result as in Ingersoll (1989a).

An extension of this analysis to ‘futures-style’ options (futures contracts
on option payoffs) is presented in Ingersoll (1989b). Assuming a quadratic
diffusion term for the underlying futures price, Ingersoll calculates valuation
formulae similar to the one above. Again, the results of Sections 2 and 3
apply.

+ %&2 (T - t)]

5 Conclusion

We have studied the pricing of a European-type option to exchange one asset
for another in the presence of strict upper and lower bounds on the relative
price of these assets. Our first result shows how to decompose the option
price in terms of two particular numeraire portfolios and the probabilities
of exercise under the martingale measures associated with these numeraires.
This decomposition is particularly useful in models where the relative asset
price has a quadratic diffusion coefficient. The second contribution of the
paper is a new derivation of the option price in this class of models.
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