Contagion and Equilibria in Diversified Financial Networks

Victor Amelkin, Santosh S. Venkatesh, and Rakesh Vohra

conduits resilience

Challenges

Diversification modelled topologically:

each firm divides its outstanding shares equally among other firms diversification captured by degree distribution

Absence of analytical closed form for equilibrium firm valuations: focus on specific topologies

Firm valuation a non-linear function due to defaults: multiple equilibria

Model

Valuation

endowment

cross-shareholdings

default costs

Elliott, Golub, Jackson (2014)

n firms

$$V_i := valuation of firm i$$

ei := endowment of firm i

 $C_{ij} := \text{share of firm } j \text{ held by firm } i$

 $1 > C_{1j} + \cdots + C_{nj} =: c_j \text{ exposure of firm } j$

 $\tau := insolvency threshold$

$$\mathbb{1}_{\{V_i \leq \tau\}} = \begin{cases} 1 & \text{if } V_i \leq \tau, \\ 0 & \text{if } V_i > \tau. \end{cases}$$

 $\mathbb{1}_{\{V \leq \tau \mathbf{1}\}}$

 $\beta := distress cost$

$$\mathbf{V} = (V_i)$$

$$e = (e_i)$$

$$\mathbf{C} = [C_{ij}]$$

Equilibria

$$V_{i} = e_{i} + \sum_{j=1}^{n} C_{ij}V_{j} - \beta \mathbb{1}_{\{V_{i} \leq \tau\}}$$

$$V = e + CV - \beta \mathbb{1}_{\{V \leq \tau 1\}}$$

The annoying sub-text: "book" versus "market" valuations $V = V_{book}$ $V_{market} = diag(1-c_1,\dots,1-c_n)V_{book}$

No interpretable analytical solutions except in special, very regular cases

Multiple equilibria

compact lattice maximal and minimal equilibria

Putative and feasible equilibria

$$V = e + CV - \beta \mathbb{1}_{\{V \le \tau 1\}}$$

Putative solvency indicators

$$\mathbf{k} = (k_1, \dots, k_n)^{\mathsf{T}} \in \{0, 1\}^n$$

Orthants

The orthant $\mathbb{K}^n(k)$ consists of points $\mathbf{x} = (x_1, \dots, x_n)^\intercal$ in \mathbb{R}^n satisfying $x_i > \tau$ if $k_i = 1$ and $x_i \le \tau$ if $k_i = 0$.

Putative equilibria

$$V = e + CV - \beta(1 - k)$$

A putative equilibrium V = V(k) is feasible (for a putative solvency indicator k) if, and only if, $V(k) \in \mathbb{K}^n(k)$.

Algebraic simplifications:

common endowment

$$e = e1 = e(1, ..., 1)^{T}$$

common exposure

$$\mathbf{C} = c\mathbf{X} = c \begin{bmatrix} \mathbf{X}_1 & \cdots & \mathbf{X}_n \end{bmatrix}$$

non-linear fixed point equation

$$V = e1 + cXV - \beta \mathbb{1}_{\{V \le \tau 1\}}$$

putative linear fixed point equations

$$V = e1 + cXV - \beta(1 - k)$$
 $(k \in \{0, 1\}^n)$

feasible if, and only if, $V = V(k) \in \mathbb{K}^{n}(k)$

Our story in a slogan:

If, for any given exposure, the endowment reaches a critical level, then *almost all* diversified networks are resilient to shocks and contagion.

Structure via randomisation

 $V = e1 + cXV - \beta(1 - k)$

column stochastic: available share distribution

Random cross-shareholding matrices

$$\mathbf{C} = \mathbf{c} \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix} \qquad \mathbf{X}_j = \begin{pmatrix} \mathbf{X}_{1j} \\ \vdots \\ \mathbf{X}_{nj} \end{pmatrix} \qquad |\mathbf{X}_j| = \mathbf{X}_{1j} + \cdots + \mathbf{X}_{nj} = 1$$

Modelling diversification

Shares for each firm j are *exchangeable* random variables with column sum the common exposure c Shares across firms are independent

Encoding structure

Properties of distribution encode structure

Graph topology [degree, diameter, centrality] not immediately relevant

The de Finetti spacings

archetypal exchangeable system

$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_n \end{pmatrix}$$

$$P{X_1 > x_1, ..., X_n > x_n} = [(1 - x_1 - ... - x_n)_+]^{n-1}$$

0.35

$$Var(X_i) = \frac{n-1}{n^2(n+1)} \sim \frac{1}{n^2}$$

$$Cov(X_i, X_j) = \frac{-1}{n^2(n+1)}$$

negatively correlated, weak asymptotic dependence

Coordinate spacings

pathological exchangeable system

$$\mathbf{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$$

 $X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$ The distribution $F_n(x_1, \dots, x_n)$ of the spacings is atomic and places equal mass on each of the atoms $(1, 0, \dots, 0)$, $(0, 1, \dots, 0)$, and $(0, 0, \dots, 1)$.

 $X_i \sim Bernoulli(n^{-1})$

$$E(X_i) = \frac{1}{n}$$

$$Var(X_i) = \frac{1}{n} \left(1 - \frac{1}{n} \right) \sim \frac{1}{n} \qquad \left\| X_i - \frac{1}{n} \right\|_p = \mathcal{O}\left(\frac{1}{n^{\frac{1}{p}}} \right)$$

$$\left\|X_{i} - \frac{1}{n}\right\|_{p} = \mathcal{O}\left(\frac{1}{n^{\frac{1}{p}}}\right)$$

dependency structure

$$Cov(X_i, X_j) = -\frac{1}{n^2}$$

Asymptotically diffuse distributions

of the de Finetti type

$$\mathbf{X}^{(n)} = \mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_n \end{pmatrix}$$

spacings of the unit interval

$$X_i \ge 0 \qquad \qquad X_1 + \dots + X_n = 1$$

exchangeable components

$$F_n(x) = F_n(\Pi x) \qquad \text{(all permutations } \Pi x = (\Pi x_1, \dots, \Pi x_n))$$

$$E(X_i) = \frac{1}{n}$$

asymptotically diffuse condition

$$\left\|X_{i} - \frac{1}{n}\right\|_{8} = \mathcal{O}\left(\frac{1}{n}\right)$$

Equilibria for a random matrix

$$V = e1 + CV - \beta(1 - k)$$

$$\mathbf{C} = \mathbf{C}^{(n)} = \mathbf{c} \left[\mathbf{X}_{1}^{(n)} \ \mathbf{X}_{2}^{(n)} \ \cdots \ \mathbf{X}_{n}^{(n)} \right]$$

$$\operatorname{column} \mathbf{X}_{j}^{(n)} = (\mathbf{X}_{1j}^{(n)}, \dots, \mathbf{X}_{nj}^{(n)})^{\mathsf{T}}$$

components: non-negative valued, exchangeable, asymptotically diffuse

$$\mathbf{E}(\mathbf{X}_{ij}^{(n)}) = \frac{1}{n}$$

columns $X_1^{(n)}, \ldots, X_n^{(n)}$: independent, identically distributed

Putative equilibria

$$V^{(n)}\big(k^{(n)}\big) = V(k) = (I-C)^{-1}\big((e-\beta)1 + \beta k\big) \qquad \big(k^{(n)} = k \in \{0,1\}^n\big)$$

feasible if, and only if, $V(k) \in \mathbb{K}^n(k)$

Candidate equilibria

$$V = e1 + CV - \beta(1 - k)$$

The regular clique

$$\overline{\mathbf{C}}^{(n)} = \overline{\mathbf{C}} := \frac{c}{n} \mathbf{1} \mathbf{1}^{\mathsf{T}} = \begin{bmatrix} \frac{c}{n} & \dots & \frac{c}{n} \\ \dots & \dots & \dots \\ \frac{c}{n} & \dots & \frac{c}{n} \end{bmatrix}$$

Putative equilibria

$$\overline{\mathbf{V}}^{(n)}\big(\mathbf{k}^{(n)}\big) = \overline{\mathbf{V}}(\mathbf{k}) = \big(\mathbf{I} - \overline{\mathbf{C}}\big)^{-1}\big((\mathbf{e} - \beta)\mathbf{1} + \beta\mathbf{k}\big) \qquad \big(\mathbf{k}^{(n)} = \mathbf{k} \in \{0, 1\}^n\big)$$

feasible if, and only if, $\overline{\mathbf{V}}(\mathbf{k}) \in \mathbb{K}^{n}(\mathbf{k})$

explicit solutions

equivalence classes of solvency orthants determined upto permutations by |k|

Concentration

$$V^{(n)}(k^{(n)}) = V(k) = (I - C)^{-1}((e - \beta)1 + \beta k)$$

random cross-shareholding matrix

$$\mathbf{C} = \mathbf{C}^{(n)} = \mathbf{c} \begin{bmatrix} \mathbf{X}_1^{(n)} & \mathbf{X}_2^{(n)} & \cdots & \mathbf{X}_n^{(n)} \end{bmatrix}$$

regular clique

$$\overline{\mathbf{C}}^{(n)} = \overline{\mathbf{C}} := \frac{c}{n} \mathbf{1} \mathbf{1}^{\mathsf{T}} = \begin{bmatrix} \frac{c}{n} & \dots & \frac{c}{n} \\ \dots & \dots & \dots \\ \frac{c}{n} & \dots & \frac{c}{n} \end{bmatrix}$$

Theorem For any sequence of index vectors $\{k^{(n)} \in \{0,1\}^n, n \ge 1\}$, we have

$$\sup_{1 \le i \le n} \left| V_i^{(n)} \left(k^{(n)} \right) - \overline{V}_i^{(n)} \left(k^{(n)} \right) \right| \to 0$$

almost surely as $n \to \infty$.

Slogan

The putative equilibria (*a fortiori* the feasible equilibria) of the random cross-shareholding matrix \mathbf{C} are everywhere close to the corresponding equilibria of the regular clique $\overline{\mathbf{C}}$.

Feasibility regions for the regular clique

Response to shocks

Fictitious dynamic

$$V_{t+1} = e + CV_t - \beta \mathbb{1}_{\{V_t \leq \tau 1\}}$$

Valuation shock

starting from the best (maximal) equilibrium suppose n – k firms become insolvent

Fixed exposure: if the endowment is at or above a critical value then full recovery is assured

Fixed endowment: stability improves as exposure increases

Our story in a slogan:

If, for any given exposure, the endowment reaches a critical level, then *almost all* diversified networks are resilient to shocks and contagion.

Quo vadis?

Extensions

Folding in topological graph structure

Erdös–Rényi digraphs $G_{n,p}$: out-degree of vertex j determines firms who hold shares in firm j's equity

Random matrix allocation: given exposure c, allocate j's shares via an asymptotically diffuse exchangeable process

Topological regular clique: assign shares equally to all j's neighbours

Multi-type random graphs, stochastic block models

Core-periphery networks, cross-border relations

Almost all instances of the topological random share matrix behave like the topological regular clique

No sensitivity to diversification, even for very small p

But we have no results in the *very* sparse domain when d = np = O(1) is small

Graphons, optimal bailouts [with Krishna Dasaratha and Rakesh Vohra]

