SYSTEMIC RISK IN FINANCIAL NETWORKS REVISITED: THE ROLE OF MATURITY

Jason R. Donaldson Giorgia Piacentino Xiaobo Yu

Discussion by Péter Kondor

Summary

- N banks, two period claims on each other
- summarized in vectors $F_{i \rightrightarrows}$ (with elements $F_{i \rightarrow j}$)
- period 2 cash flows y_{i}

Summary

- N banks, two period claims on each other
- summarized in vectors $F_{i \rightrightarrows}$ (with elements $F_{i \rightarrow j}$)
- period 2 cash flows y_{i}
- There is an interim period, where i might be subject to liquidity shock:
- raise short term credit against pledgeable period 2 assets:

$$
\begin{equation*}
\sigma_{i} \ell \leq \theta y_{i}+\sum_{j, j \neq i} \frac{F_{j \rightarrow i}}{F_{j=}} R_{j \Rightarrow} \tag{1}
\end{equation*}
$$

- θy_{i} seizable part,
- $R_{j \rightrightarrows}$ is what j will pay-out to its creditors
- $F_{j \Rightarrow}$ if no default
- $\frac{F_{j \rightarrow i}}{F_{j=1}}$ is pro-rata share in case of default.
- if liquidated, $(1-\theta) y_{i}$ is lost
- there is no cost of default: $R_{j \rightrightarrows}<F_{j \rightrightarrows}$.
- Solution: fixed point in $R_{i \rightrightarrows}$, e.g. with three banks

$$
\begin{aligned}
& R_{1 \rightrightarrows}=\max \left\{0, \min \left\{\theta y_{i}-\sigma_{i} \ell+\frac{F_{2 \rightarrow 1}}{F_{2 \rightrightarrows}} R_{2 \rightrightarrows}+\frac{F_{3 \rightarrow 1}}{F_{3 \rightrightarrows}} R_{3 \rightrightarrows}, F_{1 \rightrightarrows}\right\}\right\} \\
& R_{2 \rightrightarrows}=\max \left\{0, \min \left\{\theta y_{i}-\sigma_{i} \ell+\frac{F_{1 \rightarrow 2}}{F_{1 \rightrightarrows 2}} R_{1 \rightrightarrows}+\frac{F_{3 \rightarrow 2}}{F_{3 \rightrightarrows}} R_{3 \rightrightarrows}, F_{1 \rightrightarrows}\right\}\right\} \\
& R_{3 \rightrightarrows}=\max \left\{0, \min \left\{\theta y_{i}-\sigma_{i} \ell+\frac{F_{1 \rightarrow 3}}{F_{1 \rightrightarrows}} R_{1 \rightrightarrows}+\frac{F_{2 \rightarrow 1}}{F_{2 \rightrightarrows}} R_{2 \rightrightarrows}, F_{1 \rightrightarrows}\right\}\right\}
\end{aligned}
$$

where the max is the liquidation decision and the min is the default decision.

- Main observations:

1. in the interim period, being owed helps as one can promise that received cash-flow to short-term creditors as short-term credit is senior. (compare (1) to $F_{j \rightrightarrows}=R_{j \rightrightarrows}=0$) \Longrightarrow an ex-ante more connected network, larger $F_{j \rightrightarrows}=F$ helps: as whoever is hit will be owed a lot
2. as a consequence, the fact that gross positions are large compared to net positions makes sense
3. Symmetric network tend to be worse than exponential: let us see why...

Example I: 2 shocks $\rightarrow 2$ defaults in complete network

- $\theta y=1, \ell=\frac{8}{5}$, symmetric network $\Longrightarrow \frac{F_{i \rightarrow i}}{F_{j=i}}=\frac{1}{2}$ for each bank. Suppose 1 and 2 are shocked: $\sigma_{1}=\sigma_{2}=1, \sigma_{3}=0$

$$
\begin{aligned}
& R_{1 \rightrightarrows}=\max \left\{0, \min \left\{\theta y_{i}-\sigma_{i} \ell+\frac{F_{2 \rightarrow 1}}{F_{2 \rightrightarrows}} R_{2 \rightrightarrows}+\frac{F_{3 \rightarrow 1}}{F_{3 \rightrightarrows}} R_{3 \rightrightarrows}, F_{1 \rightrightarrows}\right\}\right\} \\
& R_{2 \rightrightarrows}=\max \left\{0, \min \left\{\theta y_{i}-\sigma_{i} \ell+\frac{F_{1 \rightarrow 2}}{F_{1 \rightrightarrows 2}} R_{1 \rightrightarrows}+\frac{F_{3 \rightarrow 2}}{F_{3 \rightrightarrows}} R_{3 \rightrightarrows}, F_{1 \rightrightarrows}\right\}\right\} \\
& R_{3 \rightrightarrows}=\max \left\{0, \min \left\{\theta y_{i}-\sigma_{i} \ell+\frac{F_{1 \rightarrow 3}}{F_{1 \rightrightarrows}} R_{1 \rightrightarrows}+\frac{F_{2 \rightarrow 1}}{F_{2 \rightrightarrows}} R_{2 \rightrightarrows}, F_{1 \rightrightarrows}\right\}\right\}
\end{aligned}
$$

Example I: 2 shocks $\rightarrow 2$ defaults in complete network

- $\theta y=1, \ell=\frac{8}{5}$, symmetric network $\Longrightarrow \frac{F_{i \rightarrow j}}{F_{j F j}}=\frac{1}{2}$ for each bank. Suppose 1 and 2 are shocked

$$
\begin{aligned}
& R_{1 \rightrightarrows}=\max \left\{0, \min \left\{-\frac{3}{5}+\frac{1}{2} R_{2 \rightrightarrows}+\frac{1}{2} R_{3 \rightrightarrows}, F\right\}\right\} \\
& R_{2 \rightrightarrows}=\max \left\{0, \min \left\{-\frac{3}{5}+\frac{1}{2} R_{1 \rightrightarrows}+\frac{1}{2} R_{3 \rightrightarrows}, F\right\}\right\} \\
& R_{3 \rightrightarrows}=\max \left\{0, \min \left\{1+\frac{1}{2} R_{1 \rightrightarrows}+\frac{1}{2} R_{2 \rightrightarrows}, F\right\}\right\}
\end{aligned}
$$

- Problem: shocked banks need $\frac{3}{5}$ each
- if 1 from bank 3 distributed equally \rightarrow none of them survive \Rightarrow fixed point:

$$
\begin{aligned}
& R_{1 \rightrightarrows}=\max \left\{0, \min \left\{-\frac{3}{5}+\min \left(\frac{1}{2}, \frac{F}{2}\right), F\right\}\right\}=0 \\
& R_{2 \rightrightarrows}=\max \left\{0, \min \left\{-\frac{3}{5}+\min \left(\frac{1}{2}, \frac{F}{2}\right), F\right\}\right\}=0 \\
& R_{3 \rightrightarrows}=\max \{0, \min \{1, F\}=\min (1, F)
\end{aligned}
$$

Example II: 2 shocks $\rightarrow 1$ default in exponential network

- Suppose

$$
F=\left[\begin{array}{lll}
0 & 2 & 1 \\
2 & 0 & \frac{1}{2} \\
1 & \frac{1}{2} & 0
\end{array}\right]
$$

the first bank is owed more than the second, which is owed more than the last.

Example II: 2 shocks $\rightarrow 1$ default in exponential network

- Suppose

$$
F=\left[\begin{array}{lll}
0 & 2 & 1 \\
2 & 0 & \frac{1}{2} \\
1 & \frac{1}{2} & 0
\end{array}\right]
$$

the first bank is owed more than the second, which is owed more than the last.

- the pro-rata matrix is

$$
\frac{F_{j \rightarrow i}}{F_{j \rightrightarrows}}=\left[\begin{array}{ccc}
0 & \frac{2}{3} & \frac{1}{3} \\
\frac{4}{5} & 0 & \frac{1}{5} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right]
$$

- bank 1 is preferred": both bank 2 and bank 3 transfers larger share than to other bank. Similarly, Bank 2 is preferred over 3 by bank 1 .
- ...implying a fixed point problem, when bank 1 and 2 are shocked

$$
\begin{aligned}
& R_{1 \rightrightarrows}=\max \left\{0, \min \left\{\theta y_{i}-\sigma_{i} \ell+\frac{F_{2 \rightarrow 1}}{F_{2 \rightrightarrows}} R_{2 \rightrightarrows}+\frac{F_{3 \rightarrow 1}}{F_{3 \rightrightarrows}} R_{3 \rightrightarrows}, F_{1 \rightrightarrows}\right\}\right\} \\
& R_{2 \rightrightarrows}=\max \left\{0, \min \left\{\theta y_{i}-\sigma_{i} \ell+\frac{F_{1 \rightarrow 2}}{F_{1 \rightrightarrows 2}} R_{1 \rightrightarrows}+\frac{F_{3 \rightarrow 2}}{F_{3 \rightrightarrows}} R_{3 \rightrightarrows}, F_{1 \rightrightarrows}\right\}\right\} \\
& R_{3 \rightrightarrows}=\max \left\{0, \min \left\{\theta y_{i}-\sigma_{i} \ell+\frac{F_{1 \rightarrow 3}}{F_{1 \rightrightarrows}} R_{1 \rightrightarrows}+\frac{F_{2 \rightarrow 1}}{F_{2 \rightrightarrows}} R_{2 \rightrightarrows}, F_{1 \rightrightarrows}\right\}\right\}
\end{aligned}
$$

- ...implying a fixed point problem, when bank 1 and 2 are shocked,

$$
\begin{aligned}
& R_{1 \rightrightarrows}=\max \left\{0, \min \left\{-\frac{3}{5}+\frac{4}{5} R_{2 \rightrightarrows}+\frac{2}{3} R_{3 \rightrightarrows}, 3\right\}\right\} \\
& R_{2 \rightrightarrows}=\max \left\{0, \min \left\{-\frac{3}{5}+\frac{2}{3} R_{1 \rightrightarrows}+\frac{1}{3} R_{3 \rightrightarrows}, \frac{5}{2}\right\}\right\} \\
& R_{3 \rightrightarrows}=\max \left\{0, \min \left\{1+\frac{1}{3} R_{1 \rightrightarrows}+\frac{1}{5} R_{2 \rightrightarrows}, \frac{3}{2}\right\}\right\}
\end{aligned}
$$

- now most of the excess resources of 3 goes towards bank 1 , saving it, and letting bank 2 to be liquidated with even less resources (which does not cause a social loss)
- resulting in fixed point

$$
\begin{aligned}
& R_{1 \rightrightarrows}=\max \left\{0, \min \left\{-\frac{3}{5}+\frac{2}{3} \frac{36}{35}, 3\right\}\right\}=\frac{3}{35} \\
& R_{2 \rightrightarrows}=\max \left\{0, \min \left\{-\frac{3}{5}+\frac{2}{3} \frac{3}{35}+\frac{1}{3} \frac{36}{35}, \frac{5}{2}\right\}\right\}=0 \\
& R_{3 \rightrightarrows}=\max \left\{0, \min \left\{1+\frac{1}{3} \frac{3}{35}, \frac{3}{2}\right\}\right\}=\frac{36}{35}
\end{aligned}
$$

- note that all 3 defaults in period 2, (which, again, does not cause a social loss)
- resulting in fixed point

$$
\begin{aligned}
& R_{1 \rightrightarrows}=\max \left\{0, \min \left\{-\frac{3}{5}+\frac{2}{3} \frac{36}{35}, 3\right\}\right\}=\frac{3}{35} \\
& R_{2 \rightrightarrows}=\max \left\{0, \min \left\{-\frac{3}{5}+\frac{2}{3} \frac{3}{35}+\frac{1}{3} \frac{36}{35}, \frac{5}{2}\right\}\right\}=0 \\
& R_{3 \rightrightarrows}=\max \left\{0, \min \left\{1+\frac{1}{3} \frac{3}{35}, \frac{3}{2}\right\}\right\}=\frac{36}{35}
\end{aligned}
$$

- note that all 3 defaults in period 2, (which, again, does not cause a social loss)
- Similarly, if we were to shock bank 1 and 3, only bank 3 would be liquidated, and if 2 and 3 are shocked, only 3 is liquidated. (very clever!)

Comments

- A clever idea (gross vs net positions, asymmetry)
- A beautifully written (smart structure, very clear explanations)

The missing element

- one missing element: optimizing agents over debt structure \Longrightarrow a Nash equilibrium
- This is missing from most of this literature since Eisenberg and Noe (2001)
- Perhaps it is doable at least in the example: Following Holmstrom and Tirole
- consider something like this:
- suppose ex-ante identical banks endowed with A, and subject to pledgeability constraint
- choose how much to invest (generating y)
- and how much to borrow and lend (generating F)
- understanding that they will get back only R after the liquidity shock
- (with a particular bargaining mechanism over surplus)
- Is it somehow possible to generate an exponential network of F in equilibrium?
- if in equilibrium bank 1 is liquidated less often, perhaps bank 2 and bank 3 indeed prefers to lend to bank 1
- if bank 1 has a larger balance sheet, perhaps it wants to lend more to bank 2 and 3
- it would be quite interesting if market mechanism would support the exponential network.
- How does this interact with heterogeneity in y ?

