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Stock Prices*
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This paper presents new empirical evidence on the existence of structural
breaks in the fundamentals process underlying US stock prices and develops
an asset pricing model which considers the possibility of such breaks. Three
breakpoints are identified: The Great Depression, World War II, and the
oil price shocks around 1974. Different hypotheses for how investors form
expectations about future dividends after a break are proposed and analyzed.
A model in which investors do not have full information about the parameters
of the dividend process but gradually update their beliefs as new information
arrives is shown to induce volatility clustering and serially correlated stock
returns after a break. These patterns are confirmed to exist in US stock
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returns around the time of the breakpoints.
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1. Introduction

Is the fundamentals process underlying US stock prices stable over several decades?
This stability assumption is implicitly made in the vast majority of papers in the
empirical asset pricing literature that tests present value models. Recent studies
have questioned this assumption, however. Discussing the mean return on US
stocks since 1926, Brennan (1997) argues that ”... there are good reasons to doubt
that this parameter has remained constant for almost three quarters of a century
which has witnessed the most dramatic economic, technological and social change
of any comparable period in history” (Brennan, page 5). Observations like these
suggest that a full understanding of asset prices requires careful consideration of
the stability of the underlying fundamentals process.

This paper proposes a new approach to modeling stock market prices which
links structural breaks in the underlying dividend process with the assumption
that investors have imperfect information about the new dividend growth rate
after a break. Our approach is based on new empirical tests which suggest that
there are multiple breaks in the fundamentals process underlying US stock prices
and the paper considers their importance in the context of a simple asset pricing
model.

Structural breaks in the dividend process, if present, can affect stock prices in
two important ways.! First, like any shock to the endowment process, breaks will
affect future dividends. The main difference between breaks and ordinary shocks
to dividends is that the former imply rare level shifts and will remain in effect for
a long time. This is the ’persistence’ effect of breaks.?

Breaks also give rise to an important information effect which concerns how
much information investors have and how they form expectations about future
dividends following a structural break. One possibility, which we name the full
information case, is that investors instantaneously observe the new parameters of
the dividend process after each break. While this is an important benchmark,
it seems far from empirically plausible. Episodes linked to breaks in the dividend

process, such as the Great Depression, were associated with substantial uncertainty

1Stock prices are symmetrically influenced by breaks in the dividend process and breaks in
the discount rate process so breaks in the latter will have similar effects.

2This effect is not unique to structural break models and is also observed for Markov switching
processes, c.f. Cecchetti, Lam & Mark (1990).



over future prospects of the economy. Such uncerteinties, we argue, can better be
modeled by assuming that investors have incomplete knowledge of the new dividend
growth rate and undertake a recursive updating process which gradually provides
them with more precise growth estimates as new data emerges.

This imperfect information hypothesis has important empirical implications.
In the period following a structural break investors cannot rely on historical data
to produce an estimate of the new mean dividend growth rate. Large revisions
in investors’ parameter estimates are more likely to occur immediately after such
breaks since the ’learning clock’ runs fast and this produces a clustering in the
volatility of asset prices through their dependence on investors’ beliefs.? In contrast,
under full information a break in the dividend process will only show up as a single
outlier in the return distribution in the period where the break occurs. Figure 1
provides a simple illustration of the speed of the learning clock and the resulting
difference in stock returns under these two informational assumptions.

Earlier papers have suggested that instabilities in the fundamentals process
may be important to asset prices in the context of switches between recurrent
states. For example, Cecchetti et al. (1990) model switches between a boom and
a recession state in the endowment process underlying US stock prices. Evans &
Lewis (1995) also argue that investors in the foreign exchange market anticipate
infrequent switches between recurring appreciation and depreciation states and that
this can significantly affect the currency risk premium. By assuming that states
repeat and that switches do not represent clean breaks with the past, investors in
these models can use historical information to update their beliefs. This is a key
difference to the informational assumption made in this paper according to which
historical information cannot be used to predict future dividends after a break.
Under the latter scenario, revisions in investors’ parameter estimates will be larger
and volatility of asset prices higher immediately after a break as indicated in Figure
1.

Lewis (1989) provides the only previous analysis that explicitly considers the

3This effect is related to the general point made by Genotte (1986) that estimation risk adds
an extra factor to the fluctuation in asset prices. Genotte conjectures that turbulence in the
market return process will continue to have an effect on market prices after the original shock
because of the market’s learning process. Our analysis shows that this conjecture is correct when
asset prices are endogenously determined and depend on investors’ beliefs.



market’s learning following a break in the fundamentals process.* In her seminar
paper, Lewis considers the possible occurrence of a single breakpoint, the timing of
which is known to investors, and she argues that a break in the US money demand
equation during the early 1980s was at least partially responsible for variations
in the dollar exchange rate in the subsequent period. Qur paper generalizes the
idea of a single break to the case with multiple breaks and estimates the dates,
magnitudes and number of breaks.

The contribution of our paper is threefold. First, we present new empirical evi-
dence on breaks in the fundamentals process (endowment growth and the discount
rate) underlying US stock prices. In their own right these results have important
implications for modeling of stock prices. Second, we present a simple asset pricing
model which allows for multiple breaks in the fundamentals process and we sim-
ulate stock prices generated by this model both under full information and under
Bayesian learning. Earlier studies have considered switches between repeated states
or single structural breaks but no study has previously considered asset prices when
the fundamentals process is subject to multiple breaks and stock prices are deter-
mined endogenously with respect to investors’ learning following a break.’ Having
identified ez ante the particular historical episodes where breaks occurred in the
fundamentals process, we finally test the implications and new predictions of our
asset pricing model against US stock returns data around these episodes.

The plan of the paper is as follows. Section 2 presents the empirical evidence on

breaks in the fundamentals process underlying US stocks while Section 3 develops

*Other studies have indicated the existence of breaks in the fundamentals process. Barsky &
DeLong (1993) use a Chow test to identify a structural break in the volatility of dividend growth
around World War II.

5This combination is important. Genotte (1986) calls for a model where the market’s learning
affects the underlying return process, while Lewis (1989) conjectures that multiple break points are
needed to better explain movements in asset prices. Our findings suggest that both components

are important to asset prices.
8Several studies consider the effect of investors’ learning on asset prices. In some models

learning effects vanish asymptotically (Bray & Savin (1986), Timmermann (1993)), while in others
they are present at all points in time (Barsky & DeLong (1993), Brock & LeBaron (1996), Evans
& Lewis (1995), Timmermann (1996)). While this literature has yielded important insights, these
approaches may not identify the episodes where learning effects matter the most to stock prices,
however. We argue that incomplete information and learning effects are likely to be important to
understanding asset prices mainly after a structural break when there is considerable uncertainty
about future dividends.



an asset pricing model with breaks in the dividend process. Incomplete information
about the parameters of the dividend process and recursive learning effects are
introduced in Section 4. Section 5§ reports results from simulations of the model
under complete and incomplete information and compares the simulations to actual
US stock returns data. New predictions generated by our asset pricing model are
reported in Section 6, while Section 7 discusses the implications of our findings for
empirical tests of asset pricing models.

2. Structural Breaks in Fundamentals: Empirical Evidence
2.1. Structural Breaks in the Endowment Process

Standard equilibrium asset pricing models (e.g., Lucas (1978)) assume that non-
storable dividends from a single endowment source are the economy’s only source
of income. Thus these models do not take a stand on whether the best measure
of endowments is provided by aggregate dividends, output or consumption. We
follow Cecchetti et al. (1990) and investigate the evidence on breaks in all three
series measured on a real, annual per-capita basis over the period 1890-1994.7 Plots
of the time series are presented in Figure 2. The most significant feature of the data
is the high volatility of the dividénd and GDP series during the interwar period
and the lower volatility of the series after world war II.

To formally test for breaks in the endowment process we follow the procedure for
consistent estimation of multiple breakpoints in linear regression models developed
by Bai & Perron (1998). Let y; be a process which may have multiple breakpoints,
let x; be a vector of factors whose regression coefficients in the equation for y,
remain constant, and let z; be a vector of factors whose coefficients in the linear
regression of 4, on (%} z;)’ change at m discrete (break) points in time:

yt=x;,3+z;51 + Uy t=1,2,...T1
Y = %8+ 2,00 + u t=T1+1,.1% 1)

Y =XB+20mp1+u t=Tn+1,..T.
Here T is the sample size, T} < Ty < ... < Tj, < T and u; is a disturbance

"We use the same data sources as Cecchetti et al, with the one exception that an updated
series for the consumption deflator reported in Shiller {1989) is adopted to measure inflation.



term.® Bai and Perron develop tests for the consistent estimation of the number
and location of breakpoints (T%,...., Trs) and the parameters (8’ 8},...., 6, ,,). We
use their methods to investigate the presence of breakpoints in two sets of variables
that reflect different aspects of the endowment process. The first set is simply the
first-differenced logarithm of annual dividends, Aln(D;), output, Aln(GDP,), and
consumption, Aln(C;). Currently available econometric techniques do not facilitate
consistent estimation of multiple unknown breaks in the variance of a process. To
capture the possibility of a break in the volatility of the endowment process we use
the following volatility proxy: ¢ = |Aln(Y;)|, the absolute value of the log-change
in the endowment process, Y;.

Ideally one would like to test for breaks in the model that was actually used
by investors to forecast future values of the endowment process. However, in the
absence of agreements on a structural model for the endowment process, this is
difficult to accomplish. Instead we resort to testing for breaks in a simple first-order
autoregressive time series representation which captures the essential dynamics of
the data series. It is conceivable that this procedure overlooks break points that
investors with a larger conditioning information set were aware of historically.

Table 1 reports the number of break points identified by three separate criteria
used by Bai and Perron to test for structural breaks.® The double maximum test
(Dmax) lets the number of breaks be unknown and tests the null of no breaks
against the alternative of one or more breaks, while the two information criteria
are based on the penalized likelihood function. The number of breaks identified by
the tests varies considerably depending on which test is used and which series is
studied.’® Overall the empirical evidence identifies two breaks in the endowment

process, the first associated with the beginning of the Great Depression and the

8Bai & Perron (1998) consider two separate break point specifications. If lagged dependent
variables are included as regressors in (1), then wu; must be a martingale difference sequence
and hence cannot be autocorrelated. However, if no lagged dependent variables are included as
regressors u; can be serially correlated and heteroskedastic.

9A Gauss program provided by Bai and Perron was used in the estimations. In these tests
the minimum length between breaks was set to ten years in the case of the annual data and five
years in the case of the monthly data. The maximum number of breakpoints was set to five, and
we allowed for heteroskedasticity in the residuals.

0Given the considerable difficulty in estimating precisely the mean of these processes, we would

expect structural break tests based on A ln(Y;) to have considerably lower power than tests based
on the volatility proxy |Aln(Y;))|.



second associated with World War II.

Table 2 presents the parameter estimates from the breakpoint regressions. The
tests identify a single (imprecisely estimated) breakpoint in the drift of the processes
around the beginning of the Great Depression (1930), while, in the case of the proxy
for the volatility of the endowment process, the parameter estimates suggest the
presence of two breaks around 1930 and 1942. With a length of two to four years
the 90 percent confidence intervals for the dates of the breaks in the volatility proxy
are estimated very precisely for the dividend and output series. In contrast these
confidence intervals have a length of 16 and 22 years for the consumption series.

These are full-sample test results and one could argue that ez ante investors did
not have sufficient information to decide if a break had occurred in-sample.!! To
relax the assumption that investors could use full-sample information, we adopted
the procedure for real-time recursive monitoring of structural changes proposed by
Chu, Stinchombe & White (1996) (CSW). Let ¢ be the minimum length of the
data for which, under the null, the parameters are assumed to be constant: 8, =
By = ..= B,, and suppose that interest lies in testing for breaks in the process
under consideration (y:) at some time £ > «. CSW suggest estimating recursive
regressions of the type 3 = x}3, + & to obtain the following fluctuation detector’

Zn = K’DL_I/z(BN - IBL)i (2)
where D, = M 'WoM!, M, is a consistent estimator of ¥{_; z1x}/t and Vj is
a consistent estimator of the moment matrix E[S,S']/t with S, = Y;_, xs6;. By
monitoring the stability of the recursive parameter estimates, this real time proce-
dure can tell if a break has occurred. Figure 3 plots the 5 percent critical bound*?
against the recursive breakpoint statistic computed for the intercept and first order
autoregressive coeflicients in a regression of the log-differenced endowment series
against an intercept and a single lag. For all three endowment processes the plots
suggest that there is a break in the early 1930s in the simple autoregressive rep-
resentations.’®> This confirms the earlier finding that break(s) are present in the
endowment process and it indicates that these were sufficiently transparent so that,

110y this point see also Arthur, LeBaron & Palmer (1997) who argue that investors’ perceptions
of how stationary a world they live in can significantly affect the dynamics of asset prices.

12 Asymptotic bounds on |Z,¢| provided by CSW are used to compute the critical values,

13The fluctuation monitor works best for a reasonably large value of ¢+, the minimum sample
over which the parameters stay constant, In our calculations we set ¢ =25. This rules out a test

6



at least in principle, investors could have detected such break(s) in the light of the
historically available data.

As an alternative to testing for breaks in the endowment process one can at-
tempt to infer that investors believed a break had occurred by looking for breaks
in the dividend-price ratio.!* Dividend yields are strongly serially correlated so a
first-order autoregressive equation is again adopted in the Bai-Perron regressions
covering the period 1926-1997:1°

Yield; = -0.00020 +1.053Y7eld;—, (1926:1-1932:6)

(0.0010) (0.019) 32:3-32:9]
0.0117  +0.697Yield,,  (1932:7-1937:7) )
(0.0011) (0.025) (37:3-37:11]

0.0006  +0.985Yield,,  (1937-1997)
(0.0004)  (0.009)

Figures in square brackets provide 90 percent confidence intervals for the end-point
of the preceding period while figures in round brackets report heteroskedasticity
consistent standard errors for the estimated coefficients. Two breakpoints are iden-
tified by this procedure. During the first period (1926-1932) the dividend yield
increases dramatically. The second period (1932-1937) is characterized by a much
higher intercept term but also by less persistence in the yield compared to the
other two periods. The dates of the breakpoints are very precisely determined
with 90 percent confidence intervals shorter than ten months. In conjunction with
the earlier findings, the evidence of at least two breaks in the endowment process
underlying US stock prices seems strong.

2.1.1. Structural Breaks or Regime Switching?

An obvious alternative to the structural break interpretation of the endowment
growth series is to consider the data as the outcome of a finite-state Markov switch-

ing process as proposed by Hamilton (1989). To investigate this possibility we es-

for a second break, following the first break in the early thirties, before the mid-fifties. No such
break was found in any of the series.

Breaks in the yield could of course also reflect breaks in the discount factor, a point we will
have more to say about shortly.

15This regression uses monthly data on a twelve-month average of dividends divided by the
price of the value-weighted CRSP portfolio.



timated a two-state Markov switching model similar to the one used in Cecchetti
et al. (1990) and Evans & Lewis (1995). Suppose that the mean and variance of
the growth in the endowment process is driven by a latent state variable, s;:

A hIO/t) = Hs, + st (4)

Furthermore, suppose that s; follows a two-state Markov switching process with

constant transition probabilities:!®

Pr(s; = 1lsg—1=1)=pn
Pr(s; = 2lspm1=1)=p12 (5)
Pr(s; = 2|84-1 =2) =pa2
Pr(s: = 1|s4-1=2)=pnm.

Conditional on being in a given state the density of the log-differenced endowment

process is assumed to be Gaussian with state-specific mean (u;) and volatility (o;):

~(Aln(¥;) — p;)?
%

f(AIn(Yy)ls, = §) = ( hi=12 (6)

1
ﬁwo% exp
Summing across states gives the unconditional density which can be used in the
estimation of the model. Panel I of Table 3 reports the estimated parameters of
this model. A high volatility state (s; = 2) with a volatility estimate at least five
times higher than the estimate in the low volatility state (s; = 1) is identified for
all three endowment series. The two states are highly persistent and the estimated
probability of staying in a state exceeds 0.88.

To facilitate interpretation of the two states, inferred probabilities of being in
the low-volatility state are plotted in Figure 4. For the dividend and consump-
tion series the two-state Markov switching model associates the low-volatility state
with the post-war decline in volatility, while for the GDP data the high volatility
state is associated with the period between the Great Depression and world war II.

These state probabilities are indicative of breaks in the dividend and consumption

18We follow standard practice and assume a two-state process for s;. Cecchetti et al. (1990)
provide additional evidence on the fit of this two-state model to the data on the endowment
process.



processes. Of course the low power in distinguishing between breaks and rarely
repeated regime switches means that a recurring regime model cannot be statisti-
cally rejected in a sample as small and with as few breaks as ours. However, from
the point of view of considering the evolution in the endowment series across sev-
eral decades, as is required by the present value model, one can reasonably argue
that the data does not support imposing the tight structure implied by a Markov

switching model.

2.1.2. ARCH Models for the Endowment Process

The very proncunced patterns of heteroskedasticity in the three endowment pro-
cesses shown in Figure 2 and their very high variability around the Great Depres-
sion suggest that an autoregressive conditional heteroskedasticity (ARCH) model
may provide a good fit to the endowment series. To investigate this possibility we
estimated GARCH(1,1) models of the type

Aln(Y:) = p+yAIn(Ye) +e, (7)
hy = oo+ el + Brhea, (8)

where &; ~ N(0, hy). Parameter estimates for the three endowment processes are
reported in panel II of Table 3, and a plot of the conditional volatility, hs, is given
in Figure 5. Both the dividend and GDP series produce estimates of a; and 3,
that add up to a number greater than one, suggesting that the volatility processes
are mildly explosive and that the second moments of these series do not exist. This
does not appear to be a reasonable description of the data in Figure 2 and the
strong persistence in the conditional volatility seems entirely due to the very high
volatility in the early thirties. Volatility after the second world war also declines to
a level much below what one would expect if the GARCH model provided a good
description of the data. Rather, the extremely low post-war volatility and the high

volatility in the thirties are suggestive of a structural break in the series.

2.2. Breaks in the Discount Rate Process

The present value model implies that stock prices depend symmetrically on future

values of the endowment and discount rate processes, a point forcefully made by



Campbell & Shiller (1988). It follows that breaks to the discount rate process

would have similar effects on stock prices as breaks in the endowment process and

thus have to be investigated.

A large empirical literature in finance models risk premia on stocks as a function
of regressors such as lagged interest rates and default premia, see, e.g., Breen,
Glosten & Jagannathan (1989) and Whitelaw (1994).7 We follow this literature

and estimate regressions of the type

p, = a+ Bl + ByDefi1 + &, )

where p, is the excess return on stocks over and above the return on a l-month
T-bill, I;_; is the lagged 1-month T-bill rate and Defi_; is the lagged default
premium, computed as the difference between the yields on BAA and AAA-rated
portfolios of commercial bonds. Post-war data from 1954-1997 rather than data
for the longer period 1926-1997 is chosen in order to match our results with those
reported in the existing literature and to account for the fact that the T-bill rate
process changes after 1953 following the Accord which allowed interest rates to vary
freely.!® Monthly excess returns on the value- and equal-weighted CRSP portfolios
are used in the regressions. The former portfolio puts more weight on large firms
than the latter does and we use both portfolios to investigate the robustness of our

results. For the value-weighted portfolio the regression results were as follows:*®

py= 0.043  -22.23L 4 +9.46 Def;—; 1954:1-1962:10

(0.020) (5.71) (28.92) [62:5-63:3)
0.035 -13.24L_; +20.31Def.;  1962:11-1974:9

(10)
(0.013) (2.68) (16.17) [72:2-77:4]

0.012 -4.00l,., +18.76Def,_y  1974:10-1997:12
(0.007) (1.24) (7.14)

17 Another common regressor is the dividend yield. Since this variable would also be affected
by breaks in the discount rate process and since doubts have been raised about the suitability of
using this regressor, we exclude it from the model.

18Hence investors would conceivably have used a different forecasting madel prior to our sample
period. Note that this need not imply a break in the discount rate process at that point in time.

19We present the results for madels with two break points. The criteria identified between
one and four breaks, and the model with two breaks had well-defined estimates and confidence
intervals.

10



while for the equal-weighted portfolio we obtained the following results:

p.= 0011  -4.03L_;, +21.51Def;, 1954:1-1969:5

(0.018) (3.54) (26.69) [69:2-69:8]
-0.164 4+1.205;_; +185.80Def—;  1961:11-1975:1 (11)
(0.044) (5.01) (34.10) [74:10-75:4]

0.011 -6.08l,.; +34.04Def;  1975:2-1997:12
(0.009) (1.56) (9.09)

For both portfolios a break is identified around the oil price shocks in the mid-
seventies, while the timing of the first break differs across the two portfolios. Note
that the sensitivity of excess returns with respect to the default premium variable
is highest in the interval from the sixties to the mid-seventies. There is also evi-
dence that the sensitivity of returns on the value-weighted portfolio with respect
to the short interest rate has declined markedly over time while no such effect is
present for the equal-weighted portfolio. This difference between the small and
large firms’ conditional return equation is not surprising in view of these firms’
different sensitivity with respect to changing economic conditions. A conservative
interpretation of the data suggests that a strong third candidate for a breakpoint
in the fundamentals process is 1974-75.

This evidence is also consistent with notions of a break occurring in the US
economy sometime during the early-to-mid seventies. Although the analysis of
the endowment data failed to identify such a break, it should be recalled that it
relied on annual data and may have missed some breaks. Furthermore, Garcia &
Perron (1996) find evidence of a break in the inflation rate around 1973 and they
report that the volatility of inflation almost triples at this point.?’ Breaks in the
inflation process may be indicative of a break in the endowment process according
to Fama (1981) who argues that there is a correlation between shocks to inflation
and unobservable shocks to future real economic growth.*

2Garcia & Perron (1996) also report evidence of a second regime switch in ex-post, real interest
rates around 1979-80, but their Table 2 suggests that there is only a single switch in the inflation
rate process.

2'Ultimately what really matters to asset prices is agents’ perceptions of whether a break has
occurred. Studies of the productivity of the US economy by, e.g., Clark (1978) and Norsworthy,
Harper & Kunze (1979) have also reported evidence of a slowdown in the productivity growth
of the US economy around 1973 which could not be attributed to standard economic factors

11



3. Stock Prices Under Full Information and Breaks in 1-:i'1e Dividend
Process: A Theoretical Model

The empirical evidence in Section 2 suggests that a model of US stock prices must
account for a number of important features of the underlying fundamentals process.
First and foremost there appear to be multiple breaks in fundamentals. Common
to the Great Depression, the second world war and the oil price shocks of the
mid-seventies is that these events were largely unforeseen, yet were rapidly recog-
nized once they had occurred. Furthermore, these events appear to be sufficiently
unique to make it unlikely that they are repeated draws from the same (two-state)
switching process.

In this section we propose a simple asset pricing model which accounts for these
aspects of the fundamentals process. Compared with the Markov switching model
of Evans & Lewis (1995) we relax the assumption of recurring regimes whose tran-
sition probabilities are driven by a first-order Markov process. To acknowledge the
uniqueness of the breaks we instead assume that, after each break, the parameters
of the dividend process will be drawn from a continuous distribution.??-%3

The purpose of the model is not to provide an empirically accurate description
of dividends. Like the existing models in the literature it should be thought of as
a stylized model that allows us to establish some basic properties of stock prices
under multiple breaks in the dividend process. Real dividends (Dy) are assumed

to follow a geometric random walk process:

ln(Dt+1) = ]-n(Dt) + lut+1 + Ut+1‘€t+1) (12)

where f1,,, is a drift term, 044y is the volatility parameter and g1 ~ N(0,1)is a
standard normally distributed innovation term. Define s;41 as a ’bresk indicator’
such that s;4; = O implies that there is no break in the dividend process, while

and hence indicate that a break was perceived to have occurred in the US economy in the early
seventies.

22 As argued previously, breaks in the discount rate will have symmetric effect on asset prices
and can be analyzed accordingly. Alternatively, breaks can be thought of as occurring in the
differential between the discount rate and the growth rate, r — g.

23This also guarantees that parameter uncertainty will not be eliminated even asymptotically.

If the data were generated by a finite-state Markov process, investors would eventually learn the
parameter values arbitrarily well, although of course they need not know the true state of the

economy.

12



if $y41 = 1, a break has occurred in period t + 1. Also let Pr(s;+; = Olegyr) = 7
and Pr(s;y1 = lleg1) = 1 — 7, be the probabilities of no break and a break,
respectively, for all possible realisations of €11, and assume that the process for
841 is independently and identically distributed and also independent of the es.
Then the process for (y,,,, 07,;) is given by

Pr(pep, = b, 044y = 0flsea =0) =1 (no break) (13)
Pr(ppy <708, ST st =1) = F(B,7%) (break)
where F(.,.) is the bivariate cumulative density function for the new values of p,,,
and o?,;. Under these assumptions we have Ey[D¢11/Di|sty1 = 0] = exp(p, +02/2)
= (1+ g¢), one plus the mean growth rate conditional on no break in the dividend
process.
If a break occurs in the dividend process we assume that the new mean growth
rate, gr+1 = exp(Uer1 + 02y1) — 1, is drawn from a uniform density U(gs41) defined
on the support [g,7]. Then equation (13) simplifies to

2
Pr{exp(pey + 52) = exp(ue + E)lsen =0) =1 (no break)
a

2 e
Pr(exp (31 + 721) < 14 glse = 1) =22 (break)

(14)

for all g € [g,7]. The possibility of breaks in the mean growth rate is the only
non-standard part of the specification of the dividend process and the innovation
term is homoskedastic and serially uncorrelated. The sort of changes in the mean
dividend growth rate that we have in mind with this dividend specification are rare
structural breaks like the ones identified in the empirical section.

To focus on the implications for stock prices of breaks in the dividend process
and the associated revisions in investors’ expectations about future dividends, we
consider the simplest possible asset pricing setup. Stock prices (F;) are assumed to
be determined by a present value relation based on a representative, risk-neutral

investor:

1
B = mEt[PHl + D] (15)

where 7 is the (constant) discount rate. Hence fluctuations in stock prices are
completely driven by shocks to dividends and revisions in investors’ beliefs. E, is

the expectation operator conditional on investors’ information set at time t {Q;}
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which consists of {Ds, Di—1, ..., Ps, Bi—1, -, 8¢, St-1, ..}. Thus investors observe if a
break has occurred in a given period. In practice investors may either have superior
information that allows them to anticipate a break or, conversely, only gradually
realize that a break has occurred. The advantage of our model is that it allows us
to study in a very ’clean’ way the behaviour of stock prices around breaks.

In the appendix we prove that, under full information and with breaks in the
dividend process, the stock price is given by the following proposition:

Proposition

Suppose that each period the mean growth rate of the dividend process breaks with
probability 1 — 7 and that, after a break, the new mean growth rate is drawn from
a uniform density with support [g, 7], where § < r. Then, under full information,
the rational expectations stock price formed according to the present value model
(15) is given by

_f e+ (14 ge)
N e ey ) o, (16)

where a is a constant defined by

(1-m) (1 +5)F—-g) +7A)

&= G-g-(1-mB
and
4 _-4f—£+2@—g)_u+ﬂ@—g4j1+ﬂﬂn1+r—wu+m
- 2 w2 3 1+r—n(l+7)
1(,14r 1+r—n(i+g)\ | _
B = ;r_(( m )ln(1+r—7r(1+fq')>+g_g>

In the special case where 7 = 1 (fixed mean growth rate) the formula for stock
prices simplifies to P, = Ll—:’f’_{}:&, while when 7 = 0 we have P, = “—iﬁ(—;ﬁ?)ﬁz&.
Notice the tradeoff involved in the choice of 7, the parameter determining the
breakpoint frequency. If 7 is low, breaks occur frequently but their effect tends
to be smaller since they are expected to influence dividends over a shorter future
horizon. If 7 is close to one, breaks will be rare but they also have a much larger

effect when they do occur.
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4. Stock Prices Under Incomplete Information and Recursive Learning

The solution to the stock price in Section 3 was derived under the assumption
that, at each point in time, investors know the true mean of the dividend growth
rate (g;). This assumption becomes less plausible in the presence of breaks in the
dividend process. After a break investors no longer have access to a large sample
of historical data points that can provide them with a precise estimate of the new
parameters of the dividend process. If investors do not know the true parameter
values it is plausible to assume that they attempt to learn the current mean of
the dividend growth rate through efficient use of information after the break. To
make investors’ estimation problem tractable we assume that only the drift of the
dividend process () is unknown and subject to breaks, i.e. 07 = 02 is a constant
known by investors,?

We consider the learning process of a single, representative investor. As argued
by Arthur, LeBaron & Palmer (1997) this makes the results stronger since they
do not depend on arbitrary assumptions about differences in beliefs across agents.
These authors go on to call for simpler asset pricing models with learning that
only depend on a minimum of parameters whose values can be easily interpreted
and our model is designed to do just this: Investors only have to learn about a
single parameter (the dividend growth rate) whose value is drawn from a known
(uniform) distribution.

Assuming that investors have full information about u, or that they only have
information about this parameter through past dividend observations are equally
implausible. To account for any additional information investors may have that
provides them with a more precise estimate of y,, we simply assume that they
observe the dividend drift with less noise than if they only observed the recorded
dividends. Suppose that the noise in the temporary component of the dividend

growth rate can be decomposed as follows:

Aln(Dy) = p,+o(ser: + y1- ¢2€2,t)

#There are two reasons for making this assumption. First, as argued by Merton (1980) and

Brennan (1997), the mean parameter of the fundamentals process is typically imprecisely esti-
mated in small samples, while the volatility can be more precisely estimated by, e.g., sampling
data more frequently. Secondly, this assumption allows us to derive an explicit solution to the
estimation problem under recursive learning.
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&+ o1 —9ley (17)

where €14 and £ are two standard normally distributed variables that are mutually
independent. Investors are assumed to observe {; so that ¢ € [0;1] is a constant that
reflects the precision of investors’ information about the dividend process. Values
of 4 strictly less than one increase the precision of investors’ estimate of p,, the
variance of which is /20%/n, where n is the number of observations on dividends
since the most recent break. The full information model of section 3 is a special
case of this setup obtained when ¢ = 0.

Investors use an efficient Bayesian updating procedure and are interested in
calculating the mean dividend growth rate, A(t,) = exp(p,+0?%/2) to predict future
dividends. Let &, = (£, &1, s—ny1)> Where 7 is the number of observations
from the dividend process since the most recent break. Using the assumption that
£, is normally distributed, the likelihged function for p, conditional on &, is given
by L(py; &) = (1/ 2myta? fn) exp(_zi ;2;,.‘ ), where & = (1/n) o Eos- Lot i)
be the prior distribution for p,, ;. Then the expected value of the dividend growth
rate follows from Bayes’ rule:

S M) Ly &4 Vo) dis
BA(m)led = S Lipg; &) (#c)dﬂt

This expression accounts for estimation error which in turn, and as pointed out

(18)

by Genotte (1986), will affect asset returns over any discrete-time interval.®® Since
investors know the structure of the problem, the prior in our model equals the
unconditional density for the mean dividend growth rate, i.e. the indicator function
Iy scaled by 1/(7 — g). The mean growth rate is bounded between g and 7 ; 1+g
< exp(p; + 0%/2)< 1+ 7, so that the true value of the unknown drift, p,, lies
between the following bounds: L = In(1 +g) — 02/2 < py <In(1+7) — ?/2 = 1.
It follows that the expression in the numerator of (18) is given by

1/(3 - 9) —(E )

1 o2
—)d
S ngn{exp 2 it

25This Bayesian learning rule is equivalent to a rational expectations scheme in which investors

use information efficiently but do not observe the true growth rate after a break: investors start
with an unbiased prior and update their beliefs efficiently, c.f. Bossaerts (1997).
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while the expression in the denominator of (18) reduces to

1/(g—g i py)*
d
2mj: 9'33’;1-1/ 21{ ‘72/“ 2yt

_ 1 E-{; _ -_E:
= ﬁ—g(q"owxﬁ) q"w/ﬁ) (20)

and the expected dividend growth rate is given by the ratio of (19) over (20). The

simplicity of the estimation problem confronting investors guarantees an explicit
solution to (18) and is important for the later simulations which are based on a
large number of computations of the expected growth rate. Stock prices under
Bayesian learning are formed as the present value of the predicted dividends along
the lines leading to the Proposition in Section 3.

Our model is closely related to the analysis of Lewis (1989) which considers the
market’s forecast error process arising from a once-and-for-all break in the drift
parameter of the first-differenced fundamentals process. Investors learn gradually
about the shift through a Bayesian updating rule and, as in our model, also know
the time where the fundamentals process may have changed. Lewis analyses sepa-
rate scenarios depending on whether the new drift parameter is known or unknown
to investors. Compared to the case where the market knows the drift after the
switch, Lewis finds that learning evolves much more slowly when investors have
to estimate this parameter. This observation will be important to our simulation
results.

It is also instructive to compare our model to the dividend growth rate process
and the learning problem analyzed by Barsky & DeLong (1993). These authors
present evidence that the long-run movements in the price-dividend ratio of US
stocks can be explained by investors’ projections of future dividends modeled as
a long moving average of their own past with geometrically declining weights. To
project future dividends, investors in our model in stead put the same weight on
dividend observations following the most recent break and zero weight on observa-
tions prior to a break.
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5. Simulations of the Model

Structural breaks introduce non-linearities in dividends and stock prices and recur-
sive learning effects introduce non-stationarities in returns. This rules out standard
econometric tests of our model, c.f. Bossaerts (1995).26 For this reason we evalu-
ate the model by simulating dividends according to equations (12) - (14) and by
forming stock prices according to the formulae in sections 3 and 4. The purpose of
this analysis is not to calibrate the moments of stock returns but rather to study
some of the qualitative features associated with breaks and different models for
investors’ expectation formation. To focus on one of the most commonly studied
time horizons, we simulate dividends and stock prices at the monthly frequency.

The following set of dividend parameter values are assumed in the experiments

r =0.075,3 = 0.06,g = —0.02,0 = 0.11,m = 0.995,9 = 0.10. (21)

The first four parameter values are annualized so that the annual real discount rate
is 7.5 percent, and the minimum and maximum values of the dividend growth rate
are -2 and 6 percent, respectively, yielding an average growth rate of 2 percent per
annum and a volatility of 11 percent. In real terms this matches the endowment
data over the period 1890 - 1094.27 The choice of interval for the dividend growth
rate is based on our assumption that the dividend growth rate is drawn from a
uniform distribution with support [g; 7], such that 7 < 3. The value of 7 means
that the drift of the dividend process on average changes about once every twenty
years. In equation (17) 1 is set equal to 0.10 and hence we assume that investors
have additional information that allows them to reduce the standard error of their
drift estimate by 90 percent. This makes the informational assumptions - that
investors have quite precise, though not perfect, information about the drift of the
dividend process - more plausible. Results from 5000 simulations for a sample size

26 Bossaerts provides a comprehensive analysis of the effects of learning on econometric tests of
market efficiency when returns either follow an exogenous process or investors believe they are
drawn from a stationary distribution. In our model learning effects die out gradually, only to

re-emerge after a subsequent break.
27T here is some evidence of left skew and excess kurtosis in the endowment data. However, the

strength of this evidence varies greatly across the three endowment series analyzed in Section 2
and appears mainly to be the result of their changing volatility. For simplicity our simulations
assume no breaks in the volatility and we do not attempt to calibrate the higher order moments
of the endowment process.
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of 800 observations are reported. The historical returns used as a benchmark for
the simulations comprise 72 years of monthly data or 864 observations.

Figure 6 plots excess returns generated by a particular simulation. In the up-
per row the first window presents excess returns under full information while the
second window shows excess returns under Bayesian learning. Since dividends are
identical for the two returns series the difference between the plots is entirely due
to differences in investors’ growth estimates, plots of which are provided in the
second row of Figure 8. For this particular simulation there were two changes in
the dividend growth rate which ranged from minus one to a little over two per-
cent. At the beginning of the sample the growth estimates under Bayesian learning
are well above the true growth rate but they quickly decline towards the actual
growth rate of just below zero. Following the changes in the actual growth rate
around observations 150 and 200 the estimated growth rates become very volatile.
Volatility clustering in returns is visibly present in the simulations under learning
around these periods. In contrast, when an outlier is observed in the excess return
series under full information there is no tendency for this to carry over as higher
volatility in subsequent periods.?®

Table 4 reports moments for the monthly excess returns and the simulated
data. Using data on the value-weighted NYSE portfolio over the period 1926(1)
- 1997(12) we obtain the results reported in the first column labeled 'Data’. As
documented in many previous studies, monthly stock returns are characterized by
high volatility, skewness, fat tails, a small degree of serial correlation and strong
volatility clustering, c.f. the significant ARCH effects.

Consider next the simulated data under full information and no breaks (7 = 1).
This model is unable to match the high volatility, skewness and fat tails observed
in the data. This simply reflects the common finding in the asset pricing literature
that - in the context of a stationary dividend growth model - dividend variations
alone do not seem to fully explain movements in observed stock prices.

Introducing breaks, but maintaining the full information assumption, the volatil-

ity of stock returns increases from 3.2 to 3.9 percent and the skewness and kurtosis

2 Notice that investors’ growth estimates may stay on one side of the true mean growth rate for
sustained periods of time, as evidenced by the growth estimates below the true mean growth rate
between observations 250 and 500. This in turn gives rise to mean reversion in returns measured
over long horizons.
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also go up dramatically, even exceeding the estimates for US returns. This hap-

pens because of the outliers in stock returns observed after a break in the dividend
growth rate, c.f. Figure 6. Since isolated outliers is the opposite of volatility
clustering, this model cannot replicate the ARCH effects observed in the data.
However, the comparison of the full information model with and without breaks
clearly demonstrates the importance to the distribution of stock prices of allowing
for breaks in fundamentals.

Next consider stock returns under Bayesian learning. Under this scenario the
model generates average volatility of 4.4 percent, close to the sample estimate of
around 5.5 percent. Compared with the full information case, Bayesian learning
decreases the skewness and kurtosis to a level closely in line with the data. It is
easy to understand why: Under full information a jump in the dividend growth rate
is instantly recognized by investors and shows up as a major revision in the stock
price. In contrast, under Bayesian learning, new dividend information after a break
will only gradually be incorporated into the price and is weighted against investors’
prior beliefs. This gives a more gradual price adjustment and hence decreases the
skewness and kurtosis of returns. Despite this gradual adjustment, the Bayesian
learning model does not seem to generate much full-sample serial correlation in the
level of returns.®

Importantly, the Bayesian learning model also seems capable of generating sub-
stantial volatility clustering. Between 60 and 70 percent of the simulations generate
significant ARCH effects. To measure the persistence in the conditional volatility
of excess returns we sum the coefficients of the squared residuals in an ARCH(12)
regression of squared residuals on a constant and twelve lags. Under full informa-
tion and breaks the median value of the persistence estimate is -0.03, while under
Bayesian learning this figure increases to 0.31. This compares with an estimated
persistence of the conditional volatility in the value weighted returns data of 0.76
for the period 1926 - 1997, and 0.47 for the period 1933-1997.

Although we consider the learning process of a single, representative investor,
there are some clear parallels between our simulation results and those of Arthur,
Holland, LeBaron, Palmer & Tayler (1997) (AHLPT). In the context of simulations

2There is some evidence of first order serial correlation in the actual returns data. However,
this is likely to reflect non-synchronous trading effects as opposed to genuine predictable patterns
in returns. For this reason we do not attempt to replicate this feature of the data.
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from an artificial financial market inhabited by heterogenous traders, each of which
chooses from a collection of linear forecasting rules but switches between rules
over time, these authors demonstrate how two very different regimes can arise.
A regime where investors only revise their beliefs very slowly closely resembles
a rational expectations state. In strong contrast, in the ’complex’ regime where
investors revise their beliefs at a faster rate, endogenous expectation effects become
important and volatility clustering may occur.

Similar effects arise through an entirely different mechanism in our model. After
a structural break occurs, investors cannot use historical information and hence will
need to revise their beliefs more frequently. At this point in time, the "learning
clock” tuns fast as new information leads to large changes in dividend growth rate
estimates. This resembles the ’complex’ regime. However, after further information
has cumulated, the precision of investors’ growth estimate has increased so the
marginal benefits from updating declines and the equilibrium resembles the rational

expectations state in the analysis of AHLPT.%0

6. New Empirical Predictions

Two conclusions can be drawn from the simulations in the previous section. First,
independent of how much information investors’ hold, breaks in fundamentals af-
fect the distribution of stock returns in important ways and may provide the key
to understanding the kurtosis and fat tails in the observed data. Furthermore,
imperfect information and gradual updating of investors’ beliefs after a break seem
important components to an explanation of the clustering of volatility observed in
US stock returns.

Ultimately new insights from our modeling approach can only be gained if it
results in new, testable predictions. New predictions from the asset pricing model
with breaks originate from the observation that, under a recursive learning scheme,
investors’ growth estimates are more volatile immediately after a break and become
less volatile as more information arrives. Since the stock price is a convex function
of the growth estimate, the recursive learning model predicts volatility clustering

30Notice also that while in AHLPT’s model the equilibrium is determined by the frequency at
which agents change their forecasting model, in our setting the type of equilibrium varies over
time as a result of exogenous shocks to the dividend process and is determined by how far away
from a break point the market is.
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and possibly also serial correlation in stock returns after a break in the dividend
process has occurred. Serial correlation in returns in the aftermath of breaks in the
dividend process may arise because of the possibility of large revisions in investors’
growth estimates immediately after a break.3! While this serial correlation can
be detected ex-post by a researcher with access to the complete sample of stock
returns, conditional on investors’ parameter estimates at a given point in time stock
returns are not predictable in-sample.

These propositions are illustrated in the upper row of Figure 7 which, for the
simulation used to construct Figure 8, plots the time series of a twelfth-order ARCH
test. To track evicence of local volatility clustering in returns we use rolling re-
gressions with a window length of 120 months, or ten years of data. There is no
evidence of ARCH effects in the simulated returns from the full information model
shown in the first window of Figure 7. A very different picture emerges from the
second window in Figure 7 which plots the estimated conditional volatility under
Bayesian learning against the five percent critical value of the test statistic. Af-
ter the occurence of the breaks around observations 150 and 200 there are strong
indications of volatility clustering.

To track local serial correlation in returns we calculate Ljung-Box statistics
for twelfth order serial correlation, again using rolling regressions with a window
length of 120 months. In this particular simulation local serial correlation is not
detectable. Most likely this can be attributed to the use of a high order test for
serial correlation and the resulting loss in statistical power.®

The novelty of the first prediction, concerning the timing of the volatility clus-
tering in stock returns, is that it provides an ez ante identification of the point
in time, namely after a break in the dividend process, where ARCH effects can
be expected to occur in stock returns. The second prediction, serially correlated
returns after a break, is also novel. This implication of the model is not driven
by the usual risk premium story but is a consequence of large parameter revisions
following a break.

To test these predictions on US data, Figure 8 plots monthly excess returns for
the value-weighted portfolio well as the twelfth-order LM and Ljung-Box statistics

31T} ese are intuitive arguments. Timmermann (1997) proves formally that parameter revisions
can generate serial correlation and volatility clustering in stock returns.
825 fourth-order Ljung-Box test identifies no serial correlation under full information, but shows

strong serial correlation between observations 150 and 300 under Bayesian learning.
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for ARCH and serial correlation based on a 120 month rolling window adopted to
the returns data. Again we use a high order (12) of the diagnostic test since in
practice investors’ knowledge of breaks are likely to be less precise than what was
assumed in the theoretical model in Sections 3 and 4. The conditional volatility
of excess returns is very high around 1932 and 1942 and again in 1975.3% There is
evidence of serial correlation in excess returns over the period 1933-38 and again
in the early seventies. The coincidence of the periods for which the analysis in
Section 2 identified breaks in the endowment process and periods with either high
serial correlation or volatility clustering in stock returns is quite remarkable.3*
We finally pursue a testing strategy which inspects the data in ”event time” and
tests for systematic cross-sectional effects. In our case the event is a break in the
fundamentals process so we line up the data in 'break point time’ or, equivalently, in
"learning time’ since a structural break also restarts the learning clock. A significant
implication of our asset pricing model is the high but declining volatility in returns
after a break point. To test if this implication is confirmed in the data we estimate
volatility in ’learning time’. Let & be an estimate of the volatility of stock price
changes in month t based on daily observations within the month. Also let 7; =
t—T;, (T; < t < Tit1) be the time since the most recent break date, T;. 7 is then
a learning clock and 7 = 1 one period after a break, 7 = 2 two periods after a
break and so on. A simple estimator of the squared volatility of asset prices after
T learning periods is given by
g 52 (22)

Tyt

M3

1
mia

where m = 3 is the number of breaks and the average is computed across the three
break points 1932:1, 1943:1, 1974:9 identified in our sample.®
Figure 9 provides a plot of the volatility estimate along with a smooted cubic

33We also computed the conditional volatility from a GARCH(1,1) model fitted to excess returns

and found high volatility during the early thirties and the period after 1974.
34We would not necessarily expect these points to coincide exactly since investors could either

have anticipated a breakpoint (if they have superior information) or failed to immediately identify

a break in real time since historically they did not have access to the full sample information.
35 Although the confidence intervals for the timing of the break points identified in Section 2

were reasonably narrow, some uncertainty remains about these dates. Fortunately the pattern in
the relationship between return volatility and learning time is quite robust with respect to the
exact timing of the break dates.
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spline. The standard error of investors’ estimate of the mean dividend growth rate
after a break declines at rate 1/7. If learning effects are important to stock prices
after a break we would expect to find a similarly declining pattern in the volatility
of returns. Although clearly our simple volatility estimate displays considerably
vaniation from month to month, the evidence suggests that, consistent with theory,

return volatility declines systematically as the learning clock increases.

7. Conclusion

Present value models have not fared well in empirical tests of US stock prices
and are typically rejected in formal tests, c.f. Campbell & Shiller (1987). Our
paper offers two reasons for these findings. First, present value models are usually
tested jointly with specific assumptions about the process generating dividends
and discount factors. For example, dividend growth and discount rates are often
modeled as stationary, low-order auto regressions without breaks. Specifications
which do not require that the same fundamentals process stays in effect over several
decades may do better empirically. Moreover, once less structure is imposed on
dividends, forecasting future dividends becomes more difficult for investors and
our simulations indicate that this enhances the role in explaining stock returns
played by variations in investors’ beliefs. Both effects pull towards explaining
Campbell and Shiller’s finding that the price-dividend ratio implied by the present
value model without breaks is less volatile than the observed price-dividend ratio.

Since structural breaks appear to be present in the fundamentals process un-
derlying US stock prices and since such breaks can significantly alter the dynamics
of prices, our results bring into question the practice of testing asset pricing mod-
els based on full-sample information. Instead it may be necessary to separately
consider asset prices around break points and during times further away from such
events. Indeed, when we adopted procedures from the event study literature and
tested properties of asset prices lined up in “learning time’, we found interesting
patterns in stock price volatility related to the distance from the most recent break.

Qur paper also has implications for the finance literature which analyses the
effect of learning and parameter estimation risk on optimal asset allocation. For
example, Klein & Bawa (1977) extend the standard mean-variance optimization
problem to cover the case where asset returns are joint normally distributed but

have unknown parameters which investors must estimate. More recently Kandel &
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Stambaugh (1996) derive the effects of learning on asset allocation when returns
on the risky assets are partially predictable. Likewise, in the context of a simple
continuous time model where the drift parameter of the underlying asset price
process is unknown to investors, Brennan (1997) shows that learning effects can
lead investors to act in a more risk averse manner than in the case without learning.
Those studies conclude that learning effects can significantly affect investors’ choice
of optimal portfolio weights even when the process generating returns on the risky
asset is exogenous. Our simulation results suggest that it is also important to
consider the equilibrium effects of learning as investors’ learning after a break can

alter the risk and return characteristics of the underlying assets very considerably.

8. Appendix

Proof of the Proposition

Suppose that the solution for P; takes the form P, = v(g¢) D; for some univariate
function v(.). Taking expectations conditional on information at time t it follows
from (12) - (15) that
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where U(g41) is the uniform distribution with support [g; 3], #(.|o7) is the normal
density function with mean zero and variance g7, and the last equality follows by
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using the independence of €11 and gia and integrating out EH.l.- We remind the
reader that g, = exp(u, + 03 /2). The first term after the last equality sign in (A1)
accounts for the expected value of (Dey1 + P,41) conditional on no break in the
parameters of the dividend process while the final two terms are the conditional
expectations of Dyy1 and Py conditional on a break in the dividend process (st41 =
1). Dividing through by (D;) in equation (Al} and simplifying we get

Q+r—m(l+e))7(g) = 7(1+g0)+ 1 =m(+Eilgeraforn = 1))

+(1—-m / (1+ Ger1)7(ge41)AU (ge41)- (A2)

Next multiply by (1+g.)dU(g:)/ (147 — (1 + g;)) and integrate over the interval
g9
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Under the assumption that the underlying density U(.) does not vary through time,

we must have that
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This gives an equation which can be used to assess the integral in (A3):
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E , (A3) simplifies to

Using that j dU(g:) =
9
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We need to evaluate f Tﬁﬂmdgt and f H—r{ﬁmdgt To do so change variables

by defining v, = (1 + gt) so dy; = dgy, and notice that

z z a
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c.f. Gradshteyn & Ryzhik (1994). Letting a = (1 +r), b = —, we get
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After some algebra we see that
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and hence from (A3)
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such that the price-dividend ratio (g;) is given by
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which is the expression we were seeking.
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Table 1
Estimated Number of Break Points

Break Point Criterion
Process Do AIC BIC
Aln(D;) 2 2 1
Aln(GDP;) v 2 1
Aln(C)) 1~ 1 1
IAIn(D)! 24 2 2
IAIn(GDP))I 2% 2 2
IAIn(C)H! 1+ 2 1
Yield, 2% 3 2
Value-weighted return  4*** 1

w N

Equal-weighted reum  1*** 1

Note: this table reports the number of breakpoints detected by three different test procedures discussed in Bai and
Perron (1996), The results are based on univariate auto-regressive specifications with an intercept term and a single
Jsg of the dependent variable as regressars. Dy, GDP; and C, ase the annualized, real per-capita dividends, GDP
and consumption in the US measured over the period 1890-1994. Yield, is the monthly dividend yield measured over
the period 1926-1954, The excess return regressions use an intercepl, the l-month T-bill rate and the default premium
as regressors over the period 1954-1997. D is the double maximum test statistic which lets the number of breaks
be unknown and tests the null of no breaks against the alternative of one of more breaks. AIC and BIC are the
Akaike and Bayesian penalized likelihood model selection criteria which account for the automatic improvement in fit
resulting from adding increased numbers of parameters in the model

* indicates significance at the 10 percent critical level while *+* indicates significance at the 1 percent critical
level. These critical levels apply to the reported number of breaks chosen by the D s criterion.



Table 2

Parameter Estimates from Breakpoint Regressions

1. Growth in Endowment

Aln{Dy) = 0.002  +0.280AIn(Div,_;)  from 1890 to 1937
0.016) (0.125) [1890-1994]
-0.006 -0.051An(Div.;) after 1937
(0.015) (0.156)

Aln{GDP,) = 0.022 -0.255AIn(GDP,;) from 1890 to 1930
(0.008) (0.183) [1917-1943])
0.012  +0.450AIn(GDP, ;) after 1930
(0.006) (0.105)

Aln(Cy) = 0.027 -0.444AlIn(C,_1) from 1890 to 1930
(0.006) (0.130) [1919-1941]
0013  +0.341AIn(Cr) after 1930
(0.005) (0.132)

1I. Volatility Proxy

IAIn(D )l = 0.096 -0215IAIn(Divig)l  from 1890 to 1931
0.017) (0.158) [1929-1933)
0246 -0394AIn(Div, ()l 1932-1943
(0.032) (0.133) [1942-1944]

0.016 +0.561AIn(Div,_{)| after 1943
(0.014) (0.234)
IAIn(GDP)! = 0.043  -0.226IAIn(GDP,)| from 1890 to 1929

(0.007) (0.165) {1928-1930]
0.106  -0.212IAIn(GDP,;)l 1930-1943
0.016) (0.164) [1942-1944]
0.028 -0.007IAln(GDP,1)! after 1943
0.006) (0.166)

AIn(C)I = 0.069 -0.636lAIn(C,y)l  from 1890 to 1908
0.009) (0.166) [1900-1916)
0.036  +0.156AIn(C,_y)l 19091946
0.007) (0.145) [1935-1957)

0.024  -0.049IA In(C, ) after 1946
(0.005) (0.180)

Note: these results are based on the breakpoint estimation procedure provided by Bai and Perron (1996). D, GDP,
and C| are the real, anhualized per-capita dividend, GDP and consumption series for the US over the period
1890-1994. Standard errors appear in brackets under the parameter estimates. Square brackets provide 90 percent
confidence intervals for the end point of the preceding interval.



Table 3
Estimation Results for Markov Switching and

Garch(1,1) Mode! Specifications

L. Markov Switching Model
Atn(Y:) = ps, + 056, S = 1,2,
Pr(S; = iSy =) = Py, i = 1,2,

Process Hi Ha gy [0} Py Py L.L.

Dividends 0.0016 -0.0068 0.0013 0.0257 0918 0889 1107
(0.0055) (0.0236) (0.0003) (0.0063) (0.059) (0.089)

GDP 0.0187 0.0177 0.0010 00063 0.98 0937 1877
(0.0035) (0.0169) (0.0002) (0.0025) (0.015) (0.058)

Consumption 00193  0.0171  0.0004 0.0022 0983 0989 2057
(0.0031) (0.0061) (0.0001) (0.0004) (0.022) (0.014)

II. GARCH(1,1) Model
Abn(Y;) = p+yAn(Yi) + €, € ~ N, k)
hy = ag +d1€,2_1 +ﬂ1hl_1.

Process o b4 ao o B1 L.L.

Dividends -0.0019  0.396 1.8E-5 0.301 0.761 102.6
(0.0055) (0.147) (8.8E-5) (0.368) (0.104)

GDP 0.0120  0.180 1.3E5 0.178  0.824 186.6
(0.0040) (0.111) (7.3E-5) (0.153) (0.076)

Consumption 0.0193  C¢.0110  2.9E-5 0.116 0.854 203.4

0.0031) (0.0851) (2.7E-5) (0.122) (0.051)

Note: The models are fitted to real annual, per-capita endowment growth over the period 1890-1994. L.L. provides the
value of the log-likelihood function. Numbers in brackets under the parameter estimates report the estimated standard

EITors.



Table 4
Statistical Properties of Monthly Stock Returns
(US Data (1926-1997) and Simulated Data)

DATA SIMULATIONS
Sample Size = 800
Moments of Val. wht FullInfo. Full Info. Bayesian
Excess Retumns Ptf. No Breaks Breaks  Leaming

Standard deviation 0.055 0.032 0.039 0.044

Skewness 0.29 0.10 0.78 0.34
Kurtosis 11.23 2.99 24.81 9.59
Serial Correlation 9.38 0.42 0.42 0.92
R?in Yield Regression 0.010 0.000 0000  0.002
ARCH(1) 73.65 0.47 0.05 591
ARCH(4) 108.50 343 0.33 20.53
ARCH(12) 220.07 11.38 139 31.70

Percentage of Simulations with Significant Value of the Diagnostic Test

Serial Correlation 3.9 4.4 16.5
ARCH(1) 5.7 L5 58.0
ARCH@4) 5.6 2.5 70.9
ARCH(12) 55 43 64.1

Note: In the section headed “DATA”, the first three rows (standard deviation, skewness and kurtosis of excess
returns) give the estimates of the first three (centered) moments of the data. Serial correlation is the estimate of the
first order Ljung-Box test statistic. R%in yield regression is the estimated R? froma regression of excess retms on a
constant and the lagged dividend yield The ARCH statistics give the values of the LM test for ARCH suggested by
Engle (1982). These are chi-squared distributed with degrees of freedom equal to the order of the test.

In the section labelled “SIMULATIONS™ the first three rows present the median estimates of the second to fourth
centered moments. Serial correlation gives the median value of the first order Ljung-Box test for serial correlation. R?
in yield regression provides the median value of the estimated R? in the regression of excess returns on a constant and
Lhe Jagged dividend yield. All simulation results are based on 5000 simulations.

The ARCH statistics provide the median values of the LM test for ARCH in the simulations.

The 1ast four rows provide the percentage of simulations that generate values of a given diagnostic test that are
significant at the § percent critical level.

The simulation results in the columns labelled “Full Information™ assume that stock prices are formed according to
Proposition | of the paper, with and without structural breaks, while the simulation results in the column labelled
“Bayesian Leaming” assume that agents project dividends according to equations (17) - (19).

The dividend process is given by equations (13) - (16) and the following parameter values are used in the simulations:
7T =0995.¢=-0.02,8=0.06,r=0075,y = 0.10.
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