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Abstract

This paper derives the moments for a range of Markov switching models. We characterize
in detail the patterns of volatility, skewness and kurtosis that these models can produce as a
function of the transition probabilities and parameters of the underlying state densities entering
the switching process. The autocovariance of the level and squares of time series generated
by Markov switching processes is also derived and we use these results to shed light on the
relationship between volatility clustering, regime switches and structural breaks in time series

models.
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1. Introduction

Markov switching models have become increasingly popular in economic studies of industrial produc-
tion, interest rates, stock prices and unemployment rates. However, so far no study has character-
ized in any detail the moments that these models can generate. This is an important omission since
Markov switching models are often adopted by reseachers wishing to account for specific features
of economic time series such as the asymmetry of economic activity over the business cycle (Hamil-
ton (1989), Neftci (1984)) or the fat tails, volatility clustering and mean reversion in stock prices
(Cecchetti, Lam and Mark (1990), Pagan and Schwert (1990), Turner, Startz and Nelson (1989))
and interest rates (Gray (1996), Hamilton (1988)). These features translate into the higher order
moments and serial correlation of the data generating process, so a characterization of the moments
and autocorrelation function generated by Markov switching will allow researchers to better under-
stand when to make use of this class of models. The contribution of this paper is to characterize the
moments and serial correlation of the level and the squared values of Markov switching processes.

Markov switching models belong to a general class of mixture distributions. Econometricians’
initial interest in this class of distributions was based on their ability to flexibly approximate general
classes of density functions and generate a wider range of values for the skewness and kurtosis than
is obtainable through use of a single distribution. Along these lines Granger and Orr (1972) and
Clark (1973) considered time-independent mixtures of normal distributions as a means of modeling
non-normally distributed data. These initial models, however, did not capture the time-dependence
in the conditional variance found in many economic time series, as evidenced by the vast literature
on ARCH models that started with Engle (1982).

By allowing the mixing probabilities to display time-dependence, Markov switching models can
be seen as a natural generalisation of the original time-independent mixture of normals model and
we show that this feature enables them to generate a wide range of coefficients of skewness, kurtosis
and serial correlation even when based on a very small number of underlying states.

Regime switches in economic time series can be parsimomiously represented by Markov switching
models by letting the mean, variance and possibly the dynamics of the series depend on the realiza-
tion of a finite number of discrete states. In increasing order of generality we consider in this paper
three types of models, each of which has been adopted in applied econometric studies. The basic
Markov switching model is

Yo = fo, + Ts €ty (1)

where S; = 1,2, ..., k denotes the unobserved state indicator which follows an ergodic k-state Markov



process and ¢, is a zero-mean random variable which is identically and independently distributed over
time. The number of states, k, is assumed to be finite. This model has been used in empirical work
by Engel and Hamilton (1990). The second Markov switching model allows for state-independent

autoregressive dynamics:

q
Yo = pse + Z¢j (Ye-j = Haeey) + Takr. 2
j=1

Hamilton (1989) used this type of autoregressive model to analyze growth in US GDP. Finally we
also consider a model with state-dependent dynamics in the autoregressive part:
q
Yo = ooy + D Bioecs (Wi — Hoey) + Oacre ®
i=1

For all models the errors are assumed to be independently distributed with respect to all past and
future realizations of the state variable, ie. F(e | Si4i) = F(¢) for all values of i, where F()
denotes the cumulative density function of €.} The stochastic transition probability matrix P that

determines the evolution in .9, is given by

Prob (Ser; =318 =4,8-1 =k,.y) Prob (Sey1 =37 | Si =1) = pyj,

13
pi; < 1, Zp.-,- =1 for all 4, @
j=1

0

IA

so that the states follow a homogenous Markov chain. In practice, if the process is not irreducible
and not all states are visited with non-zero probability in the steady state, then the moment analysis
can simply be conducted on the subset of states occurring with non-zero stationary probability.? The
higher is p;;, the longer the process is expected to remain in state i. For this reason we shall refer
to pi; as measuring the ’persistence’ of the mixing of the underlying state densities.

We find in this paper that these persistence parameters are very important in determining the
higher order moments of the Markov switching process. Furthermore, once autoregressive parame-
ters are introduced into the process as in the second and third switching models, this gives rise to

cross-product terms that enhance the set of third and fourth order moments and the patterns in

1Herein lies a key difference to ARCH models which is another type of time-dependent mixture process. While
Markov switching models mix a finite number of states with different mean and volatility parameters based on an
exogenous state process, ARCH models mix distributions with volatility parameters drawn from an infinite set of

states driven by lagged innovations to the series.
2An lysis of the ditional ts starting from the steady state need not assume that the Markov process

ly

is irreducible since, if either a single state or a block of states is absorbing, all other states will have zero steady state

probabilities.




serial correlation and volatility dynamics that these models can generate. Even low-order autore-
gressive Markov switching processes with a small number of states provide the basis for very flexible
econometric models. Our results prove useful to understanding the literature on structural breaks
and volatility clustering since the models that have been adopted in this literature are closely related
to Markov switching models with infrequent switches between states.

The paper is organized as follows. Section 2 provides results on the moments of the basic Markov
switching process without autoregressive terms. Section 3 extends the results to the second model
with state-independent, autoregressive terms, while Section 4 analyses the moments of the most
general model with state-dependence both in the mean, variance and autoregressive coeflicients.
Section 5 reports the autocovariance structure generated by the three Markov switching models and

Section 6 discusses their relation to structural break and ARCH models.

2. The Basic Markov Switching Model

Let 7= (1, ..,7x)" be the k-vector of steady state (ergodic) probabilities that solve the system
of equations P’ =", These probabilities can be computed as the eigenvector (scaled so that its
elements sum to one) associated with the unit eigenvalue of P'. Assuming that the state process
started an infinite number of periods back in time or that it is initialized by a random variable
drawn from the stationary distribution, n is the vector of unconditional probabilities applying to

the k states. The following proposition provides the moments of the basic Markov switching model

Proposition 1

Suppose the stationary Markov switching process (1), (4) started from its steady state characterized
by the set of unconditional probabilities (7). Then the centered moments of the process are given
by

k n X .
Elyp—w)" = m Y «C; o] Elell(ui—m)",
i=1 j=0
where ,C; = (“+J’)]J. When ¢; is t-distributed with 7 degrees of freedom, the centered moments are

ko om
Ele—0" =Y mY_ «Cj ol aj(ui— "~
i=1  j=0
where
w312 (igt, 55)
B33

0, otherwise

a; = if 7> j and § is even

It

aj



and B(.) is the Beta function. When . follows a normal distribution we have

k3

k
Bl —p)") =D m)_ #Cj ol bi(wi—p)",

=1 j=0
where
i
b = H(Zh—l), provided j is even and
h=1
b; = 0, otherwise.

A proof of Proposition 1 is given in the appendix. Since researchers are often particularly interested
in the variance, skewness and kurtosis of their data we characterize these moments more explicitly

for the empirically popular mixture of normals model with two states:

Corollary 1
Suppose that there are two states and that the increments are Gaussian. Then the unconditional
variance (62), coefficient of skewness (v/b;) and coefficient of excess kurtosis (b2) of the basic Markov

switching process (1), (4) are given by:

o = (L=m)od+mo]+(1—m)m(ue ~ m),
N Elye—0?®  _ m(l—m)(m — pa) {8(c% — 03} + (1 — 2m) (2 — 13)*}
(Bl — w)?)™* (1 = 7)o +mod + (1 = m)m(pz — m)2) "
b, = Zllwe—w'- (32w -wY)’ _a
(B{(ye — p)?))* b
where o = 3m(1—m)(0% — o3)? + 6(uz — u)>m (1 — m)(2my — 1)(03 — 03)

(1= 1) (g — p)*(1 = 6m (1 — m)).
b o= ((1—m)od +mod + (1 — m)m(uz — pr)?)?

For a proof, see the appendix. It follows from Corollary 1 that, when the innovations are drawn from
a Gaussian density, a necessary condition for the Markov switching process to generate skewness
is that the means in the states differ (1) 7 p2) and that differences in the variances of the states
alone are insufficient to generate skewness.? This also suggests that Markov switching models fitted
to high-frequency financial data whose means are often very small in all states may have trouble

replicating successfully the skewness found in these data.

3This is similar to the result in Bollerslev (1986) that the skewness of standard GARCH models without leverage
effects is zero.




Tt is useful to evaluate these expressions through some numerical examples. To establish a bench-
mark for some relevant parameter values, we report in Table 1 the maximum likelihood estimates
from a simple two-state Markov switching model fitted to monthly excess returns on the stock price
index in four countries. In three out of four markets the switching model identifies an "outlier’ state
in which excess returns are very volatile with a large negative mean and a 'normal’ state with low
volatility and small positive mean returns. The difference between the volatility parameter in the
two states can be very large and is around three times higher in state 2 than in state 1 for the
UK and US markets. Likewise the mean return differentials across the two states are very large in
three of the four markets although the mean parameter is imprecisely estimated in the state with
high volatility. In Germany the mean return parameters in the two states are roughly of the same
magnitude but of opposite signs. Based on this evidence we consider in our numerical examples a
variety of combinations of differences in the relative size of the mean and volatility parameters in
two or more states.

Figure 1 presents a plot of the coefficients of skewness and excess kurtosis of a two-state Markov
switching process with parameters # = (1-1), o= (1 1). Thus the skewness and kurtosis in
Figure 1 is entirely driven by diﬂ'eren:s in the mez:n parameters of the model, while the variances
are identical in the two states. To construct the figure, these parameters were kept fixed and the
probabilities of staying in the two states were varied over the grids [0.01, 0.99]. High, positive values
of both skewness and excess kurtosis are obtained when the probability of staying in the second state
(p22) is around 0.9 and the probability of staying in the first state (p11) is not too high, Likewise, a
large negative skewness and a large positive excess kurtosis is obtained when py; is around 0.9 and
pae is small. A large, negative excess kurtosis is obtained along the line where the two transition
probabilities are identical so that the process spends the same time in the two states. This has the
effect of moving some of the tail probability mass towards the centre and hence lowers the kurtosis.

To investigate the impact on the skewness and kurtosis of switching between two states with
different means and volatilities, we used a second parameter configuration, setting ¢ = (1 —3), g =
(2 4). This parameter configuration is close to what was found for three of the fou: ;nodels in Tatlee
1. The plot, which is presented in Figure 2, is very different from Figure 1. Now a very large excess
kurtosis is produced when the probability of staying in the low volatility state (p11) is high and the
probability of staying in the high volatility state (pz;) is low. This case mixes large, but rare, outliers
with a low dispersion distribution, thus generating the extreme kurtosis. Since the high volatility

state also has a low mean, a high value of p;; and a low value of py; generate large negative skewness



because of the presence in the distribution of large negative outliers.?

Researchers using Markov switching models sometimes identify states with similar means but very
different volatilities. To shed light on the sort of moments this situation gives rise to, Figure 3 plots
the excess kurtosis against combinations of variance parameters in two states that vary between 0.1
and 10. The mean parameters are identical in the two states and Py = 0.97, Poz = 0.75, so state 1 is
highly persistent while state 2 is not, matching the estimates in Table 1. Since the mean parameters
in the two states are the same, the skewness equals zero throughout. However, a very substantial
excess kurtosis is generated when 0% is very small and 0% is very high. In this case the process
spends most of the time in the low volatility regime but occasionally shifts to a high volatility state,
thus increasing the kurtosis.

These findings are also representative of mixture processes with more than two states. Suppose
that the asssumptions of Proposition 1 hold and that the increments are normally distributed. We
refer to such a process as MSIL. Then it follows from the proposition that the higher order moments

have the convenient representation

Elly.—p)"]=n" M, v , (5)

where v is the 7 + 1-vector (12C1...nCj .. nCn-1 1)', and
~n

(1 — )" v (b — p)*
0 . 0
-2 . . o=
M, = 0 i % 0
Sod(u -t . . Bof(u—p)nt
bnol . . bno}

is the (n-+1)zk matrix of moments Eod, €] (145, — )" 7] for each of the normal state densities entering

the mixture distribution. It is clear from (5) and the form of M, that the moment expressions are

4Clarke (1973) showed that time-independent mixtures of normals can generate skewness and kurtosis beyond
that of a single Gaussian distribution. Corollary 1 readily allows us to measure the effect on these moments of
Markovian dependence in the state probabilities. We can illustrate this point using the grid points and parameter
values underlying Figure 2. Under time-independent switching p2e = 1 — p11 and the ooefficient of excess kurtosis
ranges from -0.02 to 0.22 while with state-dependent switching the range is much wider at -0.02 to 2.47.




symmetric with respect to the underlying state densities. To illustrate this point, Figure 4 plots
the coefficients of skewness and kurtosis as a function of py1 and pag for the 3-state case with
P13 =pa3 =01, psg =psz =paa = 1/3, # = (1-30),0= (2 4 3). Hence a third ‘intermediate’
state is mixed with the two states from FigTu-e 2. Naturaﬁy, the same high values of skewness and
kurtosis are not reached in Figures 2 and 4 since p11 and pgg are now constrained to be less than

0.90, but the shapes of the two figures in this range of P11, p2g-values are very similar.

3. The Simple Autoregressive Markov Switching Model

Before dealing with the general case of equation (2} that involves q lags of (¢~ s, ), we first consider
the more tractable first-order autoregressive model with normally distributed increments. This case
demonstrates the effect of additional terms entering the expression for the moments that researchers

pay most attention to. Notice from (2) that when g = 1, the Markov switching process becomes

Y = fo, + P1(Yem1 — toroy) + Os,Et (6)

which we shall refer to as MSII. Upon substituting backward we get
(e ]
Yo = tha, = Y $i00,_€tmi- M
i=0

From the assumption that Ele,_; | S} = Elee—i] = 0 it still holds that Elys—1 — pts,y | Se-1] = 0.
Thus the first moment of y; is unchanged and Ely] =" E[Y |S ]| =7’ , where E[Y |S] is the
k-vector whose i'th element consists of Efy; | S; = 1].

To state concisely the moments for this process, let ¢ be a k-vector of ones, while I is the k-
dimensional identity matrix, @ is the element-by-element multiplication operator and B is the (kx k)
matrix of transition probabilities for the 'time-reversed’ Markov chain that moves back in time:

3
Prob(S, =7 | S41 =i)=byj, 0<b; <1, Y by=1. (8)
=1
Since Pl'Ob(Sg = ] n St-H = 1,) =Pl‘0b(S¢+1 =1 I Sg = j)PrOb(St = ]) =
Prob(S, = § | Se+1 = ) Prob(Sesa = 4), the *backward’ transition probability matrix B is related

to the *forward’ transition probabilities as follows:®

bi; = pji (%) , 9

L33 byj = psj for all £ and j, then the process is said to be time-reversible. Since the diagonal elements of B and

P are identical, the probability of remaining in a given state is always the same regardless of whether time moves
forward or backward. Furthermore, in the case with two states it is easy to verify from the definitions of w1 and 2
that the Markov chain will be time reversible, although this does not hold generally for processes with several states.



assuming m; > 0, and b;; = 0 if j belongs to a group of absorbing states while i does not. Again, if
this condition is not satisfied, the analysis can be performed on the sub-set of states for which the
steady-state probabilities exceed zero. Using this notation, Proposition 2 presents expressions for

the second to fourth centered moments of the first-order autoregressive Markov switching model:6

Proposition 2

Suppose y; follows the first-order autoregressive Gaussian Markov switching process

Yt = fo, + G1W—1 — Poeos) T OsE, [ P1[< 1, €~ IIN(0,1),

and assume that the process started from its steady state distribution. Then the variance, skewness

and kurtosis of y; are given by

2

Elge—-w? = (gs —pt)o (5s —nt)+y :'¢3 :
Blw-w’] = ((gs —HOW —p Ok —n i))
+3¢3 ((B (= #iB) g o —n 5))
+3' ((ﬁ —p Lo gj) :
Elwe-wY] = 1 ((ﬁs —hYOE —pr)OE )oK —p i))

+6 (<ﬂ “hL)O(E —pL)O zz)
+' (I — ¢1B) ™! (3 ot +6¢3(B- (I, — ¢1B) ™! 0%)o g"’)
sastr (8- ) o ko k).

Comparing Proposition 2 to the results for the case with normal increments stated in Proposition 1,
we see that the unconditional variance is increased by the persistence in the y; process. This is no
different from the usua) autoregressive model without a Markov switching effect. Turning next to the
skewness, a new term Teflecting the expectation of the cross-product term (t5, — £2)(¥¢-1 — Mooy )?

enters into this expression. This term will be negative when low mean states tend to follow high

6The proposition requires that (I — ¢18) is invertible. Since | ¢1 |< 1 this will automatically be satisfied for all
transition probability matrices since B has a single eigenvalue equal to unity and its remaining eigenvalues are less

than one.




variance states and will otherwise be positive. To demonstrate this effect, Figure 5 plots skewness
for the same parameter values as in Figure 2 and with ¢; = 0.9. A comparison of Figures 2 and 5
shows that introducing an autoregressive term into the model produces a very different profile of the
skewness. Large negative skew is still obtained when p11 and pgp are both high so that the process
does not switch very often and the negative term E[(,, — 1)02] dominates. For lower values of pi1
and pzn the process switches more often and the positive term E[(1ts, — 1)W1 — tts,_, )?] Aattens
the skewness profile compared to Figure 2.

Three components change in the expression for the kurtosis once an autoregressive lag is introduced
in the Markov switching process. First, the contribution to kurtosis from o3,€f is scaled by a factor
(I, — ¢tB)~". Furthermore, terms reflecting the expectation of (ye-1— p,,_l)z times (s, — p1)? or
aft also contribute to kurtosis. Hence if high volatility states are followed by states with either high
volatility or & mean parameter far away from the unconditional mean, this will tend to create fat
tails and increase kurtosis. The highest kurtosis now occurs when both p11 and peg are high but not

t00 close to one so that rare jumps resulting from mean shifts also add to the tail mass.

Proposition 2 states results for a first-order autoregressive process whose moments are analytically
tractable to derive. Similar analytical expressions for higher order autoregressive Markov switching
processes contain the same types of components and are not very insightful to derive as they quickly
become intractable. However, we still need to have a method for obtaining the moments of specific
higher order processes that researchers have in mind. We demonstrate how to do this in the case of
the second moment of such processes and note that the skewness and kurtosis can also be derived
using similar techniques. In the general case with an arbitrary, but finite, number of autoregressive

lags, the second moment of the Markov process can be derived in one of two ways. First, from (2)

we have
E[we—1)?] = E[(e — 0]+ $2E [(yes — o) + E [02,€]] (10)
j=1
+2Z Z ¢i¢jE [(yt—l' - ll'sn-.')(yt—j — Hse; )] .

Applying the steady-state probabilities to the first and third terms we get

q
Blu-?] = 1 (2 - 00@ -4 0)+ L HE by -]+ (D)

= ~ g

q 49
+2ZZ¢-¢:E [(yt—i - “ﬂt-«)(y‘—j - ”"t-a‘)] .

i>7 =1

10



This equation involves variances and covariances of the process relative to the state-specific means.
To derive an expression for these terms, we exploit the associated Yule-Walker equations. Multiplying

(2) through by (Ye—1 — fsp1)s +r Yemq — Hoc—,), We get a system of equations

q
E [(yt - /‘ag)(yt—m - ll'a._,,.)] = Z¢‘E [(yt—i - l‘sg_i)(yt—m - l-‘s;_,,.)] , m=1,...4q (12)

i=1
An extra term 7'g? appears on the right hand side of (12) when 7 = 0. This gives (¢+1) equations
that can used to j:;intly determine E [(y — #25,)%] ey B [(¥e ~ Ba) e — Hs,-,)]. These terms can
then be substituted into (11) to get the unconditional variance of the process around p.

An alternative, and as far as we know, new method for obtaining second moments of Markov
switching processes combines the companion form of the autoregressive model with the technique
of expanding the state space of a Markov process proposed by Cox and Miller (1965). This is very
convenient from a computational point of view and does not require solving a set of g+ 1 equations

in the autocovariances. We can always write (2) as

Ye Hsy $1 ¢2 dg-1 Oq Yt-1 = Moy
Y1 Hapn 1 0 Yi-2 — Hse_o
Ye-2 Pos | 1 . Y-8 = Ms,_s (13)
0 1
| Yt-g+1 | | Boeearn | | 1 0 | Ye-q = Hsg
g, 0 . . 00 €
0o 0 €i—1
+ 0 0 €4—2 ‘
1]
0 0
L 0] ] €t-gt1 |
or, in matrix form,
z=p +0|lz —p + €, 14
~E o~y (~t—1 ~:;_l) Z’E ~t (14

where # now lies in the &' = k - ¢ dimensional state space formed as the Cartesian product

S
St X S lbx St q+1 of the original ¢ state spaces.

1u




Taking expectations of z around the unconditional mean vector we get the ¢ X g covariance matrix
~t
Bl -n 0,0 0] = Bl -wow -eo]
~t NSy ~ ~ay g ~

+\IJE[(5 - )z -—n )']\II’

t-1  ~s7_ 0 Vil ~ey_y

+E [Zs €. Z,g] (15)

where we used that LA po=TR,r o € is uncorrelated with (us; — p ¢) and
-1 -i-

~e} -1 g

Ys; € - Notice also from (14) that

E [(gt ~ 8 e, gs;)’] =g [(N - N, )’] v'+B [E,Z £ Z.',;] » (16)

e o1
where E [Z,; € €' 3, | isa qxq matrix whose first element is E [of,] with all other elements
Rigmp

being zero. We refer to this matrix as V. It then follows that, provided 2 is a stationary process so
~q

[(z - p. (z —n )] =E [(zt L )(z ~p )’], the g?-vector of second moments

"'t ~ey_ " -1 ~e;_,

centered around the state means is

vec( [(z —lt )(z —li,v)])

so that

('Il®\Il).'uec(E [(z -k _)(f _gs;)l])
+vec( [ng X Es‘]) )

vec (E [(Eg - ﬁ,;)(fe - i;)’]) =(Ipz - (¥ ®‘Il))_lvec(V). (18)
Substituting this back into (15) we get the g?-vector of unconditional second moments:
wee(B[(z,n e, 1 0)]) = vee(E|0e w0 -u0)])
+(Ip+ (¥ ) (Ip - (¥© \1/))“) vec(V).  (19)

This expression is very convenient for computation of the variance of higher order autoregressive
Markov switching models. It also allows calculation of autocovariances from the cross-product terms.

For example, E [(y; — 1)(yi—1 — )] will be the second element of the vector in (19).

12
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4. State-dependent Autoregressive Dynamics
Again we initially consider the first-order autoregressive model and then demonstrate how to gen-
eralize the results to the less tractable, but similar, general case. The underlying model (which we

shall refer to as MSIII) is
Yo = o, + Ploer Wem1 — Hoeo) T Osi€t,  |$se| <1, & ~IIN(0,1). (20)

Backwards substitution gives
o0 ]
— Hsy = Z H ¢15},—j0-§g_" €t—1 + Os €y (21)
=1 \j=1
so that B [y — pis,] = 0 and E[ye] =7'ps= p. To state parsimoniously the moments of this process,

it is convenient to define the (k x k) diagonal matrix of state-specific autoregressive coefficients

$11 O

&= 0 ¢z

b1k

where ¢, is the first order autoregressive coefficient in state r. Proposition 3 provides the second

to fourth moments of this process:

Proposition 3

Consider the first-order Gaussian Markov switching process with a state-dependent autoregressive
term

Yo = Mo, + Procy (Ytm1 = Hs,y) + 05,6t € ~ IIN(0,1), [#s..0] <1,
and suppose that the process started from its steady state. The variance, skewness and kurtosis of

y¢ are given by

Elw-w? = « ((# Ll Cy —#i)+<1>2(1k—3<1>2)“gf+gf)
Elye-p?] = = ((ﬂ, ~hp)OH —p)o (K —w))

13 ((3@2 (s - B %) o (1 —uL))+37r ((u —u L)oJ)
Elu-w] = 7 (@ w00@ ko w0l -uy)

13




+67 ((13s1>“"(1:c ~B¥) ok —p ok ~u i))

+6r ((u —H)O(H —p L) 02>
~ ~g ~ ~g ~ ~8
+ ' ®4I, — B®Y) ! (3 ot 46 (B<1>2(1,c — B3%)~! 02) o) 02)

+6 ' ((Bqﬂ(fk -Bo") ' dho az)
~ ~s ~s

+3mot.

g

5

To demonstrate the effect on the coefficients of skewness and kurtosis of having different autore-

gressive parameters in the different states, Figure 6 keeps the parameters from Figure 5 but sets

é11 = 0.99 and ¢;2 = 0.81, so that, compared with the choice of ¢; in Figure 5, the serial correlation

is now 0.09 higher in state 1 and 0.09 lower in state 2. The skewness is now positive for high values

of p1; and pgz and is otherwise negative.” The kurtosis still peaks when p1; and pg2 are large but is

now flat on a larger part of the grid. Letting the autoregressive coefficients differ between the two

states can significantly change the skewness and kurtosis profiles and a comparison of figures 2, 5

and 6 illustrate the complexity of the interaction between the Markov switching parameters and the

autoregressive parameters in determining the higher order moments.

Second moment results for higher order autoregressive processes can again be obtained through

the companion form of y; in the expanded state space:

Ye
Ye-1
Ye-2

Yt—q+1

o, 0

0 0

| l“"‘t—q-{-l

0
1

€t
€1—1

€1—2

¢ls;_1 ¢2!g-2
1
0o
0
0
0

€t—gq+1

¢q9t—q

Ye—1 = Hsy
Yo—2— Hsy_,
Ye-3 — Hsy_s
| Yt—q— tu'sz-q

(22)

7The positive skewness for high values of the transition probabilities is caused by the term E[(us, — p):)ﬁ%,‘_l (e —
1s,_,)?] which is positive when a switch occurs from state 2 to state 1. This term is higher higher in Figure 6
=1
(#15¢_, = 0.99 for 9,—) = 2) than in Figure 5 (¢1 = 0.90).
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or, in matrix form,

~g?
¢ 841

=] W,e z - : 23
z=h (N M )+Z,,; 5, (23)

To analyze this case we first derive an expression for E[(z — # )(z — # )']. Letvec (E[(z —tpg)? | 8 =1
~e o ~vaypl e ey ~t

be short-hand notation for the g2-vector of expectations of (2 — ¢ p,;)(2 — ¢ ) conditional
e o~ Ne o~
on Sf =i, let V; = vec E[ZSZ €€ 22; | St =4] ) be a g2 vector of conditional expectations of
~pt
the residual term and let ¥; be the ¢gxq matrix ¥ conditional on S§_; = i. As in Section 3, the

&1
dimension of the expanded state space is k* = kg. Stacking the moment conditions resulting from

(23), we get the k*g3-vector
vec|E (2 ~ ¢ pg;)?| 87 =1
2t~

vec(E|(2 — ¢ pey)?| St =2
e~

vec (E [(’%t - i‘;,;)2 | Sp = k-])

(V1 ® Uy)vec( E (':z't—l - i/"’i-x)z |8t =1 "
(B* ® 1) (Y2 ® Yo)vec( E (53—1 — e )| Sty =2 N " o
(T ® Upv)vee (E [(fzq -t pop 1S5y = k']) V-
-'uec E|l(z -k )Y|S.=1 ] i
-1 ~ep "
- o \F|Ea" g RISzl e |

o
vee (E (z -4 P|S,= k‘]) -
I T ]

where B is the (k* x k°) matrix of backward transition probabilities while @ is the (k*g?) x (k*g?)
block-diagonal matrix formed as

¥ 0¥ 0
T, ®@ ¥,

Vi @ Upe
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Under stationarity of the y; process we thus have

veo (Bl(z, — ¢ pmr)? 15 =1) i

Va

vee E[(ft - ":' ,us;)z | S: B 2] = (lm - (B' ®Iq7) (I;)_l t (25)

Vi
vec (E[(ft -t #32)2 | Sf = k']) %
where m = k*¢%. The g?-vector of unconditional second moments centered around the state means

can now be extracted from (25) by pre-multiplying by a (¢® x ¢?k*) matrix A given by

™ 0 . T2 0 0 ... M= we- 0
oOom 0 .. m 0 .. 0 .. O
A= ((Lr.)l ®Iq’) - 1 [
0 .. m 0 .. 72 .. 0 .. m
so that
~\ -1
E[(z!—u )z, —H )'}:A(Im—(B‘@)qu)\II) Vi Vau.. Vi) (26)
~Eovep YE ey

Finally the unconditional variance of z follows from (23} as
~t

vee (Bl(z, -1 )z, 0 1) = vee (et w0, - 1)
v

Ve

+A % (In— (B © 1) g)" +vec(V), (27)

Vi
where V = E[Zs; €€ Z;‘] Again these expressions are easy to implement, do not require
~vt
solving a set of Yule-Walker equations, and should prove useful to researchers wanting to charac-
terize the moments of this quite complex class of Markov switching processes with state-dependent

autoregressive parameters.

5. Autocorrelations of the Markov Switching Processes
To fully understand the dynamic patterns that the Markov switching models generate, we need to
characterize their autocovariance functions. Just how strong the serial correlation is for a given set

of parameter estimates can be computed from Proposition 48

8We remind the reader that the three Markov switching models are
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Proposition 4
The autocovariance functions of the stationary Gaussian Markov switching processes MSI, MSII and

MSIII starting from their steady state are given by

E[(yern — )y — )] =

v (@@ -u e o) (s

T ((B"(gs Lo —p 5)) +et ' (- 8iB)7! o (MSII)

v (B, —n D0 b))+ 1 Tl - B8 o (M)
where T, is the (k x k) diagonal matrix

Yr,n

with diagonal elements v, = E [("1:[1 ¢ls¢+.‘) | Sy = 1‘] ,so that I’y = ®.

Notice that we can compute the ellzlr]nents of Ty, as

Kk k
Trm =G1r 3, I o I Prii Pjaes Pinajn 65185, bincs
Ji=lj2=1  jnoa=1

which is the product of the probabilities and the associated autoregressive coefficients on paths
emanating from state 7. For higher order autocovariances, the expression for I, will be quite
complex since it reflects the entire set of possible paths followed by the process over the n-period
horizon.

Again the basic Markov switching model with two states provides some intuition for the result

since it allows us to considerably simplify the autocovariance function:

El(ye — 18)(@e-—n — )] = m(1 = m) (11 — ) ?vec(P™Y vy, (28)

where v; = ({1 ~m),—(1 —m),—m, 7). Of particular interest is the first-order autocovariance

for the levels of the process which is given by (i — p2)?m; (1 — m;)(P11 + P22 — 1). This expression

MSI:  yt=pe, +0s6t, € ~I1IN(0,1),
MSII:  yo=pa, + P1(Ye~1 — po,_, ) + o &, €~ IIN(0,1), |p1] <1,
MSIIT:  yo = po, + P16,y (Y11 ~ Boe_, ) + Taye, €~ IIN(0,1), |$s,_,| <1.
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has an intuitive interpretation since the autocovariance will be positive provided the presence of the
process in the two states is persistent (p11+p2e > 1), otherwise a negative autocovariance will result.
Without a Markov switching effect (11 = 1 — p22) there will be no first order autocorrelation in the
process.

Many studies find significant serial correlation in the squared values of economic time series.
The success of ARCH models in empirical work can be explained by the fact that these models can
generate such autocorrelation patterns. We show in the following Proposition that Markov switching

models can also give rise to autocorrelation in the squares of a time series:

Proposition 5

The autocovariance function of the squared values of the stationary Markov switching process start-

ing from its steady state is given by

E [} - Ely?) v — Elyi-n))]
= o (o + ) - e (MsD)

= ((B"(Ik - 4B)"' o%)o gf) + ((B" Ko lj)
+o7" ' (1o = 91B) (3 ot +6¢1 ((B(Ik - ¢1B) o%)o gj))
+oi ' (((Ik -¢iB)™" oY) gj)
(i g (B’ - 4B gt 4Bk )of)
Z .

sagt ! (B - BB o Do s ) - () (MsT)

= ((13"(1,c - B3 Yo uz) + ((B" 1o uz)
+7' Tonu(le — BB (3 o* +6(B3*(I, — B2*)"! 0%)0 02)
((r2 oI - B 00 ;ﬂ) + (Emu,, ~BE%) 1 o2 4T, ;ﬁ))
~s ~s ~ =1 ~g ~g

+4m (I‘n((([k ~B3?*)! gf)o r ) - (E[y;"])2, (MSIII)
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n—-1
where Y3, is a diagonal kx k matrix whose r’th diagonal element is given by Tonlr,r)=E [( II 4%, +.-) | Sg=r
=9

-

1set;

n=1
T, is a diagonal matrix with elements Tilrr)=E [ ( I ¢2 ) o ) S= TJ and T, is a diagonal
J=i
n—1
matrix with Tpfr, 7] = E [(r{. ¢1s,+,-) Kooy | Sy = 7‘]-
=
Proofs of Propositions 4 and 5 are provided in the Appendix. To compute the autocorrelation, the
autocovariances need to be scaled by the variance of %, El(y? — E[y2])?]. For the three models, this

can be shown to be given by

Elyi] - (Bly})? (Ms1)
T 6T (0 O L ©0%) +3 10t ~ (var(y.) + Ely,?)?
~ovg ™ g ~g ™~ ~ vy

Bl(y? - Ely?)?

Il

= wut 46l ' ((B(Ik ~#2B)'odoun on ) +67' (1% © 0?) (MsII)
~o~s ~ ~s ~s ~s ~rve ~5

+ 7' (I — ¢iB)? (3 o* +643(B(Iy — ¢2B)~! %o gz) ~ (var(ye) + Efy]?)*

= mut g ((Bq>2(1,c — Bp2)-1 Zf) o1 + gf)) +6m (L‘f o} g:) (MSIII)
+ 7' 4L ~ BoY) (3 g: +6(BY*(I) — BD?)™! gf)o gz)
+37'g" — (var(y,) + Bjy?)?
Intuition is provided by the autocovariance of 2 in the basic two-state model which is given by
Bl - Eyf) @i — Bl ))] = m (1 - m)(ud — 1 + 03 — o) 2vec(P™)'vy. (30)

Hence the first-order autocovariance is By~ Bl (yi, —Ely? )] = m(l~m)(ui~ ui+of—o2)?
(P11 +p22 — 1). Again this expression has the intuitive interpretation that there will be positive
autocorrelation in yf if the state mixing process is persistent (p;; + pyp > 1), otherwise the squared
values of the process will be negatively autocorrelated. If py; =1 — P22, there will be no first-order
serial correlation in the squared values of the series. If there is no switching between the two regimes,
ie. m(l— 1) = 0, there will be no autocorrelation in the squared values of the series.

Figure 7 plots the first order autocorrelation in the squared levels of a Markov switching process for
the case where ¢t = (1,1) and ?= (2,4). Since the two mean parameters are identical across states,

E

there is no serial correlation in the level of the series. Reflecting the different volatility parameters,
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quite high serial correlation in the squares of the series is obtained, however, when the persistence

of the two states is high.

6. Discussion of Results
Our results on the moments of the regime switching models show that the Markovian dependency
in the mixture probabilities significantly expands the scope for asymmetry and fat tails that can be
generated by time-independent mixture models. This may help to explain the relative success that
these models have had in applications to economic time series that clearly display such features.
Our theoretical results are also closely related to the literature on structural breaks and persistence.
Structural breaks are usually thought of as one-off events that introduce non-stationarities in the
data, In the context of a Markov switching model a structural break can be modeled as follows.

Consider the following partitioned matrix of transition probabilities:

h P
P Py

P=

where, say, Py is a k; X ki matrix, Py is a k2 X ko matrix and k; + kz = k. If some element of
P, is nonzero while the elements of P; all equal zero, then once a state ordered k; + 1 or higher is
reached then the process can never return to a state ordered ki or lower, so this event represents
a break from a switching model that mixes one block of states to another model mixing a different
block of states. If the values of P, and P are close to, but not all equal to, zero then there exists a
stationary *hyper model’ that includes both blocks of states, but it will be very difficult in any finite
sample to distinguish between a structural break and infrequently occuring regime switches.

The parameter values for which the Markov switching models seem best capable of generating
volatility clustering and autocorrelation, i.e. those values representing infrequent mixing of regimes
with quite different mean and variance parameters, are also those for which the switching models
most closely resemble structural break models. Thus our findings are clearly related to the literature
on structural breaks and persistence in the first and second moments of time series. Perron (1989)
considers a single exogenous shift in the level or slope of the trend function of a time series while
Perron (1990) investigates the case of an exogenous break in the mean level. This latter case closely
corresponds to a Markov switching model with k = 2, 01 = 02, and g1 # p2. In both cases such a
break in the time series is found to lead to higher rates of non-rejection of the null of a unit root

since it introduces persistence in the series centered around the sample mean. As the size of the
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mean shift gets larger, the estimated autoregressive parameter in a model without serial correlation
but with a single shift in the mean gets closer to one.®

We carried out an experiment to show that these studies are closely related to Proposition 4.
Setting 0% = 03 = 1, p11 = p2z = 0.99, p11 = 1, and varying p» we obtained the following population

moments for the first-order autocorrelation of the process:

First order autocorrelation

value of pg MSI MSII (¢ = 0.9)

2 0.196 0.904
3 0.495 0.916
4 0.688 0.930

Even when there is no autocorrelation in any of the states (as for MSI), a shift in the mean can still
produce very substantial persistence around the unconditional mean, and the effect is an increasing
function of the size of the shift. As the shift gets large, and consistent with Perron (1990), the
autocorrelation coefficient for this case with rare shift gets closer to one.

The proposition that persistence in the squared level of a Markov switching process can be the
result of rare, large shifts in the unconditional variance is also related to earlier empirical findings.
Lamoureux and Lastrapes {1990) study second moments and find that the existence of deterministic
structural shifts in the unconditional variance, when not accounted for, will increase the persistence
of squared residuals.!® They show that the resulting upward bias in GARCH estimates of persistence
of variance can be quite substantial. For a number of individual stock return series once a structural
break in the intercept term in the conditional variance equation is accounted for, the estimated
persistence declines from an average of 0.98 to an average of 0.82. Indeed, Lamoureux and Lastrapes
propose to use Markov switching models as a way of handling misspecifiation problems due to
occasional shifts in the conditional variance. Likewise, Diebold (1986) suggests that the very high
persistence in the conditional variance observed in GARCH models may reflect a failure to include
dummies for shifts in the intercept in the variance equation caused by exogenous shocks such as

monetary policy regime changes.!!

9In related work Hendry and Neale (1991) use Monte Carlo methods to quantify the effect that the introduction

of shifts in the intercept of an autoregressive process has on the loss in the power of standard unit root tests.
10Yet another possibility is that a misspecified mean leads to overrejection of the null of no conditional heteroskedas-

ticly as recently reported by Lumsdaine and Ng (1997).
111n principle ARCH and Markov switching effects could be combined to produce a highly flexible, nonlinear mixture
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Appendix

This appendix contains the proofs of the propositions and the corollary.

Proof of Proposition 1

From the law of iterated expectations we have

k
Blw-w"] = ElBly— )" | Sl = 3o mB(( +oie— ") (A1)
k n
= Y md G of (i — "I El]
i=1  j=0

where we used Newton’s binomial formula and the assumption that the steady-state probabilities
apply. The expressions for the cases where ¢ follows a t-distribution or a normal distribution are
based on the moment-generating functions for these distributions. For example, from the moment
generating function of the normal distribution we have that E[]]=0,if j is odd and
i/2
m&=pwwns@
=1

otherwise. Substituting this expression into (A1) we get the result.

Proof of Corollary 1

First consider the variance. From the law of iterated expectations we have

E[El(y. - »)* | 4]

mE (1 + 016~ p)2] + (L = 1) E [(p2 + 02ee — 1)’

B [(:UL - #)2]

(1= m1)od +mod + (1 —m)(pa — )%+ m1( — p)? (A2)

(1 - 7\"1)(7% +7l'10'% +7|'1(1 - 7I'1)([l,2 et [1.1)2.

We next compute the skewness and kurtosis of this model:

E [ —w?) E[Blly. —w)* | St)]
(1 = m)E (12 + 026, — 0)®] + M E [(s1 + 016 — 1)’
m(L=m)(i — p2) {3(03 — 03) + (1 — 2m) (2 — 1)°}, {A3)

model as proposed by Hamilton and Susmel (1994). Our results can explain why such an extension may be necessary

because the Markov switching model only appears to be able to generate limited persistence in the squared values of

a time series.
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and hence the coefficient of skewness is given by

Ellye—p)®]  _ m{l—m)(m — j12) {8(02 — o) + (1 = 2my) (2 — )} ]
(El(y: — p)?])3/? ((1 =)0 +mo? + m (L —m)(uz — )2

(A9
To compute the coefficient of kurtosis we proceed ss follows

E [y — 1]

E[Elly.—w* | 8]
(1-m)E [(2 + 026, — W] + B [(11 + 0160 — u)*]
(1—m) {308 + (12 — p)* + 603 (2 — 1)°} (45)

+m {308 + (1 — p)* + 603 (11 — 1)} -

Simplifying the expression by using that g = mp + (1 — T1)p2, we get the coefficient of excess
kurtosis
Blfye — p)*] = 3(Bl(w — )*])* _ o
(El(ye ~ p?])? b
3my(1 — m)(0F — 0%)2 +6(pg — m)?mi(1 = m)(2m — 1)(0F — 0F)
+m (1 — 1) (2 — p1)*(1 = 6m (1 = m))
(1 = 7)o} +mod +m(l - )2 — )?)’ . (A6)

o
Il

Proof of Proposition 2

Squaring ¥, around its unconditional mean and taking expectations we have

E[w—w? = B —#)®+6 @1~ ) +056]
+2¢1C0v(pts, — 1 Yi1 = Hoy_y) +2C00(tts, — 1,00, €1) (A7)
+261Cov(Ye—1 — Hoyy 10, EL)-

From (7), the assumption that €; is iid and the independence at all leads and lags between ¢; and

S,, it follows that all three covariance terms are equal to zero so that

Blw-w?) = TB[Y w00l -uyls]
kad : :
= ' —p)or —p)+r ¢l (Z¢f'P‘ az)+vr’v2
1@ mow —uyrr & (LAP )1

23




r ((L‘ ~p)OH —p )+l (1-eD) ot + 02) (A8)

~8

P
T —p)OE )+ ],
~ ~s ~ ~g ~ 1—¢'|

where ¢ is a k-vector of ones, ® is the element-by-element multiplication operator and E{(¥ —p ¢
< o ~
YO U ~p t) |8 ] stacks the vector Ef(y: — ) ® (ye — p) | Se = 1] for ¢ = 1,..., k. The third equality
SV '
uses the property of the steady state probabilities that 7’ P* =’

The third centered moment can be derived using the result that
Bl(ye — )] = Bl(ks, — 1)%) + 363 E (10, — 1)W1 — Hor-)*] + 3El(a, — )02, €5),  (A9)

which can be verified by expanding equation (6} around p. To derive an expression for the second

term notice that

k
D Ellye-s — pot)’ | Se-1 =3NS =]
j=1
Pl‘Ob(Sg_l = ] I Sg:’i)+(7i2,
k

B El(ye-1 — o)? | St = 3] by + 0, (A10)
=1

E{(ys — ps,)? 1S = 4]

I

since the expectation of (y¢—1— fts,_, )2 conditional on 51 is the same as its expectation conditional

on S;—; and S;. Stacking the equations resulting from setting ¢ = 1,..., k, we have

El(y - PIS|=¢1-B-El(y —#
~E se ~t ~i—-1

~s

2Is 1+ 0P, (Al1)
[ S
so that, under stationarity of the process,
E [(y -e Pls ] = (I, —¢3B) 7' &%, (A12)
~e=1 ~g—1 ~t-1 ~s
where I is the k-dimensional identity matrix. Using this in (A11l) and noting that
E [(y —-¢ )28 ] = B(I — $2B)~ - 02, we get
~t=1 ~8p—1 ~E ~g
Blwe- = 7 (¢ w0 -uo -uy)
£ ~g ~g ~
sagtr (80— B)> )0 -u 1) (A13)
~ ~g ~e ~

~

+3 7' ((/.L —p L)O 02)
AV ASH
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The fourth centered moment is given by

Blye - = Bl(pe — 1)*] + 683 (s, — #)* W1 — pes)’] + 6El(s, — )02, €]
O ElWe-1 — oo, )*] + 603 Bl(yo-1 — s, ) 0%, €8] + Elog ef]. (A14)

Most of these terms are simple to evaluate, but notice that

El(y —# YIS|=¢tB-Elly —#
~t ~9¢ ~t ~t—1

~a,

YIS 1+30*+682E[(y -k YOS
1 ~i—1 ~s ~i—1 ~Eyo1

~Ee

From (6) we also have

Blly -» )o*ls]
~E— =1 ~ee ™t

1 s 1 ~seoy ~p-1 ~s

(B-E[(gt_ —n )8 ])002

(B (I — ¢2B)7? g2) o} Zf .
Thus, provided the process is stationary, we get
Bl -~ ) ig)= G- atB) (30t 106t (B (- aiB)” ?)ost). (@)
L2
Using this together with the equation E[(y, — p)*] =’ E[(gt —p o)t |§t], (A14) becomes
Blw-i = 7 (¢, w00 oo ~How v)

sot v (80— #8)" )0 w0, 1))
+67' ((gs —hL)O(E —u O gz)
+oi T (v — ¢1B) ™! (3 a* +643(B - (I« - #1B) "' o)) gj) (A16)
+607 T’ ((B (I —¢2B)7! gj)o g’) +3 Lr’g: .

Collecting terms we get the expression in Proposition 2.

Proof of Proposition 3

The unconditional variance of the process underlying MSIII can be evaluated from the expression

Bl — ] = B0 =1+ e, (s = ar)? + 0% + 20001, ~ 1,00,61)
+2Cov (P‘sg —H ¢ls;-1 (yt-l — Hsen )) (A17)

+2Cov (¢13g-1 (Ye—1 = Bseey ) Uslet)
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Again the covariance terms are zero so only the second term has changed from (AT). To evaluate

this term we condition on ¢ to get the set of equations

E[(y - )? |s] =B-@2E[(y -1 NS |+ (A18)
~i ~8g ~1 ~i—1 ~8r—1 ~t-1 ~s

where @ is the k x k diagonal matrix defined just before Proposition 3. Under stationarity of y, we

have

E [(y -b )%s ] = (I — B®%)! g:, (A19)

~t—1 ~8e—1 ~t—1

from which the variance of v, easily follows from (A17):
El(y, — w)?] =n’' ((u —p)OH —p L)) +7' (Qz(lk —-B®Y)to? 4 02) . (A20)
~ ~g ~ ~g ~ ~ ~s ~s

To derive the third moment, notice that the only new term relative to (A9) is 3B[(ts, ~ 1) #%,, _, (Wem1—
l‘l’sL—l)Z]' Conditioning on S; and applying the steady state probabilities, we get

Bl(as, =196 @ors V)= (B 070 BN o 0 ). (4)

Inserting this in (A9) and using the similar results for MSII, the skewness result follows immediately.

The fourth moment of MSIII can be evaluated from the expression

Bl — 1)) = Ellts. — 109+ 68 (o, = 100, (Wem1 — hse 7]
+8E[(sts, — 0202 + Bldts, , (-1 = torr)'] (A22)
+6E[#1,, ., (Wem1 = o, 205, €0] + Blog, €]

The second, fourth and fifth terms in this expression have changed compared with (A14). We derive

these expressions as follows:

El(gs, — 0?2, _, We-1 — pts,,)*) =1 ((B@z(lk ~B¥) oW —u )oK —u i)) , (A23)

E [¢fn_, W1 = o) 702, ez] =r' ((B@Z(Ik - B®*)™' %o a”) : (a24)
8 ~s
Finally, conditioning on S; we get the system of equations
E[(y —p )4|S} = B@“-E[(y -1 s ]+3a4 (A25)
~t ~8 ~t ~e—1 ~Sse—1 ~i-1 ~a

+6 (Bq>2(1,c - B! 02) od.
2,)°2

£
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Hence
Blw, -4 s = G- 59971 (304 46(B0 - B8N T o ?),  (azm)
~t o ey~ ~g ~g' o g

and the fourth term entering (A22) is ' ®* times this expression. Inserting these terms in (A22),

we get the kurtosis expression stated in Proposition 3.

Proof of Proposition 4
We first compute E[(y; — ££)(9:—1 — p£)) for MSI and then demonstrate how to generalize the result.
Notice that

E [((p‘h = p‘) + Us‘ﬁt) ((:ust—l - ﬂ) + Uag—let—l)]
Bl = 1) =) =1 (B -n ) @4 u 1) ). (A20)

El(ye — W) ye-1 — p)]

1

When we consider the n’th order autocovariance of y;, the only part of the calculation that changes
is the transition probabilities, i.e. instead of using B we use B™.

To compute the autocovariances of MSII, notice that

Bllys— e — )] = B [((1to, — 8) + $1(¥e1 — Ha_;) +04,61) -
((yt—l - ll'sn—x) + (/“h-x - ﬂ))] (A28)

Obviously Elo,€:(ys—1 — ps,_, )| = El0s,€e(ttse_, — 1£)] =0, and, from the independence of ¢; and
Sy
E [((#"e - #)(%—1 _”’5:-1))] =F [(usc—l _”)¢l(y'—1 _l‘h—l)] =0 (A29)

This leaves us with the terms E[(ts, — p){ftsc_, — 1)} + &1 (¥e-1 — Ko, )?], and hence
Bl = o= ) =7 (B -u )0 -p0) +orr h-B" 7. (%)

~g o~ ~ <,

This can easily be generalized to obtain the n’th order autocovariance by noting that

n
Yotn — L= flogyn — I+ 07 (¥ — tta,) + z d’?_iahﬁe""" (A31)

i=1

so that the autocovariance becomes

Bl(teern = )t = 1)+ 0700~ )] (A32)
T ((B"(ﬁ, “HE)OE —p i)) +67 7 (k- ¢1B) " ¢°.

E[ye+n — 1)@ — 1))
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To obtain the first order autocovariance of the MSIII process, we need to evaluate E[(ts, — ) (ts,_, —
P’) + b1,y (yt—l - /"'33—1)2]:

Bl —mes — 0l =r ((BE —u D)o —n o))+ 8 -5 o (A5

Second and higher order autocorrelations do not follow as easily from this expression as (A32) follows
from (A31), however, due to the state dependence in ¢. To evaluate the n’th order autocovariance,

we need to compute

E[@4n — ) (e — 1)) = E [(Horpn — )(ts, — )] + E [(ﬁ ¢1,,+,> (we~ usl)g] . (A34)
i=0

This expression can be written as stated in Proposition 4.

Proof of Proposition 5

Again we first derive the result for the simple MS model (MSI). Note that for this process

Vi = (43, + 2e,00 60+ 05,6F) (A35)

Vi1 = (W1 — oy 2 2ty Mot — o) + 42, (A36)

so their expected cross-product is
Bl = B[l 0o = o)+ 2 HE + R Ws = )+ el ]
= 7 ((B %o uz) + ((B o u"’) + ' ((B a?)e 02)
~ ~s ~g ~ ~s ~s ~ ~s ~g
+ ((B K)o 02) , (A37)
~ ~g ~8

where we used that, for the simple Markov switching model, E[(¥ — £ )% |§] =02. The ex-
~p o e s

pression in Proposition 5 follows by collecting terms. Once again, the general expression for

E|(y? — Ey?))(¥2 . — Ely?_,])] can be derived by substituting B™ for B.

For MSII, the first order autocovariance of y; can be based on

Vi-BWil = g+ 0t — e )? + 026 + 21 (Yem1 — Hoecn)
+24t6,03, 6t + 261 Wr—1 — s, )0s, € — Elf], (A38)
and
t1— Byt ) = (e - P+ 2p5, ., (e 1 — )+ 1l — Bl (A39)
Yi-1 Yt—1 Yt-1 — Moy, Hse_ 1 \Yt—1 — Hay_y Hse_y Ye—1):
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Using that the expected value of cross-product terms in which €, enter linearly is zero we get

B2 - EWi) -1 — Elvi-a))] =
= E [ys,(yt 1= o )P A 22, A+ et — ey )+ SH o1 — pe 1) PRE,
+Ustet (yl—l - #st—l) +aa‘6?1us, 1 +4¢1u8uu‘8: 1(yt 1 s 1) ] (E[y ])l (A4O)

A similar expression holds for MSIII, substituting ¢,,_, in place of ¢;. To get the n'th order

autocovariance we use that, for MSII,

2
Vin = M oW — )+ (Z o 0u+-€t+->

i=1
+2ts0, 8T e — p5,) + FEtans s €241, (A41)

where f(-) is a linear function of its arguments and hence will be uncorrelated with terms dated

period t or earlier. For MSIII, the similar expression is more complex:

n—1 n n—1 2
y?+n = uZH.,. + (H d’?s,“) (yi - ﬂs.)z + Z H ¢1sl+j Oseqi €t+i
=0 i=1 \ j=i
n—1
+2u;,, (H ¢ls;+‘-> (e — ts,) + 9{Ens s €41)s (A42)
i=0

n—1
where again g{-) is a linear function of its arguments and we define [] ¢1s,,,, = 1. Using these
i=n
expressions, equation (A40) can be extended to obtain the n-period autocovariances:

E [(yt2+n - E[yf+n])(?/z Ely; ])]

= E [#§,+n(yc — 1 )2+ 12, 0, 4 O (e — o)t + 6Ty — s )43, (A43)

+ (e — po) 2+ 12) (Z:ﬁz(" D ?,+.> + AP} fay b, (Ve — 12,)?| — (B (MSID)

i=1

n— n—
= E [uiﬂ (e — po)? + 12, b2+ (e — 11a)* [ 0%y + e — o )22, 1 #cs

i=0 =0
n-1
+ (e — 1)+ 12,) Z 1'[ By | Ohre + Worpntts, e — 10,)? [ bronye|  (MSTID
i=1 \ j= i=0

~(Ely)?

which can be written as stated in Proposition 5.
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