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Non technical summary

Predictability of the mean and volatility of stock returns has been reported in a growing
body of empirical studies. However, far less work has been done on characterizing the
extent to which other parts of the return distribution such as skewness and fat tails are
predictable and affected by the business cycle.

This paper investigates the time-series properties of skewness and kurtosis of stock
returns when these are modeled as a two-state Markov mixture process with time-varying
transition probabilities and state-dependent coefficients in the mean and volatility
equation.

We explore the economic implications of the time-series evolution in the higher order
moments and predictive densities implied by the various mixture models. This
information is used to perform model specification tests and to characterize more fully
the cyclical variation in risk, as measured for example by the conditional skewness or
kurtosis. While the statistical performance of the models differs little in terms of their
conditional mean, inspection of the higher order moments implied by different mixture
specifications shows far greater ability to discriminate between models. Likewise, the
predictive densities of the mixture models show substantial differences particularly when
markets are volatile.

The mixture models provide a characterization of the dynamic patterns in risk that goes
well beyond what can be achieved through standard models that assume retumns are
normally distributed. For the small firms, the mixture models identify negative expected
returns and negative skewness from the late expansion to the early recession stage of the
economic cycle. Volatility and kurtosis increase rapidly prior to and during recessions.
This means that small firms' risk is particularly high around the peak of the business
cycle at a time where it is very poorly approximated by a single normal distribution.
While similar patterns are found for the large firms, cyclical variation in their conditional
moments is generally weaker for these firms.
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Abstract

Markov switching models with time-varying means, variances and mixing
weights are applicd to characterize business cycle variation in the probability
distribution and higher order moments of stock returns. This allows us
to provide a comprehensive characterization of risk that goes well beyond
the mean and variance of returns. Several mixture models with different
specifications of the state transition are compared and we propose a new
mixture of Gaussian and student-t distributions that captures outliers in
returns. The models produce very similar expected returns and volatilities
but imply very different time series for conditional skewness, kurtosis and
predictive density. Consistent with economic theory, the gains in predictive
accuracy from considering two-state mixture models rather than a single-
state specification are higher for small firms than for large firms.
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1. Introduction

Predictability of the mean and volatility of stock returns has been reported in
a growing body of empirical studies.! The literature predominantly assumes a
time-invariant relationship linking stock returns to a set of publicly known factors.
However, some studies indicate that the conditional volatility of stock returns de-
pends on the underlying state of the economy. For example, Schwert (1989) and
Hamilton and Lin (1996) find that the volatility of stock returns is higher during
recessions than during expansions. Additional evidence on asymmetry in the con-
ditional distribution of stock returns is reported by Mcqueen and Roley (1993).
Classifying three states according to the level of growth in industrial production,
they find that announcement effects of macroeconomic news on daily stock prices
critically depend on the state of the economy.

These studies indicate separate directions in which cyclical asymmetries in the
variation of stock returns appear to be important. However, they fall short of
investigating asymmetries in other than the first two moments of stock returns.
Asymmetries need to be assessed in the context of the full conditional density of
stock returns as emphasized by recent portfolio risk models. For example, Value at
Risk (VaR) models characterize risk through the probability that a loss of a certain
size occurs with a certain probability over a given investment horizon, c.f. Duffie
and Pan (1997). In contrast, more traditional finance models such as the CAPM
require information solely on the first two moments of asset returns. Neither the
distributional assumptions required for the CAPM to hold (that returns are drawn
from an elliptical distribution) nor the restrictions on agents’ preferences (that
utility is quadratic) are likely to be valid, however.2

We investigate in this paper the time-series properties of higher order moments
and of the full conditional density of stock returns when these are modeled as a
two-state Markov mixture process with time-varying transition probabilities and
state-dependent coefficients in the mean and volatility equation. Stock returns are
heavily influenced by outliers and statistical models have been developed to ac-
count for these through time-varying volatility, error densities more general than

!See, e.g., Fama and French (1989), Kandel and Stambaugh (1990), Glosten,
Jagannathan and Runkle (1993) and Pesaran and Timermann (1995).

?Early theories of risk preceding the CAPM in fact relied on the full probabil-
ity distribution of asset returns. Roy (1952) considered asset holdings subject to
a safety-first constraint controlling the probability of 'disastrous’ loss scenarios.
Implementation of this strategy requires knowledge of the left tail of the density
of asset returns. Markowitz (1959) proposed a measure of risk, the semi-variance,
which treats positive and negative deviations from the mean return very differently.
This measure is justified when asymmetries are present in the asset return distri-
bution. More recently Fishburn (1977) has generalized the standard mean-variance
model to measure risk as probability-weighted dispersions of payoffs below a target
wealth level.




the Gaussian or some combination of these. Nomnlinearities in asset returns are
also widely recognized but the empirical asset pricing literature almost exclusively
models these within the context of single-state models. We present new statistical
evidence suggesting that a two-state specification is necessary to capture nonlin-
earities and outliers in the conditional distribution of stock returns.

Besides demonstrating the need for a two-state specification, the paper also fills
out some important gaps in the growing literature that estimates Markov switching
models using financial data. This literature has moved from first generation Markov
switching models with constant transition probabilities to second generation models
that allow the transition probability to be time-varying. However, little is known
about how the specification of state transition probabilities and undelying densities
affect the properties of the mixture model. We perform a range of specification tests
that compare how different mixture specifications separate stock returns into states
and how they perform along a range of predictive performance criteria. We also
propose a new mixture model that combines a Gaussian and a student-t density
to capture return dynamics by mixing underlying state densities that can display
kurtosis. Effectively this model captures outliers by modeling these as drawn from
a fat-tailed t-distribution with few degrees of freedom.

Finally we explore the economic implications of the time-series evolution in
the higher order moments and predictive densities implied by the various mixture
models. We use this information to perform model specification tests and also
to characterize more fully the cyclical variation in risk, as measured for example
by the conditional skewness or kurtosis. While the statistical performance of the
models differs little in terms of their conditional mean, inspection of the higher
order moments implied by different mixture specifications shows far greater ability
to discriminate between models. Likewise, the predictive densities of the mixture
models show substantial differences particularly when markets are volatile.

The mixture models provide a characterization of the dynamic patterns in risk
that goes well beyond what can be achieved through Gaussian models. For the
small firms, the mixture models identify negative expected returns and negative
conditional skewness from the late expansion to the early recession stage of the
economic cycle. Conditional volatility and kurtosis increase rapidly prior to and
during recessions. This means that small firms’ risk is particularly high around
the peak of the business cycle at a time where it is very poorly approximated by a
single Gaussian model. While similar patterns are found for the large firms, cyclical
variation in their conditional moments is generally weaker for these firms.

The plan of the paper is as follows. Section 2 presents the econometric model
and Section 3 reports estimation and forecasting results. Section 4 analyses the
time-series variation in higher order conditional moments, while Section 5 looks at
the evolution in the conditional density of returns. Section 6 concludes.



2. An Econometric Model of Asymmetries in Stock Returns

It is common in studies on predictability of stock returns to specify the conditional
mean of returns on stocks in excess of a T-bill rate (p,) as a linear function of a
vector of predetermined instruments that are known at the time of the prediction
(Xeon):

p=0X1+e. (1)

Here ¢, is a zero-mean error term. Some studies also allow for non-linear effects,
typically by explicitly modeling time-dependence in the second conditional moment
of stock returns (h;):

pr=BXiq+ 9k + e, & ~ (0, hy) @)
he = O({hems ¥y {e—iti, Xemr)-

Here 9 is some time-invariant function.® To capture additional kurtosis in the error
term, often a student-t density with few degrees of freedom (v) is adopted for ¢, :

()
D) Voh(1 + )0

Although these models allow for quite rich non-linear dynamics in stock returns,
they assume that the functional relationship between excess returns and the pre-
determined factors {X,_,} stays constant across different states of the economy.
Recent economic theories provide reasons to expect stock returns to display
strong asymmetries with regard to the underlying economic state. They also sug-
gest that these asymmetries are related to firm size. Because of information asym-
metries, firms’ access to capital markets tends to be based on their collateral. Small
firms typically have far less collateral than large firms and will find it more difficult
to raise capital. This is likely to be critical around economic recessions when small
firms’ capital base is particularly low. During such periods we would expect that
tighter credit market conditions - as evidenced by higher interest rates and a higher
credit spread - would affect small firms disproportionately more than large firms.
As a result, the risk premium on these firms’ equity should also rise in recessions.
Theory thus predicts asymmetries in the relation between predetermined factors,

€y~ t(Oiv)hl) =

®)

$Several non-linear specifications such as (2) are estimated for daily returns data
in Engle and Ng (1993), while Glosten, Jagannathan and Runkle (1993) analyze
monthly return series.




X,_1, and excess returns, with factor sensitivities that are largest for small firms
during recessions.

Following these suggestions, we adopt an econometric model that allows the
regression coefficients to be state-dependent. We briefly describe the Markovian
latent state mixture mode] that forms the basis for our empirical analysis. Let s;
be a latent state variable and suppose that this can take one of k possible values,
ie. s =1,..., k. Our specification uses the model originally proposed by Hamilton
(1989) as a starting point and generalizes it by letting the intercept term, regression
coefficients and variance of excess returns be state dependent:

P = ﬂOs‘ + ﬁ’s;xl—l + €&, €~ (07 hs;)- (4)

The state transition probabilities between periods ¢ — 1 and ¢ are assumed to
follow a first-order Markov chain. Although numerous papers have proposed dif-
ferent specifications for the state transition probabilities, very little work has been
undertaken on comparing the resulting models. To accomplish this, we consider
three alternative specifications. The simplest model assumes that state transitions
are constant over time:

pii(Q-1) = Plse = jlse-1 = 1,S%—1) = pyj, 5)

where (,_; is the information set available at time ¢ — 1. This 'first generation’
mixture model is similar to that originally adopted by Hamilton (1989). It benefits
from being tractable and simple to estimate.

Recent empirical experience with Markov switching models suggests that the
flexibility gained by allowing the state transitions to vary over time as a function
of a vector of predetermined variables, y;—1, can be very substantial and thus we
also consider such models:®

pij(Qt—l) = Pij()’t—l)~ (6)

The statistical model implies a density of p, conditional on €,_; which we denote
by ¢(p,|Qu_1; ), where @ is a vector of parameters entering the likelihood function
of the data. The log-likelihood function can be decomposed as follows:

10f course there is no guarantee that a particular mixture model will separate
states along business cyele lines, For example, many mixture models split security
returns into a high and a low volatility state.

sTime-varying transition probabilities have been considered in an extensive liter-
ature. Filardo (1994) adopts the Composite Leading Indicator as a key explanatory
variable of the transition probabilities in estimating a switehing model for industrial
production. Durland and McCurdy (1994) argue that the transition probabilities
should depend on the duration of the state,

4
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LL(pr, pr_y,-p1;0) = Y _ In(¢(p;|1;6)), (7)

t=1

where the information set €2;—; contains X,_1, p,_;, 11, and lagged values of these
variables: Q,_; = {Xi_1, py_1, ¥i-1, 4—2}. The mixture density ¢(p,|Q—1;0) is
obtained by summing the density functions conditional on the state n(p,|Q%_1, s: =
7;0), using the respective state probabilities as weights:

k
S(oru-1;0) = Y n(p -1, 5 = §; 8)P(se = 5|-1; 8), ®

J=1

where P(s; = j]{4_1;0) is the conditional probability of being in state j at time
t given information at time t — 1. Under assumptions about the state densities
of the innovations, €;, and a law specifying how the state evolves over time, the
parameters of this model can be obtained by maximum likelihood estimation. We
investigate two alternative sets of densities. The first assumes that the underly-
ing state densities n(g,|s,X;-1;0) are Gaussian. The conditioning factors, X,_,
enter linearly in the excess return equation within each state, but we allow their
coefficients to vary between states:

: 1 —(p — By; — B;X¢1)?
Q1,8 =7,0)= e L , 9
MpelQe-1, 8 = 5, 8) N xp( o ) &)
for j =1, ..., k. Since mixtures of normals can approximate a very broad set of
density families, this assumption is not very restrictive® /

Nevertheless, samples of asset returns contain outliers and empirical applica-
tions almost invariably use two-state models, so we propose a new mixture of
student-t state densities

5Another closely related approach, advocated by Gallant and Tauchen (1989
and recently implemerited in a study of stock returns by Harrison and Zhang (1997

uses Hermite polynomials to model the conditional density semi-nonparametrically.
The two approaches are close substitutes. How 'parametric' our mixture of normals
approach is depends of course on the rule used to decide how many normal densities
to use. Qur particular application uses a large conditioning information set in
conjunction with a relatively small sample size and we partly choose the finite-
mixture approach on grounds of parsimony. Furthermore, Sections 4 and 5 show
that mixtures of two Ganssian densities or a mixture of a student-t and a Gaussian
gensity can generate substantial variation over time in the shape of the conditional

ensity.
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where v; is the degree of freedom parameter for the jth state and I'(.) is the gamma
function. From the total probability theorem it follows that, for both densities, the
conditional state probabilities can be obtained recursively:

k
P(s; =i|-1;0) = ZP(St =181 = §, Q13 0) P(s1o1 = 511, 6). an

j=1

Finelly, by Bayes’ rule the conditional state probabilities can be written as

P(si-1 = jlQ%-1;0) = P(si1 = 1P, Kem1, Vo1, U—2;8) = (12)
{Pel$t-1 = J, Xee1, ¥e-1, h_2;8) Plsi-1 = X1, ye-1, -2 8)
Z§=1 N(pe_rlsit = §» Kio1, Y1, Qu2; O) P(se1 = 51Ki-1,¥e-1, s @)

Equations (11) and (12) can be iterated on to recursively derive the state proba-
bilities P(S,|€-1; 8) and obtain the parameters of the likelihood function. Since
the purpase of our analysis is to model the state dependence in the conditional
distribution of excess returns given a set of publicly known predictors, we do not
extract any information about the state of the economy from these variables.” The
resulting state probabilities will entirely reflect the variation in the conditional
distribution of stock returns.

3. Empirical Results
3.1. Model Specification

Our analysis uses monthly excess returns on the decile portfolios comprising the
smallest and largest firms sorted by market capitalization and provided by the
Clenter for Research in Security Prices (CRSP). We consider small (decile 1) and
large (decile 10) firms separately because of the theoretical prediction that cyclical
asymmetries should be much stronger for the less collateralized small firms. Fol-
lowing standard practice, monthly excess returns rather than nominal returns are
studied to get a measure of returns relative to the benchmarlk risk-free T-bill rate.

"Hence we assume that the state transition probabilities are not influenced by
the information in X,_, and Q_,, cf. equations (5) and (6), and that P(s; =
|Q-1;0) =P(s; = 1| X, 4, 2-1; 0).



Returns at higher frequencies are more noisy and hence it would be more difficult
to identify cyclical variation in returns at such horizons. The sample period be-
gins in January 1954 and ends in December 1997, giving a total of 528 monthly
observations.

Using variables linked to the business cycle, a large empirical literature has pre-
sented evidence that stock returns are predictable by means of single-state specifi-
cations and our choice of regressors is guided by this literature. We model excess
returns as a function of an intercept term and lagged values of 2 1-month T-bill rate
(I1), obtained from the Fama-Bliss risk-free rates file on the CRSP tapes, a default
premium (Def), measured as the difference between yields on Baa and Aaa-rated
corporate bond portfolios, both obtained from the DRI Basic Economics data base,
and the dividend yield (Yield). The one-month T-bill rate has been used by Fama,
(1981) and many others as a proxy for shocks to expected growth in real eco-
nomic activity. The default premium tracks cyclical variation in the risk premium
on stocks. The dividend yield, measured as dividends over the previous twelve
months divided by the stock price at the end of the month and again obtained
from CRSP, is commonly used as a proxy for time-varying expected returns. Fama
and French (1989) find that the dividend yield tracks a mean-reverting component
in expected stock returns whose variation extends beyond the business cycle. For
this reason we impose a priori that the coefficients on these regressors remain the
same across states.

In addition to these regressors that are common to small and large firms, we
also include two additional factors in the model for small firms. Many studies
have found that small firms’ returns tend to be higher in January and are serially
correlated so we include a January dummy and a single lag of returns for these
firms. Serial correlation is believed to reflect non-trading effects and thus does not
track the cycle. The source of the January effect is less well understood so we allow
its coefficient to vary across states. For the small firm portfolio the mean equation
thus becomes

pe = Bos, + Brs Ji-1 + Bas Defeor + BsYield, 1 + Byp,_y + Bss Jary + &, (13)

while for the large firms we adopt the specification

Py = ﬁ()s, + ﬂulll—l + ﬁzscDeft—l + ﬁaywldt—l + €. (14)

For the conditional variance of excess returns, hy,, we follow Glosten Jagannathan
and Runkle (1993) and consider an exponential ARCH specification that varies
with the state, the level of the 1-month T-bill rate and the absolute value of past




shocks, |e;_,|, divided by the average of the lagged state volatilities weighted by
the respective state probabilities at time t — 1, o1, to take care of scaling effects®

2
In(hs,t) = Agsy + Asde—1 + Aas (ler—1]/oe—1 — ;T') (15)

The mixture model assumes that there are two states, i.e. k = 2. Given the
sample size relative to the number of parameters and their highly nonlinear effect,
it is natural to choose a model restricted to two states® Three state transition
probability models are considered and we refer to these as MSI, MSII and MSIII,
respectively. The first model simply assumes the state transition probabilities are
constant. !

MSI: pii(Ql—l) = q)(ﬂ'i), i= 1,2 (16)

The second model assumes that transition probabilities vary with a single
forward-looking summary measure of the state of the economy but omits a constant:

MSII: pi(Q1) = &(mACLI, ), i = 1,2 (17)

where ACLI,_, is the two-month lagged value of the year-on-year log-difference in
the Composite Leading Indicator and ®(.) is the cumulative density function of a
standard normal variable.!! The change in C'LI seems a natural choice of state
variable in this context.

8Notice that we do not scale by the volatility in the state at timet — 1, h,,_,,
since doing so complicates the model by introducing path dependence, The lagged
variance turned out not to be significant when added as a separate regressor in the
volatility equation, so we go with the simpler ARCH specification for the mixfure
models.

"Under the null of a single state, state transition probabilities are unidentified
nuissance parameters and standard results on the distribution of likelihood ratio
tests no longer apply. We tested for state dependence in the constants entering into
the mean and volability specifications, using the approach of Hansen (1992) and
Hansen (1996). Besides varying the intercept coefficients in the mean and volatility
equations across a grid, the transition probability parameters must also be varied
in our setup with time-varying transition probabilities and several conditioning
variables in both states. We found that the null of a single state was rejected at
the 5 percent critical level or lower even when the state dependence only shows up
in the intercept terms.

WSinee there are only two states, pio = 1 —pp; and py = 1—pag, so two transition
parameters have to be estimated for this model.

UTwo lags of AC LI are used to account for the publication delay in this variable.



Notice that we have omitted a constant in the transition equation of this sec-
ond model. Applications of Markov switching models to financial data suggest that
states are effectively separated by levels of volatility. Typically a high volatility
state with little persistence and a low volatility state with high persistence are
identified. Naturally this reflects the many outliers in financial returns. If not con-
trolled for, mixture models mechanically classify data into the high volatility state
after an outlier is observed. However, this classification has little predictive power
over returns. To constrain the transition probabilities to evolve more smoothly
over time, we restrict these by setting the intercept equal to zero so that the tran-
sition probabilities are forced to smoothly track cyclical variations in the leading
indicator. )

To evaluate the effect of imposing this ’smoothness constraint’ we also consider
a general model that includes both a constant and ACLI, ; in the state transitions:
12

MSIII: pﬁ(ﬂt_l) = @(7{'0 + WiACLIt_z), = 1, 2 (18)

Finally we consider both mixtures of two Gaussian densities and a mixture of a
student-t and a Gaussian. Qur estimations suggest that the density in one state is
well characterized as a student-t with few degrees of freedom, while the degrees of
freedom parameter for the second state continued to rise without reaching an upper
bound. Since a student-t with a high degree of freedom parameter is very similar
to a Gaussian density, we used the Gaussian distribution in the second state to
ensure convergence of the estimations. We will refer to the Gaussian and student-t
mixture model as MSt.

These Markov mixture models are compared to the corresponding single-state
specification for the small firms

pr = Bo + Bl + By Defiy 4 BsYieldiy + Bap,_y + BsJan + &, (19)

while the single-state model assumed for the large firms is

pe = Bo+ Bolir + BoDefiy + BaYieldry + €, (20)

12We impose the constraint that the intercept term is the same in both states,
whereas the effect of the leading indicator can be state-dependent. This is done
in order to achieve stability and convergence of the algorithm used to estimate the
model. We found severe problems with convergence to multiple local optima when
both the constant and the slope coefficient in the state transitions were allowed to
be state-dependent.
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and e, ~ t(0, h, v) in both cases. Conditional volatility is modeled as

2
In(hy) = Ao + Arle—1 + Aolee—1l/ V1 — '7?)) + Az In(hy—1). (21)

Conditional on (),_, the density of the single-state model is student-t and only its
dispersion and center vary over time.

Other papers have utilized model specifications that are similar to ours in some
respects. In the context of a Markov mixture model Hamilton and Susimel (1994)
and Hamilton and Lin (1996) allow for ARCH effects although their models assume
constant transition probabilities between two states. Filardo (1994) lets the tran-
sition probability of a Markov mixture specification vary over time but excludes
ARCH effects. Chauvet and Potter (2000) construct leading and coincident indica-
tors of stock returns through a factor-plus-noise approach that assumes the factor
follows a latent Markov chain with constant state transition probabilities. Perez-
Quiros and Timermann (2000) analyze the mean and variance of stock returns on
ten size-sorted portfolios using a mixture of Gaussian densities.

3.2. Model Estimates and Data

Table 1 presents maximum likelihood estimates of the Markov mixture and single-
state models fitted to the small firms’ excess returns. In the single state model the
coefficient on the interest rate is negative and highly statistically significant. The
default premium and dividend yield coefficients are positive, although they fail to
be significant at conventional critical levels. Finally the estimated coefficients of
the lagged return and the January dummy are both positive and highly significant.
In the volatility equation, lagged shocks (|e;—;|) and past volatility (h,_;) are both
significant while the interest rate coefficient fails to be. At 4.1, the degree of
freedom estimate of the student-t distribution indicates that the first four moments
are finite.

Turning to the two-state models, Table 1 shows that the coefficient estimates in
the two states are very different from the single state benchmark. Across mixture
specifications, the coefficient of the nominal interest rate is strongly negative and
statistically significant in state 1 and closer to zero in state 2. Likewise, for three
of four mixture models, the coefficient of the default premium is positive, highly
significant and larger in state 1 than in state 2. Interestingly, the January dummy
seems most important in state 1. This may provide a clue to the source of this
poorly understood effect.

The overall level of volatility is generally higher in state 1 as indicated by the
larger (less negative) intercept term in the volatility equation for this state. Interest
rate effects tend to be of similar magnitude in the two states. The coefficients in the
state transitions also provide important information. For the constant transition

10



model, state 1 is less persistent (p;; = 0.95) than state 2 (pp; = 0.97). In the
transition model with a leading indicator but no constant the coefficient on ACLI
is negative in state 1 and positive in state 2, although none of the coefficients is
individually significantly different from zero. It is clear from the log-likelihood
values that exclusion of an intercept term leads to a substantial decline in the
in-sample fit of the mixture model. In the most general transition specification
(MSIII), the intercept term is highly significant while the negative coefficient on
ACLI in state 1 is borderline significant.

Finally consider the mixture Gaussian and student-t model. To keep the number
of models as low as possible, we only consider the state transition model with an
intercept and ACLI. The conditional mean and volatility coefficients follow the
same patterns as for the pure Gaussian mixtures. The coefficient on ACLI is
again negative and significant in state 1 and close to zero in state 2. The degree of
freedom parameter estimate is 7.0, suggesting fat tails in state 1. This estimate is
somewhat larger than that from the single-state model (4.1), indicating that regime
switching effects account for some of the leptokurtosis in returns.

A comparison of the single-state and Markov switching models in Table 1 shows
that the estimates of the single-state model tend to lie between the corresponding
Markov switching estimates for the two states. Since the coefficient estimates of
the Markov switching model are very different across states, assuming a constant-
coefficient model results in misleading conclusions. For example, a researcher might
conclude from the single-state specification that the default premium is not signif-
icantly correlated with stock returns. The more correct conclusion would be that
default risk is significantly positively correlated with stock returns, but only so in
state 1.

Table 2 presents the estimates for the large firms across the same set of models.
The signs of the coefficients in the single state specification are similar to those for
the small firms: the coefficient on the interest rate is negative while the default
premium and dividend yield obtain positive coefficients. For the mixture models,
the large firms again display asymmetries across states in the conditional mean
equation. The interest rate coefficient and the default premium coefficient are
larger in absolute value in state 1 although the degree of asymmetry between the
two states is less pronounced than for the small firms.

To assist in the economic interpretation of the two states identified by the
mixture models, Figure 1 shows the time series of the predicted state-1 probability
(p1e = Pr(s; = 1|€%-_1;@)). Also shown in shaded areas are the official recession
periods tracked by the NBER. When a constant is included in the state transitions,
the mixture model separates the data into a state that, while clearly related to
recession periods, also picks up more isolated episodes of high volatility such as
October 1987. For most periods, it is relatively clear which state generated the
data and py, is far from 0.5. In contrast, the model without a constant in the state

11




transitions generates smoother state probabilities and tracks the economic cycle
more closely.

These plots effectively demonstrate how sensitive the state classification can
be depending on which state transition and underlying density is used. While the
time series of the state-1 probabilities are quite similar for the three mixture models
with a constant in the transition probabilities, there is a distinct difference between
how first and second generation mixture models classify states. For example, the
squared correlation between the time series of p;; generated by the model with
a constant transition probability (MSI) and the mixture Gaussian-t model with
a constant and the leading indicator (MSt) is less than 0.5 for the small firms.
When a constant is included in the state transitions, the data gets separated less
into business cycle states and more into high and low volatility states.

8.3. Forecasting Performance

To assess the statistical performance of the single- and two-state models we com-
pare them along a variety of criteria. Initially we focus on traditional forecasting
measures such as mean squared forecast error (MSFE) while the next sections
consider precision in forecasting higher order moments and conditional densities.
We first provide full-sample results in order to summarize the performance of the
models when parameter estimation uncertainty is not too important. However,
there is always a danger of in-sample overfitting with nonlinear models as compli-
cated as ours, so we also present, out-of-sample results that do not condition on the
information embodied in the full-sample parameter estimates.

First consider the mean squared forecast errors reported in Table 3 for all models
under consideration. Diebold and Mariano (1995) have suggested a test of the
significance of the difference in the forecasting performance of two models and, for
each sample, the table reports the values of this statistic in the second column. We
set up the statistic so that a positive value means that the Markov switching model
does better than the single-state model and apply a one-sided test. All mixture
models fitted to the small firms generate lower MSFE values than the single-state
model, and two of the test statistics are significant at the 5 percent level while a
third test is borderline significant. The MSFE performance is relatively poorer for
the large firms where only one of the mixture models improves on the single-state
specification although none of the test statistics is significant at conventional levels.
Interestingly, all four mixture models generate a positive test statistic for the large
firms in the official recession periods, but all mixture models underperform during
expansions.

In the out-of-sample forecasting experiment we are careful to avoid conditioning
on information that was not known historically. Diebold and Rudebusch (1991)
observe that the composite leading indicator has been revised numerous times, so
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it is important to avoid using the information implicit in later revisions. For this
reason we use the originally released historical values to compute ACLI,._,."* More
specifically, let ACLIT be the 7'th vintage of the change in CLI applied to time £,
so that ¢ < 7. Then we base our prediction for period ¢ on {X;_1, ACLIE 81}
where @H is the vector of parameters based on §;_;. We begin the sample in 1976:1
to avoid the disruptive effects of a set of major revisions of the CLI in 1975. The
parameters of the forecasting models are re-estimated at the beginning of each year
using an expanding window of data. Convergence of the parameter estimates at
each point in time is difficult to achieve, particularly at the beginning of the sample,
but we found that this updating scheme made it feasible to explore the effect of
using different starting values at each estimation point. Out-of-sample forecasting
was not feasible to implement for the most complicated Gaussian, student-t mixture
model whose convergence is more difficult to achieve. For this reason we only
consider the three Gaussian mixture models in the out-of-sample experiment.

Unsurprisingly the mixture models do not outperform relative to the single state
model in the out-of-sample experiments. Although the mixture models correct for
biases in the single state model, they also add to parameter estimation variability,
particularly at the beginning of the experiment where the sample is very short
and it is difficult to precisely estimate the mixture models. In this situation it
is commonplace to find that the MSFE performance of nonlinear models is worse
than that of simpler linear alternatives, even in circumstances where the nonlinear
specification is correct, see e.g. Pesaran and Potter (1997) and Clements and Smith
(2000).

Although MSFE is by far the most common statistical measure of forecasting
performance, it may not reflect the economic value of the predictions. A statistic
designed to measure market timing information in a sequence of predictions is the
nonparametric sign test proposed by Pesaran and Timermann (1992). This statistic
is asymptotically normally distributed under the null of independence between the
sign of the predicted and realized values of excess returns. Table 4 reports the
value of this test statistic. In-sample all models produce a significant value of
this test statistic. While there is little evidence to separate the performance of
the single-state model from the Gaussian mixture models, the mixture Gaussian-t
model generates a somewhat higher test statistic than the other models.

Out-of-sample, the single state and mixture models generate very similar values
of the market timing test. However, while the predictability of the direction of the
market continues to hold out-of-sample for the small firms, there is no evidence of
predictability of the sign of large firms’ returns out-of-sample.

A contentious issue in the literature on predictability of stock returns is how

13The real-time CLI series used by Diebold and Rudebusch (1991) terminated in
1988:12, so we updated their series for the period 1989-1997.
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to interpret negative values of predicted excess return. It is difficult to imagine
a meaningful equilibrium model in which risk averse investors are willing to hold
stocks during periods where they expect negative risk premia. Previous discussions
have been based on misspecified single state models so it is clearly important to
investigate whether negative expected excess returns also show up in the mixture
models. A natural measure of the occurrence of negative risk premia is the pro-
portion of months where the expected excess return is negative and more than two
standard errors below zero. Computing this statistic requires knowing the stan-
dard errors of the predicted values which is surprisingly complicated due to the
recursive structure of the mixture models. In Appendix A we show how to derive
the standard errors of the predictions. To save space we only report full sample
results for the most general mixture specification (MSIII). For the small firms, this
mixture model generated negative predictions for 254 months, or 48 percent of all
cases, with 71 or 13 percent being more than two standard errors below zero. In
contrast there was very weak evidence of negative expected returns for the large
firms. Only 103 cases, or 19 percent, were negative and these were statistically
significant only in three percent of the periods. These findings suggest that the
negative risk premium puzzle is related to firm size. Negative expected returns are
more or less absent for large firms, but occur surprisingly often for small firms.

Economic theory suggests a trade-off between expected returns and conditional
volatility or other proxies for risk. Standard finance models specify expected re-
turns as proportional to the conditional variance of the residual component. This
suggests a constant squared coefficient of correlation between expected and realized
returns, independently of the underlying state or the level of volatility. We provide
new evidence on this issue by analyzing whether the degree of predictability of
stock returns - commonly interpreted as reflecting time-variations in risk premia
- is related to the underlying state or the conditional volatility. For this purpose
Figure 2 provides smoothed plots of the squared correlation between predicted and
realized excess returns computed in different neighbourhoods of the level of state-
1 probability and the level of conditional volatility. The plots are based on the
Gaussian mixture model with a constant and the leading indicator in the state
transitions (MSIII).

The figure shows that the proportion of the small firms’ returns that is pre-
dictable increases systematically with the probability of being in the recession
state and as a function of the level of volatility. Variations in small firms’ ex-
pected returns hence matter disproportionately more when the volatility of returns
is high. These findings are more consistent with a risk premium interpretation of
the time-varying expected returns than with a model that assumes a time- and
state-invariant risk premium. However, they also suggest that the standard risk
premium model cannot fully explain the time-varying risks. While the degree of
predictability of large firms’ returns also varies with the state of the economy and
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the level of volatility, a less clearcut pattern is found for these firms.

4. Cpyclical Variation in Higher Order Moments

Stock returns are clearly not normally distributed so volatility is an insufficient
measure of risk. Testing the implications of imperfect capital market theories that
small firms’ equity is riskier around recessions thus requires inspecting higher order
moments as well as the predictive density of stock returns. For completeness, this
section initially studies time-variation in the conditional mean and variance and
then proceeds to analyze the evolution in the conditional skewness and kurtosis.
These moments are increasingly used to characterize risk. For example, Kraus and
Litzenberger (1976) extend the standard two-moment CAPM to a setting where
investors’ preferences are also defined over the skew of the distribution of asset
returns and Harvey and Sidique (2000) investigate the empirical importance of
accounting for conditional skewness in the context of a cross-sectional model of
stock returns. We know of no prior study of the time-series properties of the third
and fourth conditional moments of returns and their link to the economic cycle.
In a recent discussion of density forecasting Tay and Wallis (2000) emphasize the
importance of considering this question although very little evidence exists.

The conditional moments of the single-state model are, of course, simple to
derive. Conditional on £2,_;, excess returns are generated by a single student-t
distribution with a mean following from (20) or (21), conditional variance -*h,
zero conditional skewness and kurtosis of AT (2)I'(352)v?/((3)v/T).

Deriving the first four centered, conditional moments of the Markov mixture
distributions is less straightforward. First consider the mixture of Gaussian densi-
ties. Recall that py = Pr(s, = 1]{2,_1; @) is the probability of being in state 1 at
time ¢ given information at time t—1. Let p;, = Gy; + IB}X,_, , and rrfj, = hj;,. be the
first, two conditional moments of the §th state. Corollary 1 in Timmermann (2000)
which characterizes the moments of the ergodic distribution of markov switching
models can easily be extended to cover the first four conditional moments:

Conditional mean:

Elp,[S4-1;0] = pe = prspige + (1 = pre)par- (22)

Conditional variance:

E[(p = 1)*)-156] = (1 — p1u)od, + puuote + prl — puo) (g — pa)® (23)

Conditional skewness:

El(p, - #¢)3|Qt—1; 0] = pu(l — pr)(py — tize) (3(0% - U;t) + (1 = 2pu)(pyy — Nz(t)g
2
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Conditional kurtosis:

Ellpy — 1) 19-1;8] = pull — pao)(une — bize)®-
(e — 22e)* (1 — 3pre(1 — pu)) + 6(1 - pi)os, + 6puos,)
+3 (preot; + (1 — pr)oy,) (25)

These expressions show that different means of the underlying state densities are
important to the volatility, skewness and kurtosis. For example, if the means in
state 1 and 2 are identical, then the mixture model cannot generate skewness.
Hence the time-series of the conditional skew generated by the mixture models
reflect the discrepancy between the conditional mean in the two states.

The mixture of the student-t and Gaussian density leads to somewhat different
conditional moments. Suppose the t-distribution occurs in state 1 and let v; be the
degree of freedom parameter for this state. Appendix B proves the following result

Proposition

The first four conditional moments of the two-state mixture of a student-t distri-
bution with v; degrees of freedom occurring in state 1 and a Gaussian distribution
for state 2 are given by

Ely:|Q-1; 0]

El(y. — M)Zlﬂn—l; ]

ty = Prebyy + (1 Prs)Hay

U1
Pu (Ul — 2> o} + (1= pr)oy,

+p1e(1 = pre) (e — p120)*.

Bllw— s8] = pull — ) — )3 (o352 5) ~ o)

+(1 = 2p1e) (s — pi2e)}

El(p, l‘t)4|Qz—1§ 0] = pu(l- P1)(ae — ﬂzz)z :
((ﬂu — piz)* (1 = 3pre(1 — pre)) +6(1 — pue)(
, F(%}F{%)‘u?m,a'{t
Vi)
Figure 3 presents time-series plots of the conditional mean for the single-state
and two of the mixture models under consideration.!! First consider the plots for

= 2)‘7% + 61’1:031)

+3(1 - pu)os,

14The time-series plots for the remaining mixture models were very similar and
are therefore omitted.
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the small firms. The five series are clearly strongly correlated, with correlations
that vary between 0.80 and 0.98. Although there is a clear cyclical pattern in
expected returns which decline towards the end of expansions and rise during the
course of the recession periods, there is also substantial short-run variation around
the cyclical component. This is a result of including the lagged return as a regressor
in the small firm model. Such short-run variation is largely absent in the plots for
the large firms’ expected returns which do not include a lag. For the large firms
the first-moment time-series correlations are even higher across models and range
from 0.91 to 0.99.

Turning to the second moment plots, Figure 4 shows that these display relatively
more variation across econometric specifications. Correlations between second mo-
ments now range from 0.38 to 0.88 for the small firms and from 0.57 to 0.99 for the
large firms. Interestingly, the student-t mixture fitted to the small firms generates
quite different conditional volatility compared to the Gaussian mixture while the
two series are almost identical for the large firms. This of course has to do with the
low degree of freedom estimate for the t-distribution fitted to the small firms. Clear
counter-cyclical patterns in volatility that lead recessions emerge for all models.

Similarities between models are further weakened once higher order moments
are considered. The conditional skewness is of course zero for the single-state
model. However, the skew generated by the Markov mixture models fitted to the
small firms follows a pronounced cyclical path with negative conditional skewness
in the late expansion and early recession stage, c.f. Figure 5. This finding matches
well with the frequent occurence of negative returns at this stage of the cycle. It
is interesting that such negative returns show up as negative conditional skewness.
Symmetric density models would not identify such effects, so the advantage of
using a mixture model is clear in this case. The difference between the third
moment of first generation (constant transitions) and second generation (time-
varying transitions) mixture models is also elear. The constant transition model
generates negative conditional skewness for almost all time periods, while the otherl
models produce both positive and negative skews. Across models, correlations
between the time-series of skewness range from -0.12 to 0.06 for the small firms.
For the large firms there is less of a difference between the time series plots of
the different mixture specifications, which generate weak cyclical patterns centered
around a small negative skew.

A strong cyclical pattern also emerges from the conditional kurtosis. Figure 6
shows that this has a tendency to rapidly increase prior to and during recessions. It
also decreases in the early stages of the ensuing expansions. Again first and second
generation mixture specifications produce very different conditional kurtosis with
correlations across models as low as 0.4.

These results allow us to characterize the cyclical variations in the risk of stock
returns as follows: right before a turning point in the business cycle, i.e. during the
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late expansion and early recession stage, stocks are particularly risky to hold since
their returns have lower conditional mean, higher conditional volatility and lower
(sometimes even negative) conditional skewness. With a short delay, i.e. typically
in the early expansion state, kurtosis of returns rises rapidly.

A formal statistical assessment of the models’ characterization of the higher
order moments of returns can be obtained from regressing various powers of the
residuals from the excess return equation on the corresponding conditional mo-
ments, c.f. Pagan and Schwert (1990):

€ = a+ bE(e}|-1;0] (26)

Forecasts of the nth moment are unbiased if @ = 0 and b = 1. Results from
in-sample and out-of-sample estimations are provided in Table 5. First consider
the second conditional moment. For the small firms, all mixture models generate
values of a closer to 0 and of b closer to 1 than the single-state model. For the large
firms, the mixture model with a constant transition probability and the mixture
Gaussian-t dominate the single state model in this regard.

Turning next to the conditional skewness, by construction the single state model
canmot capture time-variation in this moment. In contrast, six of eight mixture
models generate a positive in-sample estimate of b. There is an interesting difference
hetween the estimates of third-moment slopes for the small and large firms. While
the slope estimates exceed one for the small firms, they are well below one for the
large firms. Finally the table shows that the mixture models provide a much better
fit for the time series of the small firms' fourth moment than the single-state model.
Tracking of the fourth conditional moment is particularly impressive for the three
mixture models that include a constant in the state transitions, In contrast, when
it comes to the large firms, the single-state model generates the estimate of b closest
to one.

Out-of-sample the single-state model is completely unable to track time-series
variation in the small firms’ second and fourth conditional moments. While a sim-
ilar picture emerges for the mixture model with only the leading indicator in the
state transitions, the two mixture specifications with a constant in their transition
probabilities generate larger and positive slope estimates for the second and third
moments. The simplest model with just a constant does particularly well with
estimates of ¢ and b that are within two standard errors of zero and one, respec-
tively, for all three moments. None of the mixture models shows any evidence of
out-of-sample predictability of time-series variations in the large firms’ higher order
moments.

5. Time Variations in Conditional Densities

As mentioned in the introduction, general decision theories characterize the risk of
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a financial asset by means of the predictive density of the asset’s returns. For the
Gaussian mixture model this means computing

Pt e e ﬁ;xa—l)a
(0| Q-1;8) = Z \/—-T ge ) (27)

while the mixture of a student-t with a Gaussian distribution requires calculating

el (34)
T(%)/murhy (1 + pf_‘."_l;.ll_f_;lf_{h:_’.z)(v‘+1)/2

&(p,Q-1; )
2
(1—put) exp(= (o — 2 — BoX1)? )

+
W 2mhay 2hyy

The single-state model assumes a student-t density with time-varying scale’ and
location parameters. Insights into how much the conditional density of returns
varies from month to month and how the single-state and two-state specifications
differ, can be gained from Figure 7 which plots the sequence of monthly densities
during the volatile period 1982:09 - 1982:12 around the change in the Federal
Reserve's operating procedures. First consider the conditional densities of the
small firms. While the location and dispersion of the single-state density varies
considerably from month to month, the shapes of densities obtained through the
mixture models cover a much wider range. Throughout the full sample the mixture
model generates a variety of single-peaked, hump-shaped, and bi-modal densities
that vary significantly from one month to the next.

Plots for the large firms revealed far less variation in the density shapes than was
found for small firms. The reason for this is clear from the earlier expression for the
conditional coefficient of skewness: mixtures of normal densities can only generate
skewness provided that there is a sizeable difference in the means of the marginal
densities in the two states. Small firms’ mean equations display the highest degree
of asymmetry across the two states (c.f. Tables 1 and 2) and will thus generate the
highest time-series variation in skewness. Again this is consistent with the theories
on the relationship between firm size and cyclical risk exposures.

These differences in density plots for the models under consideration underline
the necessity of using more general tests of model fit than, say, mean square forecast
error. Diebold, Gunther and Tay (1998) propose to apply the probability integral
transform to the realizations of a time series as a way of evaluating the density
implied by the forecasting model. If the conditional density, ¢,_,(.) is correctly
specified, then [*_ ¢, ;(x)dzx should be drawn from a uniform distribution. Failure
to correctly model, say, tail probabilities would result in a disproportional number
of observations of these probability transforms of excess returns near zero or one.

(28)
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Formal tests of the predictive densities are provided in Table 6. We compare the
inverted probability transforms to the uniform distribution using a Kolmogorov-
Smirnov test. In-sample, none of the single-state or mixture models leads to a
rejection of the null at the 5% critical level. Out-of-sample the picture is very
different. For the small firms the only model not to be rejected is the mixture
model with a constant and the leading indicator in the transition probability. For
the large firms only the model with a constant transition probability passes the
test at the 5% critical level. Recalling that the mixture models did not improve on
the out-of-sample MSFE performance of the single-state model, these findings also
show that nonlinear mixture models may be of particular use to decision makers
with non-quadratic loss functions. ‘

Berkowitz (1999) has proposed a test to evaluate the accuracy of density fore-
cast that is suitable for small samples. Under the null of correct density forecasts,
the test is believed to have good power properties for testing the null of a correctly
specified density function. We implement this test by forming the predictive den-
sity function in each period, ¢, (a normal distribution, a mixture of normals or a
mixture of a normal and a ¢, depending on the model) caleulating the p-values of
each realization and testing if the probability integral transform of these p-values
follow an identical and independently distributed standard normal through a like-
lihood ratio test. We divide this test into three separate components, testing for
serial independence (autoregressive parameter equal to zero), zero mean, and unit
variance. We also report the outcome of a joint test. In-sample again none of the
individual or joint tests rejects the null of a correctly specified density. While most
models are rejected out-of-sample, the general Gaussian mixture (MSIII) fitted to
the small firms and the mixture models with a constant in the state transitions
fitted to the large firms are not rejected at the 1% level (small firms) and 5% level
(large firms).

6. Conclusion

A variety of new conclusions about how to understand time-variations in risk and
its relation to firm size has emerged from this paper. Most obviously, it seems that
commonly used single-state specifications for stock returns that adopt the same
model in recessions and expansions are misspecified and can be strongly rejected
against our two-state model. During recessions single-state specifications under-
estimate the size of the correlation between stock returns and variables such as
short interest rates and default premia. Likewise, they overestimate the correla-
tion between these variables and stock returns during expansion periods. We also
find that the shape of the conditional density of stock returns and the higher order
conditional moments vary considerably over time and that this variation is closely
linked to the state of the business cycle. These findings suggest that a comprehen-
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sive characterization of risk must go well beyond the standard analysis of the mean
and variance of returns.

There is strong evidence that cyclical asymmetries in the predictive density of
stock returns is closely related to firm size. Gains in predictive accuracy resulting
from introducing two-state mixture models are far larger for small than for large
firms, both in-sample and out-of-sample. The more complicated two-state models
do not improve on the out-of-sample mean squared forecast error statistic of the
single-state model. However, tests of predictive accuracy based on third and fourth
moments or the full predictive density indicate that the mixture models lead to
better forecasts. Likewise, gains from considering different transition probability
models is related to firm size. For the small firms, on balance a model with a time-
varying state transition linked to the leading indicator performs best, while for
the large firms a constant transition probability model is preferred. This is again
consistent with the predictions of imperfect capital market theories that small firms’
risk exposure is most sensitive to cyclical variations.

Appendix A
Calculation of Standard Errors for the Predictions
from the Markov Switching Model

Equations (4) - (12) form the Markov switching model according to which the
predicted value of excess returns is given by

P = Plse=1Q1)Elplse = 1, Qos] + (1 = Plse = Q1)) Elpy]se = 2, Qi)
P(sy = 1|Qu1) (Blplse = 1, Qo] — Elpyfse = 2,Qe1]) + Elpylse = 2, 1],
(A1)

1l

where to simplify we have dropped the conditoning on 6. In & more compact form,

P = (8, 1), (A2)

where 8 = (81, Boz» B1s Bas Aois Aoz, A11, A1z, Aat, Aeg)' is the parameter vector. This
equation can be approximated by a first-order Taylor expansion evaluated at 6y :

o= 8, 0u) + (0 - 60) 2. (A9)

so that the variance of the forecast of excess returns can be approximated by

21




Var(3,) = (%’g)' Var(6 — 8) (%) . (A4)

In the present case we have (from equation (A1)

fe(8,Q1) = Pls;= 1Q%-1) (Elpylse = 1,81) — Elp,)se =2, Q1))
+(Elpylse = 2,8u1]) - (A5)

Therefore,
O _ OFlse = U) iy 15, = 1,0,00) ~ Elpds = 2,94])

00 56 )
+P (St = 1|Qt—1) 0 (E[ptlst =1 Qt“ja; E[;‘JJS; =2, Qt—ln

OE(py|s, = 2, Q1]
+ 50 .

Applying equation (11) from the main text and using (5) or (6) gives

(A6)

P(SL 1]9;-1) = Pu(Qt_l)P(Sg_l = 1|Qt_1) + (1 - P22(Qt—1))P(st—1 = zlﬂt—l)

(Pi(Qug) + Poa(Qu1) — P81 = 1| Q1) + (1 - Po(Qh-1)), (A7)

where the state transitions depend on the particular transition model.
Differentiating (A7),

OP(sy = 1|94 -1) _ APy () + Paa(Shv) — I}P
o6 a8
+(Pr1(Qu1) + Poa(Qen) = 1)
81 — Pyy(Sh4))
+ a0 .
In equation (A8) we need to calculate %&—‘l, i"i’ég‘—“l, and %’—"—O‘EM For
the most general transition probability specification, the first two derivatives are

(St-l = 1|Qt—1)

3P{3¢_1 = ].lﬂg_l)
ag

(A8)

; ¢mo + T1Ye—1)ye—1 when @, =m
%‘_} =< ¢lmo+ mYi-1) when #; = mg (A9)
¢ 0 otherwise
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6, d(mo + mays-1) when §; = mo (Al0)

OPu(Qur) _ (o + Tayp-1)ye—1  when 0; = m2
0 otherwise

where 8; is the i’th element of 8. In order to calculate &"'“;{M, we use
equation (12) which can be rewritten as

P(St_l = 1|Qt—1) == (All)

where

Bii = 0{pe_a|stc1 = 1, Xee1, ¥om1, Qu—2) P(sicy = XKooy, i1, i), (Al2)

Ap1 =By +1(pe_1|80-1 = 2, X1, Vo1, m2) P(sm1 = 2}Ki1, Y11, s-2)-
(A13)

Differentiating (A11) it follows that

BP(st_l = 1|Qt_1) _ 6Bg_1,f30 _ Bt_laAt_l/c'?O
00 A Az,

(A14)
where

0B, _ 3’!(#‘;..1‘3:—1 = 1,X:—1'}’c—|,9t_z)P(st = 1|Qt 2) (A15)

06 a0
AP (81 = 1|82
0 {pecalse—r = 1, Xeo1, yeo1, Quoz) ——(‘%H—MEL

A, 9By " Inlpioy|sicr = 2, Xeq, ¥, )

(1= P(se-1 = 1|Q-2))
(1 — P(si—y = 1|_s))
a0

where we used the assumption that P(s,_; = 1]Xi1,¥ye-1,h—2) = P(se1 =
1|82 —2)-

a0 ae o8
+n (pt—1|5t—1 =2,X1,¥t-1, QL—?)

, (A16)
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dnlpe_ylse-1= 1’(: t¥i—1t-a)

Because of the ARCH effect in the variance, the term
deserves special interest. To caleulate this derivative, in addition to the "standard”

first order effect of each of the pararmeters, we have to consider the term —=- iﬁ"
obviously, this term is a function of 8’39‘. To calculate this derivative, we repeat
the same derivations that we use in this appendix, now applied to the function
h; = ’U)t(o,Qg_l).

Finally, plugging (A14) into (A8) we obtain:

and,

OP(sy = 1{Q_1) A () + Poa() — 1)
00 - a0
F(P(Q4-1) + Poa(Qo1) — 1) (

o1 - Pzz(QL—l)]
00

Equations (A15) - (A17) can be iterated on to calculate P(s, = 1|{%-1)/08 pro-
vided that an initial value is assigned to 8P(s; = 1|Q)/08. Starting the original
algorithm by using a fixed value of the first state of the economy, as we do, implies
that 8P (s, = |%)/08 = 0, (i = 1,2). Finally, substituting P (s, = #|%-1)/30 (¢
= 1,2) into equation (A6), and noting that dE[p,|s; = 1,2;-1]/00 is easy to calcu-
late from (4), we obtain 0f,/86 and, by (A4), the variance of p,, the square root
of which gives the standard errors of the predictions from the Markov switching
model.

P(St_l = 1|Q£_1)

0B,1/08 BiadAiy ;ae)
A AL,

+ (A17)

Appendix B
Conditional moments of the student-t and Gaussian
mixture model

The first conditional moment of the mixture model is given by

Ely| Q1] = = Pr(se = 1 1) + pioy Pr(se = 2|Q1)
= fiyPu + pg(l = pre).

The second conditional moment can be derived as follows:

U? = El(y. - /L:)2|Qt—1] = puB[(uy + ontn — /-l't)zl + (1 — p1) E[(poy + o282 — #t)z]
pro% + (1= pre)od, + pre(py — ) + (1 = Pre) (e — )™
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where 1, follows a t—distribution with v; degrees of freedom while e, is normally
distributed, both with unit variance. Using that

pe—py = (- 1) Mgy — Hhat)
Por — Bt —D1e(pae = Har),

we get

v
7 Pie <;1_1_—2) %+ (1= p10)ode + puu(l = pue)*(yy = ia0)’?
+(1 = pr)ple(pe — pr)”
v
pie | ——= ) 0% + (1 = pu)ody + pre(1 — Pre) (g — pae)*
v~ 2

I

To derive the third moment, we undertake similar calculations:

El(ye — 1) |Q%-1] = 21Bl(uy + over — )°] + (1= pr) Bl + ouee — )]
v
= pu ((1 = p10)* (e = thog)® + 3(1 — pre) (g — Phae) <Ei—2) U%t)
+(1 —p) (—Pit(ﬂu - sz)s - 3P1t(l‘u - #21)‘751)

2
L AT

= pue(l = p1e) (g — Har) {3 <v1 —5 U%c) + (1= 2pu) (e = #21)2} :

Finally the fourth moment follows as

PuB{(y, + o106 — 1) + (L= 1) El(ge + oeer — )]
v
D ((1 — 1) (e — pize)* + 6(1 — p1e)*(hay — Pae)® <v1_12> 0%+ ma?t)

+(1 —p1) (p?t(ﬂu - ﬂ21)4 + Spgt(#lt - /"2.5)2‘7; + 3”3:) »

El(y — 1)1

where

_ DRr(te
"TT VAT

Collecting terms, the expression in the proposition follows.
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Table 1
Small Firms

The following models were estimated for excess returns on the small firm portfolio

Single State Model:
P=PBo+ Billi + By Defyy + By Yield,, + By pritPs Jan + &
£-t(0,v,b), In(h)=ho + A 1y + Al( el ) 3)-2im) + Ay Inly)

Gaussian Mixture:

p=Bosi+ BusiHl i +BrsDefi + By Yield oy + Bipoi+Bss Jan +e,

€~N(Obs), In(hsd Do+ Musi T 1+ Aasl( i)' ™)-(2/m))

Model I: p=Frob(s=1/5.1=1)=®(1%), q=Prob{s=2js.,=2)=b(n;)

Model II: p=Prob(s=|s.,=1)=®(mACLI 5), q=Prob(s=2|5.,=2)=®(MACLI, )

Model III: p=Prob(s=1)s.;=1)=(ng+ FACLI, 3), a=Prob(s=2ls |=2)=P(tg+TACLI )

Gaussian and student-t Mixture:
Same ition probability sp
£~N(0,hg) if S=1

€~t(0,v,hs) i §=2

as Model 10 with densities:

p, is the monthly excess retums on the small firm portfolidJ is the one-month T- bill rate Def is the default premium, Yield is the dividend
yield, Jan is a January dummy andACL/ is the annual rate of growth of the Composite Index of Leading Indicators. The sample period is 1954-1997.

Gaussian Mixture

Gaussian Mixture

Nole: Standard erors appear in parentheses to the right of the parameter estimates,

Gaussian Mixture

Mean Parameters Sinple-State Model Modell Model 11 Mode] 1T
Comstant, Stute | L0011 (0017 o6 (o) 0034 (ooig) 0m0  (no20)
Conslant, State 2 -0.017 {0.011) -0.005 (0.012) -0010 (©0L0)
Interest Rate, State | -4.006 (1.196) -6.025 2.022) -7.588 (3.122) <1722 (3.054)
Interest Rate, State 2 4.656 (1.394) 0057 (1.741) <2116 (L.291)
Default Premium, State 1 15.648 (10.836) 19234 (21.634) 50023 (20.022) 47578  (18462)
Default Premium, State 2 26996  (11.839) 231553 (13.378) -9211 (10977
Dividend Yield 0.592 (0.361) 0.600 (0342) 0763 (0.337) 0754 (0.312)
Lag Term 0233 (0.040) 0.196 0.036) 0204 (0.036) ol (0.036)
January Premium State | 0.079 (0.009) 0.198 (0.025) 0.160 (0.018) 191 ©o21)
January Premium, State 2 0.060 (0.008) 0055 (0.008) 0066 (0.007)

Variance Parameters
Constant, State | -0.842 0.463) -5.361 (0.321) -5.694 0.257) -5.105 (0356)
Constant, State 2 -7.003 0.202) =777 (0.311) -6.778 (0206)
Interest Rate, State | 15368 (10.070) 81685  (54.354) 103,639 (41.505) 33101 (56.448)
interest Rate, State 2 88572 (32.389) 85874  (56.561) 48985  (37.698)
ARCH, State | 0185 (0.058) -0218 ©.110) -0.208 ©nn -0.197 (0.104)
ARCH, State 2 0.196 (0.192) 0510 0.136) 0177 0167y
Lagged Variance 0.884 (0.065)

Transition Probability
—Parameters
Constant, Stae | 1.638 0.213) 1816 {0.166)
Constant, State 2 1816 0.183)
Leading Indicator, State | 0144 (0.123) -0251 ©.129)
Leading Indicator, State 2 0174 (0 125) -0.069 (0.088)
Degrees of Freedom 4113 (0.628)
Log Likelihood 773.235 787 408 768 676 786973

Gaussian, Student-t

Mixture Model
0018 (0.018)
0.003 (0.010)
-6.721 (2238)
L7 (1587)
49309 (15.304)
42039 (12296)
0551 (0.318)
0188 (0.036)
0146 ©.016)
0052 (0.007)
-6.216 (0.350)
7228 (0.301)
125306  (66.572)
120508 (62371)
-0.021 {0.115)
0429 (0.188)
1.453 (0.134)
-0255 ©.121y
-0.006 (0.090)
7010 (3.560)
792.596



Table 2
Large Firms

The following Markov switching model was esti d for excess returns on the large firm portfolio

Single State Model:
0 =Po+ Bill . +B2Def + By Yield, + &
£t(0.v.h), In(h)=Ro + Ay 11 11+ Mal([ErliC) (2] + Xy nboy)

Gaussian Mixture:

po=Pos + Bisdl i+ BasiDefer + By Yield y +Bapy 1+Bs s Jan  +e

€NOhs), In(hsd=ho * Ml Aasl{lenil(he) -2/

Model I: p=Prob(s;=1|s./=1)=®(Mo), q=Prob(s=2ls ;=2)=(m,)

Model II: p=Prob(s=1s,=1)=®(m ACL/ ), qy=Prob(s,=2'5 ,=2)=®(mACLI. ;)

Model III: p=Prob{s,=1|s.;=1)=®(1to+ HACLI 2). q=Prob(s-2]s =)= Dire*mACLI 1)

Gaussian and student-t Mixture:
Same transition probability specification as Model 111 with densities:

£~N(Ohg) if S=1
£-1(0,v,bhs) if =2

p, is the mianthly excess returng on the lange firm portfoliol! is the one-month T- bill rate,Dief i the default pramium Yield is the dividend
yield and ACLI is the annual rute of growth of the Compasite Index of Leading Indicators. The sample periol i5 1954-1997.

Gaussian Mixture Gaussian Mixfure Gaussian Mixture Gaussian, Student-t
Mean Parameters Single-State Model Mlodel | Model 1T Model 111 Mixture Model
Constant, State | 08 {0.008) Dy 0009) 031 oz -hazl {0.009) -0021 (0.008)
Conslant, State 2 -0.009 (0.006) 0.007 (0.010) -0.008 (0.006) -0.007 (0.006)
Interest Rate, State 1 -3.638 0.771) -5.408 (1414) 4382 (1.668) -5.491 (1.476) -5.559 (1.223)
Tnterest Rate, State 2 -2.765 ©0791) -2933 (1.349) -2.898 (0.739) -2868 (0.722)
Default Premium, State 1 13269 (6:494) 25853 (10.013) 36274 (12.384) 25840 (10287 27010 (B.795)
Default Premium, State 2 6916 (7742) 4,579 (10908) 6900 (7.343) 6.137 (7.61T)
Dividend Yield 0.659 (0258) 0.841 0.19Y) 0662 0.261) 0822 (0.179) 0813 (0:200)
Vurtince Parameters
Constant, State | -1456 (0,760) -6.561 (0.263) -6.839 ©0277) -6.545 (0278) -6.619 (0.250)
Constant, State 2 8629 (0.206) 2644 (037) 8598 (0190) 8588 (0163)
Interest Rate, State | 22574 as.azn 65.105 (43.003) 124239 (44.108) 65,105 45.251) 49417 (41077)
Interest Rale, State 2 188,622 (33.929) 70.823 (56.468) 188.620 (31.359) 190627  (25.983)
ARCH, State | 0.186 (0.064) 0,146 (0:122) 0.245 (0.122) 0149 (0.130) 0.142 (0.098)
ARCH, State 2 -1.667 (0276) -0.169 ©178) -1,620 (0247) -1.620 (0300)
Lagged Variance 0804 (0,104)
Transition Probability
Parameters
Conslant, State 1 1472 (0.203) 1.3%1 (0.180) 1.420 (0.183)
Constant, State 2 1348 (0201)
Leading Indicator, State 1 0126 ©119) -0.026 (0.084) 0026 (0.061)
Leading Indicator, State 2 0121 (0208) -0.046 (0.066) 0049 (0.053)
Degrees of Freedom 9172 (3.689) 19279 (23.023)
Log Likelihood 985452 1001032 988.670 lo0l.117 1002 840

Note: Standard errors appear in parentheses 1o the right of the parameter estimates



Table 3
Mean Squared Forecast Errors Performance

In-Sample Forecasting Results (1954: 997:12)

Small Firms
Full Sample Recession Periods Expansion Perieds
MSFE DM Test MSFE DM Test MSFE DM Test
Single-State 4.105 6,946 3598
Gaussian Mixture
Model T 3819 1.634 5474 1.542 1523 0.720
Model I 3943 1329 5.951 1.441 3,585 0.206
Model 111 3779 1.694 5263 1517 3.514 0.898
Gaussian, student-t Mixture 3833 2020 5.681 1.667 3,503 1.300
Large Firms
Full Sample Recession Periods Expansion Periods
MSFE DM Test MSFE DM Test MSFE DM Test
Single-State 1,546 2.601 1.358
Gaussian Mixture
Model 1 1547 -0.083 2522 1.237 1373 -1.140
Model il 1.537 0892 2514 1,624 1.362 -0.727
Model 111 1.549 -0.185 2,537 1.013 1372 -1.089
Gaussian, student-t Mixture 1547 -0.100 2.529 1.095 1372 BNTE)
ut-of-Sample Forecasting Results (1
Small Firms
Full Sample Recession Periods Expansion Periods
MSFE DM Test MSFE D Tost MSFE DM Test
Single-State 3982 5171 3.829
Gaussian Mixture
Model I 4240 -123% 5680 -0.853 4.055 -1.003
Model T1 3962 0214 5918 -0.336 3710 1142
Model 11 3769 1135 4,941 0748 3618 1012
Larpge Firms
Full Sample Recession Periods Expansion Periods
MSFE DM Test MSFE DM Test MSFE DM Test
Sinple-State 1.703 2497 1.601
Gaussian Mixture
Model [ 1712 -0.194 2424 0353 1621 -0430
Model 11 1727 -0.689 2428 0.298 1.637 -1.386
Model I1I 1.736 -0.921 2639 -0.841 1.620 -0.556

Note: For the Gaussian mixtures, Model 1 assumes constan! transition probabilities, Model I1 includes only the leading indicator in
the slate transition equation and Model 111 includes both a constant and the leading indicator. The Gaussian and student-t mixture
adopts the same transition equation as model HI The DM statistic tests the null that the MSFE of the single state model is no higher
than that of the mixture models



Table 4
Market Timing Test

In-Sample Forecasting Results (1954:1 - 1997:12)

Small Firms

Full Sample Recession Periods Expansion Periods
%Correct Signs PT Test %eComrect Signs  PT Test %Correct Signs  PT Test

Single-State ! 0.646 6.386 0.713 3,826 0.634 5251
Gaussian Mixture

Model 1 0636 6.132 0.688 3.402 0.627 5,261
Model 1T 0.644 6.860 0.700 3.605 0.634 5947
Model III 0.644 6.569 0.688 3.428 0.636 5.622
Gaussian and student-t Mixture 0.655 7.028 0.688 3428 0.650 6.114

Large Firms

Full Sample Recession Periods Expansion Periods
%Correct Signs _ PT Test %Correct Signs  PT Test %Correct Signs  PT Test
Single-State 0.598 2.306 0.663 2.905 0.587 1.029
Gaussian Mixture
Model I 0610 2,904 0.700 3.549 0.594 1,145
Model II 0.595 2.303 0.650 2.631 0.585 1.162
Model IIT 0.623 3.601 0.700 3.549 0.609 1.904
Gaussian and student-t Mixture 0.631 4.019 0713 3.787 0.616 2.249
Out-of-Sample Forecasting Results (1976:1 - 1997:12)
Small Firms
Full Sample Recession Periods Expansion Periods
%Correct Signs  PT Test %Correct Signs  PT Test %6Comect Signs  PT Test
Single-State 0.580 3.143 0.700 2.233 0.564 2656
Gaussian Mixture
Model I 0.583 3.373 0.733 2.583 0.564 2,703
Model IT 0.583 3.110 0.633 1.787 0.577 3.000
Model II 0.576 3.033 0.733 2.636 0.555 2424
Large Firms
Full Sample Recession Periods Expansion Periods
%4Correct Signs  PT Test %Correct Signs PT Test %Comeat Signs  PT Test
Single-State 0.519 0.154 0.600 0.959 0.509 -0.154
Gaussian Mixture
Model I 0.489 -1.067 0.667 1.717 0.466 -1.677
Model I 0515 0.622 0.567 0.530 0.509 0532
Model I1T 0.496 0.113 0.633 1.325 0479 -0.276

Note: For the Gaussian mixtures, Model I assumes constant transition probabilities, Model Il includes only the leading indicator in
the transition equation and Model III includes both a constant and the leading indicator. The Gaussian and student-t mixture
adopts the same transition equation as mode} 111. The PT statistic lests the null of independence between the sign of the realized
and predicted excess returns and is asymptotically normally distributed.



Table 5
Pagan-Schwert Tests of Predictability of Higher Order Moments

Powers of the residuals from the retum equation are projected on (heir condilional expeciation

(e)"= 2+ b(E(&)")+y,

In-Sample Forecasting Results (1954:1 - 1997:12)

Small Firms
Gaussian Mixture Gaussian Mixture Gaussian Mixture Gaussian and student-
Sleiple-State Model Model 1 Moded TT Maoded I t Mixture
n=2 1292 {0.879) 0569 (0.894) 0972 (0.892) 0.761 07%2) 0.182 {0826)
0664 (0.230) 0861 (0:254) 0.720 (0241) 0.770 0216) 17 0257
n=3 0018 {0.162) 0.048 (0.129) -0.046 ©.137) -0113 0.125) -0.076 0.132)
0.000 (0.000) 1 665 1225y 1827 (1.138) 2413 (1.584) 4247 (2.868)
n=4 0.107 0.051) 0.040 0.063) 0.104 0.043) 0033 0.061) 0.054 (0.043)
0.033 0.033) 0993 (0.806) 0212 ©.178) 0970 0.759) 0915 0.470)
Large Firms
Gaussian Mixture Gaussian Mixture Gaussian Mixture Gaussian and student-
Shngle-State Model Model | Madel IT Model IIT t Mixture
=2 0.145 (0.393) 0.033 (0374) 0316 0388) 0.204 ©377) 0034 (0394)
0905 ©277) 0969 (0268) 0783 0265) 0867 (0269) 1,005 (0290)
n=3 0036 (0.026) -0.031 (0.023) -0.023 (0.026) -0.029 0.022) 0031 (0023)
0.000 (0.000) 0230 0978) 0639 (1.269) 0131 ©914) 0124 (0927)
n=4 0005 0,007 0008 (0.005) 0008 (0.006) 0010 (0.005) 0009 (0.005)
0679 (0.434) 0418 0277) 0403 0291 0291 ©213) 0316 (0232)

Out-of-Sample Forecasting Results (1976:1 - 1997:12)

Small Firms
Gaussian Mixture Gaussian Mixture Gaussian Mixture
Single-Stute Model Model T Model 11 Made] T
n=2 3256 (0930) 201 (1542) 3.153 0.929) 2618 (1.164)
0.100 (0.059) 0467 ©332) 0.100 (0.068) 0282 (0.227)
n=3 0070 (0232) -0.149 (0.239) -0.193 (0.252) -0.165 0223)
0,000 (0.000) 0841 (0.802) 0.018 (0.068) 1557 (L351)
n=4 0.174 (0.084) 0.109 0.083) 0.169 (0.084) 0150 (0.095)
-0.005 (0.004) 0474 (0.550) -0.009 (0.016) -0.021 (0.435)
Large Firms
Gaussian Mixture Gaussian Mixture Gaussian Mixture
Single-State Madel NModel 1 Model 11 Mode) HL
n=2 1297 0.424) 1262 (0427) 1.566 (0394) 1287 (0.339)
0208 (0.148) 0227 (0.155) 0084 (0.128) 0209 (0.130)
n=] 0013 (0.045) -0.028 (0.042) -0013 (0.045) -0.020 (0.046)
0000 (0.000) -0.077 (0.529) 0.099 (0310) -0.365 {0202)
n=4 0020 0014) 0017 ©ol1) 0018 oin 0017 ooty
0.184 (0.255) 0.009 (0.094) -0.102 ©.130) -00I5 (0068)

Nole: For the Gaussian Mixtures, Model | assumes constant transition probabilities, Model 11 includes only the Leading Indicator in the transition equation

and Model 1II includes both a constant and the Leading Indicator- The Gaussian and student-t mixture adopts the same transition equation as model I1[,
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Table 6
Predictive Density Tests

Ini-Sal Foreeasting Resulis (1954;1 - 1997:12

Simall Firms Lapge Firms
Single  Gausslan Gaussisn  Gaussian Mixture Single Gaussian Gnaussian Gaussian Mixmre
State Multure Mixture Misture Gaussisn/ State Mixture Mixture Mixture Gaussian/
_Model Modell  Model 11 Model T -tbstrll, Mode]  Model T Model 1T Model 1T iedistrib,
Parameler Constant D006 0003 0030 a0 R01F EhER 134 oo [ER) b
Estlmates Auforeg. lerm -0023 0035 -0.011 +0.040 -0.014 021 0033 0029 0036 0038
Veriance 0999 0,999 0976 0983 1037 0990 0995 0997 1.001 1.009
P-values Consfant =0 0603 0.Al8 0.809 0359 0.744 0625 0,444 0,505 0412 0379
Autoregressive
of the test coelflcient =0 0894 0,538 03718 0913 0.691 0397 0436 0,753 0.440 0436
Varlsnce = [ 0971 0981 0.439 0589 0.229 0747 03876 0923 0963 07717
Joint test 0962 0832 0.702 0173 0630 0758 0.760 0,909 0.745 0.696
Kelmogorav Unilorm Density 0029 0.028 0.047 0.030 0028 0028 0026 0.021 0028 0031
Smirnov  Normal Density 0028 0028 0.047 0.030 0028 0030 0.027 0021 0028 0.032
Komogorov-Smimov Critical Values: 0059 (%) 0.071 (1%)
Small Firms Large Firms
Single  Gausslan Gaussian  Gaussian Single Gaussian Guussian Gaussian
State Mixture Mixture Mixture State Mixlore Mixlore Mixture
Model Madel 1 Madel 1L_Model 1T Model  Model ] Mod Medel 11T
Parameter Constanl anz 24 114 AN 0.146 -0.117 0142 20173
Estimates Autoregressive -0.081 0.057 -0.044 -0.134 0034 0.005 0020 0021
Variance 0862 1083 03811 0990 0964 1.008 1019 0979
P-values Conslant = 018t 0351 0469 0.029 0580 0940 0745 0729
Autoregressive
of the test coefficient = 0 0.039 0002 0.025 0071 0015 0063 0026 0008
Variance =1 0,001 0.061 0.000 0810 0.401 0855 0668 0636
All of them 0001 4.000 0.000 0028 0100 0309 0120 0.048
Kolmogorov Uniform Density 0103 0.104 o 0.080 0102 0060 0098 0088
Smirnov  Normal Density 0106 0.106 0.140 0083 0106 0057 0.102 0091

Kolmogorov-Smirnov Critieal Values: 0084 (5%) 0.101 (1%)

Note: For the Gaussian mixtures, Mode! 1 assumes constant transition probabilities, Model 1t includes only the Leading Indicator in the transition
cquation and model O includes Tah 2 constinl sl the Leading Indicator. The Gaussian end studoni-t mixture adopts the sams it
equution ss-madel (1] The Kalmogoror-Smimeff saristic Lssts the null {hat he predicive density imylied by a ghve model i caereatly
specified. Under the wll of o misspesi e nivertéd peobabifisy traniforms should be cithes il nommally inirsbuted with 22ra mean, unit
variance ant} xero susncorrelastion ar fallow a uniform diseribugion, depending on whith profrabilley transdomm is used The p-valiss measure the
probability thal the null is satisfied.
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