Least Squares Predictions and
Mean-Variance Analysis

By

Enrique Sentana

DISCUSSION PAPER 312

FINANCIAL MARKETS GROUP
AN ESRC RESEARCH CENTRE

LONDON SCHOOL OF ECONOMICS




ISSN 0956-8549-312

Least Squares Predictions and
Mean-Variance Analysis

By
Enrique Sentana

DISCUSSION PAPER 312

LSE FINANCIAL MARKETS GROUP

DISCUSSION PAPER SERIES

January 1999

Enrique Sentana is a Professor of Economics at CEMFI, Madrid and also an Associate
Member of the Financial Markets Group. The opinions expressed here are those of the
author and not necessarily those of the Financial Markets Group.



Non-technical summary

From a formal point of view, mean-variance analysis and least squares predic-
tions are very closely related, as both are the result of the minimisation of 2 mean
square norm over a subset set of random variables with finite variance. From a
practical point of view, they are also closely connected, since many financial mar-
ket practitioners combine the predictions from their regression equations with a
mean-variance optimiser in order to make dynamic portfolio allocation decisions.
In fact, given a set of variables, or signals, which help predict stock market returns
or other financial assets, one would think a priori that this is a rather natural way
to time the market. The purpose of this paper is to determine to what extent this
intuition is correct.

We analyze the portfolio allocation between a safe asset and a risky one. To
make the comparisons simpler, we assume that the unconditional expected return
on the risky asset equals the safe return. Since this implies second order stochas-
tic dominance in the absence of information (our benchmark case), risk averse
uninformed investors will only hold cash. Importantly, we assume that there are
no transaction costs or other impediments to trade, and in particular, that short-
sales are allowed. We also assume that the sizes of the investment funds are such
that their behaviour does not alter the distribution of returns.

We then compare the performance of investment funds that follow: (i) dynamic
portfolio allocations which use simple regressions to forecast excess returns; (ii) an
active strategy which uses multiple regression instead; and (iii) a passive portfolio
allocation which combines the funds in (i) with constant weightings implied by
standard mean-variance analysis. Importantly, we make the standard assumption
that the fraction of the wealth invested in the risky asset by the managers of the
funds in (i) and (ii) is linear in their forecasts. One formal way of rationalizing

such a behaviour is through conditional mean-variance analysis, under the main-



tained assumption that the conditional expectations of returns are linear in (some
instantaneous transformation of) the signals, and the corresponding conditional
variances constant.

Given that the original signals, or their transformations, may well be private
information, we compute the unconditional risk-return trade-off, or Sharpe ratio,
of the different portfolios to evaluate their performance taking into account their
risk. This measure, which is an industry standard, is defined as the ratio of average
excess return to standard deviation of a portfolio.

We show that the dynamic strategy which combines multiple regression with a
mean-variance optimiser, cannot beat in terms of unconditional Sharpe ratios, the
passive portfolio strategy which combines individual funds that trade on the basis
of a single information variable each. However, we cannot rank in general (i} and
(ii), so that the manager who uses information on the entire set of signals may do
better or worse than a manager who only uses information on a particular signal,
despite the fact that expected excess returns for the former are always higher. In
fact, we present a counterexample in which the manager who uses all the available
information will perform in this metric strictly worse than a manager who only
uses information on a particular variable.

We also show that the aforementioned passive portfolio allocation implicitly
uses the linear forecasting rule that maximises the Sharpe ratio of actively traded
portfolios, and discuss under which circumstances such an “optimal” forecast co-
incides (up to a proportionality factor) with the conditional expectation.

Finally, we show that the Sharpe ratio of the optimal portfolio (in the un-
conditional mean-variance sense), depends only on the vector of Sharpe ratios of
the underlying funds, and their correlation matrix, through a simple quadratic
form, in exactly the same way as the R? of a multiple regression depends on the

correlations implied by the simple regressions.



Our results are not totally surprising. First, from the asset pricing literature,
we know that conditional mean-variance efficiency does not necessarily imply un-
conditional mean-variance efficiency. Second, we also know from the portfolio
evaluation literature, that one-parameter performance measures such as Sharpe
ratios, designed to compare passive portfolio strategies, may often yield misleading
results if fund managers pursue market timing strategies.

On the other hand, there has been increasing attention recently in the time
series econometrics literature on the estimation of models based on alternative
prediction loss functions. In this respect, our results can be understood as saying
that the quadratic loss function implicit in least squares regressions will not gener-
ally lead to estimators which maximise unconditional Sharpe ratios. At the same
time, since once the signals are observed, the behaviour of the fund manager who
uses multiple regression is, in terms of mean-variance preferences, superior to the
behaviour of the fund manager who follows the passive strategy, our results also
provide a note of warning regarding the use of such estimation methods. In any
case, it is worth noting that our results could be used to develop an asymptotic
distribution theory which would allow us to assess in practice whether knowledge
of a particular signal significantly improves Sharpe ratios.

Finally, note that the fact that the passive fund manager is the best performer
raises the question of why any other fund would make efforts to find and extract
the signals when they can free-ride on the others. It could justify, for instance,
that in order to make sure that there is an incentive to find and do research on

the information, fund managers charge management fees.
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Abstract

We compare the Sharpe ratios of investment funds which combine one riskless
and one risky asset following: i) timing strategies which forecast excess returns
using simple regressions; ii) a strategy which uses multiple regression instead; and
ii1) a passive allocation which combines the funds in i) with constant weightings.
We show that iii) dominates i) and ii), as it implicitly uses the linear forecasting
rule that maximizes the Sharpe ratio of actively traded portfolios, but the relative
ranking of i) and ii) is generally unclear. We also discuss under what circumstances

the performance of ii) and iii) coincides.



1 Introduction

From a formal point of view, mean-variance analysis and least squares pre-
dictions are very closely related, as both are the result of the minimisation of a
mean square norm over a closed linear subspace of the set of all random vari-
ables with finite second moments (see e.g. Hansen and Sargent (1991)). From a
practical point of view, they are also closely connected, since many financial mar-
ket practitioners combine the predictions from their regression equations with a
mean-variance optimiser in order to make dynamic portfolio allocation decisions.
In fact, given a set of variables which help predict stock market returns or other
financial assets, one would think a priori that this is a rather natural way to time
the market.

The purpose of this paper is to determine to what extent this intuition is cor-
rect. We analyze the portfolio allocation between a safe asset and a risky one,
and derive closed-form analytical solutions. We consider alternative prediction
rules, and rank them in terms of the Sharpe ratios of the associated market tim-
ing strategies. In particular, we compare the performance of investment funds
that follow: i) dynamic portfolio allocations which use simple regressions to fore-
cast excess returns; i) an active strategy which uses multiple regression instead;
and iii) a passive portfolio allocation which combines the funds in i) with con-
stant weightings implied by standard mean-variance analysis. Furthermore, we
obtain an expression for the linear forecasting rule that maximises the Sharpe ra-
tio of an actively traded portfolio, and discuss under which circumstances such an
“optimal” forecast coincides (up to a proportionality factor) with the conditional
expectation.

The rest of this paper is organised as follows. We introduce the theoretical
set-up in section 2, derive the active and passive portfolio strategies mentioned

above, and obtain general results in terms of Sharpe ratios. Then, in section 3,



we make assumptions about the joint distribution of the signals, and analyze in
detail several special cases. Finally, section 4 contains a discussion of our results in
relation to several areas of current research interest in the finance and econometrics
literatures. Proofs of our main propositions, together with some auxiliary results,

are gathered in the appendix.

2 Investment Strategies and Sharpe Ratios

Let’s consider a world with a safe asset and a risky one. Let r be the excess
return on the risky asset, and suppose that there are k indicator variables, or
signals, x = (1, ..., k), which help predict r.

To make the comparisons simpler, we assume that the (unconditional) ex-
pected return on the risky asset equals the safe return. Since this implies second
order stochastic dominance in the absence of information (our benchmark case),
risk averse uninformed investors will only hold cash.

Let’s now suppose that there are k fund managers, each endowed with private
information on a single indicator variable, z;, j = 1,...,k, who pursue active
portfolio strategies. Specifically, we make the standard assumption in the lit-
erature that the fraction of their wealth invested in the risky asset is linear in
their information. One formal way of rationalizing such a behaviour is through
conditional mean-variance analysis, under the maintained assumption that the
conditional expectations of returns are linear in (some instantaneous transforma-
tion of) the signals, and the corresponding conditional variances constant. More
precisely, if we assume that the optimisation problem of a manager endowed with

information I can be expressed as
max {uwr (D E(r | 1) = gui(V(r | 1)} (1)
where o is a common positive risk aversion parameter, her optimal investment
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strategy will be
sony o LE(ID)

In the case of manager j, in particular, w}(z;) will be proportional to the de-

meaned value of the j* predictor variable, &; = z; — v;, as stated.

Importantly, we assume that there are no transaction costs or other impedi-
ments to trade, and in particular, that short-sales are allowed. We also assume
that the sizes of the investment funds are such that their behaviour does not alter
the distribution of returns.

To keep the notation simple, define §; = oj,/0;; as the coefficient in the
(theoretical) simple regression of r on z;, &; = r;—6;%; as the associated prediction
EITOT, Ogje; = 0m—0%,./0;; as its variance, and p;, = 0jr [/ as the theoretical
correlation coefficient between  and z;. Then, the excess returns on each fund

will be

1 &%
Ty =—" 1y ®
Q@ Oy
so that \
1 §jo;r 1 Pir
B(rj)=— =g 20 (4)
£554 a — Pjr

with equality if and only if the j** indicator variable has no predictive power at all.
Therefore, r; is not only more profitable on average than the benchmark strategy
of holding cash, but also its profitability increases with the predictive power of z;.
However, such a timing strategy is also riskier, since obviously

832y

2
('rii!:

>0 ()

1
Vi) =—

where A;; = V(&;7).
Let’s now consider another fund manager, a say, who also follows an active

strategy based on the same investment rule as the first & managers, but this time



knowing the whole of x.! Let 3 = % 1o, be the coefficients of the (theoretical)
multiple regression of returns on the indicators, 7 = E(r) + ol Tol(x-v) = 0%
the fitted values from that regression, u = r — B'% the prediction errors, o =
o' S7la,, the variance of the predicted values, ouy = Orr — ol Zolo,, the
variance of the residuals, and finally R? = (0#/0.-) the theoretical multiple cor-
relation coefficient. Such a dynamic portfolio strategy produces excess returns

of

1 8'%
= L% (6)
O Oyn
Then, since E(Xr) = 04r
1 Ter 1 R2
== - _. >
B =gt =y 7o 20 ™

so that E(r;) < B(ry) for j =1,...,k, as R* > p2.. But again, such a strategy is

risky, since

20 ®)

where A = V/(%r).

Finally, let’s introduce yet another manager, p say, who does not observe x at
all, but free-rides on the other managers by constructing an “umbrella” fund of the
k individual funds and the safe asset with constant weightings, according to the
rules of unconditional mean-variance analysis. Let’s call o = E(r) and @ = V(r),
where r is the vector of excess returns on each fund, i.e. T = (rq,...,7)’. Let @
be a k x k diagonal matrix with typical element ¢,; = §; /0Oeje;, 50 that in mabrix
notation, we can write

1__
r= E'I>xr )

1Within a conditional mean-variance framework, this assumption implicitly imposes restric-
tions on the joint distribution of the signals, because we would be simultaneously assuming that
the distribution of returns conditional on the whole of x and each of its elements has a linear
mean and a constant variance. In this respect, it is important to mention that all the examples
discussed in section 3 satisfy such a requirement.



1
= —-®o,,
p==-%c

Q= —oAe
[0

(10)

(11)

As is well known, the optimal proportions of manager p’s resources invested

in each fund will be given by the vector
s lo—eiale
wP - a ,‘l‘ - T
Hence, the excess returns from her static portfolio allocation will be
— * o l ! A—l-
Tp=WpT = 0., AT
From here, it is straightforward to see that

1
E(rp) = acr’:rA'la,, >0

and
1 -
V(T’p) = &—ZU;TA 10'17 Z 0

(12)

(13)

(14)

Giiven that the original signals, or their transformations, may well be private

information, in line with standard practice we shall compute the unconditional

risk-return trade-off, or Sharpe ratio, of the different portfolios to evaluate their

performance-taking into account their risk.

Let s(r;), s(ra) and s(r,) denote the Sharpe ratios of managers j, a and p

respectively. In view of (4)-(5), (7)-(8), and (13)-(14) we have that

J ]U:rrl
Y {rj) \/’\;r:.l
E(ra O

and

(15)

(16)

(17)



In order to compare s(r;), s(re) and s(rp), we could make further assumptions
on the joint distribution of the signals. We shall explore this avenue in the next
section, but before, we can state the following general result:

Proposition 1 s(rp) > s(ra) with equality if and only if AX;}o., is proportional
to Ozr.

Therefore, in terms of unconditional risk-return trade-offs, manager p, who
pursues a passive portfolio strategy, does always at least as well as, and often
better than, manager a, who pursues an active portfolio strategy.

In order to gain some intuition on this result, it is convenient to understand
what the behaviour of manager a looks like from manager p’s perspective. In this
respect, it is important to realize that manager a is indifferent between a strategy
based on the underlying risky asset alone, or one based on some of the & funds,
as she can always unwind their positions. In fact, it is trivial to see that one can
replicate her original active strategy with the passive strategy oplol Bl I,
Therefore, from the point of view of p, manager a is observationally equivalent
to a passive portfolio manager who is suboptimally allocating her wealth between
the k funds and the safe asset. Since we know from the theory of mean-variance
analysis with a riskless asset that the Sharpe ratio of the optimal portfolio will be
higher than the Sharpe ratio of any other portfolio, including the original assets,
it is not surprising that the Sharpe ratio of 7,, will be at least as high as the
Sharpe ratio of r,, and indeed any 7;.

In contrast, from a’s vantage point, manager p is conducting a suboptimal
active investment strategy, in which the fraction of her wealth invested in the risky

asset is oo’ A% as opposed to a”loy)

o’ 31%. Therefore, her behaviour
is observationally equivalent to that of an active portfolio manager who used
(0uu)ol A71% instead of o, B;1% as her linear prediction rule. Given that the

return on any active strategy based on a linear forecast can always be replicated by



some passive strategy which combines 71, ..., 7 and the riskless asset, in view of
our previous .discussion, it is not surprising that we can characterizé the optimality
of manager p’s forecasting rule as follows:

Proposition 2 o', A™'% is (proportional to) the linear forecasting rule, FH'E say,
that mazimises the ratio of excess mean return to standard deviation of an actively
traded portfolio.

Note that Proposition 2 is stronger than Proposition 1, as it says that p is
not only better than a in terms of Sharpe ratios, but also better than any other
trading strategy which is linear in the signals.

However, we cannot rank in general s(r,) and s(r;), so that manager a, who
uses information on the entire vector x, may do better or worse than a manager
who only uses information on a particular z;, despite the fact that expected excess
returns for a are always higher. In principle, we would expect s(rp) > s(ra) > s(r5)
for all j. Nevertheless, it is possible to construct examples in which s(rs) < s(r;) <
s(rp) for some j (see section 3.4 below).

Our final proposition makes the relationship between s(r,) and s(r;) precise:

Proposition 3 The Sharpe ratio of the optimal porifolio (in the unconditional
mean-variance sense), s(r,), depends only on the vector of Sharpe ratios of the
k underlying funds, s(r), and their correlation matriz, TL, through the following

quadratic form:
§*(rp) = s(r) T s(r)

The above expression, which for the case of & = 2 adopts the particularly

simple form:
1
s*(rp) = =7 [sz(rl) + 82(rg) — 21r123(1"1)s('r2)]
— T2

where 712 = cor(ry,2), turns out to be remarkably similar to the formula that
relates the R? of the multiple regression of r on {a constant and) x with the

correlations of the simple regressions. Specifically,
R? =, P72 Par (18)

7



The similarity is not merely coincidental. From the mathematics of the mean-
variance frontier, we know that E(r;) = cov(r;,mp)E(rp)/ V(rp), and therefore,
that s(r;) = cor(rp, 75)s(rp). In other words, the correlation coeflicient between
1 and r; is the ratio of Sharpe ratios s(r;)/s(rp). Then, the result in Proposition 3
follows from {18) and the fact that the coefficient of determination in the multiple

regression of r, on all k r}s will be 1.

3 Examples
3.1 Two binary signals

Let’s analyze in detail the case of two binary signals, whose joint distribution
is given by:
29\ T1 1 -1
1|31 +p1) | 2
—1 | 3(1~py) | 3(1+p12)

1
2

(19)

—
—
R
=
1S
=

(SIS S0

(eI

so that E(x;) = B(z2) =0, V(z1) = V(z2) = 1 and cov(z1, T2) = pra-
It is straightforward to prove that for the four possible combinations of the

signals we will have

z1 | 2o | E(rlz) | E(r|zs) E(r|z1, z4)
1] 1 I1r oy | (ow +02)/(1+ p12)
1|-1 o1 | =02 | (01 —02)/(1 - pra)
-1] 1 —01r o9 | —(o1r — 02) /(1 — p1a)
~1|-1| =01 | =—ou|—(ow+02)/(1+p1)

with variances Oeye;, Cepe, and Oy Tespectively. For convenience, but without
loss of generality, we can assume that o), and o3, are both non-negative, with

o1, > 0qr. Otherwise, we simply redefine the signals appropriately so that positive



values indicate “good news” about returns, and negative values “bad news”. In
this way, managers 1 and 2 will always take long positions when their respective
signals are positive, and short positions when they are negative.

In view of Corollary 1 in the appendix, it is easy to see that

2

Pir
32(7':5) = 1 __Jpg
jr

so that not only the expected returns, but also the unconditional Sharpe ratios
of managers 1 and 2 portfolios are monotonic in the predictive ability of their
corresponding signals. Manager p will then combine 71, 1o and the safe asset in
order to maximise the Sharpe ratio of her portfolio.

An interesting situation arises when 03, = p5. In that case, we can use
Corollary 1 to prove that Az;::ldz,- is proportional to o4, and furthermore, that

R?
) =0 = TR T+ )

Since r; and r are not perfectly correlated as long as p?, < 1, it is possible to form
portfolios with these two funds that maintain the mean but reduce the variance,
which can then be combined with the riskless asset to achieve the desired level of
risk. This is precisely what managers a and p will do. In particular, manager a,
and effectively manager p, will take long positions when both signals are positive,
short positions when they are both negative, but no position when the signals
disagree.

If o2, # ;;%,, though, managers 1 and a will take long (short) positions in the
risky asset whenever z; = 1 (—1), while manager 2 will take long (short) positions
when zp = 1 (—1). Therefore, the sign of these three managers positions will be
the same when the signals coincide, but they will differ when the information in
the signals is conflicting. In this case, it is fairly easy to find numerical examples
in which not only s(rp) > s(rs), but also s(rp) > s(r1) > s(rs) > s(r) (see section
3.4 below).



3.2 Multivariate normal signals

Let’s now assume that the x’s are jointly normally distributed. Since we can
prove on the basis of Corollary 2 in the appendix that AE;;UW o« &4 under
normality, then we know from Proposition 1 that s(r,) = s(rp), so that manager
a’s behaviour is optimal in this set up. In fact, we can prove that with Gaussian
signals, the excess returns on the passive strategy will be

1 "%
Tp= E-(r!rr—ﬁ-l-f?f) .
Therefore, 7, is exactly proportional to 7, (cf. (6)), with a factor of proportionality
equal t0 oyy/(0r + 07:) = (1 — R?)/(1+ R?) < 1. Several interesting results can
be derived from this relationship:

a) The correlation between 7y and 7, is trivially one. Hence, although the
mean and variance of 7, are higher because manager a follows an apparently
riskier strategy based on her superior information, the two Sharpe ratios coincide.

b) If an indicator variable has no additional predictive power, so that the
corresponding element of 3 is zero, the desired holdings of the relevant fund will
be zero, even though the individual fund may be very profitable.

¢) Manager p's behaviour is observationally equivalent to that of a portfolio
manager who, in order to time the market, uses the “shrinkage” rule };—ﬁ:— -@'%
to produce her linear predictions.

d) The Sharpe ratio of 4, will be at least as high as the Sharpe ratio of any
r;. Therefore, fund manager a, who uses information on the entire vector x, will
do at least as well as any manager who only uses information on a particular z;,
or indeed a subset of them.

More explicitly, since in this case

R?
1+ R?

1 oy
o (O + 022)

E(rp) =

_1
T
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the unconditional Sharpe ratio of r, and 7, is

(o 23 R2
s(ra) = 8(rp) = ot or) =4/ T

Hence, not only the expected return but also the return to risk ratio of the

actively managed fund improves with the predictability of returns. Similarly, the
Sharpe ratio for each fund will be

|| = |p;'rl
Jowos+ok (147

As a consequence, the Sharpe ratio of an individual fund will also be higher

s(r;) =

the more correlated z; is with r (in absolute value), but it could never exceed the

Sharpe ratio of 7.

3.3 Independent signals

Let’s assume that each signal § (j = 1,...,k) has an arbitrary distribution
with bounded fourth moment (k; + 3)o%;, where the }s are the coefficients of
excess kurtosis, but that they are stochastically independent.

In view of Corollary 3 in the appendix, it is straightforward to prove that

2 Pir
) 7

so that once more, the unconditional Sharpe ratios of the individual funds will be
monotonic functions of the predictive power of the signals on which they trade.

Similarly, we can prove that

2
Pr) =
14 R+ E;an(’{:ﬂjr;ﬁ')
and oo
52(7' ) _ z;::l pfr'f{l + "T'J.P?f}
P

= ;
L4 X P/ (L + wi05,)
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Then, given Proposition 1, we will have that s(r,) > s(r,) for independent signals,
except in the unlikely event in which x;p%, is the same for all j. Notice, though,
that this restriction is trivially satisfied when x is Gaussian, and also in the

example of section 3.1 when p?, = g3, as k; = ko = —2.

3.4 A raffle with independent binary signals

Let’s finally illustrate the different issues involved by means of the following
very simple game of chance. Each ticket holder in a raflle is entitled to two random
prizes. The first prize is either worthless, or something whose cash value is 2, 4
or 6 dollars, while the second is an item worth 0, 1, 3 or 4 dollars. The two prizes
are independently chosen, and all combinations are equally likely. Participants
can either buy as many tickets (or fractions of a ticket) as they like and collect
their prizes (a long position) or sell them and pay the prizes (a short position).
Also, there is unlimited borrowing and lending at a zero rate.

The cost of a ticket must be 5 dollars to ensure that it is a fair game, although
no uninformed risk averse individual will participate. Suppose, though, that agent
1 possesses a valuable signal which tells her whether the second prize is “high”
(i.e. 3 or4) or “low” (ie. 0 or 1), while agent 2 knows whether it is “high on
average” (i.e. 1 or 4) or “low on average” (i.e. 0 or 3). Note that the two binary
signals are independent, but the first one is more useful for predicting payoffs.
In particular, the expected total payoff from the point of view of agent 1 will be
$6.50 when she receives the “high” signal, and $3.50 when she receives the “low”
one, with a standard deviation of $1/21/2 in both cases. On the other hand, the
expected payoff from the point of view of agent 2 will be $5.50 when she receives
the “high on average” signal, and $4.50 when she receives the “low on average”
one, with a constant standard deviation of $1/29/2. As a result, these agents will

buy each a positive amount of raffle tickets when their signals are “good”, and
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will sell the same amount when they are “bad”.

Finally, agent a, who knows both signals, effectively knows the actual value
of the second prize. Therefore, the expected value of a ticket for her will be the
figure she already knows, plus the expected value of the first prize ($3), with a
constant standard deviation of $v/5. Therefore, she will buy tickets in the raffle
whenever the second prize is worth 3 or 4 dollars, and will sell them otherwise.
Specifically, she will buy (sell) twice as many tickets when the value of the second
prize is 4 (0) than when it is 3 (1). In this respect, it is important to emphasize
that since each ticket costs $5, she may still incur in losses whatever the value of
the second prize.

In terms ‘of excess returns per dollar invested, the conditional mean-variance
frontiers as viewed by the different informed agents are depicted in Figures la
to 1d. The slopes of these frontiers, which correspond (in absolute value) to
the Sharpe ratio of a 100% investment in the risky asset conditional on the rele-
vant information, are 2/+v/5,1/+/5, \/3/_7 and 1/+/29 respectively, and the associ-
ated number of tickets bought would be proportional (again in absolute value) to
2,1,10/7 and 10/29.

If we now feed in these numbers through the appropriate expressions (assuming
for the sake of concreteness that a = 1), we obtain that agent a would make an
average 50% return on her investments, while agents 1 and 2 would make 42.86%
and 3.45% respectively. On the other hand, agent p, who would borrow 56% of
her wealth to be able to put 98% and 58% under management by agents 1 and
2, would make a 44% return on average. The resulting situation is depicted in
Figure 2 from an unconditional perspective. Note that although the actions of all
agents are mean-variance efficient given their information, only agent p is efficient
in the unconditional mean-variance sense. Furthermore, if we take into account

the riskiness of the different strategies by means of their unconditional Sharpe

13



ratios, it turns out that:

s(rp) = .6633 > s(r1) = .6547 > 5(r,) = .6509 > s(r2) = .1857

so that the performance of agent a, who knows the value of the second prize, in
fact looks worse in this metric than the performance of agent 1, who only knows

whether the second prize is “high” or “low”.

4 Summary and Discussion

In the context of a portfolio allocation between one riskless and one risky as-
set, we show that a dynamic strategy which combines multiple regression with a
mean-variance optimiser, cannot beat in terms of unconditional Sharpe ratios, a
passive portfolio strategy which combines individual funds that trade on the basis
of a single information variable each. Furthermore, we present a counterexample
in which the'manager who uses all the available information will perform in this
metric strictly worse than a manager who only uses information on a particular
variable. We also show that the aforementioned passive portfolio allocation im-
plicitly uses the linear forecasting rule that maximises the Sharpe ratio of actively
traded portfolios. Nevertheless, we discuss under what circumstances such an “op-
timal” forecast coincides (up to a factor of proportionality) with the conditional
expectation.

QOur results are not totally surprising. First, from the asset pricing literature,
we know that conditional mean-variance efficiency does not necessarily imply un-
conditional mean-variance efficiency (see e.g. Hansen and Richard (1987)). Sec-
ond, we also know from the portfolio evaluation literature, that one-parameter
performance measures such as Sharpe ratios, designed to compare passive portfo-
lio strategies_, may often yield misleading results if fund managers pursue market

timing strategies (see Chen and Knez (1996), and the references therein).
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On the other hand, there has been increasing attention recently in the time
series econometrics literature on the estimation of models based on alternative
prediction loss functions (see e.g. Weiss (1996)). In this respect, our results can
be understood as saying that the quadratic loss function implicit in least squares
regressions will not generally lead to estimators which maximise unconditional
Sharpe ratios. At the same time, since once the signals are observed, the behav-
iour of fund manager a is, in terms of mean-variance preferences, superior to the
behaviour of fund manager p, our results also provide a note of warning regard-
ing the use of such estimation methods. In any case, it is worth noting that we
could use our Proposition 2 to develop an asymptotic distribution theory for the
sample analogues of the coefficients y* associated with the “optimal” prediction
rule, which would allow us to assess in practice whether knowledge of a particular
signal significantly improves Sharpe ratios.

Finally, note that the fact that fund manager p is the best performer raises the
question of why any other fund would make efforts to find and extract the signals
when they can free-ride on the others. This issue was originally addressed by
Grossman and Stiglitz (1980), and subsequently analyzed in several other papers
(see e.g. Admati and Pfleiderer (1990) and the references therein). It could justify,
for instance, that in order to make sure that there is an incentive to find and do

research on the information, fund managers charge management fees.
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Appendix

Auxiliary results
Proof of Proposition 1

By the Cauchy-Schwartz inequality,
Op = (dgcrzz_zla'mr)z < (U;TA—Ia';,,)(O';TE;IlAE;EIO'ﬂ) = (05, A7 ) (B'AB)

S0
s*(rp) 2 5 (ra)
and s(r,) > s(rs) given that they are both positive. Equality is achieved in the
above inequality if and only if AY2E;}a,, = A™20,,6, where ¢ is a non-zero
scalar, or eql}ivalently, if and only if AE;,IG',, = fo.,, as stated. [m}
It is in fact possible to fully characterize the matrices A for which s(rp) = s(a)-
To do so, it is convenient to re-write the necessary and sufficient condition as

—1/2 —1/2
2;21/21\2_1/2 Yz O zr Ogr

Tz . ] i = ] —1
o-;rz:xl Tzr \/o':r Eu Tgr

so that (o, Silog,) Y 23225 can be regarded as a normalized eigenvector of

Ir— T

the matrix Zz2/2A5 212, Since the spectral decomposition of this matrix will be

given by
T2 0 Tl e Yy , ol D v
g::rz::x Orr aa‘rzzz Oy o-a:rz::n Tar

where © is a diagonal positive semi-definite matrix of order N —1, and U is any
N x (N —1) orthogonal matrix such that I — =/ 20'"(0",,.2;,10',,)‘10"”2;,1/ 2=

UU', we finally have that all admissible A could be written as

do..o! fo g, o [ . o8
A= Spp — 2t Ny — i
(drxrz;zla!‘f‘} + ( “ (o':l:rzz_zlaﬂ"')) Q ( ’ (0':".2;:110'”-)>
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where Q is an arbitrary symmetric positive semidefinite matrix of dimension N
and rank N — 1. In this respect, note that if we choose Q proportional to the
Moore-Penrose inverse of X, — (0,27} 04 ) o0, then A will be a linear

zr<izz

combination of ..ok, and ¥,,, as in Corollary 2.

Proof of Proposition 2

Formally, we can characterize the linear forecasting rule that maximises the

Sharpe ratio, v*'%, as

o ,.r.'" ~fA—1,.’20. ,o" A—U?‘
~¥* =argmaxﬂ!+A"l =A‘1/2argm_ax7 SR 18 X
v YAy ¥ Y5

where 7 = A2y, The solution to this well-known programme is simply the eigen-
vector associated with the maximum eigenvalue of the rank 1 matrix o,.07, in
the metric of A. That is,

Ao, 0l A

e 7 =MA Vo0, A7) = 0l AT ey, = 5%(rp)

where A;(A) denotes the largest eigenvalue of the matrix A. Therefore, since

J* = A Y?q,,./ /ol Ao, then v* = A~lo, / /o, A-lo,, as required. O

Proof of Proposition 3

We have already seen that r, = w'r, E(r;) = 1u/Q7lp, and Vi) =
SO, with wi = 207y, p=E(r) and @ = V(r). Therefore, s*(r,) =
WOy = @ dg 1 2(Q)dg 2 ()0 dgt2(Q)dg 2(Q) . =s' (r)IT ' s(r) as required.
a

Lemma 1

Let Y4 be the k(k +1)/2 x k(k + 1)/2 matrix which contains the fourth order
cumulants of the signals. Then

A =Urrzz: + 0';"0';7_ + T
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where

vech(¥) = Y4D'Dvech(2;; 04,05, =1

and D is the duplication matrix.
Proof. Since
A =V(%r) = E(r’%%') - E(&r)E(X'r)

and
B(r5x) = E [B(r*R)%%] = E {[EXrl%) + V (rl%)] %%}

by the law of iterated expectations, we can write
A = B[(B'%) %K)+ 04 Boz— 00 O = El(o!, B52%% 210l &K |+ 0w Baa— L .

Vectorising the first term of this expression we get

vec{ B|(c",, S %% 371 0, ) %% ]}

Tz z'r

E[RE' ® X vec(2; 000 Bra

Il

E[®QR)(X © ¥)ec(B5 om0, Z0s

Elvec(X% Yved (3% )vec(271 0210, Szg

Given that for any symmetric matrix A, vec(A) = Duech(A), vech(A) =
D+vec(A), and D*D =1, where D* = (D'D)™'D' is the Moore-Penrose inverse

of D, we have
vech{B|(o, S;1%%' S ol 7K} = A D'Dvech(Z;1 000,250
where Ay =.E[vech(:'c>'c')vech’ %%')]. But since
Ay = vech(Bez)vech' (Bas) +2D7 (20 ® B.) DY+ Ty
(see e.g. Arellano (1989)), and

D [vech(Ezs)vech! (£zz) + 2D (Tae @ ..)D*] D'Dvech(2;1 02007, 22;)
= [vec(Ber)ved (Bes) +2DDF (e ® B00) DD vee(E 00000, 0n
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[vec(Sae)vec (Soa) + 2(Bos ® Bas)] vec(Bpp 00r s, Trs

1ee( Do (Bae Bl 0 2ro B20) + 20ec(T0e Bpg 02000, T2 2)

Z )] zr <z

= (0,27 o) vec(B.:) + 2vec(osr07,)

because DD (2,,@%.) = (Z2e®8,;) DD, DYD'DYD’ = DD’ = }(I+K),
where K is the commutation matrix (see e.g. Magnus and Neudecker (1988)), and
1@+ K)vee(B 05,00, 571) =vec( X} 04.07,, 35, ) by symmetry, then the result
follows. o

Corollary 1

If z; and z, are two binary signals whose joint distribution is specified by (19),

2 R2
=2, Pir P12
p12R2 pgr

Proof. Given the joint distribution of the signals, it is easy to prove that

then

1 pp 1
As=1| pp 1 pp
L opp 1
and
1 pp r
Ta==2| pp pl2 P2
P2 Pz 1

Then the expression for ¥ follows on the basis of Lemma 1, as

2
Oty

Y4D'Dvech(E;}00r0,377) = - 2 P10, + 03, — 2p13017020) /(1 — py)

2
Oar

and oy = (0f, + 03, — 2p1501:02:)/(1 = py)-
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Corollary 2

If x is multivariate normal, then
A= o"rrz::z'*'a-zra;r

and
1w 1

-1 __ _~ " i
e N T

Proof. The first part is a trivial consequence of Lemma 1, since T4 = 0 under
normality. The expression for A™" follows directly from the Woodbury formula.O

When the joint distribution of returns and signals is normal, the expression for
A in Corollary 2 can be immediately derived on the basis of well known results on
fourth moments of the multivariate normal distribution (see e.g. Arellano (1989)).
However, note that the assumptions of Corollary 2 are weaker, since they only
require a marginal Gaussian distribution for x, and a conditional distribution for

r given x with a linear mean and a constant variance.
Corollary. 3
If the signals are independently distributed, then
¥ = diag [nla%r, e ,nkcrfk]

where the «}s are the coefficients of excess kurtosis.
Proof. To keep the algebra simple, we shall only consider the case of k = 2. An
analogous proof for arbitrary k is straightforward.

Since in this case:

(K,l + 3)0%1 0 J110922
A= 0 011022 0
011022 0 (k2 +3)0%
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and

k103, 0 0
Ty = Ay —vech(Sgvech’ (Tae) — 2D (e ® Bao)D = | 0 0 0

0 0 k02,
then, the result follows on the basis of Lemma 1, as

K1 U%r
T4D'Dvech(Elo.,0l, . 2) =] 0

2
K202,
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Figure 1a: Conditional MV frontier for agent a (x1=x2)
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Figure 1b: Conditional MV frontier for agent a (x1=-x2)
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Figure 1c: Conditional MV frontier for agent 1
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Figure 1d: Conditional MV frontier for agent 2
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