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Non-technical summary

It is already established that option prices may be affected by predictability of the
underlying asset's returns, even when predictability is induced by a variable which
does not enter the option pricing formula. Here, the case is analysed, where asset
returns are white noise but are predictable using a broader information set than their
past history alone, reflecting the fact that uncorrelated observed returns are
compatible with strongly autocorrelated expected returns. It is shown that return
predictability affects option pricing strategies, especially for longer maturity options,
when expected returns follow a discrete-time two state Markov chain. In the discrete
model, however, parameter estimates are affected by the discrepancy between
frequency of trading and frequency of observation. If returns are observed for every
fixed number of trades, estimation carries through the aggregation and so does the
result on the impact of predictability. As this pattern of observations is arbitrary, this
paper also analyses the continuous time limit of the previous model, in which it turns
out that predictability of uncorrelated returns does not affect Black-Scholes option
pricing as in that case -unlike the discrete model- sample variance is an appropriate
estimator for the variance of instantaneous returns.
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Abstract

We study the effect of the predictability of an asset’s return on the prices of
options on that asset, for models in which returns are serially uncorrelated, yet
predictable on the basis of a larger information set. We show that return pre-
dictability may matter in a discrete time world, especially for longer maturity
options. However, discrepancies between the frequency of trading and obser-
vation become relevant in estimating the model parameters. When trading is
continuous, Black-Scholes is valid, and the sample variance of holding returns
over finite periods is an appropriate estimator of the variance of instantaneous

returns.



1 Introduction

In a recent paper, Lo and Wang (1995) convincingly argue that the pre-
dictability of an asset’s returns may affect the prices of options written on
that asset, even though predictability is induced by the drift, which does not
enter the option pricing formula. The rationale is that, unlike in the geo-
metric Brownian motion process with constant drift underlying the standard
Black-Scholes formula, the sample variance of discretely-sampled returns may
not be an appropriate estimator of the instantaneous variance if returns are
predictable. Lo and Wang (1995) show that this is indeed the case for uni-
variate and multivariate continuous time AR(1) processes which imply serially
correlated returns.

We analyze the same issue for models in which asset returns are serially
uncorrelated (i.e. white noise), and therefore unpredictable from their past
history alone, but they are predictable on the basis of a larger information set.
In other words, the market for the primitive asset is weak- but not semistrong-
form efficient. The justification for such models lies at the core of the mean-
reversion literature (see e.g. Shiller (1984), Summers (1986), Poterba and
Summers (1988), or Fama and French (1988)), and simply reflects the fact that
negligible autocorrelations for observed returns are compatible not only with
constant expected returns, but also with a smoothly time-varying expected
return process whose first-order autocorrelation is high (see also Campbell
(1991)). Furthermore, such models are not only a theoretical possibility. As
pointed out by Campbell, Lo and MacKinlay (1997, p. 267), “this possibility
seems to be empirically relevant for the US stock market”.

The paper is organized as follows. In section 2, we introduce a general
discrete-time version of the price process which generates white noise returns.

This process nests a conditional version of the binomial model, which we use



to assess whether return predictability is potentially important for option val-
uation within a preference-free framework. We also analyze the consequences
of discrepancies between the frequency of trading and the frequency of obser-
vation of prices. Then, in section 3 we derive the continuous-time diffusion
which aggregates exactly to the discrete-time model, and analyze the effects
of return predictability in the limiting case of continuous trading. In order
to gain some intuition, we also consider a discrete state approximation to the

continuous time model. Qur conclusions can be found in section 4.

2 Discrete Time Analysis

2.1 A Discrete Time Model

Let p(t) denote the (log) price at instant ¢ of a risky asset which pays no
dividends, and let z(t) be a predictor variable which Granger-causes prices.
Let’s initially consider a discrete-time world in which the highest frequency is
1. Campbell (1991) and Fiorentini and Sentana (1996) show that if the joint
data generation process for Ayp (t) = p(t) — p(t — 1) and z(t) is given by the
following reduced-rank bivariate VAR(1):
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Similarly, since Agp(t) = Z;:é A1p(t — 7), k-period holding returns, with
k integer, will also be white noise, so that the variance ratio Var (Axp(t)) over
kVar (Ap(t)) will be 1 for all k.

The implications of condition (2) are perhaps easier to understand if we
consider the impulse response functions of price changes with respect to the
different shocks (see Fiorentini and Sentana (1996)). For the relevant case of
a > 0, the negative correlation between innovations implies that the initial
positive effect on A;p(t) of a shock to &1 (t) is slowly compensated by the
negative but decaying impact on z(t). More interestingly, a shock to e21(t)
has a very large negative immediate impact on A;p(t), which is then slowly
reversed by the positive and decaying effect on z(t). The response patterns
are such that a white noise marginal process is obtained for A;p(t). Campbell
(1991) provides an economic intuition for such a negative correlation in the
context of a dynamic Gordon growth model.

However, lack of autocorrelation at all horizons should not be taken as
evidence in favour of constant expected returns. In this model, one-period
holding returns are predictable on the basis of z(¢), which can actually be
interpreted as expected returns.! In fact, depending on the parameter values,
the R? of the theoretical regression of A;p(t) on z(¢t—1) may be substantial (see
Fiorentini and Sentana (1996)). Furthermore, the degree of predictability is
horizon-dependent, in the sense that the ratio of the variance of the k-period

ahead forecast error, aik, to the variance of the k-period return, kw?, is a

In this respect, Fiorentini and Sentana (1996) show that any reduced rank VAR(1) for
A1p(t) and other variable §(t) which Granger causes it (with a dense companion matrix) can
be written as (1) with z(t — 1) = E[Ap(t)|I(t — 1)]. The reduced rank restriction simply
guarantees that expected returns follow an AR process of order not higher than 1.



nonlinear function of k (see Campbell (1993) and the discussion below). Figure
1 presents a plot of these two variances (with the normalization w? = 1) for
parameter values broadly representative of post-war monthly US stock market
returns when the corresponding lagged dividend yield is used as predictor
variable (see Fiorentini and Sentana (1996), or chapter 7 of Campbell, Lo and
MacKinlay (1997) for details). In particular, we choose & = 0.98, p1o1 =
cor (e11 (t) €21 () = —0.63 and R} = 1.6%. As can be seen, o3, is very
close to k in the short-run, but then it becomes significantly smaller in the
medium-run, although eventually it increases linearly again, as the long-run
forecast of z(t) is simply its unconditional mean, p.

Nevertheless, given that predictability disappears under a risk neutralized
measure, what is important for implementing option pricing models is to use
the correct values of the relevant parameters (see Lo and Wang (1995)). In
particular, since Var (A1p(t)) = Var (z(t))+Var (e1,1(t)) = 01 ,, with equality
if and only if 03, = 0, option prices computed under the assumption that p(t)
is a geometric random walk with constant drift and variance w? may well be
wrong. As pointed out by Lo and Wang (1995), the effect on prices may
be particularly important for longer maturity options, even with small levels
of predictability, since an option’s vega is an increasing function of time to

maturity.

2.2 A Discrete State Version of the Discrete Time Model

In order to assess within a preference-free framework whether return pre-
dictability is potentially important for option valuation in discrete time, we
shall use a conditional version of the binomial tree approach of Cox, Ross and
Rubinstein (1979), in which expected returns follow a discrete-time two-state

Markov chain.



Let z(t) be a binary variable which indicates whether expected returns at
period ¢ are low or high. We assume that A;p(¢) and z(t) evolve according to
(1), with the following conditional distributions for &;(¢) :

a) when z(t —1) =0
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In the relevant case of p;5; < 0, if we choose go,1 = ¢1,1 = (e +1)/2 = q1 and
To1 = T11 = q1p3g,/[(1— q1) + quply, ], then it is straightforward to show that
Ele1(t)|z(t — 1) =0 = Efe1(t)|2(t = 1) = 1] =0 and V [&1(t)|2(t — 1) = 0] =
V [e1(t)|z(t — 1) = 1] = X; as required.

Graphically, the structure of the tree is:

2(t—1)=0
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The main advantage of such a conditional binomial model is that even
though there are three possible states of nature for each value of z(t — 1), in
two of them, namely (2)-(3) and (5)-(6), the price of the risky asset, p(t), is the
same. As a consequence, we can value derivative assets with payoffs 1-period
ahead into the future on the basis of the risk-neutralized versions of 7o and
71,1 alone, despite the fact that markets cannot be fully completed through
dynamic trading. It is easy to see that,

o(log Ry~p) _ o=Mi

To,1 = e-mi _ -
_ eMl — e(lOg Rf—#)
1= oM _ gm
where
02,1 Q1
Ml = —_—“+0'1'1|p12‘1| __1 >0
2V (1 —aq) —q
02,1 J1,1 1-g <
my = § 0
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and Ry is the constant gross return on a safe asset.
Absence of arbitrage opportunities requires 0 < 71 < 1and 0 < 77 <
1, or equivalently m; < p—logRy < M; and —M; < p—log Ry < —my
respectively, which in turn requires at least that m; < 0. In principle, such
conditions on the “risk premium” u — log Ry may not be satisfied without

further restrictions on the stochastic nature of the return generating process

(1). For instance, if we assume that the white noise restriction (2) holds, and



make p = log Ry, then P%2.1 < a/(1 4+ &) becomes a necessary and sufficient
condition.

For derivative assets such as European call options with maturity at ¢t 4 1,
t + 2, etc., we would need to decompose 7g; into gp1 — o1 and 1 — Go1,
and similarly 7 into ¢1,; — 71,1 and 1 — @,;. Although this is impossible
without knowing the price of some other asset, we nevertheless know that
7oa < @o1 < 1and M1 < @11 £ 1. Therefore, we can bound the derivative
price by computing it for every possible pair of admissible values of gp,1, 1,12 It
turns out that the bounds obtained in this way are very tight for the parameters
values considered in section 2.1.

An interesting situation arises when p = log Ry, condition (2) is satisfied,
and p2, ; = a/(1+«). In this case, the prices of some of the implicit contingent
commodities are 0, and it turns out that the prices of European call options on
the risky asset are independent of z(t—1) for all exercise prices and maturities.
However, as soon as p}y; < o/(l + a), option prices generally depend on
z(t — 1). Notable exceptions are at-the-money options, whose prices turn out
to be independent of whether expected returns are low or high.

Figure 2 presents the value of 1 and 4-period European call options as a
function of the strike price, both when expected returns are low and when
they are high.? As a normalization, we fix the current price of the underlying
risky asset to 1, and take p = log Ry = 0. Note that irrespectively of whether
expected returns are low or high, the call price is the same as the value of the

primitive asset (i.e. 1) when the strike price is 0, and tends to 0 as the strike

_ ?For this purpose, it is convenient to make go,1 — To,1 = Ao(l — 7o), 1~ Go1 = (1 —
M) (1 =7o1), G1,0 — T1,1 = M(L—T1,1) and 1=,y = (1= A )(1=7y1) with Ao, A € [0, 1]

3Given the structure of our model, the pseudo-pricing function discussed in Hansen and
Richard (1987), which does not take into account the values of the conditioning variable,
yields simply the equally-weighted average of the asset prices when z(t—1) = 0 and z(t—1) =
1.



price goes to infinite. Since options prices must be convex with respect to the
strike price, and the value of at-the-money options does not depend on the
state variable in this model, out-of-the-money calls attain higher prices when
z(t — 1) = 1 than when 2(t — 1) = 0, while the opposite happens to in-the-
money calls. A similar pattern arises for 4-period call options. However, the
difference between prices is substantially higher for 4-period options than for

1-period ones, which is in line with the evidence in Lo and Wang (1995).

2.3 The Consequences of Time Aggregation

In order to capture the predictability in returns, we would have to estimate
the bivariate VAR(1) process (1). Unfortunately, if returns are predictable, any
discrepancy between the frequency of trading and the frequency of observation
of prices becomes relevant in estimating (1).4

In particular, suppose that as econometricians, we only observe p(t) and
x(t) every k trading periods. Tf we assume for simplicity that z(t) is a stock
variable, the time-aggregated joint process for Awp () = p(t) —p(t — k) and
z(t) is also a VAR(1).” Specifically

Awp (2) _ pk + 0 17_5,:: Ayp (t — k) 4 g1 (t)
z(t) —p 0 0 of z(t—k)—p o (t)

where ey (t) is such that E [ex(t)|I(t — k)] = 0 and V [ec(O)I(t — k)] = Zy,
with

2012, (k- 1—of 03,1 1—a% 2(1-—caF)

2 2 —
o, = ko T, —a) (l—a)z[ T |

4We are pgrateful to John Campbell for bringing this point to our attention.
5Tn order to find out the process for the temporally aggregated data, it is more convenient

to re-write (1) as ( x(?;}“-)—p ) = ( ‘g )+( é l ) ( Jﬁ(:)]lp )4»( E;: Ei)) )aucl

then recursively substitute backwards. Since the first column of the VAR(1) companion
matrix is (1,0)" for all k, we can easily write back the time-aggregated process in terms of
k-period returns.
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It is then straightforward to show that if (2) holds,

1-ok\?| o}, 1-ak\? o
Uikzkail-*—[k—(l—a)]1—Ia’—’=kw2—(1_a> 1—’;2Skw2

When a < V2 -1, ko2, < o3, for all k. However, when o > v2 — 1, it is
possible that o2, /k < 6%, for k less than 1/(1—«)®. For instance, if o = 0.98,
o3 /k < o, for any k <2500.

The obvious solution to this problem is to recognize the temporal aggrega-
tion explicitly, and estimate the VAR(1) above from data sampled at frequency
k in terms of the parameters of the underlying process (1). In many cases of
interest, though, the ratio of the actual trading frequency to the frequency
of observation will be unknown. Therefore, it seems natural to analyze the

limiting case of continuous trading.

3 Continuous Time Analysis

3.1 A Continuous Time Diffusion

t 14 {2 0 foe
Let y(t) = P(t) , U = w412 and A = =2 | with
z(t) —plno 0 Ine
0 < o < 1, and consider the following continuous-time diffusion
dy(t) = [v + Ay(t)]dt + dW (¢) (3)

where W (t) is a bivariate Wiener process with E [dW (t) dW (t)'] = Zodt
and y(0) = yo. It is well known (see e.g. Arnold (1974)) that the solution to

the above system of first-order stochastic linear differential equations is

i 1
¥ (t) = eAlyy + / eACT) dr 4 / ACIGW (r), £ > 0 @)
0 0
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It is also well known that the exact discretization of a multivariate Ornstein-

Uhlenbeck process such as (4) satisfies the following system of first-order sto-

chastic linear difference equations:
y(t)=gr+Fry(t —h)+en(t),t=h,2h,.. (5)

where gy, = [ eATvdr, Fj, = e*", ey (t) ~ 1id N(0, ) and T, = [ eATS AT dr
for any positive real number h (see also Bergstrom (1984)).

In our case, given the structure of the matrix A, we obtain

ulh = 5)
Er =
p(l—aot)
1 1_u|'|
Fh — 1—a
0 ot

2 at -1 1
2 2 .
=holg+ h + h+
O1p = RO+ T ( Inc )0‘12,0 1-a) (f 2lna

al—1 ah—1
T2k = e \720 T 20— a) 20

T 2ha g

If we take h = 1, equate to 3; and solve for 3y, we finally obtain that (3)

aggregates exactly to (1) with Gaussian innovations if:

2 2 4 2 14 Ino 1o 4+ 1 1+2alna o2
=0
N e N T ] R F P ER L W) R
Ina Ina ,
012,0=—1_a012,1+1_a202,1
2lna
0%,0 = _1 —a? Ug,l

Model (3) turns out to be a special case of the bivariate Ornstein-Uhlenbeck

process discussed by Lo and Wang (1995), in which there is a unit root but no
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deterministic trends. However, they only analyze in detail the case of o350 = 0,
which necessarily implies serially correlated discretely-sampled returns. In
particular, condition (2), which guarantees that holding returns over integer

periods will be white noise, is equivalent in this continuous-time framework to:
-1 )
0120 = 2(1—a) -« 02,0. (6)
In fact, condition (6) implies that App (t) is white noise for any positive
real number h. To see why, let’s express (3) as y(t) = v + Ay(t) + £(t), where
£(t) is the “derivative” of W(t). If we re-write this expression in terms of the
“differential” operator D as (DI — A)y(t) = v + £(t), it is then easy to prove
using well known results on filters (see e.g. Priestley (1981)) that the spectral
density of p(t) is constant when condition (6) holds.®
Nevertheless, returns are still predictable. Specifically, the R? of the theo-
retical regression of App (t) on z(t — k) is
2 = (ah - 1)2 0’%'0
Bh= o a2,
2h(1 — ) lnaoiy
Figure 3 presents a plot of RZ as a function of h for the same parameter
values as before. As expected, note that it converges to 0 as h — 0, since
the variation induced by the drift is of order h, while the variation induced by
the diffusion is of order h'/2. Similarly, it also converges to 0 as h — oo since
the predictability becomes proportionally negligible in the long run. However,
note that at the same time R2 can be substantial (~ .334) for A ~ 60.
It is well known that in this continuous time world, the Black-Scholes pric-
ing formula is valid even though the drift is a function of the state variable xz(t),
and the right value of the variance parameter to use for option pricing should

be 0%, (see e.g. Lo and Wang (1995)). But the somewhat surprising result

0We are grateful to Lars Hansen for suggesting this simpler line of proof.
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that we obtain from (6) is that 0%, = w?, so that Var (Axp (t)) /A is indeed an
appropriate estimator of the volatility of instantaneous returns. Therefore, it
seems that the effects of predictability and time aggregation discussed in the

previous section exactly offset each other in the (continuous time) limit.

3.2 A Discrete State Approximation to the Continuous
Time Model

In order to gain some intuition on the above results, consider the following

bivariate, trinomial 4id(0,I) process with equally probable states proposed by

He (1990):
€1\€2 —-\/g 0 2
-v2 01 (b) 3 0|3
1| @3] 0|@g|s
1 1 1
3 3 3

Let e1n(t) = o1pe1, €24(t) = (o13n/01h)e1 + /03, — 03yn/0] s62 and

generate App (t) and x (t) — p according to (5). If h = 1/N, with N integer,
this process aggregates exactly to (1), albeit with non-Gaussian innovations.
At the same time, it converges weakly to (3) as h — 0 (see e.g. He (1990)).

Note that even though there are three possible states of nature for each
value of z(t — k), in two of them, namely (a) and (c), the price of the risky
asset, p(t), is the same (cf. section 2.2). As a result, if 054 = 0190 = 0 so that
 (t) = p,Vt, we obtain an asymmetric version of the unconditional binomial
process of Cox, Ross and Rubinstein (1979).

Let 7 [z(t — k)] be the risk-neutralized probability of state (b) as a function
of z(t — h). It is easy to see that

exp {h(log Ry —p)+ =2 [z(t — h) — p — \/%al_h} -1
exp {—(\/ﬁ‘l' \/g)al,h} -1

12

7lz(t—h)] =




which remains between 0 and 1 provided that

11—«

1
_\/;O'Lh. < h{p —log Ry) + I

(ot — ) — ] < Vo,

—

Since o7, is of order h!/? whereas h(u — log Ry) + =2 [x(t — ) — ] is of
order h, this lack-of-arbitrage condition is increasingly likely to be satisfied as
h — Q.

For positive h, 7 [z(t — h)] depends on the deviations of expected returns
from its long-term mean, p. However, it is not difficult to see that such a
dependence vanishes at the rate k, and furthermore that lim,_o 7 [2(t — k)] =
1/3, which is the actual probability of the corresponding state. Since o1 =
h*2g1 4 + o(h) when condition (6) holds, this confirms that the Black-Scholes
pricing formula is valid in the limit with w as the relevant parameter.

We can also use the trinomial model to see whether the continuous trading
results provide a reasonable guide when the frequency of trading is small but
finite. Given that the number of states after a unit time interval is 3V when
h = 1/N, we choose N = 10 for simplicity. For the purposes of the exercise,
we arbitrarily split 1-7 [z(t — h)] equally between the first and the last state.”
Figure 4 presents the price of a 1-period European call options as a function of
the strike price, when the current expected return is +one standard deviation
away from its mean, u. Again, we choose u = log Ry = 0 and p(t) = 0 for
normalization. As a benchmark, we also include prices computed on the basis
of the Black-Scholes formula, as well as the asymmetric version of the Cox,
Ross and Rubinstein (1979) approach mentioned above. Although the two
prices computed under the assumption of no predictability are fairly accurate

for a wide range of exercise prices, it seems that the initial value of x(t) still

7 Alternatively, we could assume that z(t) is itself the (detrended) price of another fi-
nancial asset. In that case, it is possible to prove that the risk-neutralized probabilities of
states (a) and (c) also go to 1/3 as h — 0. It turns out that the way in which we split
1 — 7 [z(t — k)] has only an imperceptible effect on the results displayed in Figure 4.
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exerts some influence on option prices over the depicted range, at least for

N =10.

4 Conclusions

We analyze the effect of the predictability of an asset’s return on the prices
of options on that asset, for a class of stochastic processes for prices which
yield predictable, yet serially uncorrelated returns. For a conditional version
of the binomial tree approach of Cox, Ross and Rubinstein (1979) in which
expected returns follow a discrete-time two-state Markov chain, we show that
return predictability matters, especially for longer maturity options (cf. Lo
and Wang (1995)).

However, in a discrete time world with predictable returns, any discrepancy
between the frequency of trading and the frequency of observation of prices
becomes relevant in estimating the model parameters. For that reason, we also
analyze the limiting case of continuous trading. In such a world, the Black-
Scholes option pricing formula is valid despite the predictability, and moreover,
the sample variance of holding returns over finite periods turns out to be an
appropriate estimator of the variance of instantaneous returns. Therefore, it
seems that what is important for implementing option pricing models is not
merely the predictability of the asset return, but its serial correlation. In fact,
this is also true for more general price processes. In particular, suppose that
the drift follows a general linear covariance stationary process, so that the joint

model for actual and expected returns can be written as

p(t) = plt) +&()
ut) —p = g(D),()

For instance, g(D) = (1 + Db + ...+ D%,)/(D? + DP"'a; + ... + a,) for the

14



continuous ARMA(p,q) process discussed in Brockwell (1995). Here, returns
are serially uncorrelated over any frequency  if (and only if) |g(i\)|* oa9,0 +
(g(i\) + g(—iX)) o120 is not a function of X. In that case Var (Anp (t)) /A is
still an appropriate estimator of the volatility of instantaneous returns, despite

the fact that returns remain predictable as long as g(D) # 0.
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