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Prices, Price Processes, Volume and their Information
- A Survey of the Market Microstructure Literature —

by

Markus K. Brunnermeier

This literature survey provides an up to date overview of the recent theoretical developments
about price processes. The paper casts in particular light on informational aspects of price
changes. A common feature of these models is that the price communicates information,
which is dispersed among many traders.

After contrasting the Rational Expectation Equilibrium concept with the Bayesian Nash
Equilibrium concept, a connection between market completeness and information revelation
is drawn. The No-Speculation Theorem is explained. It states that difference in information
alone does not lead to more trade, given that all traders behave rationally. On the other hand
differential information combined with possible gains from trade can lead to large trading
volumes. No-Trade Theorems describe circumstances where asymmetric information can
lead to market breakdown although there are gains from trade. Two different kinds of No-
Trade Theorems are covered in this survey. One due to the adverse selection effect and the
other one is due to too much information revelation through prices which leads to reduced
risk sharing. Lastly situations are described, under which bubbles can occur, although all
traders are rational and forward looking.

The following section of the survey classifies the standard market microstructure models into
five groups. A distinction is drawn between models where traders can trade conditional on
the future prices (limit order models) and models in which traders can only submit market
orders. They can be further subdivided into models with strategic and competitive traders,
respectively. The main focus of the paper are dynamic models covering a whole price
process. By means of these models a new rationale for the technical/chart analysis can be
illustrated and stock market crashes can be explained.

The final section deals with various types of herding models. In general, in sequential
decision making, herding behaviour can arise although all agents behave rationally. Resulting
informational cascades are due to the fact that the decision of someone’s predecessors
provides a noisy signal of her information. If traders have short horizons, which can be due to
their risk aversion, they have an incentive to gather the same information as other traders do.
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This paper provides an up-to-date review and summary of the existing literature on the
informational aspects of price processes. A common feature of these models is that prices
reflect information that is dispersed among many traders. The paper begins by contrast-
ing the Rational Expectation Equilibrium concept with the Bayesian Nash Equilibrium
concept, and then draws a connection between market completeness and information rev-
elation. The No-Speculation Theorem and the No-Trade Theorems are also explained.
The No-Trade Theorems describe circumstances where asymmetric information can lead
to market breakdown even though there are gains from trade. The paper also examines
situations under which bubbles can occur even when all traders are rational and forward
looking. The second part of the survey addresses CARA-Gaussian market microstructure
models. These models are classified into five groups. A distinction is drawn between limit
order models and market order models. These models are further subdivided into models
with strategic or competitive traders. Dynamic models are used to illustrate a rationale
for technical/chart analysis. The various types of herding models are described in the
final section.

JEL Classification: D82, D83, D84, G12, G13, G14
Keywords: technical analysis, asymmetric information, rational expectations, bubbles,
herding
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Chapter 1

Introduction

1.1 Motivation

Every day a vast number of assets changes hands. Whether these assets are stocks,
bonds, currencies, derivatives, real estate or just somebody’s house around the corner,
there are common features driving the market price of these assets. Asset prices fluctuate
more sharply than the prices of ordinary consumption goods do. We observe emerging
and bursting bubbles, bullish markets as well as stock market crashes. There are many
questions which fascinate academics, professionals as well as laymen. When do bubbles
develop and crashes occur? Can price history provide us some hint about future price
developments? Does technical or chart analysis make sense? Why is the trading volume
in terms of assets so much higher than real economic activity? Can people’s herding
behaviour be simply attributed to irrational panic? Going beyond positive theory, some
normative policy issues also arise. What are the early warning signals indicating that
a different policy should be conducted? Can a different design of exchanges and other
financial institutions reduce the risk of crashes and bubbles?

If financial crises and huge changes in assets prices only affect the nominal side of the
economy, there would not be much to be worried about. However, as illustrated by the
recent experiences of the Southeast Asian tiger economies, stock market and currency
turmoil can easily turn into full-fledged economic crises. The unravelling of financial
markets can spill over and affect the real side of economies.

A good understanding of price processes can help us foresee possible dangers. In re-
cent years, the academic literature has achieved a great leap forward in understanding
price processes of assets. This paper offers a detailed and up to date review of the re-
cent theoretical literature in this area. It provides a framework for understanding price
processes and emphasises the informational aspects of asset price dynamics. The survey
focuses exclusively on models that assume that all agents are rational and act in their own
self-interest. It does not cover models which attribute empirical findings to the irrational
behaviour of agents.

The distinguishing feature of assets is that they entail uncertain payments, most of
which occur far in the future. The price of assets is driven by expectations about these
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future payoffs. New information causes market participants to re-evaluate their expecta-
tions. For example, investors react to news about a company’s future dividend prospects
in the case of stocks or bonds, and to news of a country’s economic prospects in the case
of currencies. Depending on their information, market participants buy or sell the asset.
In short, their information affects their trading activity and, thus, the asset price. Infor-
mation flow is, however, not just a one-way street. Traders who do not receive a piece
of new information are still conscious of the fact that the actions of other traders are
driven by their information set. Therefore, uninformed traders can infer part of the other
traders’ information from the movement of an asset’s price. The models covered in this
literature survey demonstrate that past price processes can be studied to infer even more
information of other traders. Therefore, technical analysis might not be as unreasonable
as some earlier theoretical papers had suggested.

1.2 Structure of the Survey

Chapter 2 introduces the concept of a Rational Expectations Equilibrium (REE), con-
trasts it with the Bayesian Nash Equilibrium concept, and then highlights their concep-
tual problems. A connection between market completeness and information revelation is
drawn. We explain why prices in a REE only partially reveal private information in a
dynamic model with incomplete equitisation, even though the markets might be ”dynam-
ically complete”. Moreover, the intuition for two different proofs of the No-Speculation
Theorem is provided. This theorem states that difference in information alone does not
lead to trade, given that all traders behave rationally. No-Trade Theorems describe cir-
cumstances where asymmetric information can lead to market breakdown even when there
are gains from trade. Two different types of No-Trade Theorems are covered in this sur-
vey. One appeals to the adverse selection effect, while the other argues that too much
information revelation through prices leads to reduced risk sharing. Bubbles are defined
and the concept of higher order uncertainty is introduced. This allows us to describe
situations under which bubbles can occur even when all traders are rational and forward
looking.

The third chapter covers models where traders’ utility functions exhibit constant ab-
solute risk aversion (CARA) and where all random variables are assumed to be normally
distributed. It is possible to find closed form solutions for this class of models. The survey
classifies the CARA-Gaussian market microstructure models into five groups. A distinc-
tion is drawn between models where traders can trade conditional on the future price
(limit order models) and models in which traders can only submit market orders. These
models can be further subdivided into models with strategic and competitive traders.
The main focus of the survey is on dynamic models that cover a whole price process. A
rationale for technical/chart analysis can be illustrated by means of these models. Dy-
namic models can also explain stock market crashes. In a setting with widely dispersed
information, even relatively unimportant news can lead to big price swings and crashes.

The final chapter deals with the various types of herding models. In general, herding
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behaviour can arise in sequential decision making even though all agents behave rationally.
Informational cascades arise because a predecessor’s action only provides a noisy signal of
her information. If traders have short horizons, perhaps due to their risk aversion, they
have an incentive to gather the same information as other traders do.

The survey is closely linked to the original articles and is by no means a substitute for
them. Rather, it develops a flavour for the intuition and the main ideas of the original pa-
pers, while highlighting their crucial technical steps and assumptions. We use a consistent
notation based on He and Wang (1995) throughout this survey to facilitate comparison
between papers. We also attempt to indicate the corresponding variable notations in a
footnote to ease reference to the original articles. Finally, please note the words ’investor’,
‘trader’ and ’agent’ are used interchangeably in the literature. The same is true for ’in-
formed investor’ and 'insider’, 'uninformed investor’ and ’outsider’, and ’liquidity trader’
and ’noise trader’. If market makers are monopolists, they are sometimes also referred to
as 'specialists’. If many market makers are competing against each other they are also
called 'dealers’.

This survey is far from exhaustive. It is restricted to price processes and hence it
addresses only a specific niche in the market micro structure literature. For a broader
overview we refer the reader to O'Hara (1995). Néldeke (1993) also provides a rigorous
introduction to this literature, including its technical aspects.




Chapter 2

Theoretical Results in a General
Setting

2.1 Rational Expectations Equilibrium and Bayesian
Nash Equilibrium Concept

Hayek (1945) was one of the first to look at the price system as a mechanism for com-
municating information.! In a world with uncertainty where information is dispersed
throughout the economy, prices play an informational role. In other words, in a setting of
uncertainty where traders have asymmetric or differential information, expectations are
important. Muth (1960),(1961) proposed a rational expectations framework, which re-
quires that people’s subjective beliefs about probability distributions actually correspond
to objective probability distributions. This rules out systematic forecast errors. The ad-
vantage of the rational expectations hypothesis over ad hoc formulations of expectations
is that it provides a simple, general and plausible way of handling expectations. It also
makes it possible to analyse the efficiency of markets as transmitters of information. In
a rational expectations equilibrium (REE) agents draw inferences from all available in-
formation, i.e. from exogenous and endogenous data, in particular from prices. When
available, investors use the information conveyed by the price as well as their private
information to choose their demand schedules.

In a Rational Expectation Equilibrium all traders behave competitively, i.e. they are
price takers. They take the price correspondence, a mapping from the information sets
of all traders into the price space as given. In a Baysesian Nash Equilibrium, however,
agents take the strategies of all other players, and not the equilibrium price correspon-
dence, as given. The Bayesian Nash equilibrium concept allows us to analyse strategic
interactions in which traders take their price impact into account. Kyle (1989) shows that
the Bayesian Nash Equilibrium in demand schedules need not converge to the (competi-
tive) Rational Expectations Equilibrium as the number of traders increases to infinity. A
major drawback of the Bayesian Nash Equilibrium concept is the multiplicity of equilibria

I'This introductory section is based on Bray (1985), Néldeke (1993), and O'Hara (1995),

5
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and their dependence on out of equilibrium beliefs.

A possible closed form solution of a REE can be derived in the following four steps
using the method of undetermined coefficients. First, each individual trader’s beliefs
about the unknown variables have to be specified. The beliefs are represented by a joint
probability distribution over relevant variables and all information sets for all I traders.
Second, the investors derive their optimal demand, based on their (parameterised) beliefs
and their preferences. In the third step, the market clearing conditions are imposed for
all markets and the endogenous price variables are derived. Since individuals’ demands
depend on traders’ beliefs, so do the price variables. In step four, rational expectations are
imposed. This means that the joint probability distribution of the variables is equal to the
investors’ beliefs. The last step allows us to determine the parameter values of the traders’
belief structures by equating the coefficients. Viewed more abstractly, the REE is a fixed
point of the function f : P — P. The domain P of f consists of a set of possible price
conjectures. These price conjectures are functions which map from the information sets
of the I agents, {F*, ..., F'} into the price space, i.e. P = {P | P: {F,...,FI} - RL}.
Given a certain price conjecture, which is assumed to be the same for all agents,? traders
make inference from the price and derive their utility maximising individual demand. The
actual relationship between the traders information sets, {F*, ..., F'}, and the prices can
be derived from the market clearing condition. P is the set of these actual relationships.
f: P — P is determined by utility maximising behaviour and market clearing. At the
fixed point f(P*(-)) = P*(-) the conjectured price function is correct and this is a REE.
A dynamic REE is defined as a sequence of self-fulfilling forecast functions.

If the price reveals a sufficient statistic for the information dispersed in the economy
the REE is said to be informationally efficient, Grossman (1978). Moreover, if even all
dispersed information, i.e. the join, is revealed by prices, the REE is fully revealing.’
Otherwise, the REE is partially revealing. Informationally efficient REE can be derived
by considering the corresponding artificial economy, in which all private information is
treated as being public. The equilibrium of this artificial economy is a full communication
equilibrium. Having solved for this equilibrium, one has to verify that it is a REE of the
underlying diverse information economy.

If it is not possible to explicitly solve the REE, the question of existence arises. Ex-
istence problems are attacked from two directions, existence theorems and non-existence
examples. The crucial question for the existence of fully revealing REE is whether the
mapping from signals into prices is invertible. The first non-existence example was pro-
vided by Kreps (1977). Four main results provide boundaries on the existence of REE.
If there is only a finite number of possible signals (e.g. {high, middle, low}) and prices
can be any vector in R7, the invertibility of the mapping from signals into prices fails
only in special circumstances. Radner (1979) concluded that a REE exists and is fully

2Relaxing this assumption might lead to interesting new insights.
3More formally, let S be a sufficient statistic for {F?,..., F'}. § is a sufficient statistic if the knowledge

of S leads to the same sequence of action rules (local strategies). P(-) : {F",. S FI} W5 pis
informationally efficient if f(S) is invertible. If in addition g({F!,..., F'}) is bijective (i.e. invertible),
then P(-) is bijective and the prices are fully revealing.
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revealing, for a generic set of economies. Thus, the example by Kreps is not robust, since
a small change in the parameters would destroy non-existence. If the signal structure is
more general, in the sense that a signal realisation can take on any value on R, or even
R™, the dimensionality of the signal space plays a crucial role. Allen (1982) showed that
if the number of relative prices, which is the number of assets minus one, is larger than
the dimensionality of the signal space, then a REE does exist and is fully revealing for a
generic set of economies. In the case where the dimension of the signal space is equal to
the number of relative prices there exists an open set of economies with no REE, Jordan
and Radner (1982). If the dimension of the signal space is higher than the dimension
of the relative price space then there exists a generic set of economies with non fully
revealing REE, Jordan (1983).

The REE concept requires that traders conduct complicated calculations. The ques-
tion therefore arises whether it is possible to describe a plausible learning process which
ultimately yields rational expectations if traders face the same situation repeatedly. It is
shown in Bray and Kreps (1987) that rational learning of REE using a correctly speci-
fied Bayesian model is actually a more elaborate and informationally demanding form of
REE. In such an extended REE traders learn the “conventional” REE. Alternatively, if
agents are boundedly rational in the sense that they are only using ordinary least square
regressions to learn the relationship between the price and the underlying information,
the outcome converges under certain conditions to the REE, Bray (1982). The speed of
this OLS-learning is analysed in more detail in Vives (1993).

A major drawback of the REE concept is that it is only implementable for the case
of finitely many traders, if private information satisfies a kind of smallness, Blume and
Easley (1990). More precisely, the private information of a single individual alone must
not have any impact on the equilibrium. For the case of a continuum of traders Dubey,
Geanakoplos, and Shubik (1987) show that no continuous mechanism (including the sub-
mission of demand functions to a market maker) can (uniquely) implement the REE
correspondence, since the demand function game does not specify a unique outcome in
the case of several market clearing prices. The actual trading outcome depends on the
trading mechanism, which makes it clear that the market structure matters. Laffont
(1985) considers a class of economies in which Rational Expectations Equilibria can be
implemented by an incentive compatible mechanism. This mechanism provides the right
benchmark for welfare analysis. Laffont (1985) provides an example of an informationally
efficient Rational Expectations Equilibrium which is interim inefficient and a partially
revealing Rational Expectations Equilibrium which is ex-post ineflicient.

There are three forms of allocative efficiency. One has to distinguish between ex-
ante, interim and ex-post allocation efficiency. Ex-ante efficiency refers to the time before
signals are realised, interim efficiency to the time after signal realisation but before prices
are observed and ex-post efficiency refers to the time after the information revelation
through prices.? For informationally efficient REE ex-post allocation efficiency is a direct
implication of the First Welfare Theorem, informationally efficient REE can be ex-ante
and interim inefficient if the anticipated information revelation by prices can prevent trade.

4The different notions of allocative efficiency are discussed in more detail in Section 2.3
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Hirshleifer (1971) provides an example where price reveals the true state. Consequently,
knowing the price, nobody has an incentive to trade in order to share ex-ante risk. In
other words, price revelation can make ex-ante desirable insurance impossible.

Because of the Hirshleifer effect, REE which only partially reveal the information of
traders may be desirable. When prices reveal less information trade can be possible. On
the other hand partially-revealing REE lead to a more severe adverse selection problem
as uninformed investors can infer less information from prices. The trade-off between Hir-
shleifer effect and adverse selection effect is formally analysed in Marin and Rahi (1996).

Despite this obstacle, the REE is a useful and tractable device for analysing the
informational role of prices.

2.2 Partially-Revealing Equilibria and Incomplete Eqg-
uitisation

Apart from the conceptual problems associated with REE such as the problem of im-
plementation or the strong rationality requirements, the application of informationally
efficient REE faces further hurdles. This section puts forward arguments in favour of
partially-revealing REE and shows that they can arise in an incomplete markets frame-
work. In a dynamic setting incomplete equitisation can already lead to only partially-
revealing REE.

If prices are informationally efficient, i.e. they are a sufficient statistic for all private
signals, no trader will condition her demand on her private signal. But if traders’ demand
is independent of the signals how can prices be informationally efficient? How do traders
know whether the observed price is the rational expectations equilibrium price or an off
equilibrium price? The Grossman-Paradox arises. In a model with endogenous infor-
mation acquisition, informational efficiency precludes any costly information gathering.
There is no incentive to gather costly signals, if the sufficient statistic of all signals can
be inferred from the prices. The problem that an overall equilibrium with endogenous
costly information acquisition does not exist if markets are informationally efficient is
known as the Grossman-Stiglitz Paradox. These paradoxes do not arise in a Bayesian
Nash equilibrium where the traders take the strategies of others, but not proces, as given.
The resolution of these paradoxes is shown in Dubey, Geanakoplos, and Shubik (1987)
when traders can only submit market orders and in Jackson (1991) when traders submit
demand schedules, i.e. limit and stop orders. In general, a Bayesian Nash equilibrium in
mixed strategies also exists in this setting.

In partially-revealing REE, incompletely informed traders face a signal extraction
problem which does not allow them to infer the true reasons for the price change. Changes
in prices can be due to information about:

e the dividend/liquidation value of securities/assets;

e endowments;
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o preference shocks (e.g. cross-sectional changes in risk aversion); and
e private investment opportunities.

Each trader knows the true reason for a price change as long as a it is due to symmetric
information. Only the part of the price change due to asymmetric or differential informa-
tion reveals information to the uninformed traders. Agents can generally only infer the
price impact of this asymmetric/differential information, but not the actual information
itself. The question uninformed agents face is whether this information is also relevant for
their portfolio choice. In other words is asymmetric/differential information of common
interest or only of private interest; more generally: to what extent is information of com-
mon interest? To keep the analysis tractable, information which is partially of common
interest and partially of private interest is assumed to be decomposable into these two
parts. The literature refers to trade due to information of common interest as informa-
tional trading, whereas trade due to information of private interest is called uninformed
trading or noise trading. For example information about the liquidation value of an asset
is of common interest. On the other hand, an endowment shock for a certain group of
investors might affect the portfolio choice of all investors via a change in the equilibrium
prices, yet it primarily concerns those investors who experience the endowment shock. A
further example for information of private interest is provided in Wang (1994). In his
model informed investors receive information about a private investment opportunity in
which only they can invest. A REE is partially revealing if less informed traders cannot
determine whether the unexpected price changes are due to others’ information of com-
mon interest or information of their private interest. An illustration is provided in Figure
1.

Price Changes due to:

asymmetric/differential information symmetric information

information of information of information of
common interest common and private interest
private interest

decompose
< = . = .
informational non-informational
trading noise trading

INFERENCE PROBLEM

for uninformed traders
Figure 1: Inference Problem from Price Changes

If there are only a few assets, informed agents’ trading possibilities are quite restricted.
Thus, there are many information constellations which can lead to the same trading be-
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haviour, and more precisely, to the same price vector. This need not be true when more
(linearly independent) assets are traded, i.e. more states are insurable. Thus, complet-
ing markets seems to improve information revelation for two reasons. First, the action
space for the (competitive) informed traders increases, and second, the number of prices,
which uninformed traders can make inference from also increases. This reasoning holds
particularly in a setting where uninformed agents not only observe prices and the aggre-
gate trading volume but also all individual net trade vectors. This is always the case
in a two trader setting. It seems obvious that not only the number of traded securities
matters, but also which securities are traded is important. The actual security design
has a tremendous impact on information and has motivated the optimal security design
literature. We do not focus on this strand of literature but direct interested readers to
Duffie and Rahi (1995), and Allen and Gale (1994).

However, dynamically (synthetically) complete markets are not a sufficient condition
for the existence of a informationally efficient REE. Markets are dynamically complete if,
through dynamic trading strategies, all payoff relevant states/histories are insurable. In
other words, any payoff stream for all different states/histories can be synthesised. Markets
are completely equitisable (or complete in the sense of Debreu (1959)) if there are enough
linearly independent securities such that any payoff stream can be generated through a
once-and-for-all-trade in ¢ = 0. Obviously, markets which are completely equitisable are
also dynamically complete.

Whether markets are completely equitisable or only dynamically complete can make
an enormous difference in information aggregation and revelation of prices. Grossman
(1995) illustrates this point by means of an example. He compares an economy with
actively traded (one-period) bonds with an economy of passively held annuities. Both
economies can have the same payoff stream, since bonds allow agents to synthesise the
payoff stream of the annuity. In a world of asymmetric/differential information, dynamic
trading strategies require traders to make inferences about the future path of bond prices
at each point in time. On the other hand, only the passive strategy of holding the market
portfolio is required, when all payoff streams are equitisable at ¢ = 0. Bonds are traded,
either for allocative reasons, i.e. in order to synthesise a certain payoff stream or for
informational reasons, e.g. to exploit information about the future interest rate. Thus,
for uninformed traders, an inference problem arises when there is asymmetric information
at t = 0 since the extent of allocative trading need not be common knowledge. A sec-
ond example is provided in Grossman (1988). He points out the important informational
difference between a synthesised and a real option. This is analysed within a general
equilibrium setting in Grossman and Zhou (1996). If the option is traded, the implied
volatility of the underlying asset can be inferred through the option price. This is not
possible if the option is synthesised by dynamic trading strategies. In economies where the
average risk aversion is decreasing in income, synthesised options lead to higher volatility
and mean reversion in returns.

As long as the term “state of the world” is not specified the definition of complete
equitisation is somewhat vague. A state of the world comprises a complete description
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of the fundamentals and agents’ knowledge about them as well as the knowledge about
the other agents’ knowledge and so on ad infinitum. Fundamental, or payoff-relevant,
events are the possible endowment processes for each investor, the dividend processes
and the price processes for each asset for the entire history from ¢ = 0 to ¢t = T. The
knowledge component describes how the information partitions of each individual investor
over the fundamental events evolves over time. In models with higher order uncertainty,
this component can also cover higher order knowledge, which is the knowledge about
others’ knowledge, etc. The price process is part of the fundamentals as well as part of
the knowledge component, since the price processes are endogenous signals in REE. The
price processes are endogenously determined in the model. An example of a possible state
space is given by

{{endowments}c1, {dividend of asset j}jeg, {price of asset j}jcg, {{S’I:gnals}je,ﬂ}iélh:q T

A current state in ¢ for trader ¢ is an event grouping all states which cannot be ruled out
by the information provided until time ¢.

In general, the description of a (current) state can be quite cumbersome. There are
two ways of simplifying the (current) state description. First, one can group all states
(events) which yield the same fundamentals up to the current time and in addition pre-
dict the same future fundamentals. In particular, this is possible if the economy exhibits
some symmetry. Second, one can exploit a recursive structure of a system. For example,
the state description can be simplified when the past matters only for a certain time.
In general, a simpler “sufficient {current) state description” can be found. In this case
the new (current) state description is a sufficient statistic for the corresponding group of
states (events) in the more cumbersome state space.

Complete equitisation is possible when there are traded assets with linearly inde-
pendent payoffs such that conditional trading on any fundamental event/history in T is
possible at time t = 0. In other words any fundamental event is insurable at ¢ = 0. If
any fundamental event is insurable through dynamic trading strategies by trading through
t=0,..,T, then the market is said to be dynamically complete.> These dynamic trading
strategies have to satisfy a measurability condition. The condition states that at any
time a trader can only apply different trading strategies for different states, when he can
distinguish between them. A sufficient condition for the dynamic completeness of markets
is that the number of linearly independent assets is larger than the maximum splitting
index for all traders ¢ at any time ¢{. The splitting index at ¢ of trader i indicates in
how many subpartitions his information partition can be split into when he receives new
additional information at ¢t + 1. In the case of symmetric information, the partitions are
defined over the fundamental events. In general, the partitions have to be defined over the
smallest state space such that the partitions of all traders are common knowledge. In a
dynamically complete market setting, any payoff stream can be synthesised using dynamic
trading strategies. In an incomplete equitisation setting, non-informational trading, pos-
sibly over the whole trading horizon, can therefore occur in order to obtain the desired

SE.g. if the dividend payments of one asset are normally distributed, then the number of states is
already infinite and therefore any market with finitely many assets is incompletely equitisable. In a
continuous time model the market can still be dynamically complete.
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income stream. Since at the same time, insiders trade to make use of their information,
uninformed traders face an inference problem. They do not know the extent to which the
price change is due to insider trading and therefore the price is only partially revealing.

As mentioned above, a fully revealing (informationally efficient) REE generically ex-
ists as long as the number of relative prices exceeds the dimensionality of the signal space
(the dimensionality of the sufficient statistic for the signal space, respectively). In an
economy with complete equitisation the number of assets with linearly independent pay-
offs is equal to number of fundamental events/histories. Taking the current consumption
price as numeraire, the number of relative prices also equals this number. Thus there
exists generically a competitive REE which reveals all fundamental histories. Since know-
ing the fundamental histories/events is sufficient for any trading decision, there exists
(generically) an informationally efficient REE in economies with complete equitisation.
In economies with incomplete equitisation, this need not be the case and thus the actual
signal realisations may matter. When the signal space is larger than the number of relative
prices, still a partially-revealing REE might exist. Existence proofs for partially-revealing
REE are only given for special parameterised economies.

Allen (1981) provides a class of exchange economies where the price is “privately
revealing”. The traders’ private signals combined with the price is a sufficient statistic for
the pooled information of all traders. In these economies, there is one relative price and a
two dimensional signal space and therefore a fully revealing REE need not exist. The full
communication equilibrium of the artificial economy can still be used in such a setting
for proving the existence of a REE. In a more general environment where the asymmetry
of information persists in equilibrium, a different proof has to be found. In order to
apply a Fixed Point Theorem expected utility functions and thus the excess demand
functions must be continuous in prices. Ausubel (1990) presents a set of economies where
every trader gets two signals. The first signal is a real number and the second signal is
binary. The imposition of some differentiability conditions on marginal utility allows him
to construct a partially revealing REE.

Most partially-revealing REE are achieved by making the total supply of assets noisy.
Since this is the standard method in the CARA-Gaussian environment, we will discuss
this approach in greater detail in the next chapter.

A different approach is applied in Allen (1985). In this model traders do not know the
true market clearing price. All that investors observe is a noisy price. Since individuals’
demands are based on this noisy price, markets clear only approximately. According to the
Dominated Convergence Theorem, the noisy component smoothes out discontinuities in
the excess demand function. This allows her to apply the Fixed Point Theorem on excess
demand functions (instead of on the price mappings) and show the existence of a partially-
revealing REE. In Allen’s model, traders know the equilibrium relationships between
prices and parameters describing the uncertain environment precisely, but the prevailing
price vector is not completely accurate. In other words, agents’ models (=beliefs) coincide
with the true model. This rationality assumption is relaxed in Anderson and Sonnenschein

6 A formal proof of this claim still needs to be shown!
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(1982) and McAllister (1990), where agents’ beliefs are not only based on the state of the
world but also on the realised price. Their approach incorporates elements of bounded
rationality and goes beyond the scope of this literature survey.

2.3 No-Speculation Theorems and No-Trade Theo-
rems

In the Aumann structure, information is represented by partitions over different possible
states of the world. The state space can be extended such that the partitions of all traders
are common knowledge. This survey does not cover non-partitional information dealing
with issues of bounded rationality. Representing information as partitions allows us to
define knowledge operators which report the states of the world in which a certain event is
known. There are two equivalent notions of common knowledge. In the usual terminology
an event in a certain state is common knowledge if all agents know that the true state
lies in this event and all know that all know and so on ad infinitum. The more tractable
notion is that an event in a certain state is common knowledge if and only if the finest
common coarsening of all traders’ partitions, (i.e. the meet) is a subset of this event.
This formal notion of common knowledge allowed Aumann to show that rational players
cannot “agree to disagree” about the probability of a given event. In other words, if the
posterior probability of a rational player about a certain event is common knowledge, then
the other player must have the same posterior probability, Aumann (1976). This result
requires that all players use the Bayesian updating rule (i.e. they are rational) from a
common prior distribution. This latter assumption of common priors is also known as the
Harsanyi doctrine and is in conflict with the Axioms of Savage (1954). However, it acts
as a scientific discipline on possible equilibrium outcomes, Aumann (1987). The common

prior doctrine states that differences in probability assessments must be due to differences
in information. Aumann’s (1976) agreement result says intuitively that if some rational
trader, A, has a different probability assessment than trader, B, then trader B must
conclude that this can only be due to the fact that trader A has information trader B has
not considered yet and/or vice versa. It is important to note that the fact that posterior
probabilities are equal, does not mean that all traders followed the same reasoning to
get this common posterior. They need not have the same information. The formal proof
makes use of the sure-thing principle which states that if the expected value of a random
variable conditional on event E is the same as the expected value conditional on event
F, then the expected value conditional on event E U F, where E N F = @, is the same.
Geanakoplos (1994) uses this sure-thing principle to generalise Aumann’s result and show
that common knowledge of actions negates asymmetric information about events. If action
rules,” which are mappings from players’ partitions into the action space, are common
knowledge, then there exists an environment with symmetric information that would lead
to the same action. From this “Agreement Theorem” it follows that two rational agents

"An action rule is a mapping from the partition into the action space at a certain point in time. A
strategy is a sequence of action rules for every possible partition.
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never bet against each other. The same carries over to a situation with many traders. If
the net trade vectors of the traders are common knowledge no trader will speculate.’

But even when the net trade vectors are not common knowledge, i.e. each trader only
knows his trading activity and observes the price and maybe the aggregate trading volume,
No-Speculation Theorems may still apply. The No-Speculation Theorem in Milgrom and
Stokey (1982) states that if it is common knowledge that the current allocation is ex-ante
Pareto efficient, new asymmetric information will not lead to trade, given traders are
strictly risk averse and hold concordant beliefs.® If the current allocation is known to
be ex-ante Pareto efficient, then there is no incentive to trade in order to share risk. In
general, an allocation is Pareto efficient if there does not exist an alternative allocation
which yields a strictly higher expected utility for at least one agent without reducing
the expected utility level of all others. One has to distinguish between ex-ante, interim
and ex-post Pareto efficiency. If an allocation satisfies the Pareto criteria with respect
to the expected utility of agents before receiving any signal then it is ex-ante efficient.
An allocation is interim Pareto efficient if it satisfies the Pareto criteria with respect to
the expected utility conditional on knowing the private signal. This has to be true for
any realisation of the signal. Similarly, an allocation is ex-post efficient, if there can be
no possible Pareto improvement in the expected utilities of agents even after the private
signals and public price signals are observed. If an allocation is ex-post inefficient, i.e. an
ex-post Pareto improvement for any signal realisation can be made then an ex-ante Pareto
improvement is also possible. Therefore ex-ante efficiency implies interim efficiency, which
in turn implies ex-post efficiency.

No-Speculation theorems can either be proved using the sure-thing principle as in Mil-
grom and Stokey (1982) or by using the fact that more knowledge cannot hurt a Bayesian
optimiser in a non-strategic environment.!® The latter approach was used by Kreps (1977)
and Tirole (1982) and makes use of the fact that, with common priors, pure speculation,
i.e. trade caused by asymmetric information at a Pareto optimal allocation, is a zero-sum
game. Anyone who receives a trading offer can infer that her opponent wants to make
money by using her superior information. Since the opponent can only gain if somebody
else loses, nobody will be willing to trade except at prices that already incorporate her
information. In other words, passive investment is a (weakly) dominant strategy. The
No-Speculation Theorems can be applied to Bayesian games as well as to REE models. A
crucial assumption is that it is common knowledge that the current allocation is ex-ante
Pareto optimal.

No-Trade Theorems describe situations which lead to a no trade outcome although
the current allocation is not ex-ante Pareto efficient. Asymmetric information does not
generate trade in such circumstances. Worse still, it inhibits trade that would otherwise

8We refer to speculation as trading where it is common knowledge that agents trade purely for reasons
of asymmetric/differential information.

9A more detailed discussion can be found in Section 4.1, wherein we discuss Grundy and McNichols
(1989).

10In a strategic dynamic environment, ignorance may allow an agent to commit himself to a (subgame
perfect) action which is Pareto improving.
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have occured. If the net trade vector is common knowledge the no-trade result extents
to REE where the current allocation is not ex-ante Pareto efficient, Geanakoplos (1994).
Another kind of No-Trade Theorem arises from the Hirshleifer effect, as mentioned above,
Hirshleifer (1971). In this case the anticipated information revelation through prices
prevents agents from risk sharing trade. In a world with uncertainty where one group of
risk averse traders is better off in one state and the other group in the other state, trading
provides a means for ex-ante Pareto improving risk sharing. After the uncertainty is
resolved, the group of traders which is better off is not willing to trade anymore, since
any allocation is ex-post Pareto efficient. Consider an information structure such that
no trader can distinguish between both states, but the combined information, i.e. the
join, provides knowledge about the true state. Now, if the price reveals the true state,
knowledge of the price prevents trading. Trade will not take place in the first place in
anticipation of the information revelation of the price.

Another group of No-Trade theorems is related to Akerlof’s market for lemons, Akerlof
(1970). They relate to situations where the current allocation is not ex-ante Pareto
efficient and agents want to trade for informational and non-informational reasons, e.g. for
risk sharing. As explained in Section 2.2, non-informational trading demand also arises
in incomplete equitisation settings. A price change can be due to high/low informed
or uninformed demand, which then leads to a signal extraction problem. Uninformed
traders face an adverse selection problem, which allows the informed traders to extract
an information rent from the uninformed. If the number of informed traders or the
informational advantage of the insiders is too large, then the loss uninformed traders incur
through the information rent for the insiders can outweigh their hedging gains. In these
cases they are unwilling to trade and one observes a market break down. Bhattacharya and
Spiegel (1991) analyse market breakdowns for the case of a single information monopolist
who trades with infinitely many competitive uninformed investors. In this model the
information monopolist trades strategically, i.e. he takes into account the fact that his
order will have an impact on information revelation through prices. The authors conclude
their analysis by providing some justifications for insider trading laws.

No-Speculation theorems and No-Trade theorems even arise in a setting with hetero-
geneous prior beliefs. Morris (1994) show that incentive compatibility considerations can
preclude trading.

He and Wang (1995) show that new asymmetric information need not lead to a no-
trade outcome if the information is dispersed among many traders. Dispersed information
can even lead to a higher trading volume than the volume that would result under sym-
metric information. Their model is discussed in more detail in Section 4.3. The difference
is that the initial allocation is not ex-ante Pareto efficient, or at least it is not common
knowledge that it is ex-ante Pareto optimal. Also, since prices are only partially revealing,
the Hirshleifer effect does not preclude trade.
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2.4 Bubbles

If the stock price exceeds its fundamental value a bubble occurs.!! The literature dealing
with bubbles is huge. Famous historical bubbles are described in Garber (1990). The
major quarrel is concerned with the question of whether large changes in prices are due
to shifts in the fundamentals or just bubbles. The empirical finding of excess volatility
literature starting with LeRoy and Porter (1981) and Shiller (1989) are arguments in
favour of the existence of bubbles. The difficulty lies in determining the fundamental
value of an asset. It seems plausible to consider the fundamental value of an asset in
normal use as opposed to some value it may have as a speculative instrument. This
description of a fundamental value depends on the context of a particular equilibrium
and is therefore not exogenous. A problem arises when there are multiple equilibria. The
same repeated economy can have different equilibria in different periods, if e.g. sunspots
are used by the agents as a co-ordination device. Sunspots are random variables whose
realisation in each period is common knowledge but have no economic relevance except
that they emerged as convention to be used as co-ordination devices.

In the case of certainty, the fundamental value is just the present value of the equi-
librium market value of the dividend stream. Taking expectations of the possible fun-
damental values in the case of uncertainty where all agents have the same information
is problematic since this is only correct if all investors are risk neutral and there are
complete markets. If traders have asymmetric information about the uncertain dividend
stream additional problems arise. It is not clear which probability beliefs one should take
into account in order to derive the expected value. Determining the fundamental value is
therefore quite problematic. In Allen, Morris, and Postlewaite (1993) a clear upper bound
on any reasonable fundamental value is used. If the price exceeds this upper bound of
fundamental values a “strong bubble” occurs. More formally, a “strong bubble” occurs if
there exists a state of the world in which every agent knows with probability one that the
price is strictly above this upper bound. An “expected bubble” exists if there is a state
of the world in which the price of the asset exceeds every agent’s marginal valuation of
the asset. This is in line with the notion that the right to resell an asset makes traders
willing to pay more for it than they would pay if they were forced to hold the asset for-
ever. This definition was used by Harrison and Kreps (1978) who attributed it to Keynes
(1936). In the case of incomplete equitisation this definition does not make much sense
since dynamic trading strategies can lead to ‘expected bubbles’. The same price need not
be an expected bubble if there is complete equitisation. Thus the definition of expected
bubbles hinges on the degree of equitisation.

Economists have used different frameworks to explain the existence of bubbles. One
way to generate bubbles is to introduce traders who behave irrationally, De Long, Shleifer,
Summers, and Waldmann (1990a). If all trades are rational, backward induction rules
out bubbles. There are, however, situations where the backward induction argument fails.
First, this is the case in models with infinite horizon combined with myopic investors or
an overlapping generation framework. With an infinite horizon, backward induction does
not have a determined starting point and bubbles can occur because of a “lack of market

11This section is mostly based on Allen, Morris, and Postlewaite (1993).
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clearing at infinity.” Fiat money is the classical example of a bubble. Tirole (1982) showed
that expected bubbles can exist and follow a Martingale if traders are myopic. Second,
bubbles may exist in a finite time horizon model, provided there are infinitely many
trading opportunities in the remaining trading rounds, Bhattacharya and Lipman (1995).
Third, Allen, Morris, and Postlewsite (1993) show that higher order uncertainty can also
lead to bubbles. Higher order uncertainty refers to uncertainty about others’ information.
In almost all standard economic models information is concerned with “pay-off relevant”,
or fundamental, events. The partitions other agents have are common knowledge. This
allows us to model asymmetric information about fundamentals but not about others’
knowledge. Higher order uncertainty deals with the case where one does not know the
information structure of others, i.e. there is uncertainty about the information partitions
others have. Without loss of generality this can be dealt with using an extended state
space covering different possible information structures.

In Allen, Morris, and Postlewaite (1993) an example of a strong bubble is provided.
In this example informed traders know the liquidation value of the asset, but they do not
know whether other traders know it too. Since Tirole (1982) showed that if the ex-ante
allocation is Pareto efficient there cannot even be an expected bubble in a fully dynamic
REE, it is necessary for the existence of a bubble that there are gains from trade. The ex-
ample provided in Allen, Morris, and Postlewaite (1993) illustrates four different ways to
generate gains from trade. A further necessary condition for the existence of an expected
bubble is that short sale constraints are strictly binding with a positive probability, Harri-
son and Kreps (1978). For strong bubbles to occur two further requirements are necessary.
First, each agent has to have private information. This rules out cases in which prices
are fully revealing. Second, agents’ net trade vectors must not be common knowledge.
As discussed above, even at an ex-ante Pareto inefficient allocation this could rule out
any trade activity by the theorem that common knowledge of action negates asymmetric
information. Therefore, in their example there are at least three traders. Although every
trader knows the true value of the asset in their example, i.e. the true value of the asset
is mutual knowledge, its price is higher. This is the case, because each trader thinks that
he can resell the asset at a price above the true value.

The notion of higher order knowledge captures not only information about fundamen-
tals and other agents’ information, but also information about others’ information about
information, etc. ad infinitum. By extending the state space, the description of a state
has many components capturing the payoff and all the higher orders of knowledge. The
state space grows fast with the order of knowledge considered. Given a certain state space
and a set of events, Morris, Postlewaite, and Shin (1995), define “depth of knowledge”
as the number of iterations of knowledge necessary to distinguish all those states which
are distinguishable on the basis of fundamentals and iterated knowledge of fundamen-
tals. The state space in the example of Allen, Morris, and Postlewaite (1993) has depth
of knowledge one since it is sufficient to distinguish between the states in which others
have or do not have information in addition to the fundamental events. It is important
to note that the whole state space and partitions of the state space are assumed to be
common knowledge. Therefore agents know much more in state spaces with a lower depth
of knowledge.
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1t is shown in Morris, Postlewaite, and Shin (1995) that a strong bubble can only exist
in period ¢ if it is not mutual knowledge that at time (¢ + 1) it will be mutual knowledge,
that ..., that in (T — 1) the true asset value is mutual knowledge. Because information
is revealed with the price process, mutual knowledge in period t already incorporates the
information that can be inferred from the price in period t. Since knowledge can only
improve through time, it follows that a bubble can only exist at or after time ¢ if the
true asset value is not (T — t)th order mutual knowledge at time ¢. Furthermore, if the
state space exhibits only a depth of knowledge of order n, then n order mutual knowledge
is sufficient to rule out bubbles. If this is the case, the true value is common knowledge
anyway. In Tirole (1982) the assumed depth of knowledge is zero and therefore any bubble
can be ruled out. In the case where the depth of knowledge of the state space is higher
than the order of mutual knowledge of the true asset value, some bounds for the size of
the bubble can still be provided. For this purpose a subset of the state space is taken,
which is common p-belief. In other words this subset is believed to be true with at least
probability p by each agent and each agent believes that each agent believes that this
subset is true with probability p and so on ad infinitum. Using reasoning similar to the
knowledge case (which is similar to the p = 1 case'?) bounds for the size of bubbles can
be derived. The minimum bound can be found by varying the subset of the state space
and its associated p.

12Dgkel and Gul (1997) discuss the distinction between p=1-beliefs and knowledge.



Chapter 3

Classification of CARA-Gaussian
Closed-Form Solution Models

In order to go beyond pure existence proofs, one has to specify the economy in more detail.
The loss of generality is compensated by the finding of closed-form solutions which allow
some comparative statics. In this chapter we restrict ourselves to a class of economies
where all random variables are normally distributed.

These models can be classified in the following manner:

e Limit Order Models

— Competitive Limit Order Models
— Strategic Limit Order Models

o Market Order Models

— Competitive Market Order Models Without a Market Maker

— Strategic Market Order Models With a Market Maker in Which Traders Move
First

— Sequential Trade Market Order Models in Which the Market Maker Moves
First

Two tools facilitate our analysis. The Projection Theorem can be used to address
the signal extraction problem, while the Certainty Equivalence argument can be used for
simplifying the utility maximising problem.

The final wealth can be written as the inner product W = II'x, where the vector IT
represents the (random) liquidation values of the J securities and the vector x describes a
portfolio. W is also normally distributed, since the sum of normally distributed random
variables is also normally distributed.

All traders have a constant absolute risk aversion (CARA) utility function of the
exponential form

Ui (W) = — exp(—p'W)

19
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where the absolute risk aversion measure p* = —U(W)/U(W) is independent of agent
i’s income. Taking the expectation, a function resembling a moment generating function
is obtained.!

B | )= [ —exp(p Wit = —expl=p! (BIW | 7] = G VarlW | 7))

oo

v
Certainty Equivalent

Therefore, maximising the expected utility conditional on the appropriate information
set F'. is equivalent to maximising the certainty equivalence. The imposed assumptions
result in linear demand functions.

Before conducting the maximisation procedure, the conditional expected value and
variance have to be derived. The Projection Theorem helps us derive the conditional
expectations and the conditional covariance and variance terms. Given our assumption
that random variables are normally distributed, the first two moments are sufficient to
describe the whole conditional distribution. The Projection Theorem provides the linear
projection of S on the space of quadratic integrable functions. For normally distributed
variables, the linear projection is also the optimal one. The Projection Theorem in any
Hilbert space is:

E[ | §] = E[M] + (§ - E[S))'Var~![§]Cov]II, 5]
Var|E[M | §)) = Cov{l, §)'Var~![5]CovlII, §]
If T1 can be decomposed in I1 = BE[IT | §] 4 e, such that the error term e is orthogonal

to £ | §), ie. Cov[E[IL | §),¢] = 0, we have Var| ) = Var[E[ | §]] + Varle] and
Co[ll, B[ | 8] = Var[E[ | §]]. Since Var[ll | §] = Var(e],?

Var(ll | §] = Var(Il] — CovlI1, §]'Var~*(S]Cov]I, 5]
For the special case with signals of the form,
Sp=1+ Eg‘,t:

where the distribution of the liquidation value IT ~ A(0,0%) and the error terms €, ~
N0, ng) are mutually independent, the Projection Theorem simplifies to:

B[] 8i,..., 5] = B[ + Zr Z[z (S — E[))].
=Fh o5

\-.—.v.——/
Var([n|Si,....S%)

IThe certainty equivalent for multinormal random variables is

Elexp(wTAw + bTw +d)] = |1 - 2T A2 exp(ébT(I —2%A)"1Eb + 4},

Certainty Equivalent

where w ~ N'(0, ) and the (co)variance matrix is X positive definite. A is a2 symmetric m x m matrix,
b is an m-vector and d is a scalar. Note the left-hand side is only well-defined if (I — 232A) is positive
definite. See also the discussion of Brown and Jennings (1989) in Section 4.1 or Anderson (1984, Chapter
2).

?Note, if IT is a vector Var[II | .§] is the conditional covariance matrix.
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The conditional variance Var(Il | Si,...,8%] =: V¢ is linked to the original variances
through the following expression:3

1
CRE RN

The information set of an agent 4, F% is given by {Si, ..., S&.}.

Note, the Kalman filter is also derived from the Projection Theorem. The Kalmam
filter technique is especially useful for steady state analysis of dynamic models. The
problem has to be brought in state-space form

Zir1 = AZt + BZ‘L + €11

Si = Coy + &9,

where, the error terms are i.i.d. normally distributed. The first equation is the transition
equation, which determines how the state vector z, moves depending on the control vector
;. The second equation is the measurement equation, which describes the relationship
between the signal S; and the current state z,

3.1 Limit Order Models

Most. of the REE models and all the models discussed so far are limit order models. In
these models each trader submits a whole demand schedule. Such a demand schedule
can be achieved by combining many stop and limit orders. Investors can therefore trade
conditional on future prices. Therefore a trader’s information set contains not only her
signal but also current prices, which influence the optimal individual demand. Within the
class of limit order models one can distinguish between competitive and strategic models.

3.1.1 Competitive Limit Order Models

In competitive models traders take the price as given when forming their optimal demand.
Investors neglect that their trading activity influences the price, which in turn serves as
a signal. In these models traders do not attempt to manipulate prices. To justify such
behaviour one could assume that each trader is only a point in a “continuum of clones”
with identical private information.*

Grossman (1976) presents one of the first models with a closed form REE solution,
where information about the return on a single risky asset is dispersed among traders.
Every trader receives a noisy signal about the true payoff I1, $* = II+ ¢}, where ()., are
mubnally independent and identically normally distributed. The riskless asset is traded
at an exogenously fixed price with perfectly elastic supply. Using her signal and the
price, each trader is solving the signal extraction problem described above to derive her
optimal demand. The market clearing condition then provides the market clearing price.

3The reciprocal of the variance is called the precision.
4 An excellent overview of limit order models is given in Admati (1989).
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In Grossman’s example, the equilibrium is informationally efficient, i.e. the equilibrium
price is a sufficient statistic for all signals {S?}._,. Therefore individual demand schedules
do not depend on their private signal which leads to the Grossman-Paradox discussed
earlier. A further consequence of the information revelation of prices is that no one
has an incentive to acquire costly information. Thus an overall equilibrium with costly
endogenous information acquisition does not exist (Grossman-Stiglitz-Paradox). It seems
plausible that individual demand does not depend on traders’ incomes since all traders
have CARA utility functions. At first sight it is surprising that traders’ demands do
not even depend on the equilibrium price itself, although it serves as a sufficient statistic
for all information in the economy. A price change in a REE has not only an income
and substitution effect but also an information effect. A price increase signals a higher
expected payoff of this asset in an economy with a single risky asset. With CARA utility
functions and one risky asset, the income effect should not play any role. In a symmetric
equilibrium with fixed aggregate supply, all traders have to demand the same number
of assets, independent of the price, in order to satisfy the market clearing condition.
Therefore, in Grossman’s model the substitution effect and information effect cancel each
other out. Finally as discussed in Section 2.3, informationally efficient REE can lead to a
no-trade outcome.

Noisy REE models were developed to address these conceptual problems. A random
variable whose unobserved realisation affects the equilibrium price is introduced in these
models. This noise term makes prices only partially revealing because traders cannot infer
whether a price change is due to the noise component or due to informed trading. The
informational content of prices can be measured by a signal to noise ratio. In Grossman
and Stiglitz (1980) the apgregate supply of the risky asset is random. In their model
there are only two groups of traders: the informed (those who bought an identical signal)
and the uninformed. Since the supply of risky assets is random, uninformed traders can
only partially infer the signal of the informed. Each trader decides whether to acquire
information at a certain cost. Grossman and Stiglitz (1980) derive the overall equilibrium
with endogenous information acquisition and determine the fraction of informed traders
in equilibrium. Their model captures the partial information transmission role of prices,
but not the information aggregation role since information is not dispersed among the
traders.

This additional aspect is analysed in Hellwig (1980) and Diamond and Verrecchia
(1981). Similar to Grossman (1976) the signals are conditionally independent of each other
given the true payoff. Whereas in Hellwig (1980) the aggregate supply of the risky asset
is assumed to be random, in Diamond and Verrecchia (1981) each investor’s endowments
are i.i.d. and therefore aggregate supply is random as long as the number of traders does
not converge to infinity.> For both models a closed-form solution is found where prices
are only partially revealing. Hellwig shows that the REE in the “high noise limit" (where
the variance of aggregate endowments goes to infinity) corresponds to the equilibrium
in which market participants do not try to learn something from the equilibrium price.
On the other hand the REE at the “low noise limit” corresponds to an informationally

5Non-i.i.d, endowments are mathematically untractable and are excluded in our discussion.
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efficient. REE as in Grossman (1976). The same is true when investors are almost risk
neutral, since investors do not try to insure against the randomness of aggregate supply.

Incorporating noisy aggregate supply or noisy excess demand through random endow-
ments can be thought of as a simplified reduced form for modelling liquidity traders.
Liquidity traders trade for reasons exogenous to the model or due to information of pri-
vate interest. This is in general the case in a setting with incomplete equitisation. In
Wang (1994) informed investors trade not only for informational reasons but also in order
to invest in private investment opportunities. These private investment opportunities are
not equitisable, i.e. conditional trade on their dividend streams is not possible. There will
always be some components of trade that are not perfectly predictable by others and not
perfectly correlated with the future payoff of the traded assets. The latter is conducted
by liquidity /noise/ “life-cycle” traders.

Admati (1985) extended Hellwig’s setting to a model with multiple risky assets and
infinitely many agents. In this model, the price of an asset does not necessarily increase
with its payoff or decrease with its actual supply. This is the case because a price change
in one asset can provide information about other risky assets. Admati’s model illustrates
that not only the correlation between financial assets’ returns (which is the focus in
CAPM), but also the correlation between the prediction errors in traders’ information is
important for determining equilibrium relations.

The main focus in Pfleiderer (1984) is the role of volume and variability of prices. He
analyses how a change in the signal’s precision alters expected volume. His results are
extended in He and Wang (1995) which is discussed in further detail in Section 4.3.

Admati and Pfleiderer (1986), (1990) analyse how an information monopolist should
sell his information to competitive limit order traders. The more this information is
revealed by the price, the lower is the traders’ incentive to pay for this information.
Admati and Pfleiderer show that it is optimal for a seller to add noise to his information
when his information is very precise. This increases the fraction of market participants
that would be willing to pay to become better informed. When the number of traders is
large, it is better to sell personalised signals, i.e. signals with an idiosyncratic noise term.
In this case, the information monopolist sells identically distributed signals to all traders
and not only to a fraction of the market participants. The information monopolist can
also sell his information indirectly by using it to create an investment fund. Admati and
Pfleiderer (1990) show that the fund manager always makes full use of his information.
They also illustrate that the degree to which information is revealed by the market price
determines whether an indirect sale or direct sale of information leads to higher revenue
for the information seller.

Subsection 5.4.2 will discuss competitive limit order models with market makers. In
these models the group of risk neutral market makers observe only the limit order book,
i.e. the noisy aggregate demand schedule. Since they are risk neutral they act as a
competitive fringe and thus their information set determines the equilibrium price.
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3.1.2 Strategic Limit Order Models

Traders behave “schizophrenically” in a competitive REE. On the one hand each traders’
signal can influence her demand, but her demand has no impact on the price. On the
other hand, this price reveals her signal. The competitive environment can be justified
when the number of investors becomes very large and each investor is infinitesimal small.
It is, however, a stylised fact that the best-informed traders are large. The traders
take into account the effect that their trading has on prices in strategic limit order models.
Each trader knows that when she trades larger quantities prices will move against her. She
therefore incorporates this effect in forming her optimal demand correspondence. Thus,
strategic models allow us to analyse market price manipulation by some large traders.
In Kyle (1989) a strategic REE is derived as a symmetric Bayesian Nash equilibrium
in demand schedules. Each trader’s strategy is a demand schedule which is submitted
to an auctioneer. The auctioneer collects all individual demand schedules and derives
the market clearing price. Kyle's model is actually a uniform price auction of a divisible
asset, whose supply is random. Given CARA-utility functions and normally distributed
random variables all excess demand functions are linear. In Kyle's model the informed
traders’ information set consists of a private individual signal about the true value of the
asset and the price. Each demand correspondence of an informed investor is linear in her
individual signal as well as in the price. The demand function of the uninformed traders
is also linear in price. The fractions of informed investors and uninformed investors is
common knowledge in equilibrium. In a Nash equilibrium each player takes the strategies
of all others as given.® Therefore each trader faces a residual supply curve. Each informed
trader ¢ € {1,..., I} acts like a monopsonist with respect to the residual supply curve

p=rp;+ Az

where p} is random and A; is constant. Since informed traders observe p% they choose
their demand z* to maximise their expected utility conditional on p} and on their private
individual signal S*. The reciprocal of A; can be viewed as “market depth”, the liquidity
of the market. Whereas in competitive models the aggressiveness of informed traders is
only restricted by their risk aversion, in strategic models risk aversion and consequences
of strategic behaviour on price cause agents to react less aggressively. They try to avoid
trading their informational advantage away. It is also worth noticing that individuals’
demand is no longer independent of their initial endowment in strategic models.

In strategic models the prices reveal less information than in a competitive REE which
facilitates costly information acquisition. Even in the limit, when noise trading vanishes
or traders become almost risk neutral, prices do not become informationally efficient.
However, this does not mean that the profit derived from private information (the infor-
mation rent) is not driven down to zero. Kyle (1989) also shows that as the number of
informed speculators increases to infinity the model converges to a monopolistic compe-
tition outcome which need not be the same as in a competitive environment. The case
with a single information monopolist and many competitive outsiders is analysed in more

SEquilibrium strategies are mutual knowledge in a Nash equilibrium, Brandenburger (1992).
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detail and a tractable closed-form solution is derived. Bhattacharya and Spiegel (1991)
derived the No-Trade Theorem discussed in Section 2.3 for this special case.

Jackson (1991) shows that the Grossman-Stiglitz Paradox depends crucially on the
price taking behaviour of the traders. He develops a strategic limit order model in which
a finite number of risk neutral traders submit demand functions. Thereby he models
explicitly the price formation process, which illustrates how the signal is incoporated into
the price. For specific parameters, in the Bayesian Nash equilibrium of this game costly
information acquisition occurs although the price is informationally efficient. In other
words, although some agents bear information acquisition costs, they do not have any
informational advantage. In this situation, they acquire information because they are
driven by the beliefs of the other agents about their information acquisition. Allowing
for mixed strategies in a Bayesian Nash equilibrium also resolves the Grossman-Stiglitz
Paradox.

Madhavan (1992) compares this setting with a two stage game developed in Glosten
(1989) where dealers first quote a price (schedules) and in the second stage investors
submit their orders. He wants to illustrates the difference between a quote-driven market
such as NASDAQ or SEAQ and an order-driven market, capturing some features of the
NYSE.

3.2 Market Order Models

When an investor submits a single limit order she faces execution risk. She cannot be
sure that her order will be executed, since the price can move beyond the set limit. She
can avoid this risk by submitting a menu of limit and stop orders such that at each
price a certain quantity of orders will be executed. Alternatively, the execution risk can
be avoided by using market orders. However, then only the quantity of trade can be
fixed and the agent has to bear the risk of changing prices. This additional price risk
can complicate the economic analysis and therefore, in most models, risk neutrality of
all traders is assumed. As seen before, risk aversion is not needed in strategic models,
since not only risk aversion but also strategic behaviour causes investors to trade less
aggressively. It can be shown that limit order and market order models exhibit the same
degree of informational efficiency in the case of a single informed risk neutral investor,
Noldeke (1993).

If the trader submits her market order before the market maker sets the price, the
price risk is completely borne by the investor. In the case where the market maker first
sets the price, he commits himself and therefore bears the risk. We will discuss strategic
models in which the investors have to move first before turning to models in which the
market maker moves first. Some market order models without an actively trading market
maker are briefly summarised, before discussing these models.

3.2.1 Competitive Market Order Models Without a Market Maker

Hellwig (1982) uses a market order model in order to resolve the Grossman-Stiglitz Para-
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dox. In Hellwig’s dynamic model traders can only trade conditional on the past prices
and not on the current price. Therefore statistical inference and market clearing do not
occur simultaneously. In Hellwig (1982) a null set of the continuum of traders receives
information in advance. In discrete time this information is only revealed by the price
one period later. This gives the insider the possibility to make use of their information
to achieve a positive return. Therefore, traders have an incentive to acquire informa-
tion. Even as the time span between the trading rounds converges to zero, the insider
can make strictly positive returns and an information efficient outcome can be reached
arbitrary closely. In Hellwig (1982), traders are myopic and the individual demands are
exogenously given rather than derived from utility maximisation. Blume, Easley, and
O’Hara (1994) analyse the informational role of volume within such a framework. This
model is covered in Section 4.4.

3.2.2 Strategic Market Order Models With Market Maker in
‘Which the Investors Move First

The classical reference for this class of models is Kyle (1985).7 In his batch clearing model
there are three groups of risk neutral players, a single informed investor, many liquidity
traders and a market maker who sets the price. The liquidity traders trade for reasons
exogenous to the model. Their demand is given by the random variable © ~ A(0,03).
The single, risk neutral, information monopolist is the only one who knows the true value
of the risky asset, II. He trades to maximise his profit which is in the static single auction
version of the model, the capital gain (I1 — P;) times the quantity of stocks, x, that he
holds. Since he acts strategically, he takes into account that his demand z will influence
the price, P,. The informed trader rationally believes that the market maker follows a
price setting rule which is linear in the aggregate net order flow (x 4 ©). Formally he
maximises his profit 7 = (I — P;)z, where, according to his beliefs, P, = Py + Az + ©).
The single market maker only observes the aggregate net order flow (z + ©) and knows
that the true value, II, is distributed N (P, 0'12[,0). Since he cannot observe the net trade
vector, x, of the informed investors the No-Trade-Theorem, explained in Section 2.3, does
not apply. Kyle assumes that the risk neutral market maker acts competitively and thus
sets a fair price given his information, i.e. P, = E[II | £+ ©)]. Since II and © are normally
distributed, and with insider’s demand z is linear in II, the Projection Theorem can be
applied to solve the signal extraction problem. The Bayesian Nash equilibrium is obtained
by equating the coefficients and is given by

2
Py =Py + Mz + ©), where A= %(%)(_1/2)

Tiio

), the amount of noise trading, (¢3), together with the original variance of II, o,
determines to what extent the market maker reacts to a higher/lower aggregate net order
flow. The reciprocal of A, (1/)) represents the market depth. If on average a lot of
uninformed noise trading is going on, the market maker will not adjust the price so

7In comparision to the original article the notation is: II = v, alg-m =35, O =u.
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quickly if he observes a high order flow. Therefore in this case markets are deep, i.e.
many orders can be absorbed without huge price movements. The expected profit for
the insider is given by E[(Il — Py)z) = 1(c40% ¢)"/?. The market maker breaks even on
average. He loses money to the insider but makes the same amount of money from the
noise traders on average. After one trading round information is partly revealed and the
new variance of the true value of the stock is only half of the original one. Kyle extended
this static model to a series of discrete call markets (a sequential auction). In this dynamic
setting, the insider faces the trade-off that taking on a larger position in early periods
increases early profits but worsens prices in later trading rounds. She tries not to trade
her information advantage away. She therefore exploits her information across time by
hiding behind noise trading. A dynamic linear recursive equilibrium is derived in Kyle
(1985). The author solves the dynamic problem by porposing an ad hoc value function,
which he verifies at a later stage. Note the insider takes the equilibrium ); as given,
since the market maker can not determine whether the observed aggregate order flow is
due to a deviation of the insider or due to a different signal realisation or noise trader
demand. As the time intervals converge to zero in the continuous auction equilibrium,
noise trading follows a Brownian motion and the informed trader continuously pushes the
price towards her price valuation. The speed of price adjustment is equal to the difference
between her price valuation and the current price divided by the remaining trading time.
The market depth, (1/)), is constant over time and the market is “infinitely tight”, i.e. it
is extremely costly to turnover a position in a very short period of time. This is the case
because the insider can break up her informational trade into many tiny pieces. Prices
follow Brownian motion (which is a martingale process).

Biais and Rochet (1997) show that for the case where the value of the stock is not
continuously distributed, out of equilibrium beliefs have to be specified and one has to
deal with the problem of multiple equilibria.

Back (1992) extended Kyle's continuous time model by modelling strategy spaces and
information directly in continuous time. In Holden and Subrahmanyam (1992) there
are many informed traders who compete against each other. This speeds up information
revelation through prices. As in the Cournot case, insiders who have the same information
are more aggressive and, therefore, trade more of their insider information away. In a
dynamic setting the information is revealed immediately as time becomes continuous. In
Holden and Subrahmanyam (1994) the insiders are risk-averse. This further speeds up
information revelation. Risk-averse agents trade more aggressive in early periods since
future prices are more uncertain. Foster and Viswanathan (1996) develop a model, where
informed traders observe different signals, which will be discussed in Section 4.6. In all
these models the focus is on the price process and information revelation. The Bid-Ask
Spread is the focus of the next section.

3.2.3 Sequential Trade Models in Which the Market Maker
Moves First

In limit order models all traders submit whole demand schedules. In the market order
models discussed above the market maker sets the price after observing the total net order
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fAow. In this section we discuss models in which the market maker has to set the price
before he observes orders. He will therefore set the price conditional on the magnitude
of the market order. In other words, the market maker sets a whole supply schedule and
then the investors choose their optimal market order. If some traders want to buy a large
number of shares then the market maker asks for a higher “ask price”, since the investor
could have superior information. Similarily if someone wants to sell® a large number
of shares he offers a lower “bid price.” In the sequential trading model in Glosten and
Milgrom (1985)° the order size is fixed to one share at a point in time. Therefore, there
is a single ask and a single bid, where the spread is defined as the difference between ask
and bid. In Glosten and Milgrom’s model there is a continuum of traders. A fraction
 is informed and a fraction (1 — p) is uninformed. Informed traders do want to trade
when their expected value of the asset is strictly larger than the ask or strictly smaller
than the bid. Uninformed traders trade for reasons exogenous to the model. They buy
or sell one stock randomly with equal probability independent of the information. It
is further assumed that the market maker and all traders are risk neutral.!* Note, in
this setting, submitting an order does not change the price at which the order will be
executed. The market maker had set this price in advance and thus the order can only
influence the future price development. Furthermore he does not care about the future
price development, since the probability that the same trader has a chance to trade again
is zero. Thus each trader would like to trade an infinite amount of the stock or not trade
at all if the spread is too large. By assumption each trader is restricted to trade onty
one share. Moreover, in this simplified version, informed traders know the true value of
the asset, which is either 0 or 1.1* If the true value is 0 they sell when the bid price is
larger than zero and accordingly when the true value is 1 they buy when the ask price
is smaller than one. The specialist observes the buy and sell orders and consequently
updates his beliefs about the asset’s value using Bayes’ Rule. Since the asset’s value is
either 0 or 1 his conditional expected value is equal to his probability that the true value
of the asset is 1. The Bayesian Rule also exhibits that a “no trade event” will not alter
his beliefs. The same is true if he observes the same number of buy and sell orders. Thus
the market imbalance (the difference between sell and buy orders), is a sufficient statistic
for the whole history of market orders.

Glosten and Milgrom (1985) assume that the market maker sets the ask and bid such
that his expected profit on any trade is zero. The existence of at least one potential
competitor combined with risk neutrality makes this assumption reasonable. Therefore
the specialist sets the price equal to his belief that the true value of the asset is 1. Since
he can set the price conditional on the next order he takes it into account. The bid price
is therefore his belief, given the current market imbalance plus an additional sell order,

8 A sell order is considered as a negative buy order.

9Tn this survey we will follow the version in Noldeke (1993).

10Risk neutrality of the market maker abstracts from inventory models. In inventory models the market
makers can end up with a non optimally diversified portfolio at the end of the trading day. They therefore
demand a spread Ho and Stol! (1981).

Gtrictly speaking, these models are not CARA-Gaussian models. Agents have a constant absolute
risk aversion coefficient of zero since they are risk neutral, but the true asset return is not normally
distributed. The return distribution can be easily modified to a normal distribution.
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whereas he sets his ask according to his beliefs given the current imbalance minus one
stock, (an additional buy order). The market maker needs this spread to break even since
he faces an adverse selection problem. If the fraction of informed traders increases, the
adverse selection problem becomes more severe and therefore a wider spread is needed.
On the other hand, a higher number of informed traders also increases the speed of in-
formation revelation. This analysis implies that the midpoint between ask and bid is not
the current expected value for the market maker unless his current expected value is 0.5,
Consider the case where the current expected belief is above 0.5. An additional buy order
has less informational content than a sell order and, therefore, the midpoint is biased
downwards. As the market imbalance increases in absolute terms, i.e. there are more buy
orders than sell orders or more sell orders than buy orders, the market maker becomes
more certain about the information of the insiders and therefore the size of the spread
falls. The transaction price is a Martingale but not the quoted prices (ask and bid). The
latter are only Markov but not Martingales since any additional trading round leads in
expectation to more information for the market maker which tightens the spread over
time.!? Thus the spread size is not a Martingale and consequently it cannot be the case
that bid and ask are Martingales. Moreover this model also exhibits serial correlation of
order flows.

Easley and O’Hara (1987) extend Glosten and Milgrom’s sequential trading model in
two ways. In Glosten and Milgrom (1985) the supply schedule which the market maker
posts is reduced to one unit of purchase and one unit of sales. Easley and O’Hara allow
two different order sizes, small and large orders. Furthermore they introduce the concept
of “event uncertainty.” Only with probability « will the information structure be as in
Glosten and Milgrom (1985). With probability (1 — @) an information event does not
occur and only uninformed traders trade with each other. Neither the market maker nor
the uninformed traders know the true value of the stock. They also ignore whether some
traders are informed or not. This model incorporates higher order knowledge since the
depth of knowledge of the state space is higher by one degree.!?

In Easley and O’Hara (1987) nature chooses once at the beginning of the trading
day whether an information event happens or not. If information is released the pool
of infinitely many traders contains a fraction p of informed and a fraction (1 — ) of
uninformed traders. In the other case only uninformed traders are in the pool. Uninformed
investors trade for exogenous reasons and take no information aspect into account. They
submit large and small orders in an ex-ante specified probabilistic way. Informed traders
always prefer to trade large quantities if both quantities are traded at the same price.
Informed traders do not act strategically concerning the future price path. They do not
take into account that trading a large quantity can influence the future price process.
This is justified since there are infinitely many informed traders and thus the probability
that an individual trader has the chance to trade again is zero. However, they choose
their optimal quantity which is exogenously restricted to either 1 or 2 units. Since at

124 price process is Markov if a single state, the current price, can represent the whole history, It is a
Martingale if the expected future prices are equal to the current price.
13Concerning depth of knowledge see Section 2.4.
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equal prices informed traders prefer to trade larger quantities, the market maker will set
a larger spread for the large trades, e.g. block trades.

Depending on the parameter constellation two types of equilibria can arise. In a sep-
arating equilibrium all informed traders prefer to trade two shares, the large quantity,
despite the larger spread. Uninformed traders submit market orders for one and two
stocks, as exogenously specified. In this separating equilibrium, the spread for market or-
der of size one is zero. In a pooling equilibrium, informed traders submit small and large
orders and the market maker requires a spread for both quantities, the larger spread for
the block trades. The market maker’s uncertainty about whether there was an informa-
tion release dictates that both the size and the sequence of trades matters. Incorporating
this feature can help to explain the partial price recovery that characterises most block
trading sequences. The impact of an “event uncertainty” is discussed in more detail in
Easley and O’Hara (1992) for the simpler case where the trade size is restricted to one unit
as in Glosten and Milgrom (1985). In the case of event uncertainty, the actual trade or
no trade is a signal about whether there was some information released to the insiders at
the beginning of the trading day. By observing the sequence of market orders the market
maker can update his beliefs, not only about the true value of the asset, but also whether
the insiders got information about this true value. Absence of trade, therefore, provides
a signal and thus the time per se is not exogenous to the price. If the market maker
observes a no-trade outcome, he increases his beliefs that nobody has any information
and therefore the quotes will be pulled toward 1/2. If the midpoint is at 1/2, observing
no trade makes asymmetric information less likely and therefore leads to a lower spread.
If the spread is not straddling 1/2 the effect is not so obvious. Further results of their
analysis are that the last transaction price is not a sufficient statistic for the past and
thus the transaction price process is a Martingale, but is no longer Markov.

Glosten (1989) relaxes the restriction that order sizes are limited to one or two units.
Therefore, the market maker quotes a whole price schedule instead of a single bid and
ask price. Glosten (1989) compares the dealership market structure consisting of many
competitive market makers with the ‘specialist system’ in which all investors exclusively
trade through a monopolistic specialist. He shows that although the monopolistic mar-
ket maker makes a positive expected profit, under certain circumstances the ‘specialist
system’ provides a higher market liquidity than the competitive system. Glosten (1989)
focuses on a one shot interaction between a strategic risk averse trader and the market
maker. The trader has a exponential utility function and faces an (normally distributed)
endowment shock. In addition, he receives a noisy signal about the liquidation value of
the stock, S = I1 4 ¢, where Il and e are independently normally distributed. He trades,
therefore, for liquidity/insurance as well as informational reasons. Given the price sched-
ule set by the market maker(s), the trader submits his utility maximising market order.
Before the trader submits his order, the market maker(s) commit(s) himself (themselves)
to a price schedule. In the case of competition among market makers they are forced to
set a informationally efficient price schedule P(z) = E[II|z]. Note, in contrast to Kyle
(1985), in Glosten (1989) the market maker sets a price function for a forthcoming sin-
gle transaction which stems from investors who trades for informational as well as for
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hedging/liquidity reasons. Glosten shows that the more extreme a position the investor
wishes to take, the more likely it is that he trades for informational reasons. The market
makers, therefore, have to protect themselves by making the price schedule steeper. For
extremely large orders, market makers are unable to protect themselves and, therefore, the
market closes down. On average, market makers profit from trading with investors with
extreme endowment shocks, since they trade for re-balancing reasons and lose to those
traders with small endowment shocks who trade for informational reasons. Rothschild
and Stiglitz (1976) suggest that an existence problem exists in a setting where there is a
continuum of types of investors. Glosten defends his setting because of its tractability and
qualitative similarity to a discretised version. Hellwig (1992} shows that the non-existence
of fully revealing outcomes in any signalling model arises because of the unbounded type
space.

A monopolistic specialist commits himself to a different price schedule, which is de-
termined by

arg max E[P(Z())2(-) — [1z(-)]
Pla())

where, £(-) is the optimal order size (function) of the trader depending on his endowment
shock and his information. In contrast to the competitive market maker case, the mo-
nopolist has the ability to cross-subsidise different order sizes. In equilibrium he earns a
larger profit from more likely small trades, but makes losses on unlikely large trades. The
large trades are unlikely to occur, but likely to result from information based trading.
By keeping the price of large trades relatively low, the specialist guarantees that traders
with extreme signals do not reduce their trade size in order to pool with trades with less
extreme signals. This is the reason why a market structure with a monopolistic specialist.
stays open for larger trade sizes than a market with multiple market makers. The prob-
lem a single market maker faces can also be viewed as a principal-agent-problem. The
principal (specialist) sets a menu of contracts (z, P(z)) from which the agent chooses the
one which maximises his expected utility. This is a mechanism design problem for the
market maker, which was analysed as such in Rochet and Vila (1994) with the difference
that they consider exogenous noise trading and allow for more general distributions.

The models considered so far avoid any strategic interaction between market makers.
They just assume that competition among market makers leads to zero profit in expec-
tations. Dennert (1994) explicitly analyses this interaction. In the first stage, all market
makers set a bid and ask price and commit themselves to trade up to an exogenously
specified number of shares. In the second stage, the trader chooses his optimal demand.
If he trades for liquidity reasons, he will trade with the market maker(s) who offer(s)
the best price. An informed trader, on the other hand, trades with many market makers
simultaneously as long as it is profitable for him. An increase in the number of registered
market makers leads to an increase in informed trading and, thus, increases the transac-
tion costs for the liquidity trader. In the second part of this paper, market makers set
whole price schedules in stage one. The analysis exhibits elements of a first-price auction
for divisible goods.
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Biais, Martimort, and Rochet (1997) model imperfect competition between market
makers within the framework of mechanism design theory and make use of the tool of
variation calculus.’ The risk-neutral market maker(s) set the price schedules in the first
stage. The risk-averse insider submits market orders possibly to all market makers. The
insider’s market order depends on his signal and his endowment shock. While Glosten
(1989) analyses only the extreme cases of perfect competition and monopoly, Biais, Mar-
timort, and Rochet (1997) analyse the more general case where the number of market
makers is finite. The authors derive a unique equilibrium in which the unit price of the
shares is increasing. They show that the equilibrium trading volume is below the optimal
risk sharing level but higher than in the monopoly case. Competition among market mak-
ers leads o a deeper market, which was not necessarily the case in Dennert (1994). Market
makers face limited competition due to adverse selection. Market makers are reluctant
to undercut each other since this exposes them to a greater extent to disadvantageous
informational trade. The intuition is similar to the winner’s curse in auction theory. Even
as the number of the market makers tends to infinity, a strictly positive bid-ask spread
remains and the sum of market makers’ profit is still strictly positive. This limiting case
is similar to the analysis of Glosten (1994). Uninformed traders, who submit limit orders
to a public limit order book before the insider submits his market orders, face the same
problem. Glosten (1994) studies the case of perfect competition in limit orders.

Almost all existing models can be grouped in the five categories outlined above. A nice
overview about the existence of linear equilibria in static models is provided by Bagnoli,
Viswanathan, and Holden (1994). Most dynamic models have the common feature that
the price adjusts instantaneously to public information but only gradually to private
information. This gradualism is caused by noisy asset supply, strategic behaviour of
informed traders or is exogenously given by assuming a sequential trading mechanism
where traders are restrained to trade only a certain quantity.

14This paper departs from the normality assumption.



Chapter 4

Further Dynamic Models and
Technical Analysis

This chapter covers some dynamic models in more detail. The first section deals with
competitive two period models in which all traders are price takers and all traders receive
their information at the same time. These models shows that past prices sill have informa-
tional value. Section 4.2 introduces the Infinite Regress problem and it demonstrates how
learning can lead to serial correlation of variables. Multi-period models are analysed and
the informational content of volume data is also illustrated in this Section 4.4. The value
of technical analysis in models in which different traders receive information at different
times is the focus of Section 4.5. Finally, Section 4.6 covers strategic market order models
based on the seminal work of Kyle (1985).

4.1 Competitive Two-Period Limit Order Models, Tech-
nical Analysis and Crashes

In Grundy and McNichols (1989) and Brown and Jennings (1989) two simple competitive
limit order models are developed in which not only the current price, but also the past
price is useful in predicting the value of the asset. In these competitive limit models tech-
nical analysis has positive value. Grossman’s (1976) model suggests that capital markets
are strong-form informationally efficient, i.e. the revelation of any private information
will not change the equilibrium. The noisy REE discussed below are not even weak-form
informationally efficient, following Fama’s definition, Fama (1970) (1976), i.e. the current
price is not a sufficient statistic for all past prices. There are, however, alternative defini-
tions of weak-form efficiency whose conditions are satisfied by these REE.

Brown and Jennings (1989) extend a model similar to Hellwig (1980) to two periods.!
In their model there are infinitely many a priori identical investors, denoted by ¢ € I =
{1,2,3,...} who are endowed with By units of the riskless asset. By can be normalised

! As far as possible we will follow the notation in He and Wang (1995) in order to make the papers
comparable.
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without loss of generality to zero, since all investors have CARA utility functions. All
investors start with the same information set, Fy, with beliefs about the liquidation value
of M(un,0fp). At t = 1 and t = 2 each investor gets a private signal about the
liquidation value, II, of the risky asset in T' = 3, i.e.

S; =1I + Etg,ta

where €5, is normally ii.d. with (0, a':‘;'t). As the signals are unbiased, by the Law
of Large Numbers, the average signal Sy = lims e § Z:=1 Si equals II with probability
one in each ¢. Trader ¢’s information set is given by F{ = {F0, 8}, A} int = 1 and
Fi={F, 55 P} in t = 2. The information sets contains the current price P, since, in a
limit order model, traders can trade conditional on the price of the stock P,. Let trader
i’s stock holding in t be denoted by zi. His final wealth in period T = 3 is then given by

Waz = BO + Z;(Pg - Pl) -+ IZZ(H - Pg)
where By is normalised to zero. Traders’ expected utility functions are given by
B[ exp(—pW3) | Fol,

where the constant absolute risk aversion measure p is the same for all traders. Each
trader maximises his expected utility, given his information set and his price conjecture.
Backward induction allows us to break up this optimisation process into two steps. Given
a certain zj the maximum utility value at ¢ = 2 is given by

Jy(}) = max B{— explp(a(F; — P1) +23(I - P)] | F3}.

At t = 1 the problem is
Ji = max E{J;(«}) | Fi}.
1

A REE is then given by the equilibrium prices P, and P, which have to coincide with
the traders price conjectures as well as the optimal stock holdings (z%,z3) for each
investor ¢. The market clearing condition guarantees that demand equals supply in
both periods. Whereas the average per capita demand for the risky asset is given by
= limj_eo Z::l zi/I, the per capital supply is assumed to be random in this noisy
REE. The random supply is given by ©; int = 1 and ©; in t = 2, where O, = ©; + AQ,.?
Brown and Jennings assume that ©; and A©, are normally distributed

<®1,Aez>~m(o,o>,( ?,  eo0ane, )]

2
00E,TA6, Taay

where g is the correlation between the supply increments ©; and A®,. Conditioning
trade in t = 2 on P, i.e. technical analysis, has positive value for two reasons. First,

2Note, that z; denotes holdings rather than additional trading demand, whereas ©; and A©, refer to
additonal supply.
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P, = L[II, ©,] provides a useful second signal about the true payoff II. L[] is a linear op-
erator. This effect is most pronounced in the case, where @, is independent of ©,. Second,
if ©; and ©, are correlated the price P; in t = 1 helps to get a better prediction of ©;.
©O1, in turn, is useful in predicting ©3. A better prediction of ©4 reduces the noise in t = 2
and thus allows P, to reveal more about the liquidation value I1. Furthermore, knowing
P, also allows to get a better prediction of ©;. Thus a joint estimation using both price
conjectures P, and P, enhances information revelation. Grundy and McNichols (1989)
show that for the case of perfect correlation, i.e. A©y =0, P, and P, perfectly reveal II.
Therefore P, has predictive value even in ¢ = 2. Note, ©, and O, are still correlated, even
if ¢ = 0, since g is defined as the correlation coefficient between ©; and A©,. In this case
O, follows a random walk and the prediction of ©; using P; provides the expectation of Q.

The non-myopic REE is derived in the following steps. Since all random variables in
this model are normally distributed one can make use of the Projection Theorem. Thus
all conditional expected values are linear in their unconditional expected values and the
signal surprise component, S* — E[S?). Brown and Jennings derive this simple linear
relationship for Fi[Il], Ei[0], F{[O,] = ga—:’%gl, Ei[Py), Ei[1]], where E{[-] is a simplified

1

notation for E[- | Fi]. They also show that covariance matrices V{[II, S, P3] and VZ{II]
are constants on Fy, where V/‘[] denotes Var|- | F{.

The optimal stock holding can be derived by using backward induction. The value
function in ¢ = 2 given stock holding 2} int =1 is

J3(w1) = mazy; By{ — exp[—pla} (P2 — P1) + z3(I - P)]]}

The optimal z} in ¢ = 2 is

L B -
v
as in Hellwig (1980). Therefore

Bl — P,

J;(‘Ell) = Eé{_eXP[_P[Ii(PZ’ - P)+ oV ]

(I1 - P)l}}.

The only random variable at t = 2 is II, which is normally distributed. Therefore, the
expectation is given by

(1/2)(E5[M] — Py)?

Ji(z}) = — exp[—plzi (P2 — P1)] — Vil ].

The value function for ¢ = 1 can then be rewritten as

_ (1/2)(E[1] — By)*

J} = max B} expl-pla (P = P)] = )

With respect to the information set, 7, Ei[Il] and P, are normally distributed random
variables. In order to take expectations we rewrite the equation given above in matrix
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form by completing squares.®

J{ = ma,xE'{{— eXp[p.TiPl + (—p:.'.';,U) ( b ) +
——

20\ min
=LY -
=M
] 1 +V‘I{n| —V'III Py
+(Rp B S | Y i M
S——— 2 vi[mj +1,n[]1] ‘5‘2[11]
=M/ A i 2 S——
=N =M

Furthermore, let Q; be the conditional expected value conditional on F of the multi-
nomial random variable M* and its conditional Covariance matrix W, i.e. Q' := Ei[M"/],
W = Vi[MY).

Taking expectations yields

Ji = max{— | W "D 2N+ W |7/ explpa} P, + L/Q' — Q/NQ'+
i

+(1/2)(Lr — 2Q/N) (2N + W)~} (L' — 2NQY)]},
[
=G
where the term in expl] is the certainty equivalent. The FOC w.r.t. z¢ is given by
i _ Bl - P Bi)(Gi — Gn)
zi = +
PG PG

where Gj; are the elements of the matrix G, and

. Ey[lT] - P
2= v
Given the price conjectures of the trader, &% = L{un, S}, Pi} and z§ = L{un,, S%, S5, P1, P,

where L{:] denotes a linear operator.
This allows us to derive the market clearing price as a linear function

P, = L{un, 11, ©1, 0],
Pl = L[:u']'[.O) H) el]

Brown and Jennings show that technical analysis has value as long as P, depends also on
O,. This is consistent with the intuition provided earlier.

Since Brown and Jennings only show existence of a non-myopic dynamic REE for the
special cases where P, or P, together with P, are informationally efficient they continue
their analysis for myopic-investor economies. Myopic dynamic models were first analysed
in Singleton (1987).

3Gee also Anderson (1984, Chapter 2).
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In a myopic investor economy* the first period stock holding simplifies to

= Ei[Pﬂ_Pl
! Vil Py

The second period stock holding is as before

Byl - B

%= T

Brown and Jennings show that under certain parameter restrictions technical analysis has
strict positive value. As mentioned above technical analysis has value if ©; helps to pre-
dict ©,, and O has an impact on the information revelation of P, and/or Py = L[II, ©,]
provides a second noisy observation of II. The authors provide three equivalent condi-
tions under which technical analysis has no value. Technical analysis has no value, when
individual demand in ¢ = 2 is independent of P, or equivalently P, is independent of &,
or equivalently Cov[ll, P, | P, S%, Si, F¢] = 0.

Vives (1995) is able to derive a closed-form solution for the case ¢ = 0 even if investors
act non-myopically by adding a risk-neutral competitive market-maker sector. Focus of
Vives’ work is to contrast the informativeness of the price process in an economy with
myopic investors with an economy where investors have long horizons. In this multi-
period model, scaplers, floor brokers, etc. of the risk-neutral market-maker sector observe
only the limit order books, i.e. the aggregate demand. They set the price equal to the
counditional expectation of the liquidations value II given the information from the limit
order books. Introducing this competitive fringe changes the model quite dramatically.
Vives (1995) shows that due to the normal distribution the current limit order book (or
equivalently the current price) is a sufficient statistic for all data from the past limit-order
books. In other words the prices are (semi-strong) informationally efficient and thus tech-
nical analysis has no value. The importance of the competitive market-maker sector can
be illustrated for the case where private information is only released at ¢t = 1. A buy and
hold strategy is optimal for the informed traders in this case. At ¢t =1 informed traders
buy assets as in the static Hellwig-model and hold it till 7. The aggregate demand (limit
order book) in ¢ = 1 contains the demand of the insiders and the demand of the noise
traders, ©,. Market-makers set the price equal the conditional expectation of IT given the
aggregate demand. At ¢t = 2 the holding of informed traders does not change. Therefore
the limit order books contains only the additional noise trader demand A©G,. Since g = 0,
A©, contains no additional information and thus market maker set P, = P, absorbing
the additional noise demand. In a model without competitive fringe like in Brown and
Jennings (1989) informed traders have to take on the position of the additional noise
trading in ¢ = 2. Since each demand function of the informed traders depends on his
signal, more information is revealed by P,. Having a competitive fringe the only motive
to trade is to exploit the information advantage and not to insure each other. This allows

“Interpreting myopic investor economies as OLG models can be misleading, since the agents in ¢ = 2
still condition their demand on their signal in ¢t = 1.
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Vives (1995) to derive a closed form solution even for the case where private information
arrives in every period. He shows that the net trading intensity of insiders in period ¢
depends directly on the precision of period ¢ signals.

In Grundy and McNichols (1989) the signals are distorted by & common error term
and for most of the paper the random supply in t = 1, ©4, is kept equal to G, i.e. the
random absolute supply is perfectly correlated. This clarifies the results in Brown and
Jennings (1989). Grundy and McNichols’ paper not only focuses on technical analysis
but also provides a deeper understanding of the No-Speculation Theorem of Milgrom and
Stokey (1982).

In their model, exogenous random supply of a single risky asset is given by endowment
shocks for each individual trader, which is similar to Diamond and Verrecchia (1981).
These shocks are i.i.d. with N(pel,oéll). As I — oo the average per capita supply
shock, ©y, is still random with A/ (ize,,03), since the variance of individual endowments
depends on the number of traders I. Furthermore the overall variance of the total supply
shocks goes to infinity and thus the Law of Large Numbers cannot be applied. Moreover,
as I converges to infinity the individual endowment shock has almost no impact on the
aggregate supply and thus provides no information. Therefore, the only private signal
trader ¢ receives is

Si=T+w+es,,

which has a common error term w and an idiosyneratic error term €g;. Both ertor
terms are independently normally distributed with mean zero and variance ¢2 and o} T
The average signal is given by S; = lim;_.(>.Si/I) = Il + w. In contrast to Brown
and Jennings (1989) traders receive their private signal only at t = 1. As before, traders
maximise CARA utlity functions. The constant absolute risk aversion coefficient of trader
1 is p* € [pr,pu] C (0,00). Grundy and McNichols derive, as a first step, a one period

reference model. In this model traders conjecture a linear price relation
Py =ag) + o515 + a1 X,

where X is the aggregate demand in equilibrium. The optimal stock holding of trader i
is therefore® )
,  EjO) -7
Ty = —=7r0
pVA(H]

where Fy[I1] is linear in P; and S% by the Projection Theorem. Notice, that V4[II] is higher
if the variance of the common error term is higher. Averaging over all traders gives the
average per capita demand

1

X = m[ﬂm + Bp1 Py + Bs151]

where 7 is the harmonic mean® of all traders’ risk aversion coefficients. Rearranging the

5T normalise the risk free interest rate r = 0, i.e. R = 1.
SHarmonic mean is defined as ﬁ;—_;.
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trader’s price conjecture gives

x=-, 1 p %ig_gq
Qg1 Qg1 a1
By equating the coefficients one gets the REE. The aggregate demand is downward sloping
and the supply is vertical. The important coefficient is (as;/@e,1). Changes in S; lead
to a parallel shift of the demand curve, whereas changes in ©; shift the vertical supply
curve. The size of the demand curve shift as S; changes is measured by «g,, whereas the
size of the supply curve shift caused by a different ©, is captured by oe,. Since traders
cannot make out whether a price change is due to a demand shift or a supply shift (S; or
©; change), g1/, measures the simultaneous equation problem.

The basic model is then extended to a two period model where, in the second round, no
new private information is released and the random supply ©5 is the same as in period one.
One might expect that no trader will change his stock holding, since no new information
arrived. Grundy and McNichols show that his no-trade outcome is indeed an equilibrium.
There is, however, a second equilibrium, where the average signal S is revealed. If all
trader rationally conjecture

P =ap1 + as151 + 00191

Py = agp + ag2S1 + ap 203,

where ©; = @, and if both equations are linearly independent, then S; can be revealed.
This can be the case if % #* ff:—;'f:, since then we have two linearly independent equations
with two unknowns. ' '

Grundy and McNichols prove that an informationally efficient REE, which fully re-
veals Sj, exists as long as the variance of w is not too large. Their proof proceeds in
two steps. First, they show, given a linear pricing relation in round 1, there exists a
S1-revealing equilibrium in round 2. Second, as long as the variance of w, o2, is not too
large, traders rationally foresee the existence of a S revealing equilibrium in round 2.
When 0 <02 < 72 two S-revealing REE exist. In these equilibria, there are two sources
of uncertainty in the first round: z§ and P,. These equilibria show that even when no
new information arrives, prices and stock holdings can change if the additional price %
reveals more of the private information. When ¢2 = 0, both equilibria, the S)-revealing
and the non-S;-revealing, are identical for the first round.

In the S;-revealing REE, trade also occurs in period two, although the only new public
information is P,. This seems striking in light of the No-Speculation Theorem developed in
Milgrom and Stokey (1982). The No-Speculation Theorem predicts a null trade outcome
in period 2, if the allocation after trade in period 1 is Pareto optimal and the prior beliefs
about the signals in ¢ = 2 are concordant before the signal becomes known. Beliefs are
concordant if traders agree on the conditional likelihood of any given realisation of the
signal, i.e.

PriSi=s|M=mn7F)=PrlSi=s|O=mFViST.
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Intuitively, beliefs are concordant if traders agree about everything expect the prior prob-
ability of payoff-relevant states. Since the only new signal in t = 2 is P,, which is public,
it is sufficient that beliefs about P, only are “essentially concordant”, i.e.

PriSi=s|N==7F)] Pr{Si=s|Nl=n7]
PriSi=s|H=m, 7] ~ PriS=s | =, 7]

vi, S

Pareto optimality is given if the marginal rate of substitution for consumption across any
two states is the same for all investors. Grundy and McNichols show that if the investors
behave myopically they reach a Pareto optimal location after the first round. However,
when P, becomes known this allocation is no longer Pareto efficient since traders’ beliefs
about P» are not “essentially concordant” at the end of the first round. Therefore, trade
will occur. If traders apply dynamic trading strategies, i.e. they do not behave myopically,
trade can also occur in period 2. This is the case when 62 > 0, i.e. there is a common
unknown noise term in the signal. The trading outcome in round 1 is neither Pareto
efficient given information J7, nor are the beliefs about the public signal P, concordant.
When ¢? = 0, the true liquidation valie TI can be inferred from P, and trade 1 allocation
is Pareto efficient and beliefs about P, are concordant. In this case the No-Speculation
Theorem applies and the only trade which occurs is a swapping of riskless assets.

Grundy and McNichols continue their study by introducing an additional publically
observable signal in t = 2

}’2=H+€y'2.

In this case a S)-revealing REE with trade in ¢ = 2 exists as before, but also when the new
public information Y3 is informative, i.e. Cov(Il,w) # Var(w). The authors also provide
necessary and sufficient conditions for the existence for non-S;-revealing REE, in which
no trade occurs in the second round. Finally, they consider the case where the random
supply (01, ©3) is not the same in both periods but correlated as in Brown and Jennings
(1989). Both types of equilibria exist in this generalised version. In the non-S;-revealing
type, no informational trade will occur; the whole trading volume is determined by the
additional noisy supply. In the second type, the sequence of prices { P;, P,} only partially
reveals 51, since the supply shocks are not perfectly correlated anymore. However, the
sequence of prices reveals more about S; than P; alone. Their paper shows that technical
analysis has positive value and that trading can be self-generating. It also makes clear
how important the traders price conjectures are in determining the economic outcome.

Romer (1993) provides a rationale for large price movements without news. He shows,
within a two period asymmetric information model, that a small commonly known supply
shift in the second period can lead to large price movements. The aim of his paper is to
give a rational explanation for the stock market crash in 1987. In his model asymmetric
information is only partially revealed in the first period, but in contrast to Grundy and
McNichols (1989) it incorporates uncertainty about the quality of other investors’ signals,
i.e. higher order uncertainty. Each investor receives one of possibly three signals about
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the liquidation value of the single risky asset, IT ~ N (un, og).”
57 =11+ eg,

where eg2 = eg1 + 6%, €gs = €52 + 6° and eg1, 62, 6° are independently distributed with
mean of zero and variance afsl, ok, 0k, respectively. Thus, $7 is a sufficient statistic for
S§9*1, There are two equally likely possible states of the world for the signal distribution.
Either half of the traders receive signal S and the other half signal S? or half of the
traders receive signal S and the other half signal S® It is obvious that traders who
receive signal S! (or S3) can infer the relevant signal distribution, since each investor
knows the precision of his own signal. Only trader who receive signal S? do not know
whether the other half of traders has received the more precise signal S* or the less precise
signal S3. Finally, as usual, the random supply in period 1 is given by the independently
distributed random variable ©; ~ M{ue,,03,).

In contrast to Grundy and McNichols (1989), the supply of the risky asset changes in
period two. This change is common knowledge making the no-trade outcome of Grundy
and McNichols (1989) very unlikely. The change in price caused by the supply shock
allows the S%-investors to infer more precisely the signal distribution. Thus a small supply
change can lead to revelation of ‘old’ information and can have a huge impact on prices.
Alternatively, if in addition an option is traded, the quality of information can be revealed
by its price already in t = 1. This is only the case as long as the quality of the signals
can be summarised in one parameter. The informational difference between traded and
synthesised options was discussed in more detail in Section 2 Grossman (1988).

The stock holdings in equilibrium of S*-traders, z1(S') can be derived directly from
the Projection Theorem. They do not make any inference from the price, since they
know that their information is sufficient for any other signal. Traders with S°-signals
face a more complex problem. They know the signal distribution precisely but they also
know that they have the worst information. In addition to their signal S3, they try to
infer signal S? from the price P;. The equilibrium price in ¢ = 1, Py, is determined by
2282, P,) + 23(53, P1) = ©; (assuming a unit mass of each type of investors). Since an
S trader knows z2(.), z3(-) and the joint distribution of 2, S* and ©,, he can derive
the distribution of S? conditional on $* and P,. Since z%(S? P;) is not linear in S2,
z3(53, Py) is also nonlinear. S%-investors do not know the signal distribution. Therefore,
the Var[P; | 5% depends on the higher order information, i.e. whether the other half of
traders are S'- or S3-investors. S%-traders use P; to predict more precisely the true signal
distribution, i.e. information quality of other traders. If they observe an extreme P,
then it is more likely that other investors got signal S3. Otherwise, if P; is close to the
expected price yy then it seems that others are S!-traders. S2%-investors’ demand func-
tions 22(S?%, P,) are therefore not linear in Py, since P; changes not only the expectations
about II, but also the variance. This nonlinearity forces Romer to restrict his analysis

"The notation in the article is: I = o, 5; = s;,un = §t,04 = Va, ©1 = Q, pte, = @, 0%, = Vo.

8Romer claims that he needs this random supply term in order to avoid an informationally efficient
REE in ¢t = 1. I do not see the necessity for this term since a single price cannot reveal two facts, the
signal and the signals quality. In my opinion the structure is rather similar to the partial-revealing REE
analysis in Ausubel (1990).
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to a numerical example. His simulation shows that S%*investors’ demand functions are
more responsive to price changes. Using these results Romer tries to explain the mar-
ket meltdown in October 19, 1987. In Section II, Romer (1993) develops an aiternative
model with trading costs and widespread dispersion of information which explains the
stock market crash. This model is not covered by this survey. Another model which
incorporates uncertainty about the signal precision of other trades is Blume, Easley, and
O’Hara (1994). Blume, Easley, and O’Hara (1994) avoid these nonlinearity problems by
considering a market order model instead of a limit order model. In their model volume
rather the price in the next period reveals the quality of information.

Gennotte and Leland (1990) provide a similar explanation for stock market crashes in
a ‘one period’ model.® As in Romer (1993) there are no major news events. Gennotte and
Leland (1990) consider two groups of informed traders. Each (price-)informed trader re-
ceives an individual private signal S* = I1+ €' about the liquidation value IT ~ A(up, 0%).
Supply-informed traders receive a signal about the total supply. Aggregate supply results
from dynamic hedging trades like program trading, stop and loss strategies etc. as well
as from noise liquidity supply represented by the random variable ©. Random supply ©
can be divided into the part © which is known to everybody, ©¢ which is only known to
the supply-informed traders, and the liquidity supply ©, which is not known to anybody.
Superior knowledge of the supply-informed traders about ©g allows them to infer more
information from the equilibrium price p;. Gennotte and Leland (1990) show that the
equilibrium is given by p; = f(II - ug — k19, — k2©s), where k; and k; are real constants.
Note, that since 7(p;) need not be linear, p; need not be normally distributed. However,
f~(p,) is still normally distributed. A “crash” is possible if f(-) is discontinuous, i.e.
a small change in the argument of f(-) leads to a large price shift. In the absence of
any program trading (i.e. w(p1) = 0) f(-) is continuous. This rules out crashes. Nev-
ertheless, an increase in the supply can lead to a large price shift. The price change is
small if the change in supply is common knowledge, i.e. change in ©. If the supply shift
is only observable by supply-informed traders, the price change is still moderate. This
occurs because price-informed and supply-informed traders take on a big part of this ad-
ditional supply even if the fraction of informed traders is low. Supply-informed traders
know that the additional excess supply does not result from different price signals while
price-informed traders can partially infer this from their signal. If, on the other hand, the
additional supply is not observable at all, a small increase in the liquidity supply ©, can
have a large impact on the price. Crashes only occur when the program trading is large
enough to cause a discontinuous price correspondence f(-). The discontinuity stems from
non-linearity of program trading n(p;) in p; which can lead to the possibility of multiple
equilibria. Crashes are much more likely and prices are more volatile if some investors
underestimate the supply due to program trading. Gennotte and Leland (1990) illustrate
their point by means of an example of a put replicating hedge strategy (synthetic put).
Their analysis is in the spirit of Grossman (1988). However, their paper also explains why
stock prices do not immediately rebound after a stock crash.

9We adjusted the notation to $* =p{, I =p, un =5, oG =L, ;1 =p0, O =m, O =L, O5 = 5.
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In order to get a better understanding about price processes, one would like to have
models which capture a larger time horizon than essentially two periods. Before discussing
dynamic models with differential information, we deal with a simpler information struc-
ture, namely asymmetric information. Townsend’s (1983) article makes clear what kind
of problems can arise from a more general information structure.

4.2 Serial Correlation Induced by Learning and the
Infinite Regress Problem

Townsend (1983) laid bare crucial points in his article “Forecasting the Forecast of Oth-
ers”, viewing rational expectation from a macroeconomic angle. Within a rational ex-
pectations framework, decision makers solve dynamic decision problems following their
objective function and infer information from well specified information sets, taking the
aggregate laws of motion as given. These laws are, in turn, those actually generated in
the model. The focus of his article is the characteristics of economic time series. He shows
that learning can convert serially uncorrelated shocks into serially correlated movements
in economic decision variables. Since agents may respond to variables generated by the
decisions of others, time series can display certain cross-correlation and may appear more
volatile. In the case of disparate but rational expectations, decision makers forecast the
forecasts of others. This can lead to relatively rapid oscillations and can make forecasts,
as well as forecast errors, serially correlated.

He analysed the behaviour of time series in a dynamic model with a continuum of
identical firms in each of two markets. The demand schedule in each market (island) i is
given by

P =-0Y+¢&,

where P} is the price in market 4, Y; is the aggregate output of all individual production
functions yi = foki, and £ is a demand shock. This shock consists of a “persistent”
economy wide component ©; and a “transitory” market specific shock €, i.e.

§:=et+€:)

where
O, = ag®_;, + 1y —l<ag <1,

follows a AR(1) process with ¢ and v; jointly normal and independent. Firms can infer
&ls, but they do not know exactly which part steams from a persistent economywide shock
and which part is market specific and transitory. After stating the firm’s maximisation
problem, Townsend derived the first order conditions using the certainty equivalence the-
orem. He defines the dynamic linear rational expectations equilibrium in laws of motion.
Following Sargent (1979) one can derive the law of motion of the aggregate (capital stock)
in each market without directly calculating the firm-specific laws of motion. The aggre-
gate law of motions have the advantage that they can be computed without being specific
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about information sets and forecasting. In Townsend’s setting the equilibrium can be
found by finding the statistically correct forecasts.

Considering the inference problem, the paper is divided into two parts. In the first
part, firms in market 1 cannot observe the price in market 2, whereas market 2 firms
observe both prices. Townsend calls this an hierarchical information structure. In the
second part, firms in both markets can make inferences from both markets’ prices.

In part one the information set of market 1 firms consists of F} = {K!, P}, M}}, ie.
the aggregate capital, the price and the common market 1 mean forecast of ©;, M; where
Z, denotes a stochastic process up to and including time ¢. Using only observations in ¢ of
this information set allows firms to infer exactly the total shock to the economy £!. The
inference problem for firms in market 2 is similar, except that their information set also
contains the price in market 1, i.e. 72 = {K?, P2, M?, P}}. The price in market 1 provides
additional information to what extend the shock is permanent and is, therefore, used in
making the forecasts of the shock components. The components of £¢, however, cannot
be inferred precisely although past data help to get a better forecast. The inference prob-
lem of the firms can be solved in two ways. Either one uses the Projection Theorem or
one applies Kalman filtering, which derives from the Projection Theorem. Applying the
Projection Theorem directly has the disadvantage that the state space increases with the
history of time. The latter is a steady state approach and exploits a recursive algorithm.
Therefore, it is often assumed that the initial date is t = —oco. It is important to notice
that Kalman filtering can only be applied if the state vector!® in the state space form is of
finite dimension. Using these methods one can derive ¥, := E(v, | }), the forecasts of v,
as a linear combination of v,, and ¢i. It now becomes obvious that the learning mechanism
causes some persistence. Although v, €l are uncorrelated, their forecasts are correlated,
since both forecasts E(v, | ;) and E(v—; | F¢_,) contain v, ;. In other words, all past
v,_, influence the prediction of v,. Similarly E(©, | F;) and E(©,_; | F_,), as well as the
forecast errors [E(©, | F}) — ©)] are serially correlated. It is important to notice that the
forecast error for past O, (sjt) decreases as time goes on and more and more observations
are available.

So far only market 2 firms were forming inference about the components of the de-
mand shock from an endogenous time series, the price in market 1. The price in the
first market also depends on the average beliefs in this market, M}, i.e. the market 1
expectations. These expectations are well defined and can be expressed in terms of a
finite number of states. Therefore, the Kalman filter can be applied. In the second part
of the paper the information structure is not hierarchical anymore, Firms in market 1 can
also draw inferences from P?. Since P? depends on the common market 2 forecasts, M7,
firms in market 1 must have expectations about M2, i.e. E}(M?2). But firms in market 2
(firms 2) see P} also. So firm 2 must have expectations on M}, i.e. EZ(M2). Thus firm
1 needs to know expectations E} (M?2) and E}(E?(M})). This chain of reasoning can be
continued ad infinitum. Therefore, we face an infinite regress problem. One needs, in the

104 state in this setting is an element of the “sufficient (current) state description” as desribed in
Section 2.2.



4.3. COMPETITIVE MULTI-PERIOD LIMIT ORDER MODELS 45

space of mean beliefs, infinitely many state variables. This prevents us from applying the
standard Kalman filter formulas. Notice that the infinite regress problem arises although
the depth of knowledge is only zero. The infinite regress problem is not due to a high
depth of knowledge but due to inference of endogenous variables. Townsend then goes on
to discuss a related but different infinite regress problem, in which he analyses the case
of infinitely many markets.

New methods developed by Marcet and Sargent (1989a) (1989b) in convergence of
least squares learning to rational-expectations equilibria allow us to tackle this infinite
regress problem differently. Sargent (1991) shows in that a solution can be found in self-
referential models by defining the state variables in a different way. The idea is to model
agents as forecasting by fitting vector arma models for whatever information they have
available. The state vector for the system as a whole is defined to include the variables
and the innovation in the vector arma models fit by each class of agents in the model.
This contrasts to the former formulation in Townsend (1983) where the state covers a
system of infinitely many orders of expectations about exogenous hidden state variables.
This new approach - to my knowledge - has not been applied so far in the finance litera-
ture. Most of the literature avoids the infinite regress problem by assuming a hierarchical
information structure as in Wang (1993),(1994). In models with differentia) information
the problem is elegantly by-passed. This is the case in He and Wang (1995) a competitive
model and in Foster and Viswanathan (1996) a strategic model.

4.3 Competitive Multi-Period Limit Order Models

Wang (1993) is - to my knowledge - the first to use Kalman filters in the financial economics
literature. He avoids the infinite regress problem by assuming a hierarchical information
structure. In his model the information of the informed investors statistically dominates
the information of the uninformed. In other words, all variables the uninformed investors
can observe are also known by the informed traders. The main focus of this paper is
the impact of information asymmetries on the time series of prices, risk premiums, price
volatility and the negative autocorrelation in returns, i.e. the mean reverting behaviour of
stock prices. For analysing these questions he uses a dynamic asset-pricing model in con-
tinuous time. In his economy, investors can invest either in a riskless bond with constant
rate of return (1+7), or in equity which generates a flow of dividends at an instantaneous
stochastic growth rate D. D is determined by the following diffusion process:

dD = (Il — kD)dt + bpdw,
where the state variable II follows an Ornstein-Uhlenbeck process,
dIl = ag (T — M)dt + bpdw,

and w is a (3x1) vector of standard Wiener processes, an(> 0), II, k(> 0) are constants
and bp, by are (1x3) constant matrices.
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The fraction w of informed traders observe in addition to D,, P,, also II,, whereas the
uninformed only know D, and P,, i.e. F'(t) = {D,, P, I, : 7 <t} and F*(t) = {D;, P, :
7 < ¢}.1 It is clear that the informed can infer the expected growth rate (IT— kD). When
k = 0, I1 is simply the dividend growth rate. When & > 0, II/k can be interpreted as the
short-run steady-state level of the dividend rate D, which fluctuates around a long-run
steady-state level II/k.

In this setting, the rational expectations equilibrium would fully reveal II to the un-
informed. Although the price would adjust, no trading would occur. Under incomplete
markets, there can be motivation other than the arrival of new information that cause
investors to trade. In the case where the price is not informationally efficient, the irrele-
vance of heterogeneous information breaks down and investors will trade. In order to have
a incomplete markets setting, Wang introduces an additional state variable by assuming
that a stochastic quantity of stock supply. The total amount of stocks (1 + ©) should be
governed by the stochastic differential equation

dO® = —agOdt + bedw

where bg is constant (1x3) matrix and w are the Wiener Processes mentioned above.
In this environment the uninformed face following problem. They cannot distinguish
whether a change in (P, D) is due to a change in the dividend growth rate I, or due to
a change in noise supply ©;.

Wang analyses first the benchmark case of perfect information, in which all investors
are informed. The equilibrium price takes on the form

P =+ (p; + p50)

where ® represents the net present value of expected future cash flows discounted at the
risk free rate r and the second term reflects the risk premium. He shows that the expected
excess return to one share is independent of the variance of the noise supply. In other
words, volatility in prices caused by temporary shocks in supply do not change the risk
premium in the case of symmetric information.!? This is in contrast to De Long, Shleifer,
Summers, and Waldmann (1990b) where investors have finite horizons and they face
additional risk since the remaining trading periods to rewind their positions are becoming
fewer. He and Wang (1995) also consider a finite horizon model, in which the variance of
© affects the risk premium.

For the case of asymmetric information, we outline all of the major steps, since they are
useful for the analysis of later papers. Wang proceeds in the following way to determine
a linear rational expectations equilibrium. First, he defines the primary state variables
consisting of all known variables for the informed traders. The state space covers also
“induced state variables” reflecting the estimates of the uninformed investors. The ac-
tual state description should incorporate all signals which the investors receive. Wang
simplified the state space by using equivalently the estimates of uninformed investors.

"'The notation Z, represents a (continuous) process up to and including t.
120 can be inferred by everybody and @ describes a economy-wide shock. Together with CARA utility
functions this result seems plausible.
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As a second step he proposes a linear rational expectations equilibrium price

P = (¢+po) +ppD +pull +ps® +pall = ® + (Do + pe®) + Pal,
£

depending on 1(t) := E[Il | F¥], the estimate of I1(¢) by uninformed investor. II(t)
depends on the whole history of dividends and prices. The equilibrium price reveals to the
uninformed traders the sum £ := pyll + pe®. Therefore, F¥ = FP*. The equilibrium
price does not depend additionally on © = E[® | F], since prll+pe® = pull+pe® =: €.
In other words, the uninformed investors can derive £ but do not know exactly whether
the price change is due to a change in IT or ©.

Given the proposed linear REE one can derive in a third step the estimates, II, and
6. Focusing on a steady state analysis, the uninformed investors apply the Kalman filter
on all past data of dividends D and prices P to infer their estimates II, and ©.1® Their
joint estimation of IT and © based on both D and P generates the induced correlation
between the estimates of IT and .

In the fourth step the process for the estimation error A := II — II is derived.!* It is
shown that it follows

dA = —apAdt + badw.

This estimation error is mean-reverting to zero and thus only temporary. This is the case
since the uninformed investors constantly update their estimates, as in Townsend (1983).

Let us in a fifth step derive the instantaneous excess return process d@ = (D —
rP)dt + dP. It is well known from static models that, for deriving the demand functions
the excess returns are relevant.

In the sixth step the uninformed investors’ optimisation problem is derived. As in the
static case one, can exploit the CARA utility to derive a mathematically tractable form of
expected utility for the Bellman equation. The estimators, II, and ét, provide a sufficient
statistic for F*(t). Therefore, by the Separation Principle, II; and ©, can be estimated
first and then in a second stage the control problem can be dealt with.!®> The optimal
control problem is then solved in a similar manner for the informed investors.

Finally the market clearing conditions are imposed and the above proposed price
equation can be derived.

Using simulations, Wang (1993) shows the impact of this information structure on
stock prices, the risk premium, price volatility and negative serial correlation in returns.
Increasing the number of uninformed traders has two effects in this model. First, there
is overall less information in the market and prices become less variable. Second, there
exists more uncertainty about future dividend payments. Investors will demand a higher
risk premium and, therefore, prices become more sensitive to supply shocks. Asymmetry
in information among investors can cause price volatility to increase, because the adverse
selection problem becomes more severe. Wang demonstrates that the existence of unin-
formed investors increases the risk premium, since the risk premium only depends on the

13For a more detailed discussion see Lipster and Shiryayev (1977).
4Note that the estimation error for © is given by pr/pe(Il - II).
15For a more detailed discussion see Fleming and Rishel (1975).
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fundamental risk of the asset perceived by the investors. When the fraction of uninformed
investors increases, the price contains less information about future dividend growth. He
also shows that the strong mean reversion in ©(t) generates negative serial correlation in
stock returns even in the case of symmetric information. This correlation can be enhanced
as the fraction of uninformed investors increases. Finally it is shown that the optimal in-
vestment strategy of the informed investors not only depends on the value of underlying
true state variables but also on the reaction of uninformed investors. In other words,
the informed investors make use of the estimations errors of the uninformed. Wang also
found that the trading strategies for less informed investors can look like trading chasing,
i.e. they rationally buy when the price rises and sell when the price drops. He and Wang
conclude their paper with further comments and possible generalisations. One was that
the whole economy can be reduced to an effective two persons setup!® even if all investors
have different risk aversion coeflicients.

In a similar, but discrete time version, Wang (1994) analysed the behaviour of volume.
The other major difference to the continuous time model is that, although no exogenous
noise is introduced, the price is only partially revealing. This is due to the modeled
incompleteness of the markets. If markets are incomplete and investors are heterogeneous,
prices are not only affected by aggregate risk but also by individual risk. In such an
environment volume plays an important role. This paper tries to show the link between
volume and heterogeneity of investors. Investors differ in their information as well as
in their private investment opportunities. In order to avoid the infinite regress problem
informed investors have a strictly statistically dominant information set in comparison
to uninformed traders. Markets are incomplete, since only informed investors have an
additional private investment opportunity, besides stocks and bonds whose rate of return
is R = (14 r). The dividend of a stock consists of a persistent component F; and an
idiosyncratic component ep . Fy, which is only observable by informed investors, follows
an AR(1) process:

Dy=F, +epy

Fo=arF_1+e€py, 0<ap <1,

Whereas informed investors can observe Fy, all uninformed traders get the same noisy
signal S; about F;.1”
Sy =F, + €St

Define, for later reference, the excess share return as Q; := P, + D, — RP;,_,. Informed
traders can also invest in their private investment opportunity which yields a stochastic
excess rate of return of

Q=21+ ¢€ge

where Z; follows an AR(1) process

Zy=azZy 1 +€z4, 0<azg <1

16This follows from the aggregation theorem (see Rubinstein (1974)).
17To avoid the infinite regress problem informed traders observe this signal, too.
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Similar to the stock return the process Z, is only known to the informed traders. Be-.
sides making use of their information advantage, hedging the risk reflected by ¢, is the
only incentive for informed traders to trade. All e-terms are normally ii.d. with the
exception that ep, and €, can be positively correlated. Wang shows in the case of sym-
metric information that if ep, and ¢, are uncorrelated a change in expected returns on
the private investment will not alter the investors’ stock holdings. This changes with a
positive correlation between ep; and e, since the stock and the private investment are
becoming substitutes. The problem the uninformed investors face is that they cannot
sort out whether a price increase is due to informed trading, i.e. an increase in F}, or due
to uninformed trading, in which case informed traders just want to rebalance their port-
folio because of a change in the profatibility of their private investment opportunities.
Uninformed traders face, therefore, an adverse selection problem. The analysis of the
equilibrium follows the same steps as in Wang (1993). First, the states of the economy
F,, Z, i, = E[F, | 7] are defined. Second, the linear pricing rule

P, = —po+ (a—pr)Ey + prF. — pzZ;

is proposed. Third, from this equation it is obvious that uninformed traders can infer
the sum & = ppF, — pzZ,, thus & = ppﬁ‘t - pzZt. This explains why Z, is redundant in
the state description within the class of linear equilibria. Fourth, using Kalman filtering
one derives F}, Z, and the estimation errors F, — F} = ©,,'® It can be shown that the
estimation error ©, follow an AR(1) process, i.e.

O = a1 +eoyr, 0<ap < 1.

The strict inequality ag < 1 implies that the forecast error is mean reverting. Through
time the uninformed traders will learn “old” F,, Z, better and better but in every period
new F;, Z, are appearing. Uninformed investors are “chasing” a moving target. The un-
conditional variance of the estimation error, Var(©;) =: ¢ reflects the degree of asymmetry
of information.

For determining the optimal stock demand it proves useful to derive the expected
excess returns for informed and uninformed traders. The optimal portfolio for each group
of investors is a composition of a mean variance efficient portfolio and a hedging portfo-
lio. Investors want to hedge, since expected returns on both the stock and the private
investment technology change over time. Since returns on the stock are correlated with
changes in expected future returns, it provides a vehicle to hedge against changes in future
investment opportunities. Knowing the optimal portfolios, the trading strategies for the
informed and uninformed investors can be written as:

Xi = fo+ f2 2+ f6O
Xp =13+ fi L.

This shows that the optimal stock holding of the uninformed traders only changes when
their expectation about the others private investment opportunities changes, i.e. X;* —

18Yint: Z, — Z, is determined by & = prF, — pz 2, = prF, — pz2.
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Xty = f3(Z— Ziy). o
Zy~ Zy1 = EY(Zd - By, [2,1]
can be decomposed into

{EHZ] — B 2]} +{EYZ:] — EY{Zi-1]}

where the first component deals with correcting errors of previous periods and the second
component induces new positions. Knowing that all trading volume is changes in holding
of either the informed or the uninformed investors we can characterise volume by

Vi=(1-w) | X=Xy l= A=) | £ 1| Ze~ Zeaa |
EV)=201—-w)|f7|v2/m.

Equipped with these formulae, the effects of asymmetric information on volume by in-
creasing the noise of the signal can be analysed. As the signal of the uninformed becomes
less precise the asymmetry of information increases and the adverse selection problem
becomes more severe. This reduces the trading volume. This need not be the case if
a non-hierarchical information structure is assumed as in Pfleiderer (1984) or He and
Wang (1995). Trading volume is always accompanied by price changes, since investors
are risk averse. If informed traders face high excess return in private investment they try
to rebalance their portfolio by selling stocks. In order to make stocks more attractive to
uninformed investors they have to reduce the price. This price reduction needs to be even
higher if the adverse selection problem is more severe. This shows that the trading vol-
ume is positively correlated with absolute price changes and that this correlation increases
with information asymmetry. Volume is also positively correlated with absolute dividend
changes. In the case of symmetric information public news announcements about divi-
dends change only the current price, but not the expected return or trading volume. In
the case of asymmetric information, different investors update their expectations differ-
ently. They respond to public information differently since they interpret it differently.
Uninformed investors change their estimates for F,_; and Z,_; and trade to correct pre-
vious errors and establish new positions. Volume in conjunction with current change in
dividends or returns can also be used to improve the forecast for expected future excess
returns. Under symmetric information, public news (like a dividend change announce-
ment) is immediately reflected in the price. Under asymmetric information, public news
can lead to corrections previous trading mistakes. Wang shows that an increase in div-
idends accompanied by high volume implies high future returns. High volume indicates
that the change in dividend was unanticipated. A dividend increase should, therefore,
increase prices. The second component of excess returns, the price change, is different
because it provides information about noninformational trading as well as the stock’s fu-
ture dividends. Under symmetric information, trade is only done to rebalance portfolios
and it is always accompanied by changes in the current price in the opposite direction. In
the case of asymmetric information, uninformed investors trade for two reasons: to cor-
rect previous errors and to take on new positions if the price adjusts to noninformational
trading from the informed investors. The correlation between the current volume and the
current returns and expected future returns is ambiguous.
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One inconsistency of this analysis is although volume can help to predict future re-
turns uninformed investors in this model do make use of it. A model in which investors
also take the information content of volume into account is given in Blume, Easley, and
O’Hara (1994), which we will discuss in Section 4.4. First we will refer to a model with
generalised information structure, which is provided by He and Wang (1995).

In the dynamic models discussed so far information asymmetry was either strict hier-
archical or the information was revealed before the next trading round, as in Admati and
Pfleiderer (1988). In He and Wang (1995) this unrealistic assumption is relaxed. They
develop a model in which investors have differential information concerning the underly-
ing liquidation value of a stock IT + 8. The main focus of their model is the relationship
between the pattern of volume and the flow and nature of information. They also analyse
the link between volume and price volatility. They find that high volume generated by ex-
ogenous private or public information is accompanied by high volatility in prices, whereas
high volume generated by endogenous information (like prices) is not accompanied by
high volatility.

In their model, there are infinitely many investors, represented by the set I.!9 Each
investor can either invest in a bond with a certain gross return rate & = 1 or in a stock
with a liquidation value IT + & at the final date T. In contrast to Wang (1993) and
(1994) this model has a finite horizon and all dividends are paid at the final period T
Each investor i € I receives a private signal S} about the first component of the stock’s
liquidation value, II:

S: = H + 6:9,::

where €, is normally i.i.d. with A’(0,0%,) for all investors. They also observe a public
signal Y} about II:
Y,=1I1+ €v,1y

where ey, ~ N(0, 0,2,' ). In addition all traders observe the price P;. The second compo-
nent of the liquidation value, 8, is never revealed before the terminal date T.

Without noisy supply the true value of II would be revealed immediately in ¢ = 1. To
make the model interesting, the supply of asset is 1 plus a noise term ©;. This noise term
follows a Gaussian AR(1) process

O, = agB_; + €0t -1l<ag<1.

This paper provides a way to characterise a linear equilibrium of the above economy in a
mathematically tractable way. The vector of state variables of the economy is given by
®, = (I1;9,; Y,; {St}scx) where an underlined capital letter stands for the whole stochastic
process up to and including time £.

The main goal is to simplify quite dramatically this state space.2’ For characterising
the equilibrium price it is useful to derive expected values for II, and O, conditional on

19He and Wang make use of charge spaces. For more details about charge spaces see Feldman and
Gilles (1985) and Rao and Rao (1983).

20Tn contrast to the former discussed Wang-papers we have included the signals directly in the state
space and not the expected values of II.
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different information sets. f[,‘ and (:)f with superscript c is based on publically available
information, II", &P with superseript (p, ) are the expected values based only on private
information, whereas the same terms with superscript ¢ represent the expected values
taking all available private and public information of investor ¢ into account. Instead of
the hat, °, the expected value is also written as E¢[-], £"'[-], Ei[-] whereas the notation
for the variance is given by Ve[|, VP[], V{[:]. He and Wang focus on linear REE. Thus
P, =L[®)=L[IL6,Y,; {S!}ic1), where L[] expresses a linear functional relationship.
Lemma 1 of He and Wang (1995) reduces the necessary state space to (II;©,;Y,),
ie. B, = L[lI;9,;Y,]. This can be shown by using the Law of Large Numbers, since
the mean of infinitely many signals converges with probability 1 to I1.2! Furthermore, by
exploiting the above linear relationship one can replace ©,_; by P,_,. We therefore have
=1Li1,8,,Y,,P,_,,Y, ;] which can be rewritten as.

P, =a, (Il — @) + b Y + L[BH,XH]
=4 =L{f1f]

The sum &; := IT — 1,0, can be inferred by every investor. Therefore, in a linear REE
following information sets are equivalent F¢ = {F, B, Y.} & {%0,&,Y;}. He and Wang
show in the following steps that the second term b)Y, +L[P,_;,Y,_,] is equal to L{IT§], i.e.
it satisfies a specific structure. After this is shown one can conclude that the equilibrium
is determined by II, ©, and ﬁf. In order to derive this specific structure we make use
of the equivalence between F¢ = {#y, P, Y;} and {F0,£,Y:}. The authors apply Kalman
filtering to derive the first order expectations [I¢, ¢, i.e. conditional on public informa-
tion (£,,Y,), and IT', &', i.e. conditional on all information (£ ,Y,,S8!). The stochastic

=t =t

difference equations are given by Lemma 2. It is easy to show that {I1{, 0}, I, &} fol-
lows a Gaussian Markov process under filtration ;. Since information is differential in
this model, investor i’s trading strategy can also depend on higher-order expectations,
i.e. expectations about the expectations of others etc. He and Wang show in Lemma
3 that higher-order expectations can be reduced to first-order expectations. First, they
show that IT¢ is & weighted average of I'Ic and 17", 11‘ is given by Lemma using Kalman
filtering, where 7" follows immediately form the ijecl ion Theorem. The weights a;
and (1 — o) are independent of i and o is given by the ratio V™" ‘IN,]/V;{[11,). Having
represented II} as mﬂ“ + (1 - a,)IIP, one can derive, by integrating over i 'm(I by taking
conditional expectations, the second-order expectations of II as a weighted average of
two first-order expectations. In general, i's higher-order expectations can be expressed
as linear function of his first-order expectations. Therefore, it is sufficient if ¢'s optimal
trading strategy depends only on his first-order expectations.

For deriving the optimal stock demand it is useful - as usual - to define excess return
on one share of stock as Q4 := P4, — P;. He and Wang assume for solving the investors’
dynamic optimisation problem in Lemma 4 - for the time being - that @, and ¥} =: E[¥],
where ¥! is a simplified state space, follow the Gaussian process

Qi+t = Agun1 ¥} + Botsi6iy

21 Remember we have infinitely many investors by using charge spaces.
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1 1 1
Ui = Ay +1Y¢ + By i€y

They state the Bellman equation, exploit the nice property of CARA utility function in

forming expected utility for next period, and derive the optimal stock demand function

which is linear in . Finally they verify that @, and ¥? follow this Gaussian process.
By imposing the market clearing condition the equilibrium price is determined by

P, = [(1 = pu )T + prodl) — pe©s = (1 — prylly) + prelee

The stock price depends only on II, ©,, and II¢, so L[II¢] summarises the whole history.
This is the result that was required to show. The price P, follows a Gaussian Markov
process.

Since [1¢ depends on B, P, is only determined implicitly. However, finding the explicit
solution is trivial, since ﬂf is linear in P,. Given the price, one can derive the expected
excess return Ei[Q41] from which it follows that the investor’s optimal stock demand is
given by

X} = de 0" + da, (1T} = TT)
T
Given the market clearing condition

de,t = 1

o
w1l —ay)
He and Wang also provide a recursive procedure to calculate the equilibrium. Starting
with a guess for the conditional variance of II in T — 1 they derive coeflicients pnr_1,
por_1, demand, equilibrium price and other parameters. As they proceed backwards
they check whether the initial guess of the variance of II was correct. If not they start
the procedure with a new initial guess.

Having derived the equilibrium allows us to examine different patterns of trading vol-
ume and how private information is gradually impounded into the price. In the benchmark
case with homogeneous information, i.e. og; = 0, the true value I = ﬁf = fI} is known
immediately and the only remaining risk lies in §. The equilibrium price in this case is
given by P, = II — pe O, where the second term represents the risk premium. 1/pe,
measures the market liquidity in the sense of Kyle (1985). The risk premium increases
with the Variance of § and over time. The latter increase is due to the fact that the num-
ber of trading periods left to unwind speculative positions is decreasing. Furthermore,
with only few periods remaining and with | © | large it becomes less likely that the mean
reverting AR(1) process of ©, will reach a value of zero. The volume of trade, V* is totally
determined by noise trading, which is defined by

day

v =/| 0, -6, |=| @t'—et—l |

with

EV*] = /2/xVar[A8,).
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In the case of differential information the equilibrium price is given by
Py =[(1 — pn I + prgIl] — po Oy

The second component is associated with the risk premium as in the homogeneous in-
formation case. The first component reflects investors expectations about the stock’s
future payoff. This is not simply proportional to the average of investors’ expectations:
o fI¢ + (1 — )11, This is because dynamic trading strategies generate equilibrium prices
that differ from those generated by static/myopic strategies since current state variables
depend on the history of the economy. The difference between dynamic and myopic strate-
gies also appeared in Brown and Jennings (1989) and in Grundy and McNichols (1989).
In particular, the current state depends on past prices. As investors continue to trade, the
sequence of prices reveals more information, as shown in their Corollary 1. This tends to
decrease per, whereas the reduetion in remaining trading rounds tends to increase pe,.

The optimal trading strategies consist of two parts. The first represents the supply
shock, the second investors’ speculative positions. It is important to notice that the trad-
ing activity generated by differential information is not the simple sum of each investor’s
speculative investments. This is because, in the case of heterogeneous information, non-
informational trade by one investor could be viewed as an informational trade by another.
It is also possible that investors on both sides of the trade think that their trades are non-
informational, but the trading is purely due to differential information.?? The paper
focuses on the additional trading volume generated by differential information.

Vi=V =V

It’s expected value is given by

E[V) = \/%(,/Var[aet] + Varlsel] — \/Varsey)

where zi := X} — ©, = pn,s/pe (I} — II) is trader ¢'s total trading activity associated
with differential information. In Corollary 2, He and Wang provide a closed form solution
for the equilibrium volume in the special case where o5 = 0. It says that informational
trading occurs only as long as investors receive new private information. In this case
the individual trader does not know whether the other investors trade because of new
information or because of liquidity reasons. It is not common knowledge whether the
allocation is Pareto efficient. This is the reason why the dynamic version of the No-
Speculation theorem given in Geanakoplos (1994) does not apply in this case.?® If on the
other hand investors receive only private information in ¢ = 1 the prices will adjust, but no
informational trade will occur. This is the difference to the possible no-trade equilibrium
in Grundy and McNichols (1989) which can only occur, if ag = 1 and investors receive
information only in the first period.

22For example there is no additional noise in t, but half of the traders think ©, = +0.1 and the other
half thinks ©, = —0.1

23Gimilar to Grundy and McNichols (1989) the beliefs about future signals need not be concordant
when o5 > 0.
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He and Wang then go on to analyse the behaviour of trading volume after ¢ = 2 for
the case where only the signal in t = 1 is informative. The main findings are that trading
persists throughout the whole trading horizon. This is due to the fact that investors
establish their speculative position, when they receive their private information in ¢t = 1
and then gradually try to unwind their positions. This generates peaks in the volume
of trade in the middle of the trading horizon. In the case of public announcements, in-
vestors increase their positions right before and close them right after the announcement.
Therefore, volume and total amount of information revealed through trading depends on
the timing of the announcement. Market liquidity drops right before the announcement
and bounces back afterwards. They also find that new information, private or public,
generates both high volume and large price changes, while existing private information
can generate high volume with little price changes.

4.4 Inferring Information from Trading Volume in a
Competitive Market Order Model

One drawback of the models, discussed so far, is that investors do not extract the pre-
dictive power of volume. In Blume, Easley, and O’Hara (1994) a group of traders make
explicit use of volume data to improve their prediction of the liquidation value of an
asset. In contrast to the models discussed so far (with the exception of Romer (1993))
the quality or precision of each traders’ signal is not common knowledge. In the sense of
Morris, Postlewaite, and Shin (1995) this model exhibits a higher depth of knowledge by
one degree. Information about the fundamentals, i.e. payoff relevant events, is dispersed
among the traders, but there is also asymmetry in the information about the quality of
the traders’ signals. In other words, this model incorporates asymmetric second order
information. Every investor receives a private signal about the liquidation value, I of the
asset. Each investor knows the quality of his signal, but only a subset of investors, in-
vestors in group 1, knows the precision of all signals. The higher order uncertainty about
the precision of other investors’ signals is the source of noise in their model. This higher or-
der uncertainty provides ground for the predictive power of volume and technical analysis.

Blume, Easley, and O’Hara (1994) start their analysis by showing why the models in
Brown and Jennings (1989) and Grundy and McNichols (1989) are not appropriate for
analysing the role of volume in predicting the value of an asset.

In the framework of Brown and Jennings (1989) there always exists an informationally
efficient REE if trade conditional on price and volume is possible. In this case, trader i's
information set is F} = (P, S, V,, x:) where V), is the per capita volume

11~
vt=§7[2|z;i+|@t”
i=1

and x¢ is an indicator function indicating whether the trader i is a buyer or seller. In
equilibrium traders demand the same amount of the risky assets z} = z] =: z;,. By the
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market clearing condition z, = ©;. Thus each trader can infer from his demand and Y
the noisy supply term ©;. As the equilibrium price depends only on ©, and the average
signal 8, can be inferred. Thus, in cach period ¢, the tuple (£, V) fully reveals S, and
©, and thus technical analysis has no value.

In Grundy and MeNichols (1989) each individual is endowed with an i.i.d. random
number of risky assets. The variance of this random endowment, @}, is given by Var(@}] =
Igd. In the analysed limit economy with infinitely many traders, i.e. I — oo, each indi-
vidual endowment itself has no information content and the variance of the endowments
is also infinite. Since the expected trading volume per capital is V, = %lim;_.w% E::l |
i — O} |, it is infinite as well and no inference can be drawn from it.

In contrast to Brown and Jennings (1989) and Grundy and McNichols (1989), Blume,
Fasley, and O'Hara (1994) develop a market order model with a generalised information
structure. More precisely the information set of each trader 7 contains the whole price
and volume process up to but ezcfuding the current time t. This distinguishies these mod-
els, first, developed in Hellwig ( 1982), from limit order models. The normally nsed limit
order models exhibit two drawbacks. First, since volume is not normally distributed,
the inference of current volume can be quite cumbersome. Second, revealing REL in a
Grundy-MeNichols or Brown-Jennings limit order model always exist, since traders can
always condition on the information contained in their own net trade: its direction and
its magnitude Jordan (1983).

Blume, Easley, and O'Hara (1994) assume the following information structure. The
common priors for all traders about the liquidation value are I ~ M(pno,ofg)- Each
trader in group 1 receives a signal

Sf=l'I+w,+e§,

where w;, ~ N'(0,02), € ~ N(0,02,) and w; and all €} are independent. Note o2,) varies
over time.
Each trader in group 2 receives a signal

S =T +w +€,

where all ¢ are i.i.d. A(0,0%). It is common knowledge that f, = v/ traders are in group
1 and I = (1 — )T traders are in group 2. The asymmetry abont the second order infor-
mation is captured by asymmetric knowledge about the precision of the signals. Traders
in group 1 know the precision of group-1 signals, (1/02,) in each t and in addition the
precision of the signals, group 2 traders get, (1/a?). Group 2 trades only know the signal
precision of their own group. In contrast to (1/02) the precision of group 1 signals, AT
varies randomly over time. This rules ont the possibility that traders in group 2 learn
over time the group 2 signal precision.

The distribution of the signals is, therefore, given by:

for group 1 signals: S ~ N(I1, 0%, ;), where 0%, = O’E,o’:t[;l; + 3%7] =: V[S1,

for group 2 signals: S} ~ N'(T,6%,), where o, = ooty + o) = V[Sa].
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It is obvious from the Strong Law of Large Numbers that the average of the signals in
each group, Sy, and Sy, converges almost surely to IT + w; =: 6,.

Blume, Easley, and O’Hara (1994) restrict their analysis to myopic REE. The indi-
vidual demand for traders with a constant absolute risk aversion coefficient of unity, i.e.
p = 1, is approzimated by,
for group 1 traders: _

o= Bolll =R | S, P
' Vi [1] Vi-1[S14]

and for group 2 traders:

o _EAM-P Sy -FR
2t Via[M] Vi [Sa]

In contrast to limit order models, there is an additional second term and the expectations
are taken with respect to F_;. Adding the demand functions and imposing the market
clearing condition gives the equilibrium price. For the limit economy, P is:

Group 1 trader can infer §; from P, since they know agl ; and cr.?';-ﬂ. Py, however, does
not reveal #; for group 2 traders, since they do not know Ughl. Note that the conditional
distribution of 6, given P, is not normal. Traders in group 2 can infer more information
about 6, if they include trading volume in their inference calculation. The per capita
trading volume in ¢t =1 is:

11 I ) I i
Vi = 57(2 ENEDMUEN)
i=1

i=I

Volume is not normally distributed, because volume is the absolute amount of normally
distributed random variables. Blume et al. explicitly characterise the expected per capita
volume V; in their Proposition 1.

V1 = V1(01 - Pl,D'gvlll,U?gz, )

Using the equilibrium price relation, one can substitute for (§; — P;) a term depending
on the signal precisions. The resulting equation shows that volume conveys information
about the signal quality of group 1 traders (1/03, ;).

Plotting the derived expression for V; with P on the abscissa yields a V-shape re-
lationship between price and volume, for any given (1/0% ;). The minimum volume is
reached at a price level P, = uno. The average traders’ posterior means coincide with the
prior mean. As P; deviates from pp o, posterior means are changed and the first term of
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the individual demand functions x} increases the trading volume on average. This results
in a strong correlation between volume and price change. The V-shape is very robust.
As the signal precision (information quality of group 1 signals) decreases the V-shape be-
comes more pronounced. The same is true when the quantity of information, i.e. fraction
of group 1 traders, decreases.

Keeping the price fixed and differentiating expected capital volume with respect to
the precision of trader 1 signals (1/a%, ,) yields that volume is increasing in the precision
of group 1's signals if (1/0% ;) < (1/02) and decreasing if (1/0%, ;) > (1/07%) (provided
(1/a§1|1} > (1/0%,)). Intuitively, if trader 1s’ signals are very imprecise, their signals are
very dispersed and they place little confidence in their signal. They do not trade very
aggressively and thus the expected trading volume is low. If on the other hand the signals
are very precise, all group 1 traders receive highly correlated signals and thus the trading
volume is low again, since trade occurs only between the groups. Therefore, high volume
can be a signal for very precise signals but also for very imprecise signals. Volume is first
increasing and then decreasing in the signal precision for a given price P; and, therefore,
for a observed price volume pair (P, V;) two outcomes, high or low precision are feasable.
In other words, the functional relationship is not invertible. Therefore, Blume et al. re-
strict their analysis to the increasing branch of V, i.e. 1/0% | € (1/0%,;1/02). If this is
the case the tuple (P, V) is revealing (6, 0%, ;). Since all signals incorporate the common
error term wy, the liquidation value II = #; — w, is not known.

In a dynamic setting more realisations of 8; = II 4+ w; can be inferred and, therefore,
a better estimate about the true liquidation value, II can be made. In each period the
precision of the signals for traders in group 1 is drawn randomly and the analysis is similar
to the static case. One difference is that priors in period t are not exogenous, but derived
from the market statistics up to time t — 1. Second the volume expression is slightly
different, since traders’ endowments in ¢ are the equilibrium demands in ¢t — 1. By the
Strong Law of Large Numbers the equilibrium price converges almost surely to II, since in
each period traders can infer a new 6. As time proceeds trade does not vanish, because
although traders’ beliefs are converging, their precision is diverging at the same rate. Intu-
itively, in the early trading round traders beliefs are widely dispersed and, therefore, they
trade less aggressively. In later trading periods the beliefs are much closer to each other.
Since traders are more confident, they take on larger positions. Both effects are offset-
ting each other and, therefore, volume does not decline with the number of trading rounds.

In the last section Blume, Easley, and O'Hara (1994) compare the utility of a trader
who makes use of past market statistics in interpreting the current market statistics with
a trader who bases his trading activity only on current market statistics and his priors in
t = 0. The value of technical analysis is then defined by the amount of money the latter
trader, who forgets all past market data, would be willing to pay to know the forgotten
past market statistics. Past market data have value because of the common error term w,
in the signals. Bhume et al. show that the value of technical analysis is decreasing in a2
and increasing in 01?,,0. They conclude that technical analysis has higher value for small,
less widely followed stocks.
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Note, in Blume, Easley, and O’Hara (1994) all traders trade purely for informational
reasons. Nobody faces liquidity shocks and there are no noise traders. The No-Trade
Theorem should apply since there are no gains from trade given that agents’ endowments
and preferences are identical. Hsu and Orosel (1997) show that the trading volume is
always zero and thus Blume, Easley, and O’Hara (1994) has a serious shortcoming. One
can only hope that their results can by revived by adding some non-informational trading
motives, e.g. by introducing liquidity traders.

4.5 Sequential Information Arrival Models and Tech-
nical Analysis

In the models with differential information covered so far, all traders receive their infor-
mation at the same time. Likewise, in the asymmetric information models we discussed
informed investors received the same private information at the same time. In this sec-
tion we will discuss asset trading in situations in which traders receive their information
sequentially.

The impact of sequential information arrival on price process and volume was first
analysed in Copeland (1976). In his model traders not only take the price of the single
risky asset as given but also neglect that the price can convey information. In each period
one trader receives a signal. After receiving his signal he alters the intercept of his linear
demand function. Hence, in each period of time one trader adjust his demand curve and
thus the aggregate demand curve changes. In every period (temporary) “incomplete”
equilibria determine the price until a new “complete equilibrium” is reached when all
traders have received their signal. Copeland introduces short sales constraints which
influence price and volume.

In Section 1 of Copeland (1976) all traders get the same signal (or equivalently they
interpret the signal equally) one after the other. The price and volume changes are the
same in each period as long as the short sales constraint is not binding for any trader.
When the short sales constraint becomes binding, price change and volume decrease over
time. After how many trading rounds short sale constraint starts binding, depends on the
number of traders, the strength of information, i.e. the intercept shift of the individual
demand caused by the new information, and on the supply of the assets. Copeland (1976)
generalises the setting to one in which traders can receive different, i.e. either a positive or
a negative signal. Stated equivalently they interpret the received signal either optimisti-
cally or pessimistically. In this case it is less likely that short sales constraints become
binding, since optimists increase their demand, whereas pessimists decrease it. The price
change in this case depends crucially on the random order of the signal arrival. There
are many different possible ordering of positive and negative signals. Copeland shows
that there is still a strong correlation between volume and absolute price change. He also
compares the price adjustment process in the sequential information arrival model with
one in which information is revealed simultaneously to all traders, a tAtonnement model.
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Jennings, Starks, and Fellingham (1981) analyse the relationship befween price-change
and volume by introducing margin requirements for traders who want to sell short instead
of prohibiting short sales altogether. They demonstrate that margins have a significant
impact on the relationship between price changes and volume. As in Copeland (1976) the
relationship depends on the arrival of signals, on the number of investors and in addition
on the implicit cost of the imposed margin requirement.

Treynor and Ferguson (1985) analyse the decision probleni of an individual investor
who receives information about the value of a stock. The investor roughly knows the
price impact of his information, but not whether it is really new information or not, i.e.
i other traders have already received it before him. In other words, the order of the
sequential information arrival is random and not known. If all other traders, i.e. the
markets has already received his information, then it is already incorporated in the price
and, therefore, he should not, trade. If, on the other hand, he is the first to receive this
signal, he should buy or sell the relevant. assets.

Treynor and Ferguson (1985) consider a stylised situation in which events are becoming
public quite fast. More formally, the event gets known to trader i and to all other traders
before 4 new ovent occurs. Let £ be the time of the event, t; the time when trader 1
veceives the signal and t), the time when the market knows the information. The authors
consider only cases in which (ty — tg) and (f — tg) are very short in comparision to the
time between events, (tg;, — tg,_,)-

The investor wants to know the probability of t; > tpr versus t; < . For deriving
these probabilities he makes use of his

(1) prior distribution about the information dissemination and

(2) the observed price proeess, combined with his knowledge about the
(a) underlying stochastic process of the price path
(b) price impact of information at £p.

In Treynor and Ferguson (1985) the prior probability that an event occurred in fz is
uniformly distributed within a certain time span with length 8, i.e. the densitiy is (1/6).
~ is the probability that all other traders will receive the information in the next period,
provided they have not received it so far. Similarly, e is the probability that investor ¢ will
receive the information in the next period. This determines the transition probabilities
for the Markov process with the following four possible states: w; nobody, ws only trader
i, wy only all other traders, and w; all traders, received this signal.

Investor i makes use of his knowledge about the underlying price process governed by
P, = (1 + r;) Pr—y, where all 7, are i.i. normally distributed with mean zero and variance
2. The price changes by a multiplicative factor exp(V'), at tus, the time when the event
becomes known to all traders. If t; and £y are known the distribution of possible price
paths is given by

1
! 1 —r?
PT(Q.- ltM)ti) = H {m exp[T‘é]} Vipg >t

t=—o00

2 [
: 1 —re—Gtm V)*
Pr(ry, | ta,ts) = ] {ma exP[( : 2;2’“ ) I} Viu <t

t=—o0
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Fi=Pi-a
Py

where r,, denotes the whole process of returns r, = up to and including ;.

Investor i is interested in the probability distribution Pr(ts | ry,,¢:), which by Bayes’
Rule is

_ Pr(ta | t:) Pr(r,)
E:’:=_m Pr(tM | ti) Pl‘(zt‘_ ‘ tM)ti)
All terms are known except Pr(ty | t;). Pr(ta | t:) can be rewritten as

PI‘(tM ' ti) = ZPI(tM l ti,tE) PI‘(tE I t,'),

tE

Pr(tM | L‘.,ti)

where Pr(ty | ti,t5) = Pr(ta | tg), since, given an event occurred, the probability that all
other agents get the information only at ¢, is independent of when agent ¢ (will or) has
received the information. All these probabilities can be directly derived from the given
prior information structure.

Treynor and Ferguson provide a numerical example where the trader ¢ infers from
the past price process that, with probability of 70 percent, all other traders have not yet
received the same information.

In their last section, the authors deliver an optimal portfolio strategy which allows the
investor 4 to capitalise on his information. Their article shows that technical analysis, i.e.
inferring information from past prices, helps in the evaluation of new private information.

4.6 Strategic Multi-Period Market Order Models with
a Market Maker

Admati and Pfleiderer (1988) analyse a strategic dynamic market order model.” Their
model is essentially a dynamic repetition of a generalised version of the static model in
Kyle (1985). However, their focus is on intraday price and volume patterns. They attempt
to explain the U-shape of the trading volume and price changes, i.e. the abnormal high
trading volume and return variability at the beginning and at the end of a trading day.
In their model the value of a single risky asset follows the exogenous process

T
=T+ 6
=1

where 6, is a i.i.d. random variable, whose realisation becomes common knowledge only at
t. As usual there are two motives for trading: information and liquidity. All I, informed
traders observe the same signal Sy = 641 + € at time ¢, where e ~ A(0,02). In other
words, informed traders observe a noisy version of the public information one period in
advance. Since ;4 is known publically in t+ 1 the informational advantage is only short-
lived. Informed traders have, therefore, no incentive to restrict their trading in order

4To be consistent with our notation we denote: 1= F, T =TF, [, = n,, Jy = my, ¥ = wy, 2] = ¢/,
©, = z, and 0? = ¢y.
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to have a larger informational advantage in the next period. This simplifies the analysis
dramatically. However, analysing only short-lived information neglects interesting aspects.
In Admati and Pfleiderer (1988) there are two types of liquidity traders, whose demand
depends neither on the price nor on their information. Whereas J; discretionary liguidity
traders can choose a period within [7”,T"] in which to trade, nondiscretionary liquidity
traders, must trade a given amount at a specific time. For simplicity it is assumed that
the market maker as well as all traders are risk neutral. As in Kyle (1985) the market
maker observes the total net order flow Y}, in addition to 8, ; := (¢, 61,...,6i—1). The
total net order flow in ¢ is given by

I Je
=Yg+ #4606
i=1 j=1

where the first component represents the aggregated demand from informed traders, the
second the aggregated demand from discretionary liquidity traders and the third the
aggregated demand from nondiscretionary liquidity traders. The market maker tries to
infer the information of the insiders from Y,. The variance of total liquidity trading,
U, = Var( Jf_;l vl + ©,), is in contrast to Kyle (1985) endogenously determined, as it
depends on the strategic decision of the discretionary traders. As in Kyle (1985) the zero
profit condition together with risk neutrality implies that the market maker sets the price
equal to his expected value. A linear pricing rule is, therefore, given by

t
P=T+) 6 +\Y,

=1

where ,\% again measures the market depth. Given this pricing rule the equilibrium value
of A; is decreasing with the number of informed traders [;. As in Kyle (1985) the market
depth /\i‘ is increasing with U, the variance in liquidity traders demand. Admati and
Pfleiderer assume that discretionary liquidity traders take A, as given, although their
trading intensity affects ;. The costs of trading for the liquidity traders, which equals the
profit for insiders, is the difference between what the liquidity traders pay and the expected
value, i.e, E[(F(4,Y,) — ) ;;1 z) | é,‘l’_;_,,z;’;] z) which is equal to )\,{Zj’:l z)%
Therefore, discretionary liguidity traders would trade when A; is smallest, i.e. when the
market is deepest. This is the case when ¥, is high and thus it is optimal for them to
“clump” together, which increases ¥, even more. High variance in noise trading, ¥, allows

insiders to hide more of their trade behind noise trade. Their demand in equilibrium is

given by xi = fi5;, where S, is the signal about §;,, and f§; = ,,f,_-,—;ﬂ%‘m. Thus, at times

when liquidity traders clump together, informed traders also trade more aggressively. This
increases the overall trading volume in this trading period. The problem is, however, that
discretionary traders have to coordinate when to trade and, therefore, many equilibria
can arise. It is plausible that the convention arose that they all trade in the beginning
and at the end of the trading day. Admati and Pfleiderer (1988) show that equilibria in
which discretionary traders clump together exist. They also apply a refinement criterium,
which shows that these equilibria are the only ones that are robust to small perturbations
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in the vector of variances of the discretionary liquidity demands. As in Kyle (1985), the
amount of information revelation by prices is independent of the total variance of liquidity
trading. More noise trade would suggest less informative prices. On the other hand, more
noise allows insiders to be more aggressive in their trade which making the price more
informative. The aggressiveness of the insiders is such that both effects will balance out.

Admati and Pfleiderer (1988) then incorporate endogenous information acquisition.
Traders can buy the signal S; at a fixed costs c¢. This makes the number of informed
traders, I;, endogenous. The authors apply two different equilibrium concepts. In the
second concept each insider’s strategy depends on I;. When I is high, insiders compete
with each other and therefore their profits will be lower, or equivalently, the trading costs
for liquidity traders will be lower. At times when discretionary traders clump together,
U, is high and, therefore, many insiders will enter the market. This reduces the trading
costs for liquidity traders even more since the insiders are competing against each other.
Thus, endogenous information acquisition intensifies the effects explained above and one
would expect large trading volume at certain times.?

Admati and Pfleiderer’s model is a very simplified picture of reality. First, information
is only asymmetric for one period, i.e. it is short-lived. Long-lived asymmetric informa-
tion was considered in Foster and Viswanathan (1990) and in Holden and Subrahmanyam
(1994) for risk averse traders. The second simplification is that information is only asym-
metric but not differential, i.e. all insiders observe the same signal. This assumption is
relaxed in the next paper discussed.

Foster and Viswanathan (1996) extend the model in Kyle (1985) to the case with [
risk neutral informed investors.?® Each investor gets a long-lived individual private signal
at ¢ = 0. In contrast to Admati and Pfleiderer (1988), there are no discretionary liquidity
traders. (Nondiscretionary) liquidity traders demand ©, ~ N/(0,03) shares in period
tel,..,T]. Asin Kyle (1985) the market maker only observes the total net order flow
Y, = Zi’:l z; + € and sets the price at time ¢ according to

P = B[IT| Y},

where his prior distribution of II is given by N (P, 0%) and Y, denotes the whole process
(Yi,...,Y;). Informed traders i € I = {1,2,...,I} have to submit their market orders z}
before Y; becomes known. Since each trader i knows his individual demand, z{ and the
whole history of Y,_, he can infer the net order flow of all othertraders z,_; =Y, -z} ;.

25Pagano (1989a) provides a model which illustrates the negative correlation between trading volume
and market thinness as well as volatility. In this model risk-averse investors' value the stock for hedging
reasons differently and have to pay a fixed transaction cost to enter the market. Each additional trader
who enters the market reduces the market thinness and thus volatility. This generates for the other
risk-averse traders a positive externality. Pagano (1989a) shows that there are multiple “bootstrap”
equilibria, some with low trading volume and high price volatility, and others with high trading volume
and low volatility. The latter are Pareto superior. Pagano (1989b) shows that, in presence of different
transaction costs, traders may be unable to co-ordinate on a single market.

26For consistency we adjust the notation to I = M, t =n, Y, =y,, D=, S(", = 5,0, S=49, P, = pn,
5'(';', =tin, S! = si, and ¥ =9/,
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Each informed trader receives an individual signal S§ at the starting point of trading. The
joint distribution of all individual signals with the asset’s true value is given by

(IL, (83, . S2)) ~N((P0,6)),< Z‘?, b ))‘

where Ag is a vector with I identical elements, i.e. Ay = (co, o, ..., ¢o) and
U, is the variance-covariance matrix of the signals given by

Ao Qo o S
Goe | o Mo o S
D Qo o Ao

This signal structure imposes a strong symmetry assumption, since (a) all signals have
the same covariance ¢y with the true asset value, (b) all signals have the same variance Aq
and (c) the cross variance between signals is € for all signals. It covers also the special
cases g = Ag where all insiders get the same signal and €y = 0 where all signals are
independent.

By applying the Projection Theorem one gets

S
E[H -FK I S(l)a ’S(ﬂ = AB[‘PO]_l
S

By the imposed symmetry assumptions, all elements of the vector AY[To)~! are iden-
tical, say to k. Therefore, the inner product can be rewritten as

I
Bl - Ry | S} S§) = 5L 15" 54 =65,

=0 i=1
=

5, the average of all signals S§ is a sufficient statistic for all signals. It follows that
the market maker and the informed traders need not infer each individual signal Sy but
only the average signal S, This allows us to simplify the sufficient state description
dramatically.

The market maker’s estimate of S} at ¢ is given by
8, = B[S} | Vi, ... Y] = E[S} | Yi.

The market maker sets a competitive price P, = E[Il | Y,]. Since (53, ..., S§) is a sufficient
statistic for V; and for?” By =0

P, = E[E[L| 55,... 5] | Y] =0E[S | Y] =

&i
0t

I
=1

1
14

1

27In my opinion equations (2) and (5) in the paper are only correct if Py = 0.
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The informational advantage of informed trader 4 in period ¢ is the difference
S; = S5~ Sy
Foster and Viswnathan further define the following conditional variances and covariances
%= Var(8S | Y}) = Var(5 — B) = Var(E[1 | S}, ..., 8¢ | Y,),

Ay :=Var(S§ | Y,) = Var(S)),
O = CO’U(S&, SS | —Kt) = COU(S:)S{)y

and derive the following relationships (using the Projection Theorem):
92
Y= T[At + (I - 1)),

which implies
Ao — Ay =0y —

Y-8 = 92[At—1 — Ay,

and therefore
At - Qt =X Vt.

Since the market maker will learn the average signal § much faster than any individual
signal, the correlation between the informational advantage of insiders, €2;, must become
negative after a sufficient number of trading rounds. This negative correlation between
S} will cause the waiting game explained below. Foster and Viswanathan use a Bayesian
Nash equilibrium concept given the price setting behaviour of the market maker and re-
strict their analysis to linear Markov equilibria. As in Kyle (1985) the applied equilibrium
concept is Bayesian Nash equilibrium with elements of the Rational Expectations Equi-
librium concept. The equilibrium is represented by a tuple (X!, ..., X!, P) where X' is a
vector of demand correspondences for trader 7 for each date, t, i.e.

X' = (a1, 2%), where z} = zj(S5,Y}_1, 2i_,),
and P is a vector of price setting functions for each ¢, i.e.
B =R(Y,)=EM|Y,.

z}(') is the stock holding of trader 7 at time ¢ which maximises his profits from time ¢ until
T. X'(-) is optimal by backward induction. Foster and Viswanathan impose a Markov Per-
fect refinement criterion on the possible set of equilibria. How restrictive this criterion is
depends on which state space the (trade) strategies can be based on. There are, therefore,
two different state spaces: The first state space is given by the choice of nature, whereas
the second covers events of the original state space, on which traders can base their trading
strategies. The smaller the latter state space is, the more restrictive is the Markov Perfect
refinement criterion. The state space given by the choice of nature is (II, {Si}ic1, O7).
Incorporating the choice of each trader, one can consider the following extended state
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; . I i

space(Il, {SO}iEHV{ZTv@T}iGH)' Knowing ©; = Zi:l zi - Y, (IL, { S hien, {zp, Yot
This state space can be rewritten as (I, {S& }ic1s {ﬁ;,T}ieﬂ, {z7.Yr}lict), as Si = S§— 53,
All strategies have to satisfy the measurability condition, i.e. traders can condition their
strategies only on states they can distinguish, i.e. on partitions. The author focus on
linear recursive Markov perfect equilibria which satisfy following conditions:

Ty = BSi_1,

Slé,t = S&,t—l + GYe,
P,=P_1+ MY,

where ¥; = 3! i + ©, and it is shown that A, = 8¢ and S}, = 8§,_1 + (.Y, is necessary
to guarantee that the forecasts of the others’ forecasts is linear.

Foster and Viswanathan show that the dimensionality of the state space can be re-
duced, since a sufficient statistic for the past can be found for this equilibrium concept.
Trader i bases his strategy on his information set (S3,Y,_;,zi_,). Since in equilibrium his
optimal demand is given by 2% = z¢(S},Y,_;) V7 his information set can be simplified to
(8§,Y,_1). This makes it clear that trader i can only manipulate trader j's beliefs about
the true value, II, via ¥,. Foster and Viswanathan show that S;_;, the information ad-
vantage at t — 1, is a sufficient statistic for trader 7 to predict E[Il — Pioy | Fi_;] = mS;_1,
since P,_; is common knowledge and all random variables are normal. n and ¢ are con-
stant regression coefficients. As this is true for all traders, it is also sufficient for trader
to forecast S7 , in order to forecast the forecasts of others, i.e. E[S]_, | Fi_;] = ¢:S} ;.
By induction the t**order forecast, the forecast of trader i about the forecast of trader j
about the forecast of trader 4, etc. is also a linear function of S;_,. Thus the hierarchy
of forecasts is not history dependent. In other words the infinite regress problem, which
we will discuss in detail later, is avoided. Their analysis shows that, in equilibrium, the
dimensionality issue can be resolved.

In order to check whether this is really a Nash equilibrium one has to show that
no trader has an incentive to deviate. For analysing deviation a larger state space is
needed and the dimensionality issue arises again. Suppose only trader i deviates from the
equilibrium strategy and submits arbitrary market orders (z¢, ..., z}) in the first ¢ periods.
Let Y/, Py, S'éﬁ/, 57% with the additional superscript 7, be the corresponding variables
when traders play the equilibrium strategies. By construction 5™ the informational
advantage, is orthogonal to (Y, ;). Note that (Y',_1) is in i’s information set because
i also knows the strategy he would have followed in equilibrium and thus he can also
derive the change in other traders’ expectat,ions caused by his strategy change. Therefore
trader #’s information set also captures 5"/, F{_/, Sm 1. A sufficient statistic for his
information set is given by S&* 7 together with the dev1a.t10n from the equilibrium price
(Pi_,/— P.,). Therefore E[I1— P,y | F{_,] = E[II—P}_,1 | S;",N+ (P, = P,_y). Foster
and Viswanathan conjecture the value function for trader 7. Foster and Viswanathan
conjecture the value function for a trader ¢

VIS P — P) = e (SE)? + 91 S Py = Pa) = ea (P = Pt ) + 60
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and derive the optimal market order size for a certain time period. The resulting condi-
tions for the Markov Perfect linear recursive equilibrium allow to verify that the proposed
value function was indeed correct. Finally, they relate their results to less general models,
like Kyle (1985), Holden and Subrahmanyam (1992) and others.

For calculating numerical examples, Foster and Viswanathan apply a backward in-
duction algorithm for the case of three traders and four trading rounds. They compare
four different correlations between the initial signals S§; very high, low positive, zero and
low negative correlation. The major findings are that (1) the lower the signal correlation,
the less informative is the price process, (2) profit for insiders is lowest with identical
information and highest with positive but not perfect correlation, (3) with positive sig-
nal correlation );, the market maker’s sensitivity falls over time, whereas with negative
correlation A, rises with the trading rounds, and finally (4) the conditional correlation
of the remaining information advantage S; is decreasing over time and becomes negative
provided there are enough trading rounds.

These results are the outcome of two effects. First, with heterogeneous signals the
competitive pressure is reduced since each trader has some monopoly power. Second,
when the S}s become negatively correlated traders play a waiting game. This is driven
by the fact that the market maker learns more about the average signal than about the
individual signals. With negatively correlated S:, traders are more cautious and more
reluctant to take on large positions early. Foster and Viswanathan then go to analyse the
effects of increasing the number of trading rounds keeping the total liquidity variance,
To¥, constant. With more trading rounds the speed of information revelation is higher
and a U-shape pattern of \; arises and becomes more pronounced. This U-shape of the
market maker’s sensitivity results from the waiting game. Their analysis suggests that dy-
namic competition with heterogeneously informed traders can be quite distinct. Whereas
insiders with identical information trade very aggressively, (i.e. they are in a “rat race”)
insiders with heterogeneous information trade less aggressively since they play a waiting
game.

Back, Cao, and Willard (1997) conduct the same analysis in continuous time. They
show that there does not exist a linear equilirium when signals are imperfectly correlated.
The reason is that near the announcement date a relatively large amount of information
remains private, which causes the market to approach complete illiquidity.

Vayanos (1996) studies a strategic dynamic limit order model & la Kyle (1989). He
shows that the forgone gains from trade lost due to strategic behaviour, increase as the
time between trades shrinks.



Chapter 5

Herding Models

In the preceeding sections we dealt with situations in which information became known
gradually. In many situations some agents could act earlier than others. Sequential
decision taking may cause a phenomena like herding even if all agents behave rationally.
Herding in sequential decision making can occur for at least three different reasons:

e Payoff Externalities
e Reputational Effects in Principal-Agent Models
o Informational Externalities

The latter two effects can not only lead to herding but also to delays in decision making in a
world where the order of decision making is endogenous. No decision may be made at all in
the extreme case. Herding models refer to an environment in which each agent makes one
irreversible decision. This distinguishes the herding literature from the experimentation
literature.

5.1 Herding Due to Payoff Externalities

In an environment in which payoffs are higher if all agents choose the same action, it is
obvious that herding occurs in at least one possible equilibrium. Standard coordination
failure games provide one possible environment.! The model in Admati and Pfeiderer
(1988) is an example of herding caused by payoff externatility. All discretionary liquid-
ity traders try to trade at the same time, i.e. clump together. Bank runs are further
examples of herding in finance. Froot, Scharfstein, and Stein (1992) and Hirshleifer, Sub-
rahmanyam, and Titman (1994) show that myopic investors try to acquire information
about the same event as others. These papers will be discussed in greater detail below.
In this class of models herding is defined as “doing the same.” However, agents do not
neglect their own information. Whether herding is socially optimal depends on the whole
payoff structure of the game.

'However, mixed strategy equilibria are also possible.
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5.2 Reputational Cascades in Principal-Agent-Models

In this section we will refer to models in which herding among agents is induced by reputa-
tional effects towards the principal. Herding in this case is only individually optimal and
the First Best cannot be achieved. In Scharfstein and Stein (1990) two risk neutral agents
(managers) invest sequentially in two identical investment objects. Each manager is either
smart or dumb. Neither the principal nor the agents themselves know the types. Each
agent receives a binary signal {Sk, S;} about the true liquidation value e {Iy, .} of
the projects. The signal structure satisfies following conditions:

(1) Pr(Sy | My, smart) > Pr(Sy | I, smart)
(2) PI‘(SH | HH,dumb) = PI'(SH | l'IL,dumb)
(3) Pr(Sy | smart) > Pr(Sy | dumb)

(4) smart agents’ signals are (perfectly) correlated

(1) states that a smart agent gets with higher probability the right signal, whereas (2) says
that dumb managers get with equal probability the high signal, independent of whether
the project is good or bad. Condition (3) guarantees that the signal is purely about the
investment project and cannot be used by a single agent to improve his knowledge about,
his type. Condition (4) states that smart agents have the same (correlated) forecast error,
The payoffs {ITy, 11} are such that the first agent invests if he gets the high signal and
does not otherwise. Knowing this, the second agent can infer the signal of the first agent
and can base his decision on both signals. First Best, however, is not obtained in this
environment, since agent two cares about his reputation with respect to the principal, i.e.
le wants to appear as a smatt type. Agent two's reputation increases when he makes the
right decision. I he makes the wrong choice, it is better for his reputation if the first agent
has chosen the wrong alternative, too. Combining this with the assumption that it is more
likely that two smart agents get the same wrong signal causes him to follow the others’
decisions. Agent two's information set contains both signals. If his signal coincides with
the one of agent one, he will make the same investment decision as agent one. If his signal
is different from the first one he will still follow the first agent’s decision. Intuitively, the
reasoning is that if he is wrong so is agent, one, This could also be due to the possibility
that two smart agents accidentally received a wrong signal. If he would follow his own
signal then the principal thinks that it is more likely that at least ane agent is dumb. If it
turns out that his signal is wrong, he would be considered a dumb manager. The authors
show that a separating equilibrium does not exist and agent two always employs a herding
strategy in equilbrium given plausible beliefs, Cho and Kreps (1987). This result hinges on
the assumption that the prediction error of smart agents is correlated, because only then
the principal's updating rule becomes a function of agent one’s investment decision, The
herding effect disappears for the case where the smart signals are independent.? Trueman
(1994) generalised this analysis and applied it to analyst forecasting. Another model with
reputational cascades is Zwiebel (1995). In this model managers may prefer choosing a

2In my opinion herding may also occur if agents ere very tisk averse, in particular if the principal
employs relative performance evaluation.
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common action rather than a superior innovation, since the common action provides a
more accurate benchmark for relative performance evaluation.

5.3 Statistical Cascades Due to Information Exter-
nalities

In models in this section, an agent takes neither reputational effects nor the fact that his
true payoff for a given action depends on the actions of others into account. Precluding
pre-play communication, herding is only generated by the positive informational external-
ities a predecessor generates for his successors. Inefficient information cascades can occur
if the successor can only partially infer the predecessors’ information from his action but
he still ignores his own signal.

5.3.1 Exogenous Sequencing

This strand of papers began with Banerjee (1992) and Bikhchandani, Hirshleifer, and
Welch (1992). In Banerjee (1992) I risk neutral agents choose an asset j € [0,1] on an
interval of the real line. All assets’ payoffs are zero, with the exception of asset j*, whose
certain payoff is II. All agents have uniform priors. With probability o < 1 an agent gets
a signal, which is true with probability # and false with probability (1 — 3). If the signal
is wrong, then it is uniformly distributed on the interval. Agents make their decision
sequentially. Successors can observe the predecessors’ decisions, but not their signals.
Banerjee derives the Bayesian Nash equilibrium after he has assumed three tie-breaking
rules - which are in favour of a non-herding outcome. In equilibrium, the first agent fol-
lows his signal or chooses j = 0 as assumed decision rule if he has not observed a signal.
Given the tie-breaking rule the second decision maker only follows the first agent if he has
no signal. Otherwise he follows his signal, which can be identical to agent one’s decision.
The third decision maker always follow his predecessors if they have chosen the same
action j' # 0, regardless of his signal. This is optimal for him, since both predecessors
choose only the same asset j' # 0 in two cases. Either agent one got signal j' and agent
two got no signal and followed agent one or agent one and agent two got the same signal
J'. In the former case - which occurs with probability (1 — @) - decision maker three
is indifferent between following the predecessors’ decisions and his own signal. In the
latter case, whose likelihood is e, j' is j* with probability one, since the event that agent
one and agent two get the same wrong signal j' is a zero probability event. Therefore,
decision maker three will follow his predecessors and ignore his signal. Agent four knows
that agent three’s decision carries no information about his signal. Thus, he faces exactly
the same situation as decision maker three and herding will occur. In the case where
agent one gets a wrong signal and agent two no signal, i.e. he just follows agent one,
the whole crowd runs in the wrong direction. This happens, although asset j* could be
found with probability one, if a large enough number of agents could communicate. This
inefficiency only occurs (in sequential decision making) if the predecessors’ actions are
not a sufficient statistic for their information, i.e. the successors can only partially infer
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the information of the predecessors. In Banerjee (1992) the one dimensional action space
on [0,1] cannot reflect the signal which is two-dimensional, a variable on [0,1] and a bi-
nary variable £ = {0, 1}, which indicates whether the predecessor received a signal or not.

In Bikhchandani, Hirshleifer, and Welch (1992) this is achieved by a discrete action
space: adopt or reject. Although the signal in their basic example is also only binary
{H, L}, the action space cannot capture the whole information of a later decision maker,*
This information consists of his own signal and of information derived from predecessors’
actions.® The first decision maker follows his signal in their model. If the second agent
gets an opposite signal he is indifferent between adopting and rejecting. Bikhchandani,
Hirshleifer, and Welch (1992) assume a random tie-breaking rule. In this case the third
agent cannot infer the second agent's signal. If the second agent randomly chooses the
same action as the first one, the third agent cannot infer the second agent’s signal. From
the viewpoint of the third agent, it can be that either the second agent got the same
signal as the first one or the opposite signal and randomly chose the same action. If
the third decision-maker observes that both predecessors have chosen the same action,
he will always follow them regardless of his own signal. All following decision makers
know that the third decision-maker ignored his own signal and therefore they do not try
to infer any information from his action. Actually, they face the same problem as the
third decision maker and, therefore, join the crowd. The cascade evolving in this manner
prevents the aggregation of information and, therefore, convergence to the correct action
need not occur.

The authors show for a special case in their section “Fashion Leaders” that a higher
signal precision for the first decision maker can make informationally inefficient cascades
sooner and more likely. The reason is that higher signal precision for the first agent makes
it more likely that the second agent follows the first one. In a setting with an endogenous
decision sequence it seems plausible that agents with the highest precision are willing to
decide first. Their analysis about the fragility of cascades to public information releases is
also interesting. Public information prior to the first agent's decision can make inefficient
cascades even more likely. On the other hand, public information after a cascade has
already begun, is always socially beneficial. Already a small amount of public informa-
tion can shatter a long-lasting cascade. As explained above, a cascade is created by the
decision of the first two agents and, thus, the public information need only lift out their
information.

Gale (1996) provides a similar example, where in contrast to Bikhchandani, Hirsh-
leifer, and Welch (1992) the signal space is continuous, i.e. S' € [~1;+1] and the action
space is still binary {H, L}. In this case a cascade can be shattered if an extreme sig-
nal arises. For simplicity, lets assnme that the payoff of at least I identical investment
opportunities is given by the average of all signals, i.e. I1 = %Zi’:l St Given that the
signals are uniformly distributed over [—1,+1] the First Best solution is achieved if all

3In their generalised version the signals are not binary.
4 A continuous action space could reveal the posterior of an immediate predecessor which is a sufficient
statistic for all past signals. In this case no herding occurs.
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agents invest if and only if Il = + ;'!:1 S* > 0. In sequential decision making, agent one
invests if §' > 0 and agent 2 if S% + E[S! | action!] > 0, etc. If agent 2 observes that
agent 1 has invested, he will invest if §2 + E[S' { §! > 0] = S? + 1 > 0. If agent 2 also
invests, agent 3 will invest if S% + % > 0, and so forth. In other words if agent 1 and
2 have invested then agent 3 needs to receive a really bad signal 5% < —3 in order to
not invest, i.e. not to follow his predecessors. This means that a cascade becomes more
and more stable over time, i.e. the signal necessary to break up a cascade has to be more
and more extreme. Although herding behaviour will occur, an informational cascade can
never occur in Gale (1996). Smith and Sgrensen (1994) define ‘herding’ as convergence in
actions and ‘cascades’ as convergence in agents’ beliefs. In cascades agents ignore their
own signal and base the current decision only on historic actions.

Smith and Sgrensen (1994) not only consider a continuous signal space but also allow
agents’ preferences to differ. Incorporating diversity in taste can lead to situations of
‘confounded learning’. In such situations the observed history does not provide additional
information for decision making and the decision of each type of agent might forever split
between two actions.

Smith and Sgrensen (1997) relate herding models to the literature of experimentation.
This literature stems from Rothschild’s (1974) two-armed bandit analysis. Herding mod-
els correspond to the experimentation problem faced by single myopic experimenter who
forgets his formal signal but remembers his past actions. The incorrect herding outcomes
correspond to the familiar failure of complete learning in an optimal experimentation
problem.

Lee (1993) shows, how crucial the discretness of the action space is. The discretness
plays a dual role. (1) It prevents somebody’s actions from fully revealing his posteriors
and (2) it prevents each agent from fully using of his information. In Lee’s model the
likelihood of an inefficient cascade decreases as the action space grows. He also claims
that Banerjee's model is an exceptional case, since the (degenerated) payoff structure in
Banerjee (1992) does not distinguish between small and large errors.®

5.3.2 Endogenous Sequencing and Strategic Delay

If each decision maker could decide when to decide, everybody would want to be the last
one, in order to profit from the positive information externalities generated by his prede-
cessors’ decisions. Strategic delays caused by information externalities were first discussed
in Chamley and Gale (1994) and Gul and Lundholm (1995).

In Chamley and Gale (1994) time is discrete t = 1,2, ...,00 and each of (randomly) I
agents has an investment opportunity, i.e. a real option to invest or not to invest. Each
investor knows whether he himself has an investment opportunity, but he does not how

5Lee’s claim cannot follow from his model, since in his model every agent gets a signal with certainty
unlike in Banerjee (1992). It can be shown that the payoff function in Banerjee (1992) can be generalised
to a certain degree.
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many investors have this opportunity as well. Therefore, he does not know /. The true
payoff of the identical investment opportunities is increasing in I, in the number of possible
investment opportunities, and not in the number of investments actually undertaken.
Agents who invest early reveal that they have an investment opportunity. This positive
information externality allows the successors to update their beliefs about the true I.
In order to avoid all agents waiting forever, each agents waiting costs are given by a
common discount factor 0 < § < 1. Chamley and Gale (1994) focus on symmetric Perfect
Bayesian Equilibria in which agents apply behavioural strategies.® They show that there
are three exclusive possible equilibrium continuation paths given a certain history of past
investments. If beliefs about the number of people who got an investment opportunity are
sufficiently optimistic, all players immediately invest and the game ends. On the other
hand, if these beliefs are sufficiently pessimistic no one will invest and hence no information
is revealed. In this case the game ends as well, since one period later the situation has
not changed. For intermediate beliefs, given a certain investment history, the remaining
players with investment opportunity are indifferent between investing and waiting. Hence,
they randomise in this period, i.e. employ a behavioural strategy. The remainig investors
who have not yet invested try to update their beliefs about the total number of investment
opportunities from the random number of investments in this period. It is obvious that
information aggregation is ineflicient in such an setting. The authors also show that as the
period length increases, the possibility of herding disappears. This raises an interesting
question concerning continuous trading on stock markets: does continuous trading lead
to strategic delays and herding, i.e. to a worse information aggregation than in a single
batch auction.”

In Gale (1996) the type of an agent is given by his signal §* € [—1, 1] about the payoff
of the investment opportunities. The payoff of each investment project is II = %Z: St
Gale considers only the case for two agents, i.e. ] = 2. With a common discount factor
8, a decision-maker with a higher signal is more impatient to invest than somebody with
a lower signal. The aim is to derive the threshold level S for the signal value required
to motivate an investor into investing in period 1. Whether somebody exercises his real
option early depends on the probability that he will regret in the next period that he
has invested early. An investor who invests early regrets it if the other investor has
not invested and his posterior beliefs about the payoff are S* + E[S™" | 7' < §] < 0
are negative. The event that the other agent does not invest occurs with probability
Pr(S* < 5). In equilibrium, an agent with signal S is indifferent between waiting and
investing in the first period, i.e. the waiting costs are equal to the option value of delay.

(1—-6)S=—6Pr(S' < S){S+ E[S*| S < 5|}

There exists a unique equilibrium S in which information is not fu_lly revealed and the
outcome need not be efficient. E.g. if both signals are 0 < 8* < S nobody will invest

SAction rules determine an action at a certain partition/decision knode. Randomising over differ-
ent action rules at any partition is a behavioural strategy. A strategy is a sequence of action rules,
Randomising over pure strategies is a mixed strategy,

7As seen in Section 4.1, Grundy and McNichols (1989) show that with an increasing number of trading
rounds per day, and thus observable prices, the price sequence can reveal the noise term or even higher
dimensional signals.
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even though it would be socially optimal. Another feature of the equilibrium is that the
game ends after two periods. If nobody invested in the first two periods, investment stops
forever, i.e. an investment collapse can occur. Similar results carry over to a setting with
I agents.

In contrast to Chamley and Gale (1994) in Gul and Lundholm (1995) time is contin-
uous. In Bikhchandani, Hirshleifer, and Welch (1992) and Banerjee (1992) agents (par-
tially) ignore their own information which consequently leads to inefficient information
aggregation, i.e. to information cascades. In Gul and Lundholm (1995) the timing when
to act as well as when not to act improves the information aggregation. In their model,
endogenous sequencing leads to information efficient clustering as opposed to informa-
tionally inefficient information cascades. In Gul and Lundholm’s model agents maximise
a utility function, which captures a tradeoff between the accuracy of a prediction and
how early the prediction is made (waiting costs). Each agent ohserves a signal % € [0, 1],
which helps him to forecast II = ELI Si. The authors show that the strategy of each
player can be fully described by a function t#(S*). ti(S*) reports the latest possible time at
which agent 7 with signal §* will make his forecast given the other players have not done
so already. Since t*(S?) is continuous and strictly decreasing, i.e. t*(S") is invertible, the
time when the first agent acts fully reveals his signal to the succeeding decision maker.
In a two agent setting, the second agent will make his prediction immediately afterwards.
Whereas in the former models only the succeeding decision makers profit from positive
information externalities, in Gul and Lundholm (1995) the first agent learns from the
others’ inaction. The first decision maker can partially infer the signals of his successors
by noticing that they have not acted before him. This biases his decision towards the
successor’s forthcoming decisions. Consequently agents tend to cluster, i.e. their forecasts
are closer together in a setting with endogenous sequencing than in a setting with ex-
ogenous ordered forecast. Gul and Lundholm call this effect ‘anticipation’® There is a
second source of clustering, labelled ‘ordering’. This occurs because (1) agents with the
most extreme signal realisations have higher waiting costs and thus act first and (2) the
signals of predecessors are revealed fully, whereas inaction of the successors only partially
reveals their signals. More pronounced signals have a larger impact on the true value
1= Zle S*. Since more pronounced signals are fully revealed first, whereas the signals
with lower impact are fully revealed later, forecasts are ‘on average’ closer together than
in the case where the less pronounced signals would be fully revealed first.

The distinctive feature of Zhang’s (1997) model is that the precision (quality) of the
private signal, and not just its content is private information. His model incorporates
higher order uncertainy. The signal is binary, and reports with probability p* which of the
two investment projects is the good one. The quality (precision) of the signal is measured
by p?, where each p’ is drawn from a continuous probability distribution over [1/2,7], with
P < 1. The realisation of the signal as well as its quality 7' is only known to agent i. The
agents’ action space at each point in time is either to wait (which discounts the payoffs

8Note the similarity to (descending) Dutch auctions.
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by 6) or to invest either in investment project 1 or 2. As in Gul and Lundholm (1995)
time is continuous.

Zhang derives the unigue equilibrium in pure strategies in closed form. The equilib-
rium exhibits an initial delay of action till the agent with the highest precision (highest p*)
invests. Given the binary investment choice and binary signal space the second decision
maker will always ignore his signal, since it is of worse quality. He will immediately mimic
the first movers investment decision. Consequently the second agent’s investment choice
carries no additional information and therefore all other agents will follow immediately
the first mover, as well. In summary, after a certain initial delay one can observe a sudden
onset of investment cascades. In contrast to Gul and Lundholm (1995) the outcome is
not informationally efficient, since everybody’s investment decision depends only on the
signal with the highest precision. Moreover, the initial delay incurs waiting costs, which is
another source of inefficiency. As the number of agents increases the per capita efficiency
loss is bounded away from zero. Furthermore each player tends to wait longer, since it is
more likely that someone has a more precise signal and will invest before him.

Gale (1996) discusses the problems which arise in herding models in continuous time.
For a more detailed discussion of the ‘closure problem’ see Harris, Stinchcombe, and Zame
(1997).

Neeman and Orosel (1998) analyse a sequential common value auction, where the
seller can determine the order in which he will approach potential buyers. Potential buy-
ers submit a bid, i.e. their action space is continuous. The bid of a rival bidder creates a
information externality as well as a payoff externality. In contrast to the English common
value auction, potential buyers can only bid when they are approached by the seller. This
makes the winner’s curse in this auction less severe, thus leading to better information
aggregation as well as to a (weakly) higher revenue for the seller. Neeman and Orosel’s
analysis can also be viewed as a search problem for the seller where buyers’ bids are
correlated for three reasons. First, their signals are correlated. Second, they bid for an
object of common value, and third, all buyers condition their bid on the publicly observed
history of bids.

Allowing agents to act more than once and/or revising their decision would be a
natural extension to the herding literature. This leads us to models of experimentation.
See Bolton and Harris (1993), Bergemann and Valiméki (1996) and Leach and Madhavan
(1993) for useful expositions.

5.4 Herding in Financial Economics

Prices in financial markets are almost continuous if one neglects the small tick size. The
same is true for the possible order size. Given a one dimensional signal space, herding is
thus very unlikely to occur, Lee (1993). Traders in financial markets, therefore, do not
blindly follow investment decisions of others. On the other hand, herding results can be
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obtained by introducing higher order uncertainty and fixing the order size for each trader,
as in Glosten and Milgrom (1985). Herding also occurs in information acquisition when
all investors search for the same piece of information. This is the case when they have
short horizons.

5.4.1 Herding, Bubbles and Higher Order Uncertainty

In finance, trading causes not only informational externalities, but also changes in prices.
This changes the payoff structure for all successors. Avery and Zemsky (1995) use a infor-
mation structure similar to Bikhchandani, Hirshleifer, and Welch (1992). They show in a
Glosten-Milgrom setting (see Section 3.2.3) that the price adjusts exactly in such a way
that it offsets the incentives to herd. This is the case, because the market maker and the
insiders learn the same from past trading rounds. Avery and Zemsky (1995) distinguish
between herding behaviour and informational cascades. Herding occurs if traders imitate
the decision of their predecessors even though their own private signal advises them to
take a different action. In informational cascades no additional information is revealed to
the market, since the distribution over the observable actions is independent of the state
of the world. An informational cascade never occurs in an extended Glosten-Milgrom
setting in which insiders get different noisy signals. In addition, traders never engage in
herding behaviour provided signals are monotonic. The price converges to the true asset
value and the price process exhibits no “excess volatility” given its Martingale property.
Similar to Easley and O’Hara (1992), Avery and Zemsky introduce “event uncertainty.”
Insiders receive either a perfect signal that no new information has arrived or a noisy
signal which reports with probability p the true asset value, II € {0,1}. In other words,
all insiders receive signals with the same precision, p’ = 1/2 (no information event) or
P =pe€ (1/2,1]. pis known to the insiders, but not to the market maker, i.e. the market
maker does not know whether an information event occurred or not. This asymmetry
in higher order information between insiders and the market maker allows insiders to
learn more about the price process (trading sequence) than the market maker. Since the
market maker sets the price, the price adjustment is slower. This can lead to herding
behaviour. This is consistent with the results in (Bikhchandani, Hirshleifer, and Welch
1992) where prices are esentially ‘fixed.” Note, that event uncertainty can lead to herding
behaviour, but not to informational cascades, because the market maker can gather infor-
mation about the occurrance of an information event. Surprisingly, herding increases the
market maker’s awareness of information events. However, herding does not distort the
asset price and thus it does not explain bubbles. In order to explain bubbles and excess
volatility a more complex information structure is needed. Avery and Zemsky consider a
setting with two types of informed traders. One group of traders receives its signals with
low precision py, whereas the other receives them with high precision pg = 1, i.e. they
receive a perfect signal. This information structure incorporates higher order uncertainty,
since it is not known whether the proportion of insiders with the precise signal is high or
low. This makes it difficult for the market maker to differentiate between a market com-
posed of well informed traders following their perfect signal and one with poorly informed
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traders who herd. In the latter case, bubbles® can arise.

Gervais (1995) shows that uncertain information precision can lead to a cascade state,
In this case, insider’s information precision gets never revealed and thus the bid-ask spread
does not reflect the true precision. In Gervais (1995) all agents receive a signal with the
same precision, py, pr, > 1/2, or pp, = 1/2. If pp, = 1/2, no information event occurs.
In contrast to Avery and Zemsky (1995), the signals do not refer to the liquidation value
of the asset, II, directly, but only to a certain aspect m, of II. More formally, every
trader receives a noisy signal about aspect ;, which takes on a value % or —% with equal
probability of 1/2. The final liquidation value of the asset is then given by II = 23;1 .
Note for each m, there is only one signal. As in Glosten and Milgrom (1985) the risk-
neutral market maker sets competitive quotes. If the bid-ask spread is high, insiders trade
only if their signal precision is high. The trade/no-trade sequence allows the market maker
to updates his beliefs about the quality of the insider’s signals. Furthermore, he updates
his beliefs about the true asset value II. Therefore, the competitive spread has to decrease
over time. Note the trading/quote history is more informative for insiders because they
already know the precision of the signal. When the competitive bid-ask spread decreases
below a certain level, insiders will engage in trading independent of the precision of their
signal. This prevents the competitive market maker to learn more about the signals’
precision, i.e. the economy ends up in a cascade state.

5.4.2 Herding in Information Acquisition and Short Horizons

Brennan (1990) noted the strong interdependence of individual information acquisition de-
cisions. In a market with many investors the value of information about a certain (latent)
asset may be very small if this asset pays a low dividend and no other investor acquires the
same information. If on the other hand many investors collect this information the share
price adjusts and rewards those traders who gathered this information first. Coordinating
information collection activities can therefore be mutually beneficial.l® Brennan (1990)
formalises his argument using an overlapping generation model where agents live only for
three periods.

In Froot, Scharfstein, and Stein (1992) herding in informational acquisition is due to
investors’ short horizons, i.e. their myopia. This behaviour effects the asset price. In
general, backward induction rules out any alteration of the price process caused by the
short horizons of traders. This is true in models with exogenous information acquisition
and a finite number of time periods. However, as shown in Tirole (1982) myopic behaviour
can lead to bubbles in infinite horizon models. In Froot, Scharfstein, and Stein (1992)
the asset price is influenced by the endogenous information decision. Each individual
trader has to decide whether to receive a signal about event A or event B. All traders

9Bubbles are possible, because trade is restricted to one stock at a time in a Glosten-Milgrom setting.
Therefore, the results of Section 2.4 for limit order models do not apply.

10Note, for stock price manipulation coordination is also required if there are many investors in the
market.
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worry only about the short-run price development, since they are short-sighted. They can
only profit from their information if it is subsequently reflected in the price. Since this
is only the case if enough traders observe the same information, each trader’s optimal
information acquisition depends on the others’ information acquisition. The resulting
positive information spillovers explain why traders care more about the information of
others than about the fundamentals. In Keynes (1936) words, “skilled investment today
is to “beat the gun”...”. Observing this behaviour of traders led Keynes to compare the
stock market with a beauty contest. A judge in a beauty contest who wants to support
the winning candidate, has to be more concerned about the opinion of the other judges
than about the relative beauty of the contestants. This phenomenon does not arise in the
stock market, if all traders take the whole future into account, i.e. if they only care about
the final liquidation value. If this is the case, information spillovers are negative. Thus,
it is better to have information others do not have. Therefore in this case every investor
will try to collect information for different events.

In Froot, Scharfstein, and Stein (1992) traders are assumed to be short sighted and
then the picture changes. In the articles Hirshleifer, Subrahmanyam, and Titman (1994)
and Holden and Subrahmanyam (1996) short horizons of traders are not exogenously
assumed, but result endogenously form the model specification. We will discuss these
two articles after providing the intuition of Froot, Scharfstein, and Stein (1992). Froot,
Scharstein and Stein base their model on Kyle (1985). The asset’s liquidation value is
given by two components, v and §, i.e.

I=v+4,

where v ~ N(0, 02) refers to event A and § ~ N(0, 02) to the independent event B. Each
trader can decide whether to observe either v or §, but not both. After observing v or 6
he submits a market order to the market maker at ¢ = 1. The authors assume that half
of the submitted market orders are executed at t = 1 and the second half at t = 2. The
period in which an order is processed is random. Furthermore, liquidity traders submit
market orders of aggregate random size ©, in each period. As in Kyle (1985) the risk
neutral market maker sets a competitive price in each period based on the observed total
net order flow. Thus, the price partially reveals the information collected by the informed
traders. At ¢t = 3 all traders, i.e. insiders and liquidity traders, unwind their position by
assumption. In other words, the risk neutral market maker takes on all risky positions.
The trading price at t = 3, P3 is [ = v + § with probability « for the case where v and
6 are publicly announced at t = 3. v and § are announced only at t = 4 with probability
(1 — @). Therefore the trading price does not change, i.e. P; = P. Thus, a provides a
measure of the degree of short-sightedness of the traders. The traders’ horizons are very
short if « is close to zero. In that case, traders only care about P, and not about II. On
the other extreme, if « is close to one, traders’ horizons are long.

The expected profit per share for an insider is &;—PL if v and 6 are only announced
at t = 4, i.e. Py = P,. This case occurs with probability . With probability (1/2) the
trader is lucky and his order is processed early, i.e. he gets his shares for P,. He can then
sell it at ¢ = 3 for P; = P,. With probability &, however, v and § are announced already
at t = 3, i.e. Py = II. In this case a trader who submitted an order at t = 1 also buys a
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share for P; or P, with equal probability, but sells it at ¢ = 3 for P, = II. His expected
profit in this case is given by IT — %[Pl + Py]. Thus, the overall expected profit per share
for an informed trader is

P+ P P, - P
T] +(1 —a)[T]}-

In both cases the profit is determined by Pj, the price at which the informed trader un-
winds his position. P = II with probability . Thus, v and é are equally important, with
probability «. With probability (1 — @), Py = P,. Since P, depends on the information
set of all informed traders, each insider cares about which information the other traders
are collecting. Let's consider for illustrative reasons the extreme case @ = 0, i.e. v and §
are only publicly announced in ¢t = 4. If in this case all other investors collect information
v, then information 6 is worthless, since 6 will only enter into the price in t = 4, i.e. after
the investors have already unwinded their positions. In this case all investors will herd
to gather information v and nobody will collect information 6.!! Thus, short horizons
of traders creates positive informational spillovers which lead to herding in information
acquisition.

However, even if all investors herd on some noise term ¢, which is totally unrelated
to the fundamental value I1 = v + 6, a rational investor is better off if he also collects
information ¢ rather than only information about fundamentals. If & = 0 and all other
investors are searching for ¢, the fundamentals v and 6 are only reflected in P;. The
price at which the traders have to close their position, P;(= P,) depends on , given their
strategies. In the case where it is not sure whether v and § will only be announced at
t =4, ie. a > 0, herding in information acquisition still occurs if a is sufficiently small,
i.e. traders are sufficiently short sighted. Note for the case @ = 1 demands are “strategic
substitutes”, while for & = 0 they are “strategic complements”.

One might argue that the above reasoning may break down in an overlapping gener-
ations (OLG) framework in which a new generation of short-sighted traders enters the
market in each period. Ineflicient herding still occurs in the following OLG setting. Gen-
eration t speculators can study one of k pieces of information. At the end of period ¢, one
of these pieces will be randomly drawn and publicly announced. In the following period
t + 1 a new additional piece of information can be studied. Thus, each trader in each
generation can study one of k pieces of information. For each generation it pays off to
have accidentally studied the information, which gets publicly announced at the end of
the period. Since one is only lucky with a probability (1/k) the price movement will be
determined more by what the other traders have studied. Hence herding in information
acquisition may occur.

E{a[ll -

In the preceeding papers, the herding behaviour was due to the exogenously assumed
short horizons of the traders. In the following two papers short horizons of traders are
endogenously derived. In contrast to Froot, Scharfstein, and Stein (1992) in Hirshleifer,
Subrahmanyam, and Titman (1994) and Holden and Subrahmanyam (1996) competitive

"n a (Nash) equilibrium it is mutual knowledge which information the other traders are collecting,
Brandenburger (1992).
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limit order models are employed to derive endogenously myopic behaviour from agents’
risk aversion.

In Hirshleifer, Subrahmanyam, and Titman (1994) a continuum of competitive risk
averse investors search for the same information § about the liquidation value II of a single

risky asset. _
O=I1+6+e¢,

where I is known and § ~ N(0,02), € ~ N(0,02). Some investors, whose mass is
M, receive information § accidentally early, i.e. already in t = 1, whereas the others,
whose mass is (N — M) are informed later. Both groups of traders receive the same
information 6, but at different times. All traders maximise CARA utility functions of
the final wealth W, i.e. U = —exp(—pWs). The demand for the risky asset by the
early-informed is denoted by z¢(6,-), whereas that by the late-informed is z}(-,+). The
aggregate demand of liquidity traders is modelled by the random variables ©; ~ N(0, 73 )
int=1and A®; ~ N(0,0%¢,) in t = 2.12 Finally, there is also a group of risk neutral
competitive market makers (scalpers, floor brokers, etc.) who observe the limit order
book, i.e. the noisy aggregate demand schedules, but not the information 6. The noisy
aggregate demand function is Di(-) = Mz$(8,) + (N — M)zi(-)+ ©, in t = 1 and
Dy(1) = Mz§(6,-) + (N — M)zh(8,) + ©; + AOy in t = 2. Given risk neutrality and
competitiveness of the market makers, the market makers set a semi-strong efficient price
with respect to their information sets, i.e. P, = E[II | Dy(-)] and P, = E[II | Dy(:), Da(-)].
In equilibrium investors conjecture the following linear price relations:

Py =T+ af + 50, + cAO,

P1=ﬁ+66+f@1

The equilibrium is derived by backward induction. At ¢ = 2 both groups of investors,
early and late informed, know § and their stock holding is therefore as usual

ﬁ+5—P2

2
€

1}5(67 P?) = 212(61 P2) =

At t = 1 only the group of early-informed investors knows 8. Their stock holding is

E|P, | F5) - Py 1 1 T+ 6 — B[P | Ff)

(5 P =
506, P) o WamE A YT e

o2
Uﬁ

The demand of early-informed trades consists of two components. The first term captures
the speculative demand due to an expected price change. The second term is the expected
final stock holding, which the early-informed traders try to achieve at the “on average”
better price P;. Investors who receive their signal only at ¢ = 2, demand nothing at ¢t = 1,
i.e. 20 = 0. This is due to the fact that they do not have superior information to the

12A1l demand functions are expressed in stock holdings, therefore, the additional demand in ¢ = 2 is
given by ©; — 91 = AO,.
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market makers. Since the market makers are risk neutral (1) no risk premium is offered
and (2) expected P, is unbiased. In other words, risk averse late-informed traders cannot
hedge their date 2 demands already at t = 1.

There are five equilibrium configurations for the coefficients of the price relations in this
economy. In the fully revealing equilibrium no investor holds any stocks. In addition there
are two equilibria where prices do not move, i.e. P, = P,. Hirshleifer, Subrahmanyam,
and Titman (1994) focus on the remaining two equilibria in which trading occurs and the
price is not the same in both periods. In these equilibria both price moves, P, — Fy and
P, — P, are positively correlated with 6, i.e. P; reveals “on average” more about § than
P;. This is due to the fact that the market makers’ information set, which determine
the price, is improving by observing two noisy aggregate demand curves. Furthermore,
both aggregate demand curves depend on information 6, given that both groups of traders
observe the same information. This is supported by the correlation between ©; and O,
since A®, is independent of ©,. The price changes P, — Py and P, — P; themselves,
however, are uncorrelated and thus prices follow a Martingale process, given the market
makers’ filtration.

The trading behaviour of the early-informed investors exhibits speculative features.
They take on large positions in £ = 1 and “on average” unwind partially in ¢t = 2 at a more
favourable price P,. More precisely, their trading in t = 1, «§ is positively correlated with
the price change P, — P} in t = 2, whereas their trading in t = 2 is negatively correlated
with this price change. Therefore, they partially unwind their position and realise capital
gains “on average.” The intuition for this result is as follows. Since no risk premium is paid
due to the market makers’ risk neutrality, risk averse traders would be unwilling to take on
any risky stock in the absence of any informational advantage. Early-informed investors
are willing to take on risk since they receive a signal § in ¢ = 1. Their informational
advantage, together with the existence of noise traders compensates them for taking on
the risk represented by the random variable e. However, the informational advantage of
early-informed traders with respect to the late-informed traders vanishes in ¢ = 2, since
both now receive the same signal §. Thus, early-informed traders share the risk with late-
informed traders in t = 2, i.e. Cov(zh, z§) > 0. In addition, the informational advantage
of the early-informed with respect to the market makers shrinks as well, since at t = 2
market makers can observe a second different limit order book. This limit order book
carries information for the market makers, especially since the stock holding of the noise
traders is correlated in both periods. This allows the market makers to get a better idea
about § and, thus, P, should be “on average” closer to I1+6 than P,. Therefore, in period
two, both these effects cause early-informed traders to partially unwind the position they
built up in the previous preiod. The unwinding behaviour of early-informed traders in
this sequential information arrival models also stimulates trading volume.

The fact that early-informed traders on average unwind their position in ¢t = 2 is in
sharp contrast to models based on Kyle (1985). In these models the risk neutral insider
tries to buy the stocks in small pieces in order to hide behind noise trading, i.e. his stock
holding over time is positively correlated.

Having analysed the second stage, Hirshleifer, Subrahmanyam, and Titman (1994)
show that herding can occur in the information acquisition stage. At the time when
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traders decide which information to collect they do not know whether they will find the
information early or late. Hirshleifer, Subrahmanyam, and Titman (1994) derive expres-
sions for utilities of the early-informed and late-informed individuals. The authors provide
a numerical example, in which the ex-ante utility before knowing when one receives the
information is increasing in the total mass of informed traders. If this is the case, it is
worthwhile for traders to concentrate on the same informational aspects, i.e. gather infor-
mation about the same stocks. In other words they will herd in information acquisition.
Whether a higher mass of informed traders really increases their ex-ante utility depends
on the parameters, especially on ¢?. More informed traders lead to more late-informed
traders, which makes it easier for early-informed traders to unwind larger positions in
t = 2. Thus, there are more traders in ¢t = 2 willing to share the risk resulting from e.
This is disadvantageous for the late-informed, since there is tougher competition among
them. This is the case since the extent of noise trading does not change. Increasing
the mass of informed traders also increases the number of early-informed traders. This
decreases the utility of both, early-informed and late-informed traders. In order to obtain
herding the first effect has to outweigh the latter three. This requires that o2 is sufficiently
high. The authors try to extend their analysis by introducing some boundedly rational
elements which lies outside the scope of this literature survey.

In Hirshleifer, Subrahmanyam, and Titman (1994) all traders search for the same
piece of information, which they randomly receive earlier or later. In Holden and Sub-
rahmanyam (1996) traders can decide whether to search for short-term information or for
long-term information. They choose between two signals which are reflected in value at
different points of time. Holden and Subrahmanyam show that under certain conditions
all risk averse traders focus exclusively on the short-term signal.

In their model the liquidation payoff of a single risky asset is

O=T+6+n+v+e

where 6, n, v, and € are mutually independent normally distributed and 11 is normalised
to zero without loss of generality. Traders who acquire short-term information observe 6
att = 1. At ¢t = 2, § becomes publicly known, as well as 7, which no trader has known
before. Traders who search for long-term information observe v already in ¢ = 1, which
gets known to the public only in date 3. At ¢t = 3 € is also realised and known by all
traders, i.e. Il is common knowledge at ¢ = 3. Note that since the components of II cannot
be traded directly the markets are incomplete. This is essential for this analysis.

A competitive limit order model is employed as in Hirshleifer, Subrahmanyam, and
Titman (1994). A mass M of long-term informed traders and a mass of N = 1 — M of
short-term traders submit limit orders to the limit order book. The aggregate order size
of the liquidity traders is random and given by ©; in ¢t = 1 and A©; in t = 2. A group
of risk neutral market makers observes only the publicly available information and the
noisy aggregate demand schedule, i.e. the limit order book. Since the market makers act
competetively and they are risk neutral, their information sets determines the price.'3

13For a similar model with differential information see Vives (1995).
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Analysing the overall equilibrium backwards, the mass of short-term traders, N, and
of long-term traders M, is kept fixed at the second stage and is endogenised at the first
stage. Backward induction is also applied within the second stage for deriving the optimal
stock holdings of informed risk averse traders. At t = 2, the stock holding demand are
standard for the long-term informed traders,

, vAb4dn— Py
Ty=s—p
po?

and for the short-term informed,
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3 = 0, since the market makers have the same information set as the short-term-informed
and therefore the numerator in the above equation is zero. In economic terms, it would
not make a lot of sense for risk averse short-term investors to hold risky stocks if the risk
neutral market makers have the same information. Since zf is zero, z3 is standard, Le.
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Short-term informed traders try to exploit the expected price change (I — P;) and at
t = 2 they close their position. Long-term traders stock holding at ¢ =1 is

_Elp|Fl-R

T + oE[zh | FY,
1 51 Q[2| 1]

where S; and p are nonstochastic quantities.

Holden and Subrahmanyam derive the REE only for a special case and continue their
analysis with numerical simulations. In equilibrium long-term traders reduce their date
1 demand if the variance of 7, whose realisation will be announced at ¢ = 2, is very high.
They do not want to expose themselves to the announcement risk generated by n (and
reflected in P,). They engage in heavier trading after a large part of uncertainty abotit,
the asset's value is resolved.

Holden and Subrahmanyam go to endogenise M and, thus, N =1 — M. The equilib-
rium mass M can be derived by comparing the ex-ante utilities of short-term informed
traders with the utility of long-term informed traders. They show that for certain cases
the ex-ante utility from collecting shart-term information is higher for M € [0,1] than
the utility from gathering the long-term signal. Thus, all fraders search for the short-
term signal in equilibrium, This is the case if the traders are sufficiently risk averse and
o is substantially high.'* Intuitively, short-term informed investors can only make use
of their information from the price change (P — By), provided there are noise trader in
t = 1, distorting P;. Since n makes P risky, high variance in 7 reduces their aggressive-
ness. Long-term informed traders can exploit their information from both price changes,

14The assumption that o2 has to be very high is hidden in the legend of figure 3.
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(P,— P) and (Py— P,). As described above, high variance of 7 makes long-term informed
agents delay their purchase. Therefore, they are more active at t = 2 and they exploit
(P; — P) to a greater degree. If the variance of ¢ is very high, i.e. speculating at t = 2
is very risky, long-term informed traders are very cautious at ¢ = 2. Thus, they cannot
make as much money out of their information as short-term informed traders can.

Holden and Subrahmanyam further show that as the degree of liquidity trading in-
creases, both types of information are more valuable. Short-term investors profit more
from higher variance, at least for the case where the variance of noise trading is the same
in both periods.!?

Another question they address is whether long-term information can be made more
valuable by making it short-term. In other words, is it profitable for long-term informed
investors to disclose their information already in ¢ = 27 The impact of early credible
disclosures is discussed in their last section.

Shleifer and Vishny (1990) provide further reasons why investors might be short-
sighted. Incomplete markets which prevent complete risk sharing, credit constraints and
other market imperfections make arbitrage cheaper for short-term assets than long-term
assets resulting in less mispricing in short-term assets. In other words, it leads to system-
atically less accurate pricing of long-term assets. This, in turn, affects investment decisions
of managers in the firms. Managers who are averse to mispricing of their equity because
of potential takeovers etc. therefore, tend to conduct more short-term investments whose
returns can be verified quickly. Alternatively, short-term behaviour of managers can also
arise in agency models. Since this is true not only for the managers of listed firms but
also for the managers of investment firms, pension funds etc. even institutional traders
behave mypocially. Brandenbruger and Polak (1996) have a model where managers ig-
nore their superior information and follow the opinion of the market. This is strictly less
informationally efficient than herding behaviour among profit maximising firms.

5In my opinion this is only true if 02 is sufficiently high.



Chapter 6

Conclusion and Summary

This survey covers a large section of rational models, in which difference in information
drives prices. We begin with the concept of rational expectation equilibria and go on
to study different partially-revealing REE. These models are summarised and the the
limitations of the REE concept is discussed. We provide the intuition for two proofs
of the No-Speculation Theorem. This theorem states that at a Pareto-efficient allocation
and given concordant beliefs, information will not lead to further trade. Furthermore, two
different kinds of No-Trade Theorems are illustrated. They refer to no-trade outcomes
even when the current allocation is not Pareto optimal. The possible occurrence of bubbles
even in situations where all traders are rational is explained.

The second part of the survey is restricted to the class of CARA-Gaussian models.
The main focus is on dynamic REE models and on providing some rationale for technical
analysis. The final section covers models of sequential information arrival. We catalog
herding models and illustrate the distinct features of these models. The survey closes
with herding models in information acquisition caused by short horizons of traders.

Most of this literature is quite recent and further major developments can be expected.
The papers covered in this survey are by no means conclusive, nor do I claim that I have
chosen the most important ones. Moreover, I have neglected a broad range of areas (like
price experimentation, the analysis of disclosure of private information, effects driven by
bounded rationality, extensive discussion about endogenous information acquisition etc.).
There are many factors affecting the price process of an asset. This is surely one reason
why this merits interest and examination.
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