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The Market Cost of Business Cycle Fluctuations ⇤

By Anisha Ghosh, Christian Julliard, and Michael J. Stutzer†

Draft: August 8, 2019

We propose a novel approach to measure the costs of aggregate
economic fluctuations, that does not require specification of pref-
erences or the data generating process. Using data on consump-
tion and asset prices, we use an information-theoretic approach
to recover an information kernel (I-SDF). The I-SDF accurately
prices broad cross-sections of assets and has a strong business cy-
cle component. Using the I-SDF, we find that the welfare benefits
of eliminating all consumption fluctuations are large on average,
and strongly countercyclical. Moreover, the cost of business cycle
fluctuations is substantial, accounting for a quarter to a third of
the cost of all fluctuations.

JEL: E3, E2, G12, C5. Keywords: Aggregate Uncertainty, Busi-
ness Cycle Risk, Pricing Kernel, Empirical Likelihood, Smoothed
Empirical Likelihood.

I. Introduction

In his seminal 1987 monograph, Robert E. Lucas Jr. concludes that the welfare
benefit of eliminating all consumption fluctuations in the U.S. economy is triv-
ially small, hence challenging the desirability of policies aimed at insulating the
economy from cyclical fluctuations. As Lucas emphasizes,1 this result is obtained
without taking a stand on the origins of aggregate fluctuations, and it relies solely
on the specifications of preferences (a representative agent with time and state
separable power utility preferences with a constant coe�cient of relative risk aver-
sion) and the data generating process (log-normal aggregate consumption growth
rate).
Nevertheless, it is exactly these two assumptions that make Lucas’ calculations

questionable. This is because evaluating the welfare cost of business cycles is tan-
tamount to pricing the risk that households face due to aggregate fluctuations.

⇤ We benefited from helpful comments from Jaroslav Borovicka, George Constantinides, Jan-
ice Eberly, Deborah Lucas, Sydney Ludvigson, and seminar participants at the NBER’s 2019
Summer Institute Asset Pricing Workshop and the Capital Markets and the Economy (EFEL)
Workshop. All errors and omissions are our own.

†
Anisha Ghosh: Desautel Faculty of Management, McGill University, anisha.ghosh@mcgill.ca. Chris-

tian Julliard: Department of Finance, London School of Economics, c.julliard@lse.ac.uk. Michael J.

Stutzer: Leeds School of Business, The University of Colorado, Boulder, michael.stutzer@colorado.edu.
1“these calculations rest on assumptions about preferences only, and not about any particular mech-

anism equilibrium or disequilibrium – assumed to generate business cycles”, Lucas (1987).
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And, an extensive literature has documented how Lucas’ specification grossly
underestimates the market price of risk in the U.S. economy: e.g., the average
premium on a broad U.S. stock market index over and above short-term Treasury
Bills has been about 7% per year over the last century, while Lucas’ specification
would imply a premium of less than 1%.2 Not only does Lucas’ specification
grossly underestimate the historically observed average return on the aggregate
stock market index, it also fails to explain the significant cross-sectional di↵er-
ences in average returns between broad diversified portfolios formed by sorting
individual stocks on the basis of observable characteristics (e.g., market value of
equity, book-to-market-equity) that have been identified to be proxies for under-
lying sources of systematic risk (see e.g., Lars Peter Hansen and Kenneth J. Sin-
gleton (1983), Martin Lettau and Sydney Ludvigson (2001), Jonathan A. Parker
and Christian Julliard (2005), Christian Julliard and Anisha Ghosh (2012)).
Indeed, exactly due to the inability of the power utility, log-normal setting

to match households’ preferences toward risk revealed by the prices of financial
assets, a burgeoning literature, based on modifying the preferences of investors
and/or the dynamic structure of the economy, has developed. In these models,
the resulting pricing kernel (hereafter referred to as the stochastic discount factor
or SDF) can be factored into an observable component consisting of a parametric
function of consumption growth as with power utility, and a (potentially un-
observable) model-specific component. That is, the pricing kernel, M , in these
models is of the form:

(1) Mt+1 = (Ct+1/Ct)
��  t+1.

The Robert E. Lucas (1987) original setting is nested within this family in that
it corresponds to the case in which  t is a positive constant and the parameter
� is the Arrow-Pratt relative risk aversion coe�cient. Prominent examples of
models in this class are: habit formation models (see, e.g., John Y. Campbell and
John H. Cochrane (1999), Lior Menzly, Tano Santos and Pietro Veronesi (2004));
long run risks models based on recursive preferences (e.g., Ravi Bansal and Amir
Yaron (2004)); models with complementarities in consumption (e.g., Monika Pi-
azzesi, Martin Schneider and Selale Tuzel (2007), Motohiro Yogo (2006)); models
in which  t captures departures from rational expectations (e.g. Suleyman Basak
and Hongjun Yan (2010)), robust control behavior (e.g. Lars Peter Hansen and
Thomas J. Sargent (2010)), aggregation over heterogeneous agents who face unin-
surable idiosyncratic shocks to their labor income (e.g. George M. Constantinides
and Darrell Du�e (1996), George M. Constantinides and Anisha Ghosh (2017)),
as well as solvency constraints (e.g. Hanno N. Lustig and Stijn G. Van Nieuwer-
burgh (2005)).
Estimates of the cost of business cycles vary widely across these model spec-

ifications (see, e.g., Gadi Barlevy (2005) for a survey). More importantly, as
with Lucas’ original specification, in order for any of the more recent models to
constitute a good choice for welfare cost calculations, it should accurately price

2
This discrepancy is the so-called Equity Premium Puzzle, first identified by Rajnish Mehra and

Edward C. Prescott (1985).
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broad categories of assets. Anisha Ghosh, Christian Julliard and Alex Taylor
(2016b) evaluate the pricing performance of several of these consumption-based
models and show that they perform quite poorly, producing large pricing errors
and low (and often negative) cross-sectional R2. Therefore, the shortcomings of
using Lucas’ specification for welfare cost calculations also apply to most of the
more recent advances.
In this paper, we do not take a stand on either the preferences of investors,

or on the dynamics of the underlying state variables. Rather, we rely on the
insight that asset prices contain information about the stochastic discounting
of the di↵erent possible future states and, therefore, use observed asset prices
to recover the SDF. Specifically, we assume that the underlying SDF has the
multiplicative form in Equation (1). We use asset returns and consumption data
to extract, non-parametrically, the minimum relative entropy estimate of the
 -component of the pricing kernel M such that the resultant M satisfies the
unconditional Euler equations for the assets, i.e. successfully prices broad cross
sections of assets. This information-theoretic approach, that has its origins in the
physical sciences, adds to the standard power utility kernel the minimum amount
of additional information needed to price assets perfectly, i.e. satisfy the Euler
equations. We refer to the estimated M as the information SDF (I-SDF) because
of the information-theoretic methodology used to recover it.
With this model-free SDF at hand, we obtain the cost of aggregate consump-

tion fluctuations as the ratio of the (shadow) prices of two hypothetical securities
– a claim to a stabilized version of the aggregate consumption stream from which
certain types of fluctuations (e.g., all fluctuations or fluctuations corresponding
to business cycle frequencies only) have been removed and a claim to the ac-
tual aggregate consumption stream. Fernando Alvarez and Urban J. Jermann
(2004) show that, in the context of a representative agent economy, the above
ratio measures the marginal cost of consumption fluctuations, defined as the per
unit benefit of a marginal reduction in consumption fluctuations, expressed as a
percentage of lifetime consumption. Our approach allows us to estimate the term
structure of the cost of fluctuations, i.e. how the cost (or, the welfare benefit of
removing fluctuations) rises with the elimination of aggregate fluctuations over
each additional future period.
Our information-theoretic approach to the recovery the SDF corresponds to the

empirical likelihood (EL) estimator of Art B. Owen (2001). Using this methodol-
ogy to recover the (multiplicative) missing component of the SDF in a model-free
way was originally proposed in Ghosh, Julliard and Taylor (2016b). We show that
the I-SDF, unlike Lucas’ original specification, accurately prices broad cross sec-
tions of assets.3 It, therefore, o↵ers a more reliable choice for assessing investors’
attitude toward risk. Also, the I-SDF, unlike Lucas’ specification, has a signif-
icant business cycle component, suggesting that business cycle risk constitutes
an important source of priced risk. Therefore, not surprisingly, we show that the

3
See also Anisha Ghosh, Christian Julliard and Alex Taylor (2016a) who show that the I-SDF,

estimated in a purely out-of-sample fashion, accurately prices the aggregate stock market, broad cross-

sections of equity portfolios constructed by sorting stocks on the basis of di↵erent observable charac-

teristics (e.g., size, book-to-market-equity, prior returns, industry), as well as currency portfolios and

portfolios of commodity futures.
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I-SDF implies a larger cost of business cycle fluctuations than those obtained with
Lucas’ specification.

We first apply our methodology to assess the welfare benefits of eliminating all
consumption fluctuations. This is obtained as the ratio of the price of a claim to a
sure consumption stream from which all uncertainty has been removed (i.e., where
the aggregate consumption growth in each period is replaced with its uncondi-
tional mean) and the price of a claim to the risky actual aggregate consumption
stream. The I-SDF implies a substantially higher cost of all consumption fluc-
tuations compared to Lucas’ original specification. For instance, in our baseline
1929–2015 sample, when the I-SDF is extracted using nondurables and services
consumption and with the excess return on the market portfolio as the sole as-
set, the implied costs of all consumption fluctuations increase from 1.5% at the
one-year horizon to 14.4% for a five-year time period. The corresponding costs
obtained with Lucas’ specification are typically an order of magnitude smaller
at 0.8% and 1.9%, respectively. These conclusions are robust to the measure of
aggregate consumption expenditure used (nondurables and services consumption
versus total consumption that also includes expenditures on durables) and the
set of assets used to recover the I-SDF. Our results suggest that economic agents
perceive the cost of aggregate fluctuations to be substantial.

We next use our framework to estimate the cost of business cycle fluctuations.
This is obtained as the ratio of the price of a claim to the aggregate consump-
tion stream from which fluctuations corresponding to business cycle frequencies
have been removed, and the price of a claim to the actual aggregate consumption
stream. We find that the cost of business cycle fluctuations is large and consti-
tutes between a quarter to a third of the cost of all consumption fluctuations. For
instance, in our baseline case, the cost of all fluctuations over a five-year horizon
is estimated at 14.4% using the I-SDF, while the corresponding cost of business
cycle fluctuations is 3.6%. When total (instead of nondurables and services) con-
sumption expenditures is used to recover the I-SDF, the costs of all fluctuations
and business cycle fluctuations over a 5-year period are both estimated to be even
higher at 19.7% and 5.1%, respectively.

Finally, note that, the above results pertain to the welfare benefits of economic
stabilization on average. We rely on an extension of the information-theoretic EL
methodology – specifically, the smoothed empirical likelihood (SEL) estimator of
Yuichi Kitamura, Gautam Tripathi and Hyungtaik Ahn (2004) – to recover the
missing component of the SDF,  , in a state-contingent fashion and use it to
obtain the cost of all consumption fluctuations in each time period (i.e., in each
possible state of the economy). This amounts to calculating the ratio of the time-
t prices of the claims to the stabilized consumption stream and the actual risky
consumption stream, for each time period t. As with the average cost obtained
using the EL estimator, the time series of the cost estimated using the SEL
approach also does not require assumptions about investors’ preferences or the
dynamics of the data generating process. We find that the cost of consumption
fluctuations is strongly time-varying and countercyclical. For instance, in our
baseline case, the cost of all one-year fluctuations varies from 0.15% to 8.0%. Also,
the cost is strongly countercyclical, rising sharply during recessionary episodes.



THE MARKET COST OF BUSINESS CYCLE FLUCTUATIONS 5

This finding also helps explain the high cost of business cycle fluctuations that
we estimate on average.

Our paper lies at the interface of two, albeit mostly distinct, strands of liter-
ature. It contributes to a growing literature that uses an information-theoretic
(or, relative-entropy minimizing) alternative to the standard generalized method
of moments approach to address a variety of questions in economics and finance.
Information-theoretic approaches were first introduced in financial economics by
Michael Stutzer (1995, 1996) and Y. Kitamura and M. Stutzer (1997) (see Yuichi
Kitamura (2006) for a survey of these methods). Subsequently, these approaches
have been used to assess the empirical plausibility of the rare disasters hypoth-
esis in explaining asset pricing puzzles (see, e.g., Julliard and Ghosh (2012)),
construct diagnostics for asset pricing models (see, e.g., Caio Almeida and Ren
Garcia (2012), David Backus, Mikhail Chernov and Stanley E. Zin (2013)), con-
struct bounds on the SDF and its components and recover the missing component
from a candidate kernel (see, e.g., Jaroslav Borovicka, Lars P. Hansen and Jose A.
Scheinkman (2016), Ghosh, Julliard and Taylor (2016b), Mirela Sandulescu, Fabio
Trojani and Andrea Vedolin (2018)), price broad cross sections of assets out of
sample (see, e.g., Ghosh, Julliard and Taylor (2016a)), and recover investors’
beliefs from observed asset prices (see, e.g., Lars Peter Hansen (2014), Anisha
Ghosh and Guillaume Roussellet (2019)).

Our paper also contributes to the literature that tries to assess the welfare costs
of aggregate economic fluctuations (see, e.g., Lucas (1987), Ayse Imrohoroglu
(1989), Andrew Atkeson and Christopher Phelan (1994), Maurice Obstfeld (1994),
James Pemberton (1996), Jim Dolmas (1998), Thomas Tallarini (2000), Paul
Beaudry and Carmen Pages (2001), Christopher Otrok (2001), Kjetil Storesletten,
Chris I. Telmer and Amir Yaron (2001), Alvarez and Jermann (2004), Tom Krebs
(2007), Ian Martin (2008), Per Krusell and Anthony A. Smith (2009)). Most of
this literature assumes particular parametric forms for preferences as well as the
dynamics of the underlying data generating process. Our paper, on the other
hand, is model-free, not requiring us to take a stance on either of the above.

Our approach is similar in spirit to Alvarez and Jermann (2004) that, to the
best of our knowledge, are the first to have used asset prices to infer bounds on the
welfare cost of business cycle fluctuations. However, unlike these authors, we do
not need to impose parametric restrictions on either the data generating process
for consumption, or on the level and time series variation of interest rates, and do
not rely on approximation results. Moreover, Alvarez and Jermann (2004) focus
on an infinite time horizon, which makes their estimates very sensitive to calibra-
tions of the real growth rate as well as the discount rates for the infinite-horizon
sure and risky consumption claims (their estimates of the cost of all consumption
fluctuations vary from 28.0%–1535.7%). Our approach, on the other hand, o↵ers
a term structure of the cost of fluctuations, i.e. how the welfare benefits rise with
the elimination of fluctuations over each additional future period. This makes our
results less sensitive to the choice of discount rates.

The reminder of the paper is organized as follows. Section II defines the
cost of aggregate consumption fluctuations and describes an information-theoretic
methodology to estimate this cost. Section III provides simulation evidence on
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the ability of the information-theoretic methodology to recover the underlying
pricing kernel accurately. Section IV contains a description of the data used.
Section V reports the empirical results. In particular, the welfare gains from
eliminating all consumption fluctuations and fluctuations corresponding to busi-
ness cycle frequencies are presented in Sections V.A and V.B, respectively. Section
V.C presents a host of robustness checks. Section VI relies on an extension of
our information-theoretic methodology to provide evidence that the welfare gains
from eliminating all consumption uncertainty vary substantially over the business
cycle. Section VII discusses the main factors driving our results. Finally, Section
VIII concludes with suggestions for future research.

II. Pricing Aggregate Economic Fluctuations

This section defines the welfare cost of fluctuations in aggregate consumption
and proposes a novel procedure to measure the cost. Specifically, in Subsection
II.A, we define the cost of aggregate consumption fluctuations, for two alternative
definitions of fluctuations. These definitions follow Alvarez and Jermann (2004).
In Subsection II.B, we propose a novel information-theoretic procedure to measure
the cost of fluctuations, for the two di↵erent definitions of the fluctuations. Our
methodology does not require taking a stance on either investors’ preferences or
the dynamics of consumption, thereby delivering robust estimates of the cost of
consumption fluctuations.

A. The Cost of Aggregate Fluctuations

The cost (or, the market price) of consumption fluctuations, !0, is defined as
the ratio of the prices of two securities: a claim to a stable version of the aggregate
consumption stream from which certain fluctuations have been removed, and a
claim to the actual aggregate consumption stream,

(2) !0 =
V0

h�
Cstab
t

 
t�1

i

V0

h
{Ct}t�1

i � 1.

In the above equation, V0

h
{Ct}t�1

i
and V0

h�
Cstab
t

 
t�1

i
denote the time-0 prices

of claims to the future consumption stream and the future stabilized consumption
stream, respectively. Therefore, the cost of consumption fluctuations measures
how much extra investors would be willing to pay in order to replace the aggregate
consumption stream with its stabilized counterpart.
If stabilized consumption, Cstab

t , is defined as the expected value of future
consumption, i.e. Cstab

t = E0 (Ct), then Equation (2) measures the cost of all
consumption fluctuations. In other words, it measures the benefit of eliminating
all consumption uncertainty.
If, on the other hand, stabilized consumption, Cstab

t , is defined as the long-term
trend consumption, from which fluctuations corresponding to business cycle fre-
quencies have been removed, then Equation (2) measures the cost of business cycle
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fluctuations in consumption. Business cycles are typically defined as fluctuations
that last for no longer than 8 years. A stabilized consumption series from which
fluctuations corresponding to business cycle frequencies have been removed can
be constructed using smoothing filters like the Hodrick-Prescott filter (see also
Morten O. Ravn and Harald Uhlig (2002)).
In the context of a representative agent economy, Alvarez and Jermann (2004)

show that !0 in Equation (2) measures the marginal cost of consumption fluc-
tuations, defined as the per unit benefit of a marginal reduction in consumption
fluctuations expressed as a percentage of lifetime consumption. Under fairly gen-
eral conditions, the marginal cost provides an upper bound on the total cost of
consumption fluctuations, where the latter is defined as the additional lifetime
consumption, expressed as a percentage of consumption, that the representa-
tive agent would demand in order to be indi↵erent between the risky aggregate
consumption stream and a stabilized version of it from which certain types of fluc-
tuations (e.g., all fluctuations or business cycle fluctuations) have been removed.
The benefits of focusing on the marginal cost are two-fold. First, it can be esti-

mated using observed asset prices and the assumption of the absence of arbitrage
opportunities, unlike the total cost that requires a fully-specified utility function.
Second, it enables the assessment of the welfare benefits of a unit reduction in con-
sumption fluctuations when consumers are bearing all the fluctuations, thereby
shedding light on the desirability or lack thereof of policies aimed at only moving
partially in the direction of eliminating certain types of aggregate fluctuations.
Alvarez and Jermann (2004) show that the marginal cost of all consumption

fluctuations, i.e. the scenario where Cstab
t = E0 (Ct) = (1 + µc)tC0 for t =

1, 2, ...,1, where µc denotes the unconditional mean of consumption growth, is
given by:

(3) !0 =
r0 � µc

y0 � µc
� 1.

In the above equation, y0 and r0 denote the yields to maturity on claims to the
stabilized sure consumption stream and the risky consumption stream, respec-
tively. Calibrating µc = 2.3%, y0 = 3.0% and r0 � y0 � 0.2%, they obtain a
very high estimate of the cost of at least 28.6%. However, the above equation
highlights that the estimate of the cost is very sensitive to the values of y0, r0,
and g. Specifically, as y0 ! µc, we have !0 ! 1, and the approach breaks down.
Moreover, Olivier J. Blanchard (2019) points out that, at the current time, the
nominal rate on a 10-year government bond is 2.7%, while the expected nominal
growth rate is 4.0%, causing y0 � µc to be negative, thereby negating the use of
Equation (3). And this is not just a feature of the US, but also other developed
economies such as the UK and the Euro Zone. Also, Blanchard (2019) highlights
that the current situation is more the norm rather than the exception in the US
– the average nominal growth rate and the rate on 1-year government bonds have
been 6.3% and 4.7%, respectively, since 1950, and 5.3% and 4.6%, respectively,
since 1870, and, in fact, y0�µc has been negative in all decades except the 1980s.
This reveals the fragility of the results obtained using Equation (3).
Therefore, in this paper, instead of attempting to measure the welfare cost
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of eliminating consumption fluctuations over an infinite time horizon, we focus
on the term structure of finite horizon consumption risk. In other words, we
characterize the welfare gains from stabilizing the next j = 1, ..., J periods of
consumption uncertainty. This makes our results more robust to the choice of
discount rates.
The absence of arbitrage opportunities implies that

(4) V0

h
{Ct}jt=1

i
=

jX

t=1

V0 (Ct) ,

for j � 1, where V0 (Ct) denotes the time-0 price of a claim to a single payo↵

equal to the aggregate consumption at time t. Similarly, V0

h�
Cstab
t

 j
t=1

i
can be

written as the sum, over time periods 1-j, of the prices of claims to single payo↵s
equal to the stabilized consumption in each of these future periods. Therefore,
the cost of one-period fluctuations is given by:

(5)
V0

�
Cstab
1

�

V0 (C1)
� 1.

The (cumulative) cost of two-period fluctuations is given by

(6)
V0

�
Cstab
1

�
+ V0

�
Cstab
2

�

V0 (C1) + V0 (C2)
� 1.

And so on, for any number j of future periods..
Note that since neither of the two assets – namely, the claims to aggregate

consumption or its stabilized counterpart – that characterize the marginal cost
of consumption fluctuations (see Equations (5)-(6)) is directly traded in financial
markets, their prices are not directly observed. Therefore, the values of these
claims need to be estimated in order to obtain the cost of consumption fluctu-
ations. Historically, this has involved taking a stance on investors’ preferences,
i.e. their stochastic discounting of the various possible future states of the world,
and the dynamics of the data generating process, i.e. the likelihood of the states
being realized. The resultant estimates of the cost of economic fluctuations have
proven to be quite sensitive to these two assumptions. The following subsection
outlines a novel econometric methodology for estimating the cost of consumption
fluctuations, that does not require any specific functional-form assumptions either
about investors’ preferences or the dynamics of the data generating process.

B. Measuring the Cost of Aggregate Fluctuations

Consider an economy characterized by an augmented state vector zt 2 Z, aug-
mented by, adding to the beginning of period state variables, the time t realization
of the shocks that influence equilibrium quantities. Then, all equilibrium quan-
tities can be viewed as functions of z. For instance, the equilibrium aggregate
consumption growth rate is simply Ct+1/Ct ⌘ �Ct+1 = �C(zt+1). That is, con-
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sumption growth can be viewed as just a mapping from z to the (positive) real
line i.e. �C : z ! R+.

Note that the (shadow) value of a claim to the aggregate consumption next
period can be generally expressed as

(7) Vt (Ct+1) = Et [Mt+1Ct+1] ,

where Mt is the pricing kernel. The existence of a (strictly positive) pricing
kernel is guaranteed by the assumption of the absence of arbitrage opportunities.
For the particular case of a representative agent economy, M can be thought
of as the intertemporal marginal rate of substitution of the representative agent
who derives utility from the consumption flow C. Note, however, that such a
representation is not restricted to representative agent economies but can also
obtain in incomplete-markets economies inhabited by heterogeneous agents (as,
e.g., in Constantinides and Ghosh (2017)).

By the definition of z, we have Mt ⌘ M(zt), i.e. in equilibrium M : z ! R+.
Therefore, dividing Equation (7) by Ct to make both sides stationary, taking
unconditional expectations, and using the definition of z, we have

(8) p̃c1 := E

Vt (Ct+1)

Ct

�
=

Z

z
M(z)�C(z)dP(z),

where P is the (true) underlying physical probability measure and we have used
the assumption that z has a time invariant unconditional distribution. p̃c1 can be
interpreted as the average price (expressed as a fraction of current consumption)
of an asset with a single payo↵ equal to the aggregate consumption next period.

Similarly, the (shadow) value of a claim to a stabilized version of the aggregate
consumption next period can be expressed as

(9) Vt

⇣
Cstab
t+1

⌘
= Et

h
Mt+1C

stab
t+1

i
,

implying that

(10) p̃cstab1 := E
"
Vt
�
Cstab
t+1

�

Ct

#
=

Z

z
M(z)�Cstab(z)dP(z),

where �Cstab
t+1

=
Cstab

t+1

Ct
. In the scenario where we want to obtain the welfare benefit

of eliminating all consumption uncertainty in the next period, we set Cstab
t+1

=
(1 + µc)Ct. Therefore, in this case, �Cstab

t+1
= (1 + µc). On the other hand, to

assess the cost of business cycle fluctuations in consumption, we set Cstab
t+1

= Cbc
t+1

,
where Cbc

t+1
refers to a smoothed version of the aggregate consumption at time

t + 1 from which fluctuations corresponding to business cycle frequencies have
been removed.

Once the prices of the claims to the aggregate consumption and the stabilized
aggregate consumption next period have been determined, the cost of one-period
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consumption fluctuations is then given by

(11)
p̃cstab

1

p̃c1
� 1.

If a history of M (zt) ⌘ Mt, t = 1, ..., T , were observable, we could estimate
the prices in Equations (8) and (10) and, therefore, the cost of one-period con-
sumption fluctuations in Equation (11): in this case the integrals (unconditional
expectations) with respect to the physical measure would be replaced by the sums
of observations weighted by 1/T , invoking ergodicity of the processes involved. If
the pricing kernel M were a known function of a vector of unknown parameters,
these parameters could first be estimated using method of moments approaches,
prior to evaluating the cost.

For instance, assuming a representative agent endowed with power utility pref-
erences with a constant CRRA, p̃c1 can be estimated as 1

T

PT
t=1

� (�Ct)
1�� ,

where � denotes the relative risk aversion coe�cient and � the subjective dis-
count factor. Moreover, assuming log-normality of the aggregate consumption
growth as in Lucas (1987), we would have

p̃c1 = E
⇥
�(�Ct)

1��⇤ = eln(�)+(1��)E[ln(�Ct)]+.5(1��)2V ar[ln(�Ct)].

Similarly, the price of a claim to sure consumption next period, Cstab
t+1

= (1 + µc)Ct,
is given by

p̃cstab1 = E
⇥
�(�Ct)

�� (1 + µc)
⇤
= (1 + µc) e

ln(�)��E[ln(�Ct)]+.5�2V ar[ln(�Ct)].

The first two moments of log consumption growth, E[ln(�Ct)] and V ar[ln(�Ct)],
required to obtain p̃c1 and p̃cstab

1
, can be estimated as the respective sample

analogs of the underlying unconditional expectations and, therefore, the price of
one-period consumption fluctuations can be obtained.

However, in practice, the pricing kernel M is not directly observable. Using the
above specification of the pricing kernel and lognormal assumption for the dy-
namics of consumption growth, Lucas estimates a very small cost of consumption
fluctuations. Subsequently, researchers have proposed alternative specifications
of preferences as well as the dynamics of the consumption growth rate and other
variables entering the pricing kernel. The resulting estimates of the cost of aggre-
gate fluctuations have proven to be quite sensitive to these assumptions, varying
wildly across these studies.

In this paper, we do not make any assumptions either about the preferences of
consumers, or the dynamics of the data generating process. Rather, our method-
ology is based on the observation that, albeit not directly observable, information
about M (z) is available in financial markets. This is because, for any vector of
excess returns Re

t 2 RN on N traded assets, the following set of Euler equations
must hold in the absence of arbitrage opportunities:

0 = E [MtR
e
t ] =

Z
M(z)Re(z)dP(z) ⌘

Z
Re(z)dQ(z) ⌘ EQ [Re

t ] ,
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where 0 is an N -dimensional vector of zeros and, by definition, Re : z ! RN .
The so-called risk neutral measure Q (absolutely continuous with respect to the

physical measure P) satisfies the Radon-Nikodym derivative dQ(z)
dP(z) = M(z)

E[M(z)] . Note
also that, in absence of arbitrage opportunities, if a risk free asset exist, it must

satisfy E
h
1/Rf

t

i
= E [Mt].

Let p(z) and q(z) denote, respectively, the pdf’s associated with the measures
P and Q. We then have that, by the definition of the measure Q, q(z)E [M(z)] =
M(z)p(z). Therefore, Equation (8) can be rewritten as

(12) ˜pc1 = E [M(z)]

Z
�C(z)q(z)dz.

The above formulation can be made operational, thanks to the fact that, using
asset returns data, we can actually estimate the q distribution. In particular,
the q distribution can be estimated to minimize the Kullback-Leibler Information
Criterion (KLIC) divergence (or the relative entropy) between the physical and
risk neutral measures:

(13) min
Q

Z
log

✓
dP
dQ

◆
dP =

Z
log

✓
p(z)

q(z)

◆
p(z)dz s.t. 0 =

Z
Re(z)q(z)dz.

Adding to the above problem the theoretical restriction that the pricing kernel,
M , is of the form:

(14) Mt+1 = (�Ct+1)
��  t+1,

leads to the reformulation of Equation (13) as:
(15)

min
F

Z
log

✓
dP
dF

◆
dP =

Z
log

✓
p(z)

f(z)

◆
p(z)dz s.t. 0 =

Z
Re(z) (�C(z))�� f(z)dz,

where dF(z)
dP(z) =  (z)

E( (z)) is the Radon-Nikodym derivative of F with respect to P,
and f(z) denotes the pdf associated with the measure F. This is the Empirical
Likelihood (EL) estimator of Owen (2001), originally proposed in Ghosh, Julliard
and Taylor (2016b) to recover the multiplicative missing component of the pricing
kernel. Once the F-measure, or, from the expression for the Radon-Nikodym
derivative, the missing component,  , of the pricing kernel, is estimated as the
solution to Equation (15), the pricing kernel, M , can be obtained using Equation
(14). We refer to this kernel as the Information-SDF, or I-SDF, because of the
information-theoretic approach used to recover it.

Ghosh, Julliard and Taylor (2016b) point out several reasons why relative en-
tropy minimization is an attractive criterion for recovering the pricing kernel.
These are restated here for convenience.

First, the KLIC minimization in Equation (15) is equivalent to maximizing
the (expected)  nonparametric likelihood function in an unbiased procedure
for finding the  t component of the pricing kernel. To see this, note that the
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minimization problem in Equation (15), after dropping redundant terms, can be
rewritten as

(16) max
 

EP [ln (z)] s.t. 0 =

Z
Re(z) (�C(z))��  (z)p(z)dz.

Note also that this is the rationale behind the principle of maximum entropy (see
e.g. E. T. Jaynes (1957a, 1957b)) in physical sciences and Bayesian probability
that states that, subject to known testable constraints – the asset pricing Euler
restrictions in our case – the probability distribution that best represent our
knowledge is the one with maximum entropy, or minimum relative entropy in our
notation.
Second, the use of relative entropy, due to the presence of the logarithm in the

objective function in Equation (15), naturally imposes the non-negativity of the
pricing kernel.
Third, our approach to recover the  t component of the pricing kernel satisfies

the Occam’s razor, or law of parsimony, since it adds the minimum amount of
information needed for the pricing kernel to price assets. This is due to the
fact that relative entropy is measured in units of information. To provide some
intuition, suppose that the consumption growth component of the pricing kernel,
(�Ct)

�� , were su�cient to price assets perfectly. Then  t ⌘ 1, 8t, and we have
that F ⌘ P, delivering a KLIC divergence

R
log

�
dP
dF
�
dP = 0 in Equation (15).

However, if the consumption growth component is not su�cient to price assets
(as is the case in reality), then the estimated measure F is distorted relative to
the physical measure P, i.e. the KLIC divergence is positive:

R
log

�
dP
dF
�
dP >

0. And, our estimator searches for a measure F that is as close as possible, in
an information-theoretic sense, to the physical measure P. In other words, the
approach distorts the physical probabilities as little as possible in order to satisfy
the Euler equation restrictions. And the estimator is non-parametric in the sense
that it does not require any parametric functional-form assumptions about the
 -component of the kernel or the distribution of the data.
Fourth, as implied by the work of Donald E. Brown and Robert L. Smith

(1990), the use of entropy is desirable if we think that tail events are an important
component of the risk measure.4

Fifth, this approach is numerically simple to implement. Given a history of
excess returns and consumption growth {ret ,�ct}Tt=1

, Equation (16) can be made
operational by replacing the expectation with a sample analogue, as is customary
for moment based estimators:5

(17) argmax
{ t}Tt=1

1

T

TX

t=1

ln t s.t.
1

T

TX

t=1

(�ct)
��  tr

e
t = 0.

An application of Fenchel’s duality theorem to the above problem (see, e.g., Imre

4
Brown and Smith (1990) develop what they call “a Weak Law of Large Numbers for rare events;”

that is, they show that the empirical distribution observed in a very large sample converges to the

distribution that minimizes the relative entropy.
5
This amounts to assuming ergodicity for both the pricing kernel and asset returns.
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Csiszár (1975), Owen (2001)), delivers the estimates (up to a positive constant
scale factor):

(18)  ̂t =
1

T (1 + ✓̂(�)0ret (�ct)
��)

8t,

where ✓̂ 2 RN is the vector of Lagrange multipliers that solves the unconstrained
dual problem:

(19) ✓̂(�) = argmin
✓

�
TX

t=1

log(1 + ✓0ret (�ct)
��).

Sixth, and perhaps most importantly, the I-SDF successfully prices assets. Note
that this result is not surprising in sample, because the I-SDF is constructed to
price the test assets in-sample (see Equation (15)). However, Ghosh, Julliard
and Taylor (2016a) show that the good pricing performance of the I-SDF also
obtains out-of-sample for broad cross-sections of assets, including domestic and
international equities, currencies, and commodities. The out-of-sample perfor-
mance of the I-SDF is superior to not only the single factor CAPM and the
Consumption-CAPM, but also the more recent Fama-French 3 and 5 factor mod-
els. This suggests that the I-SDF is more successful at capturing the relevant
sources of priced risk and, therefore, o↵ers a more reliable candidate kernel with
which to measure the cost of aggregate economic fluctuations.

Finally, we show, via simulation exercises, that the EL methodology is quite
successful in recovering the  -component of the pricing kernel for empirically
realistic sample sizes. Details of the simulation design and the performance of the
estimator are presented in Section III.

With the recovered  -component, the I-SDF is obtained (up to a positive scale
factor) as

(20) cMt =  (�ct)
�� b t.

The proportionality constant, , can be recovered from the Euler equation for the
risk free rate. Equation (20) makes clear that our estimator of the  -component,
as any Generalized Empirical Likelihood approach (see e.g. Kitamura (2006) for a
survey), approximates the true unknown  distribution with a multinomial with
support points given by the sample realizations of the observable variables (in
this case, consumption growth and asset returns).

Armed with the I-SDF, we can now estimate the welfare benefits of eliminating
consumption fluctuations. Specifically, the value of eliminating all consumption
fluctuations in the next period is obtained as:

(21) \pcstab
1

/ ˜pc1 � 1 =

PT
t=1

cMt (1 + µc)PT
t=1

cMt�ct
� 1.

Similarly, the value of eliminating business cycle fluctuations in the next period
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is:

(22) \pcstab
1

/ ˜pc1 � 1 =

PT
t=1

cMt�cstabtPT
t=1

cMt�ct
� 1,

where �cstabt denotes a time-varying stabilized consumption growth from which
the business cycle variations have been removed. This stabilized version of con-
sumption, Cstab, can be obtained by an application of the Hodrick-Prescott filter
to the original consumption series.
We will soon see that estimates obtained by using the I-SDF di↵er markedly

from estimates obtained by Lucas’ method (summarized on p.10 herein). To help
explain this, recall that Lucas’ method presumes a complete markets exchange
economy in which the (unique) SDF Mt is the normalized marginal rate of sub-
stitution (MRS) from the discounted power utility functional. The MRS depends
only on consumption growth and model parameters. Under the complete markets
assumption, all assets must satisfy the pricing condition E[MtRe

t ] = 0, including
the risk free asset. Yet the Equity Premium Puzzle and the variance and entropy
bounds literatures cited herein all establish that the excess returns of popular
equity indices will not satisfy these constraints when the Lucas SDF is specified
with economically plausible parameters. In light of this, subsequent work pro-
posed other consumption-based asset pricing models, but Ghosh, Julliard and
Taylor (2016b) show that these are similarly problematic when the excess returns
of Fama-French equity factor portfolios are included in Re.
In contrast, the I-SDF satisfies these pricing constraints by construction while

still including consumption growth in its makeup. This provides a method of
pricing consumption fluctuations in a way that is consistent with the pricing of
equity portfolios, albeit without the theoretical desideratum of first specifying
an exchange or other economic model from which it was derived. Theorists who
maintain the complete markets assumption can view our approach as a data-
driven procedure to estimate the unknown unique SDF, with the aforementioned
desirable properties.
Finally, note that Equations (21) and (22) represent the costs of all consumption

fluctuations and business cycle fluctuations, respectively, for one period alone. It
is straightforward to extend the analysis to obtain the cost of fluctuations for
multiple periods. For instance, the (shadow) value of a claim to the aggregate
consumption j periods into the future can be expressed as

Vt (Ct+j) = Et [Mt:t+jCt+j ] ,

where Mt:t+j denotes the j-period SDF. Thus, the expected price-consumption
ratio of a security that delivers a single payo↵ equal to the aggregate consumption
j periods into the future is given by

p̃cj := E

Vt (Ct+j)

Ct

�
= E


Mt:t+j

Ct+j

Ct

�
.

The one-period I-SDF, recovered in Equation (20), can be compounded to recover
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the j-period discount factor:

Mt:t+j =
jY

i=1

Mt+i.

Using Mt:t+j , we can estimate the price-consumption ratio p̃cj for a single con-
sumption claim j periods in the future. And this can be done for any j = 2, 3, 4, ....
Using the estimated price-consumption ratios of the claims to single future pay-
o↵s, we can estimate the price-consumption ratio of an asset that delivers the
stochastic consumption in each of the next J periods i.e. p̃c1:J :=

PJ
j=1

p̃cj .
Hence, it is straightforward to compute the value of removing all or business cy-
cle fluctuations in consumption over J periods with expressions analogous to the
ones in Equations (21)-(22).

III. Performance of the EL Estimator: An Example Economy

In this section, we provide simulation evidence on the performance of the EL
estimator in recovering the  -component of the pricing kernel. Specifically, we
consider a hypothetical exchange economy in which the representative investor’s
subjective beliefs diverge from the true underlying (or, physical) distribution of
the data. As we show below, in this economy, the  -component of the kernel
captures the divergence between the subjective and physical measures. We then
show that the EL estimator successfully recovers  and, therefore, the subjective
beliefs of the investor. The details of the simulation design are presented below.
We consider an endowment economy where a representative agent has power

utility preferences with a constant coe�cient of relative risk aversion (CRRA).
Suppose that consumption growth is i.i.d. log-normal:

(23) log (�Ct)
P⇠ N

�
µc,�

2

c

�
.

We assume that the representative investor is pessimistic and acts as if the mean
consumption growth were lower than µc. Specifically, she acts as if consumption
growth has a mean of (1� �)µc, where � 2 (0, 1) is the severity of pessimism:

(24) log (�Ct)
eP⇠ N

�
eµc,�

2

c

�
,

where eµc = (1 � �)µc and eP denotes the investor’s subjective measure. We
assume that there are no distortions in the beliefs about the volatility or the
higher moments of consumption growth.
In this economy, the following Euler equation holds in equilibrium:

(25) 0 = EeP ⇥(�ct+1)
�� (Rm,t+1 �Rf,t+1)

⇤
,

where Rm,t and Rf,t denote the market return and the risk free rate, respectively,
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at time t. Note that, in Equation (25), the expectation is evaluated under the
investor’s subjective measure eP (instead of the physical measure P). Under weak
regularity conditions, Equation (25) may be rewritten as

(26) 0 = EP ⇥(�ct+1)
��  t+1 (Rm,t+1 �Rf,t)

⇤
,

where deP
dP =  

E( ) is the Radon-Nikodym derivative of eP with respect to P. Thus,
in this economy, the  -component of the kernel captures the divergence between
the subjective and physical measures.

Note that this example economy fits into the framework described in Section II.
Therefore, given time series data on consumption growth, the market return, and
risk free rate, the EL approach can be used to estimate (up to a strictly positive
constant scale factor) the  -component of the kernel:

(27)
n
b t

oT

t=1

= argmax
{ t}Tt=1

TX

t=1

log( t) s.t.
1

T

TX

t=1

(�ct+1)
��  t+1(Rm,t+1�Rf,t+1) = 0.

Using the recovered  and approximating the physical measure with an empirical
distribution that assigns probability weight 1/T to every sample realization, i.e.,

bP = {bpt}Tt=1
= 1

T , the subjective measure
beP =

n
bept
oT

t=1

can be obtained from the

definition of the Radon-Nikodym derivative.

We show, via simulations, that the EL approach successfully recovers  and,
therefore, eP. In order to perform the EL estimation in Equation (27), we need
the time series of consumption growth, the market return, and the risk free rate.
Note that, in this economy, equilibrium asset prices reflect the subjective beliefs
of the investor. In particular, the equilibrium price-dividend ratio is Pt

Dt
= ⌫, a

constant, where

(28) ⌫ =

exp


log(�) + (1� �)eµc +

(1� �)2�2c
2

�

1� exp


log(�) + (1� �)eµc +

(1� �)2�2c
2

� ,

and the equilibrium risk free rate is also constant at:

(29) Rf =
1

exp

✓
log(�)� �µ̃c +

�2�2c
2

◆ .

To perform our simulation exercise, we calibrate µc and �2c to the sample mean
and variance, respectively, of (log) consumption growth in our data (real per
capita total consumption over 1929-2015). The preference parameters are cali-
brated at � = 0.99 and � = 10. We simulate a time series of consumption growth
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using Equation (23). Using the simulated consumption growth, we obtain the
market return as:

Rm,t+1 =

Pt+1

Ct+1
+ 1

Pt
Ct

· Ct+1

Ct
=
⌫ + 1

⌫
· Ct+1

Ct
,

where ⌫ is defined in Equation (28). The time series of the risk free rate is simply
a constant, given by Equation (29).

Using the above time series, we recover the subjective beliefs using the EL ap-
proach in Equation (27). Armed with the subjective probabilities, we compute
the mean, volatility, and skewness of consumption growth. Note that these are
the moments of consumption growth that are consistent with the asset prices, i.e.
the moments as perceived by the representative investor. We repeat the above
estimation for 1, 000 simulated samples. We report the averages and 90% confi-
dence intervals of the moments of consumption growth across these simulations.
To demonstrate the power of the estimation approach, we present results for dif-
ferent magnitudes of the beliefs distortion, i.e. for � = {0.10, 0.15, 0.20}, and for
di↵erent simulated sample sizes, i.e. Tsim = {85, 200, 500}. The first choice of
sample size, Tsim = 85, corresponds to the size of the historical sample that we
use in our empirical analysis.

The results are reported in Table 1. Panel A presents results for Tsim = 85.
Consider first Row 1, where investors are assumed to underestimate the mean
consumption growth by 10%, i.e. the mean of 2.55% under subjective beliefs is
10% below the historical mean of 2.83%. The equilibrium market return and risk
free rate reflect these subjective beliefs. Row 1 shows that the EL method is
successful at capturing these subjective beliefs. Specifically, the EL-implied mean
consumption growth is on average 2.61% across the 1, 000 simulations, close to
the true value of the mean under the subjective beliefs. The EL implied volatility
of consumption growth has an average of 3.47% across the simulations – once
again quite close to the historical value. Note that, in our experiment, there are
no beliefs distortions in the volatility and the EL method successfully identifies
the volatility under the physical measure. Finally, the average of the coe�cient
of skewness across the simulations is �0.003, very close to the true value of 0.

Rows 2 and 3 show that similar, albeit stronger, results are obtained for more
severe beliefs distortions in the mean consumption growth – the EL method ac-
curately identifies the subjective mean and the 90% confidence intervals do not
contain the corresponding values of the mean under the physical measure, and
the estimated volatility and skewness are very close to their historical values with
tight confidence bands. Finally, Panels B and C show the e↵ect of increasing the
sample size on the performance of the EL estimator – the performance at samples
sizes of 200 and 500 are quite similar to those observed for the historical sample
size in terms of the average mean, volatility, and skewness across the simulations,
although the confidence bands are tighter for bigger sample sizes.

Overall, the results suggest that the EL estimator performs quite well at identi-
fying the  -component of the pricing kernel for empirically realistic sample sizes.
This lends further support for its use in the recovery of the pricing kernel for
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welfare cost calculations.

Table 1: Estimating Subjective Beliefs

Mean (%) Volatility (%) Skewness
true values

µ̃ = µ 2.83 3.39 0
µ̃ = 0.90µ 2.55 3.39 0
µ̃ = 0.85µ 2.41 3.39 0
µ̃ = 0.80µ 2.27 3.39 0

Panel A: T=85
µ̃ = 0.90µ 2.59

[2.34,2.87]
3.44

[3.05,3.82]
�.016
[�.44,.41]

µ̃ = 0.85µ 2.47
[2.23,2.76]

3.48
[3.15,3.86]

.008
[�.40,.41]

µ̃ = 0.80µ 2.35
[2.10,2.66]

3.51
[3.14,3.88]

.001
[�.43,.43]

Panel B: T=200
µ̃ = 0.90µ 2.60

[2.42,2.80]
3.46

[3.21,3.73]
�.011
[�.34,.29]

µ̃ = 0.85µ 2.50
[2.33,2.71]

3.52
[3.27,3.77]

�.049
[�.37,.26]

µ̃ = 0.80µ 2.40
[2.19,2.61]

3.56
[3.29,3.81]

�.063
[�.40,.24]

Panel C: T=500
µ̃ = 0.90µ 2.61

[2.49,2.73]
3.47

[3.31,3.63]
�.036
[�.24,.16]

µ̃ = 0.85µ 2.51
[2.39,2.64]

3.52
[3.36,3.68]

�.054
[�.26,.15]

µ̃ = 0.80µ 2.41
[2.26,2.57]

3.57
[3.39,3.75]

�.068
[�.33,.13]

The table presents the average of the mean (Column 2), volatility (Column 3), and skewness (Column 4)

of consumption growth, along with the 90% confidence intervals (in square brackets below), computed

from 1, 000 simulated samples. The samples are simulated from a hypothetical endowment economy in

which a representative agent with power utility preferences is pessimistic and underestimates the mean

consumption growth. Panels A, B, and C present results for di↵erent sample sizes, whereas Rows 1-3 in

each panel present results for di↵erent degrees of pessimism. The expectations underlying the calculation

of the moments of consumption growth are evaluated under the subjective measure recovered using the

EL approach.

IV. Data Description

The extraction of the I-SDF for use in welfare cost calculations requires data
on the aggregate consumption expenditures and returns on a set of traded assets.
Ideally, we would like to use the longest available time series of these variables
in the estimation to mitigate concerns that certain possible states may not have
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been realized in the sample. At the same time, to assess the robustness of our key
results, we would like to repeat our analysis for di↵erent measures of consumption
expenditures as well as di↵erent sets of assets. While data on total consumption is
available from 1890 onwards, disaggregated expenditures on di↵erent consumption
categories (e.g., durables, nondurables, and services) are only available from 1929
onwards. Moreover, data on broad cross sections of asset returns are also not
available prior to the late 1920s. Therefore, we focus on a baseline data sample
starting at the onset of the Great Depression (1929-2015).
For the 1929-2015 data sample, we consider two alternative measures of con-

sumption: (i) the personal consumption expenditure on nondurables and services,
and (ii) the personal consumption expenditure on durables, nondurables and ser-
vices. The consumption data are obtained from the Bureau of Economic Analysis.
Nominal consumption is converted to real using the Consumer Price Index (CPI).
We use di↵erent sets of assets to extract the I-SDF: (i) the market portfolio,

proxied by the Center for Research in Security Prices (CRSP) value-weighted
index of all stocks on the NYSE, AMEX, and NASDAQ, and (ii) the 6 equity
portfolios formed from the intersection of two size and three book-to-market-
equity groups. The proxy for the risk-free rate is the one-month Treasury Bill
rate. The returns on all the above assets are obtained from Kenneth French’s data
library. Annual returns for the assets are computed by compounding monthly
returns within each year and converted to real using the CPI. Excess returns on
the portfolios are then computed by subtracting the risk free rate.
To further assess the robustness of our results, we also repeat our analysis

using two alternative data sets: (i) total personal consumption expenditure over
the 1890-2015 sample and the excess return on the S&P 500 as the sole asset,
and (ii) the personal consumption expenditure on nondurables and services along
with the excess return on the CRSP value-weighted market portfolio, over the
entire available quarterly sample 1947:Q1-2015:Q4.

V. The Market Value of Aggregate Uncertainty

In this section, we use the I-SDF, extracted using the information-theoretic EL
procedure outlined in Section II, to obtain the cost of aggregate consumption
fluctuations, i.e. the welfare benefits of eliminating all consumption uncertainty
as well as removing only business cycle fluctuations in consumption.
Before presenting the empirical results, we turn to a discussion of the SDF

parameter � that enters the welfare cost calculations (see, e.g., Equations (21)–
(22)). As highlighted in the introduction, the multiplicative decomposition of

the SDF, Mt =
⇣

Ct
Ct�1

⌘��
 t, is motivated by the observation that virtually all

structural asset pricing models proposed in the literature imply this form for the
SDF. Di↵erent models o↵er di↵erent economic interpretations of the  -component
and the utility curvature parameter �. For example, in the time and state sep-
arable power utility model,  = �, the subjective discount factor, and � is the
CRRA of the representative agent. An upper bound of 10 is generally considered
plausible for the CRRA parameter. However, much higher levels of risk aversion
are needed for the model to explain several observed features of financial market
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data. In models with Larry G. Epstein and Stanley E. Zin (1989) recursive prefer-

ences, Mt = �⌘
⇣

Ct
Ct�1

⌘� ⌘
⇢
R⌘�1

c,t = �⌘
⇣

Ct
Ct�1

⌘��
 

Pc,t
Ct

+1

Pc,t�1
Ct�1

!⌘�1

, where � denotes the

CRRA, ⇢ the elasticity of intertemporal substitution, ⌘ = 1��
1� 1

⇢

, and Rc,t =
Pc,t+Ct

Pc,t�1

denotes the unobservable return on total wealth. These models typically cali-
brate � = 10 (see, e.g., Bansal and Yaron (2004)). Some models with recursive
preferences calibrate � to much larger values (e.g., Monika Piazzesi and Martin
Schneider (2007)). In models with external habit formation (see, e.g., Campbell

and Cochrane (1999)), Mt = �
⇣

Ct
Ct�1

⌘�� ⇣
St

St�1

⌘��
, where St is the surplus con-

sumption ratio and � the utility curvature parameter that is a determinant of the
time-varying risk aversion �

St
. Campbell and Cochrane (1999) calibrate � = 2.

However, Ghosh, Julliard and Taylor (2016b) show that the model needs a higher
� (typically in excess of 7) to satisfy entropy bounds for admissible SDFs, that
are tighter than the seminal variance bounds of Lars Peter Hansen and Ravi Ja-
gannathan (1991). In models with complementarities in consumption, see e.g.,

Piazzesi, Schneider and Tuzel (2007), Mt = �
⇣

Ct
Ct�1

⌘�� ⇣
At

At�1

⌘ �⇣�1
⇣�1

, where At

is the expenditure share on non-housing consumption, ��1 is the intertemporal
elasticity of substitution, and ⇣ is the intratemporal elasticity of substitution be-
tween housing services and non-housing consumption. The authors’ consider two
alternative calibrations of � = 5 and � = 16. However, Ghosh, Julliard and
Taylor (2016b) show that the model needs a higher � (typically in excess of 20)
to satisfy entropy bounds for admissible SDFs. To summarize, most models in
the literature either calibrate the SDF parameter � to 10 or higher values and/or
require such values of the parameter to explain asset prices.
Also, in addition to recovering the  -component of the SDF, our information-

theoretic EL procedure o↵ers a way to estimate �. Specifically, the EL estimator
of � is defined as (see Kitamura and Stutzer (1997)):

(30) b�EL = max
�

max
 

EP [ln (z)] s.t. 0 =

Z
Re(z) (�C(z))��  (z)p(z)dz.

Kitamura and Stutzer (1997) show that the EL estimator is consistent and asymp-
totically normal, with its asymptotic distribution given by:

p
T
�
b�EL � �0

� d! N(0, (D0S�1D)�1),

where S = EF
h
(Ct/Ct�1)

��0 Re
tR

e0
t (Ct/Ct�1)

��0
i
is the covariance matrix of the

sample moment restrictions and D = EF

"
@{(Ct/Ct�1)

��Re
t}

@�

����
�=�0

#
is the deriva-

tive of the moments with respect to the � parameter.
We estimate � in our baseline 1929–2015 sample, using total consumption ex-

penditures as the measure of aggregate consumption and the excess return on the
market as the sole test asset. Figure 1 plots the objective function in Equation
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(30) as a function of �. The point estimate of � is 22.1 (red dotted line). The
estimated asymptotic standard error is 7.09. Thus, the 95% confidence interval
covers the range [8.21, 36.0] (red dashed lines). A similar point estimate of 26.2
with a standard error of 8.20 is obtained when nondurables and services consump-
tion is used as the measure of aggregate consumption expenditures. In this case,
the 95% confidence interval for � is [10.1, 42.3].
Motivated by the observations that most theoretical models calibrate � to 10 or

higher values and that the estimated 95% confidence interval for this parameter
typically has around 10 as the lower bound, we set � = 10 in our baseline results.
Note that higher values of � serve to further increase the marginal utility of the
representative agent in bad states of the world with low consumption growth rate
and, therefore, would further increase the estimates of the cost of consumption
fluctuations. In Section VI.C, we assess the sensitivity of our results to alternative
choices of �.
We next proceed to estimate the cost of fluctuations. Section V.A presents the

cost of all consumption fluctuations. Section V.B presents the cost of business
cycle fluctuations in consumption. Finally, in Section V.C, we present a host of
robustness checks.

Figure 1. Profile Likelihood
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Note: The figure plots the EL objective function as a function of the SDF parameter �. Consumption

denotes the real personal total consumption expenditure (includes durables, nondurables, and services).

The excess return on the market portfolio is the sole test asset. The sample is annual, covering the

period 1929-2015.

A. The Cost of All Consumption Uncertainty

Recall that, rather than estimating the cost of aggregate consumption fluctu-
ations over an infinite time horizon, we focus on the term structure of the cost
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for finite time periods. Specifically, we estimate the (cumulative) cost for one- to
five-year time horizons.
Equation (11) defines the cost of one-period fluctuations, i.e. the welfare benefit

of removing fluctuations in the next period alone. The cost is the ratio of the prices
of two hypothetical securities: a claim to a deterministic (or, sure) consumption
in the next period, pcstab

1
, and a claim to the actual aggregate consumption next

period, p̃c1. Equations (21)–(22) reveal that the prices of these two securities
and, therefore, the cost of all one-period consumption fluctuations, depend on
the SDF. We use the I-SDF, recovered using the EL approach, to measure this
cost. The costs of multi-year fluctuations are obtained by compounding the I-
SDF, as explained in Section II.B. Note that the recovered I-SDF depends on the
particular measure of the aggregate consumption expenditures as well as on the
set of assets used (see Equations (18)-(19)). To ensure robustness, we estimate
the I-SDF using two di↵erent measures of consumption expenditures and two
alternative sets of assets.

Table 2: Cumulative Cost of Consumption Fluctuations
All Fluctuations B. C. Fluctuations

1 Yr 2 Yr 3 Yr 4 Yr 5 Yr 1 Yr 2 Yr 3 Yr 4 Yr 5 Yr

Panel A: Nondurables & Services Consumption

I-SDF (Mkt) 1.53 5.15 11.75 14.28 14.44 .556 1.48 3.39 3.90 3.57

I-SDF (FF6) 1.29 3.52 6.65 10.63 11.20 .462 1.03 2.07 3.03 2.90

CRRA Kernel .933 2.08 3.73 4.87 5.03 .457 .854 1.32 1.52 1.40

Lucas .751 1.09 1.40 1.68 1.94 - - - - -

Panel B: Total Consumption

I-SDF (Mkt) 2.15 6.77 16.13 19.65 19.73 .896 2.09 4.85 5.55 5.12

I-SDF (FF6) 1.88 4.89 9.46 15.00 15.57 .770 1.60 3.05 4.35 4.14

CRRA Kernel 1.42 3.08 5.80 7.63 7.77 .761 1.32 2.08 2.40 2.21

Lucas 1.15 1.68 2.16 2.61 3.03 - - - - -

The table reports the (cumulative) costs of all aggregate consumption fluctuations (Columns 2-6) and the

costs of business cycle fluctuations in consumption (Columns 7-11), over one-to five-year horizons. Panel

A presents results when consumption denotes the real personal consumption expenditure of nondurables

and services, while Panel B does the same for total personal consumption expenditure (that includes

durables). In each panel, the costs are calculated using the I-SDF recovered from the market portfolio

alone (Row 1), the I-SDF recovered from the six size and book-to-market-equity sorted portfolios of Fama

and French (Row 2), the kernel implied by power utility preferences with a constant CRRA (Row 3),

and Lucas’ original specification that involves power utility preferences and i.i.d. lognormal aggregate

consumption growth dynamics (Row 4). The sample is annual covering the period 1929-2015.

The results are presented in Table 2. Panel A presents results when consump-
tion refers to the expenditure on nondurables and services, while Panel B does
the same for total consumption expenditures (including durables). Consider first
Panel A. In Row 1, the market portfolio alone is used in the extraction of the
I-SDF. Row 1, Column 2 shows that the cost of all one-period consumption fluc-
tuations is estimated to be 1.5%. Row 2, Column 2 shows that, when the six size
and book-to-market-equity sorted portfolios of Fama-French are used to recover
the I-SDF, the estimated cost of all one-period consumption fluctuations is quite
similar at 1.3%. Row 3 shows that the one-year cost, estimated using the pricing
kernel implied by power utility preferences with a constant CRRA (hereafter re-
ferred to as the CRRA kernel), is an order of magnitude smaller at .93%. And,
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Row 4 shows that, if the assumption of lognormal consumption growth is imposed
on the CRRA kernel – this corresponds to Lucas’ original specification – the cost
of one-period consumption fluctuations further reduces to .75%.

Note that the above results pertain to the cost of fluctuations in one-period
consumption alone. Columns 3, 4, 5, and 6 of Panel A present the costs of con-
sumption fluctuations over two, three, four, and five year horizons, respectively.
Row 1 shows that, when the market portfolio alone is used to recover the I-SDF,
the costs of consumption fluctuations over two, three, four, and five years increase
to 5.2%, 11.8%, 14.3%, and 14.4%, respectively. Note that the cost of consump-
tion fluctuations over two years is more than three times higher than the cost of
fluctuations over one year alone (5.2% versus 1.5%). Similarly, the cost of con-
sumption fluctuations over a three-year period is more than seven times higher
than the cost over one year alone (11.8% versus 1.5%); and the costs over four-
and five-year periods are each almost ten times higher than the cost over one year
(14.3% and 14.4%, respectively, versus 1.5%). This suggests that consumption re-
sponds slowly to news and that agents’ marginal utility and, therefore, the (true)
underlying pricing kernel is a function not only of current consumption but also
expected future consumption, consistent with the evidence in Parker and Julliard
(2005).

Row 3 shows that the CRRA kernel implies much smaller costs of two, three,
four, and five year consumption fluctuations of 2.1%, 3.7%, 4.9%, and 5.0%,
respectively. In fact, the costs are an order of magnitude smaller than the costs
implied by the I-SDF (with the exception of the two-year fluctuations that is
also less than half of that implied by the I-SDF). Lucas’ kernel in Row 4 implies
even smaller costs of 1.1%, 1.4%, 1.7%, and 1.9% at two-, three-, four-, and five-
year horizons, respectively. Finally, very similar results are obtained when the
6 FF portfolios are used to recover the I-SDF. Row 2 shows that the costs of
fluctuations for two-, three-, four-, and five-year periods are substantially higher
for the I-SDF compared to the CRRA kernel – 3.5% versus 2.1% for two years,
6.7% versus 3.7% for three years, 10.6% versus 4.9% for four years, and 11.2%
versus 5.0% for five years. And the costs are even higher compared to Lucas’
specification.

The results in Table 2, Panel A were obtained using personal consumption ex-
penditures on nondurables and services as the measure of consumption. Panel B,
that uses the total consumption expenditures (including durables) as the measure
of consumption, produces results similar to those in Panel A. Note that, not sur-
prisingly, the costs of fluctuations are bigger with total consumption compared to
nondurables and services consumption. Specifically, the I-SDF implies that the
costs of fluctuations increase from 2.2% to 19.7% from one-year to five-year hori-
zons, when recovered from the market portfolio alone, and from 1.9% to 15.6%
when the 6 FF portfolios are used as test assets. By contrast, the CRRA ker-
nel and Lucas’ specification imply much smaller costs that increase from 1.4% to
7.8% and from 1.2% to 3.0%, respectively, from one- to five-year time periods.

Figure 2 plots the term structure of the costs of fluctuations over one- to five-
year horizons. Panel A presents the results for nondurables and services consump-
tion, while Panel B focuses on total consumption expenditures. In each panel, the
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black solid line corresponds to the costs obtained with the I-SDF recovered with
the market portfolio as the sole test asset. The black-dashed line, on the other
hand, denotes the costs implied by the I-SDF extracted from the 6 FF portfolios.
The green and blue lines denote the costs estimated with the CRRA kernel and
Lucas’ specification, respectively. The figure highlights the higher costs implied
by the I-SDF relative to those obtained with Lucas’ specification of preferences
and the dynamics of the consumption growth rate.

Figure 2. Marginal Cost of All Consumption Fluctuations, 1929-2015
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Notes: The figure plots the cumulative costs of all aggregate consumption fluctuations over one- to

five-year horizons, for di↵erent choices of the pricing kernel and measures of consumption. Panel A

presents results when consumption refers to the real personal consumption expenditure of nondurables

and services, while Panel B does the same when consumption denotes the total personal consumption

expenditure. The costs are presented for the I-SDF extracted using the excess return on the market

portfolio as the sole test asset (black line), the I-SDF extracted using the excess returns on the 6 FF

portfolios as test assets (black dashed line), the pricing kernel implied by power utility preferences with

a constant CRRA (green line), and Lucas’ original specification that involves power utility preferences

and i.i.d. lognormal aggregate consumption growth dynamics (blue line).

Overall, the results of this section suggest that economic agents perceive the
cost of aggregate economic uncertainty to be quite substantial. For instance,
our estimates of the cost of all consumption fluctuations over a five-year horizon
vary from 11.2%-19.7%, depending on the measure of aggregate consumption
expenditure or the set of assets used to recover the I-SDF. The cost is substantially
higher than that originally obtained by Lucas. Note that costs higher than Lucas’
estimates have been reported in the literature – Alvarez and Jermann (2004)
report very high costs of all consumption fluctuations over an infinite time horizon.
However, as argued in Section II.A, the focus on an infinite time horizon makes
their estimates very sensitive to calibrations of the real growth rate as well as



THE MARKET COST OF BUSINESS CYCLE FLUCTUATIONS 25

the discount rates for the infinite-horizon sure and risky consumption claims. As
an illustration of this sensitivity, their estimate of the cost varies from 28.0%–
1535.7% based on di↵erent calibrations. Our approach, on the other hand, o↵ers
a term structure of the costs of fluctuations, i.e. how the welfare benefits rise with
the elimination of aggregate fluctuations over each additional future period. This
makes our results less sensitive to the choice of discount rates. Also, an attractive
feature of our method is that it seems to have well-defined asymptotics – the
cumulative welfare costs seem to stabilize with the increase in the number of time
periods (see Figure 2). These aspects of the methodology make our quantitative
estimates more reliable.

B. Business Cycle vs. Long Run Uncertainty

While Section V.A focused on the cost of all consumption fluctuations, in this
section we obtain the cost of business cycle fluctuations in consumption. Just like
the cost of all consumption uncertainty, the cost of business cycle fluctuations in
consumption can be obtained as the ratio of the prices of two hypothetical se-
curities: a claim to a stabilized consumption stream and a claim to the actual
aggregate consumption. Stabilized consumption in this case refers to the residual
after the business cycle component has been removed from the aggregate con-
sumption series. We compute the stabilized consumption series using the widely
used Hodrick-Prescott filter. Since our empirical analysis uses annual data, we
use a smoothing parameter of 6.25 in the application of the Hodrick-Prescott
filter, following the suggestions in Ravn and Uhlig (2002).
The results are presented in the last five columns of Table 2, Panel A for non-

durables and services consumption. Row 1 shows that, using the I-SDF extracted
from the market portfolio alone, the cost of business cycle fluctuations in con-
sumption over a one-year time horizon is estimated to be 0.6%. The costs of
business cycle fluctuations over two, three, four, and five year horizons increase
to 1.5%, 3.4%, 3.9%, and 3.7%, respectively. Similar results are obtained in Row
2 when the six size and book-to-market-equity sorted portfolios are used in the
recovery of the I-SDF – the costs of business cycle fluctuations increase from 0.5%
at the one-year horizon to 2.9% for a five-year time period.
Row 3 shows that, for the CRRA kernel, while the cost of business cycle fluc-

tuations over a one-year period is similar to that obtained with the I-SDF (0.5%
versus 0.5%–0.6%), the cost increases little for multi-year horizons in the case
of the former. For instance, the cost of five-year fluctuations is only 1.4% – less
than half of the costs of 3.7% and 2.9% implied by the I-SDF in Rows 1 and 2,
respectively.
An important point to note is that while the estimates of the costs of business

cycle fluctuations are smaller than the costs of all consumption uncertainty, the
former, nonetheless, represents a substantial fraction of the latter. For instance,
Panel A, Row 1 shows that, when the market portfolio is used in the extraction
of the I-SDF, the cost of business cycle fluctuations constitutes 36.3% of the cost
of all consumption fluctuations over a one-year horizon. The cost of business
cycle fluctuations over two, three, four, and five years account for 28.7%, 28.9%,
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27.3%, and 24.7%, respectively, of the cost of all consumption fluctuations over
these time horizons. Similarly, when the 6 FF portfolios are used for the recov-
ery of the I-SDF, the costs of business cycle fluctuations over one to five years
account for 35.8%, 29.3%, 31.1%, 31.0%, and 25.9%, respectively, of the cost of
all consumption fluctuations over these time horizons.
Figure 3, Panel A plots the term structure of the cost of all consumption fluc-

tuations (solid line) and business cycle fluctuations in consumption (dashed line)
over 1-5 years. The black lines present the estimates obtained when the market
portfolio alone is used as the test asset to recover the I-SDF. The red lines, on
the other hand, are based on the estimates obtained when the I-SDF is recov-
ered from the 6 FF portfolios. The fairly large ratio of the cost of business cycle
fluctuations to the cost of all consumption fluctuations, at all time horizons, is
evident from the figure. Moreover, as with the cost of all fluctuations, the cost
of business cycles seems to stabilize with increase in the time horizon, thereby
suggesting well-defined asymptotics.
Finally, the results remain largely unchanged when total consumption expen-

diture (instead of nondurables and services expenditure) is used as the measure
of consumption. These are presented in Table 2, Panel B and Figure 3, Panel B.

Figure 3. Marginal Cost of All versus Business Cycle Consumption Fluctuations, 1929-2015

●

●

●

● ●

1 2 3 4 5

0
5

10
15

20

Panel A: Nondurables & Services Cons.

Years

C
um

ul
at

ive
 C

os
t (

%
)

●
●

●
● ●

●

●

●

●
●

●
●

●
● ●

All: I−SDF (Mkt)
BC: I−SDF (Mkt)
All: I−SDF (FF6)
BC: I−SDF (FF6)

●

●

●

● ●

1 2 3 4 5

0
5

10
15

20

Panel B: Total Cons.

Years

C
um

ul
at

ive
 C

os
t (

%
)

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●

Notes: The figure plots the term structure of the (cumulative) cost of all aggregate consumption fluctu-

ations (solid line) and business cycle fluctuations in consumption (dashed line), over 1-5 years, obtained

using the I-SDF. Panel A presents results when consumption refers to the real personal consumption

expenditure of nondurables and services, while Panel B does the same when consumption denotes total

personal consumption expenditure. The I-SDF is extracted using the excess return on the market portfo-

lio as the sole test asset (black lines) and the 6 FF portfolios (red lines). The sample is annual covering

the period 1929-2015.

Overall, we find that the costs of business cycle fluctuations are large and con-
stitute between a quarter to a third of the cost of all consumption fluctuations.
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Our results are in contrast to those in Alvarez and Jermann (2004) who argue
that while the cost of all consumption fluctuations is very high, the cost of busi-
ness cycle fluctuations in consumption is miniscule, varying from 0.1% to 0.5%.
Our estimates of the cost of business cycle fluctuations over a cumulative five-
year period are as high as 5.1% – between ten and fifty times higher than the
estimates in Alvarez and Jermann (2004). Also note that the estimates in the
latter, unlike our estimates, correspond to eliminating business cycle fluctuations
for all (infinite) future periods, not just for a five-year time horizon. Therefore,
the question naturally arises as to what drives this di↵erence. We show that
the discrepancy is driven, at least in part, by the choice of the smoothing filter
used to remove business cycle variation from the historical consumption series.6

We use the widely used Hodrick-Prescott (HP) two-sided filter to obtain a long
run trend consumption series from which fluctuations corresponding to business
cycle frequencies (fluctuations lasting less than eight years) have been removed.
Alvarez and Jermann (2004) (AJ), on the other hand, use a one-sided filter,
whereby trend consumption at time-t is expressed as a weighted average of K
lags, with the coe�cients chosen so as to represent a low-pass filter that lets pass
frequencies that correspond to cycles of eight years and more. Figure 4 presents a
comparison of the HP and AJ filters. The figure plots the historical consumption
growth (blue line), the trend consumption growth obtained using the HP filter
(red line), and the trend consumption growth obtained using the AJ filter (black
line). Consumption refers to the total personal consumption expenditures.

Figure 4. Comparison of HP and AJ Filters
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Notes: The figure plots the historical consumption growth (blue line), the trend consumption growth

obtained using the HP filter (red line), and the trend consumption growth obtained using the AJ filter

(black line). Consumption refers to the total personal consumption expenditures. The sample is annual

over 1929–2015.

6
We thank Jaroslav Borovicka for pointing this out.
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The figure shows that the HP filter delivers a smoother trend consumption
growth relative to the AJ filter. In fact, it is known that a one-sided filter of the
AJ type, with coe�cients chosen to let pass frequencies that correspond to cycles
of at least a given length, cannot fully eliminate higher frequency fluctuations.
In other words, it also lets pass some fluctuations corresponding to higher fre-
quencies. Consequently, in the context of the present application, the computed
trend contains a non negligible amount of business cycle variability. In fact, the
trend consumption growth is markedly di↵erent between the HP and AJ filters
over our sample period. Specifically, the historical real consumption growth has
a volatility of 3.4%, while the trend consumption growth obtained with the HP
and AJ filters have volatilities of 1.9% and 2.8%, respectively. Thus, the trend
growth obtained with the AJ filter has 46% higher volatility than that obtained
with the HP filter. Therefore, not surprisingly, the cost of business cycles ob-
tained with the HP filter are higher than those obtained with the AJ filter. As an
illustration, when the I-SDF is recovered from the market portfolio, the cost of
business cycle fluctuations over one- to five-year horizons takes values 0.9%, 2.1%,
4.8%, 5.5%, and 5.1%, respectively, with the HP filter. The corresponding costs
obtained using the AJ filter are 0.5%, 1.2%, 2.6%, 2.2%, and 1.5%, respectively.
Separately, in Section VI, we present further evidence supporting the high cost

of business cycle fluctuations, using an approach that does not involve a smoothing
filter. Specifically, we rely on an extension of our information-theoretic method-
ology to obtain the (potentially) time-varying cost of all one-period consumption
fluctuations in all possible states of the world. We show that the cost is strongly
time-varying and countercyclical, reaching as high as 8.0% during one of the years
of the Great Depression, having an average value of 5.8% during the four years
1930–1933 of the Great Depression, and having an average of 1.2% during the
recent financial crisis of 2008–2009. Note that these estimates are for one-year
fluctuations alone. The focus on all (as opposed to business cycle) fluctuations
avoids the use of a smoothing filter. And the countercyclical nature of the cost is
indicative of the high perceived costs of business cycles.

C. Robustness

In this section, we perform a number of checks to establish the robustness
of our estimates of the cost of all consumption uncertainty as well as the cost
of business cycle fluctuations in consumption reported in Sections V.A and V.B.
For all the robustness tests, consumption refers to the total personal consumption
expenditure.7 The results are presented in Table 3.
First, we present the estimates for an alternative definition of relative entropy.

Equation (15) reveals that relative entropy is not symmetric. Therefore, we can
reverse the roles of the physical measure P and the tilted measure F so as to obtain
an alternative definition of relative entropy. This alternative relative entropy
can then be minimized to recover the measure, F, and, therefore, the missing

7
Very similar results are obtained using nondurables and services consumption and are omitted for

brevity.
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component,  , of the pricing kernel:
(31)
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This is the Exponentially-Tilted (ET) estimator of Kitamura and Stutzer (1997)
(see also Susanne M. Schennach (2005)). As with the EL estimator, the ET
estimator is also numerically simple to implement. Specifically, the  -component
is estimated (up to a positive constant scale factor) as:
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where ✓̂(�) 2 RN is the vector of Lagrange multipliers that solves the uncon-
strained dual problem:
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We recover the I-SDF using the ET approach and use it to calculate the costs
of consumption fluctuations. The results are presented in Row 1 of each panel in
Table 3. Panel A, Row 1 reports the results when the market portfolio is the sole
test asset used to extract the I-SDF. The results are very similar to those obtained
using the EL approach in Table 2, Panel B – the cumulative costs of all one- to
five-year fluctuations in consumption are 2.1%, 6.1%, 14.5%, 17.3%, and 17.3%,
respectively, remarkably close to the corresponding values (2.2%, 6.8%, 16.1%,
19.7%, and 19.7%, respectively) obtained using the EL approach. The costs of
one- to five-year business cycle fluctuations in consumption are also very similar
for the two approaches – 0.90%, 2.0%, 4.5%, 5.0%, and 4.6%, respectively, for the
ET approach versus 0.90%, 2.1%, 4.9%, 5.6%, and 5.1%, respectively, for the EL.
Therefore, for both approaches, the cost of business cycle fluctuations constitutes
between a quarter to a third of the cost of all consumption fluctuations. Finally,
Panel B, Row 1 shows that the results for the EL and ET approaches remain
quite similar when the six size and book-to-market-equity sorted portfolios of
Fama-french are used to recover the I-SDF.

Table 3: Cumulative Cost of Total Consumption Fluctuations, Robustness Checks
All Fluctuations B. C. Fluctuations

1 Yr 2 Yr 3 Yr 4 Yr 5 Yr 1 Yr 2 Yr 3 Yr 4 Yr 5 Yr

Panel A: Market Portfolio

I-SDFET
2.07 6.13 14.68 17.32 17.31 .904 1.98 4.47 4.98 4.59

I-SDFAlt
1.83 4.92 10.87 12.75 12.70 .851 1.75 3.48 3.82 3.52

1890-2015 1.38 2.69 4.85 6.84 8.24 .931 1.39 2.08 2.54 2.69

Panel B: FF 6 Portfolios

I-SDFET
1.83 4.81 8.72 14.09 14.75 .691 1.43 2.73 4.01 3.83

I-SDFAlt
1.76 4.46 8.96 14.12 14.67 .764 1.61 3.02 4.20 4.00

1890-2015 - - - - - - - - - -

The table reports the (cumulative) cost of all aggregate consumption fluctuations (Columns 2-6) and the

cost of business cycle fluctuations in consumption (Columns 7-11), for one- to five-year time horizons.
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Consumption denotes the real total personal consumption expenditure (includes durables, nondurables,

and services). The costs are calculated using the I-SDF extracted with the ET approach (Row 1), the

risk-neutral measure recovered by minimizing the distance from the CRRA model-implied risk-neutral

measure while satisfying the pricing restrictions (Row 2), and the I-SDF extracted with the EL approach

over the longer 1890-2015 sample (Row 3). Panel A presents results when the excess return on the

market portfolio is the sole asset used to recover the I-SDF. In Panel B, on the other hand, the I-SDF

is estimated using the 6 Fama-French size and book-to-market-equity sorted portfolios. The sample is

annual covering the period 1929-2015, except for Row 3 where it extends over 1890-2015.

Our second robustness check uses yet another definition of relative entropy.
Specifically, we recover the risk-neutral measure Q such that:
(34)

bQ = min
Q

Z
log

✓
dQ
dQm

◆
dQ =

Z
log

✓
q(z)

qm(z)

◆
q(z)dz s.t. 0 =

Z
Re(z)q(z)dz,

where dQm

dP = (�C)
��

E[(�C)
��]

. In other words, Qm is the risk neutral measure implied

by the power utility model with a constant CRRA. Thus, Equation (34) recovers
the risk neutral measure Q that is minimally distorted relative to the CRRA
model implied risk neutral measure Qm, while also successfully pricing the set
of test assets used in the estimation. Note that the main di↵erence between
Equation (34) and the EL and ET estimators defined in Equations (15) and
(31), respectively, is that while the latter two minimize the relative entropy (or
distance) between the recovered measure and the physical measure, the former
minimizes the distance between the recovered risk neutral measure and the risk
neutral measured implied by a candidate model SDF.
The solution to Equation (34) is obtained as:

(35) q̂t =
e✓̂(�)

0Re
t (�ct)

��

1

T

PT
t=1

e✓̂(�)
0Re

t (�ct)
�� 8t,

where ✓̂(�) 2 RN is the vector of Lagrange multipliers that solves the dual prob-
lem:

(36) ✓̂(�) = argmin
✓

"
log

 
1

T

TX

t=1

e✓
0Re

t (�ct)
��
!#

.

We use the recovered risk neutral measure q̂t to calculate the cost of consump-
tion fluctuations. The results, reported in Row 2 of Panels A and B, for the
scenarios when the test assets consist of the market portfolio alone and the six
Fama-french portfolios, respectively, are very similar to those obtained with the
ET (Table 3, Row 1 of each panel) and EL (Table 2, Panel B, Rows 1-2) ap-
proaches.
Third, we present the costs of fluctuations using the EL approach with data

going back as far as 1890. The excess return on the market is the sole test asset,
with the return on the S&P composite index used as a proxy for the market return



THE MARKET COST OF BUSINESS CYCLE FLUCTUATIONS 31

and the prime commercial paper rate as a proxy for the risk free rate. The data
are obtained from Robert Shiller’s website. The costs of all and business cycle
fluctuations in consumption, presented in Row 3 of Panel A, are smaller than
those obtained using the baseline 1929-2015 sample (see Table 2 and Rows 1-2 of
Table 3). The smaller estimates of the cost obtained in this longer data sample
can be accounted for, at least partly, by the usage of the commercial paper rate
as a proxy for the risk free rate, thereby leading to an underestimation of the
magnitude of the equity premium in this sample. Specifically, the average level of
the equity premium is 7.9% in the baseline sample, more than double the value
of 3.1% in the longer 1890 onwards sample. Moreover, just as with the baseline
sample, the cost of business cycle fluctuations still accounts for a substantial
fraction (more than a third) of the cost of all consumption fluctuations for all the
horizons considered.8

Overall, our results suggest that the estimates of the cost of aggregate economic
fluctuations are fairly robust to the measure of consumption expenditures, the
set of test assets used to recover the I-SDF, the choice of sample period, as well
as the precise definition of relative entropy. This lends further support to the
quantitative estimates in the paper.

VI. Time-Varying Cost of Aggregate Fluctuations

Our analysis, so far, has focused on the expected cost of consumption fluctu-
ations, i.e. the average cost over all possible states of the world. This is why
the cost was defined as the ratio of the expected (or, average) prices of claims to
a stabilized consumption stream and the actual aggregate consumption stream.
For instance, the cost of all one-period consumption fluctuations (or, the welfare
benefits of eliminating all consumption uncertainty for one-period) was defined
as:

(37)
p̃cstab

1

p̃c1
� 1 =

EP

Vt(Cstab

t+1 )
Ct

�

EP
h
Vt(Ct+1)

Ct

i � 1.

In this section, we provide evidence that the cost of fluctuations varies substan-
tially over time. And, perhaps more importantly, the precise nature of the time-
variation helps shed some light on the reasons for the substantial welfare benefits
of eliminating not only all consumption uncertainty, but also business cycle fluc-
tuations in consumption that we estimate in Sections V.A and V.B. To our
knowledge, this is the first attempt to recover the time-varying cost of aggregate
economic fluctuations, without taking a stance on investors’ preferences or the
dynamics of the data generating process.
Subsection VI.A describes an extension of the information-theoretic EL ap-

proach, namely the smoothed empirical likelihood (SEL) estimator of Kitamura,
Tripathi and Ahn (2004), that we use to recover the time-varying cost of fluctu-

8
Since the size and book-to-market-equity sorted portfolios are not available prior to the late 1920s,

we cannot recover the I-SDF using these portfolios over the 1890-2015 sample.
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ations. Subsection VI.B presents simulation evidence on the performance of the
SEL estimator. Finally, Subsection VI.C presents the estimated time series of the
cost of removing all consumption uncertainty over a one-period time horizon.

A. Smoothed Empirical Likelihood (SEL)

Following the notation in Section II, the time-t cost of all one-period consump-
tion fluctuations is defined as

(38)

Vt(Cstab
t+1 )

Ct

Vt(Ct+1)

Ct

� 1 =

EPt


Mt+1

Cstab
t+1

Ct
|Ft

�

EPt

h
Mt+1

Ct+1

Ct
|Ft

i � 1 =
EPt

⇥
Mt+1 (1 + µc) |Ft

⇤

EPt

h
Mt+1

Ct+1

Ct
|Ft

i � 1,

where Ft = {Ft,Ft�1, . . .} denotes the investors’ information set at time t,
EPt

⇥
.|Ft

⇤
refers to the expectation with respect to the physical measure P con-

ditional on the investors’ time-t information set, and the second equality follows
from the definition of stabilized consumption as one from which all uncertainty
has been removed: Cstab

t+1
= (1 + µc)Ct. Note that the di↵erence between the

average cost in Equation (37) and the time-t cost in Equation (38) is that, while
the former involves the evaluation of unconditional expectations to obtain the av-
erage prices of the consumption claims, the latter requires the computation of the
time-t prices of these claims as the conditional expectations of their discounted
payo↵s.

As in Section II, we assume that the pricing kernel M has a multiplicative
form, Mt+1 = (�Ct+1)

��  t+1. We then rely on an extension of our information-
theoretic methodology to estimate the  -component of the pricing kernel that
now satisfies the conditional (not just the unconditional) Euler equation restric-
tions for a chosen cross section of assets. Recall that our information-theoretic
EL approach in Section II recovers a pricing kernel (the I-SDF) that prices assets
unconditionally, i.e. satisfies the unconditional Euler equations producing zero
unconditional pricing errors. The extension of the methodology considered in
this section recovers an I-SDF that satisfies the more stringent conditional Eu-
ler equation restrictions, thereby producing zero conditional pricing errors. The
recovered SDF, therefore, must also price assets unconditionally. Specifically, we
use the smoothed empirical likelihood (SEL) estimator of Kitamura, Tripathi and
Ahn (2004). As described below, the SEL estimator relies on the same principles
as the EL estimator, but incorporates additional constraints through conditional
moment restrictions.

The absence of arbitrage opportunities implies the following conditional pricing
restrictions:

(39) EPt
⇥
Mt+1R

e
t+1|Ft

⇤
= EPt

⇥
(�Ct+1)

��  t+1R
e
t+1|Ft

⇤
= 0,

where the first equality follows from the assumed multiplicative decomposition of
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the SDF. Under weak regularity conditions, we have

(40) EPt


(�Ct+1)

��  t+1

EPt( t+1|Ft)
Re

t+1|Ft

�
= EFt

⇥
(�Ct+1)

�� Re
t+1|Ft

⇤
= 0,

where dFt
dPt

=  t+1

EPt ( t+1|Ft)
is the Radon-Nikodym derivative of F with respect to P.

We assume that the time-t information set of the investors, Ft, can be summa-
rized by a finite vector of random variables, that we denote by Xt 2 Rm. Suppose
that the historical realizations of consumption growth, excess returns, and the
conditioning variables are given by (�ct, ret , xt)

T
t=1

,9 and that these realizations
characterize the (finite number of) possible states of the world. Let fi,j denote
the conditional probability (under the measure F) of observing the joint outcome
(�cj , rej , xj) at time t + 1, i.e. the probability of state j being realized at time
t+ 1, given that state i was realized at time t.
The SEL estimator of the transition matrix {fi,j ; i, j = 1, . . . , T} is such that it

belongs to the simplex:

� := [T
i=1�i = [T

i=1

8
<

:(fi,1, ..., fi,T ) :
TX

j=1

fi,j = 1, fi,j � 0

9
=

;

and that: 8i 2 {1, . . . , T}, 8� 2 ⇥,

(41)
⇣
bfSEL
i,· (�)

⌘
= argmax

(fi,·)2�i

TX

j=1

!i,j log(fi,j) s.t.
TX

j=1

fi,j ⇥ (�cj)
�� rej = 0,

where fi,· denotes the T -dimensional vector (fi,1, ..., fi,T ), ⇥ is the set of all ad-
missible parameters �, and !i,j are non-negative weights used to smooth the
likelihood objective function. In the spirit of non-parametric estimators:

(42) !i,j =

K
✓
xi � xj

bT

◆

TX

t=1

K
✓
xi � xt
bT

◆ ,

where K is a kernel function belonging to the class of second order product ker-
nels,10 and the bandwidth bT is a smoothing parameter.11

Note that the objective function in Equation (41) is simply a ‘smoothed’ log-
likelihood, with the constraints enforcing the conditional Euler equation restric-
tions in Equation (40). The weights !i,j used to smooth the log-likelihood are

9
Throughout this section, uppercase letters are used to denote random variables and the correspond-

ing lowercase letters to particular realizations of these variables.

10K should satisfy the following. For X = (X(1), X(2), ..., X(m)
), let K =

Qm
i=1 k(X

(i)
). Here k : R !

R is a continuously di↵erentiable p.d.f. with support [�1, 1]. k is symmetric about the origin, and for

some ↵ 2 (0, 1) is bounded away from zero on [�a, a].
11
In theory, bT is a null sequence of positive numbers such that TbT ! 1.
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standard non-parametric kernel weights. The intuition behind the estimator may
be understood as follows. Note that we are interested in recovering the condi-
tional probabilities fi,j , for i, j = 1, 2, ..., T . For each possible state xi, the SEL
estimator focuses on a fixed neighbourhood around xi, where the neighbourhood
is defined in terms of the distance of other possible states from the current state,
i.e. |xi � xj |, and not in terms of proximity in time. The estimator then assigns
positive weights !i,j only to those states that lie within the fixed neighbourhood
of the current state, with the exact values of the weights determined by the kernel
function, the distance |xi � xj |, and the bandwidth parameter bT (see Equation
42). The states that lie outside the fixed neighbourhood each receive a weight
of zero. Finally, the SEL approach determines the conditional probability of
each state with non-zero weight, !i,j > 0, so as to maximize the smoothed log-
likelihood of the data, subject to the constraint that the estimated conditional

distribution,
n
bfSEL
i,j ; j = 1, 2, ..., T

o
, satisfies the conditional Euler equation re-

strictions (see Equation 41). The states with zero weight, !i,j = 0, each receive a
conditional probability of zero.

The solution to Equation (41) is analytical and given by:

8i, j 2 {1, . . . , T},

(43) bfSEL
i,j (�) =

!i,j

1 + (�cj)
�� b✓i(�)0 rej

,

where b✓i(�) 2 RN : i = {1, . . . , T} are the Lagrange multipliers associated with
the conditional Euler equation constraints, and solve the following unconstrained
problem:

(44) b✓i(�) = arg max
✓i2RN

TX

j=1

!i,j log
⇥
1 + (�cj)

�� ✓0i r
e
j

⇤
.

Equations (43) and (44) show that the SEL procedure delivers a (T ⇥T ) matrix

of probabilities
n
bfSEL
i,j (�)

o
for each value of the parameter �. Each row i : i =

{1, 2, ..., T} contains the probabilities of transitioning to each of the T possible
states j : {j = 1, 2, ..., T} in the subsequent period, conditional on state i having
been realized in the current period. Therefore, the approach recovers the entire
conditional distribution of the data, under the measure F, that is consistent with
observed asset prices, i.e. that satisfies the conditional Euler equations. Moreover,
it does so without the need for any parametric functional-form assumptions on
the form of the distribution, i.e. on the form of the  -component of the SDF.
Rather, it approximates the conditional distribution, for each possible value of
the current state, as a multinomial on the observed data sample.

Note that the SEL estimator in Equation (41) can also be reformulated as:

(45)
⇣
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The objective function in Equation (45) is the KLIC divergence between the
measure Ft ⌘ (ft,j)

T
j=1

that is consistent with asset prices, i.e. satisfies the
conditional Euler equations for the test assets, and the physical measure prox-
ied by Pt ⌘ (!t,j)

T
j=1

. ft,j
!t,j

=  t,j

EPt ( t,j |Ft)
is the Radon-Nikodym derivative of

F with respect to P. Suppose that the consumption growth component of the
pricing kernel, (�C)�� , is su�cient to price assets perfectly. Then the second
component of the pricing kernel  t,j ⌘ 1, 8j = 1, 2, ..., T , and we have that
ft,j = !t,j , 8j = 1, 2, ..., T , the latter being the physical measure. However, if
the consumption growth component is not su�cient to price assets, the esti-
mated measure Ft is distorted relative to the physical measure Pt. And, the SEL
estimator searches for a measure Ft that is as close as possible, in an information-
theoretic sense, to the physical measure Pt. In other words, the approach distorts
the physical probabilities as little as possible in order to satisfy the conditional
Euler equation restrictions.
Using the SEL-estimated conditional distribution, the cost of one-period con-

sumption fluctuations at each date (or state) t can be calculated as:
(46)
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Finally, note that the question naturally arises as to the economic interpreta-
tion of the recovered  -component of the kernel. For instance, it could capture
a misspecification of the power utility SDF. In fact, a large literature has devel-
oped based on modifying the preferences of investors, wherein the  -component
could capture investors’ habits (e.g., habit formation preferences), the unobserved
return on total wealth (e.g., Epstein and Zin (1989) recursive preferences), or
the ratio of durable to non-durable consumption or housing to non-housing con-
sumption (e.g., preferences defined over di↵erent consumption bundles) to name
a few. Alternatively, the  -component could capture investors’ subjective be-
liefs about future macroeconomic and financial outcomes. Ghosh and Roussellet
(2019) present evidence in favour of the latter interpretation. Specifically, they
show that the recovered component is remarkably similar across a range of prefer-
ence specifications. Moreover, consistent with the interpretation of  as capturing
investors’ beliefs, they show that the recovered beliefs about consumption growth
have strong forecasting power for consumption growth and that the beliefs about
the stock market are strongly related to survey data on institutional investors’
confidence in the stock market.

B. Performance of the SEL Estimator

Before presenting the empirical results, we point out that the SEL approach is
quite e↵ective at recovering the  -component of the kernel for empirically relevant
sample sizes. Ghosh and Roussellet (2019) show, via simulation exercises, that
the SEL approach successfully recovers the conditional distribution of the data
that is consistent with asset prices, i.e. F in our notation. Specifically, they
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consider a Bansal and Yaron (2004) long run risks economy. Thus, the following
conditional Euler equation holds in equilibrium for the excess return on the stock
market:

(47) EFt

2

64(�ct+1)
� ⌘

⇢ R⌘�1

c,t+1| {z }
Mt+1

(Rm,t+1 �Rf,t+1) |Ft

3

75 = 0,

where Rc,t denotes the return on total wealth, ⇢ the elasticity of intertemporal
substitution (EIS), and ⌘ = 1��

1� 1
⇢

. The investors’ information set at time-t consists

of the two model-implied state variables: Ft =
�
⌫t,�2t

 
, where ⌫t denotes the

expected consumption growth rate and �2t its stochastic variance. Thus, the SDF
in this economy depends not only on consumption growth (as in the standard
time and state separable power utility model), but also on the return on total
wealth.
Ghosh and Roussellet (2019) set the preference parameters and the parameters

governing the dynamics of the consumption and dividend growth processes to the
authors’ calibrated values. They then simulate a time series, of the same length
T as the historical sample, of the two state variables and, therefore, consumption
growth and the return on total wealth to recover the time series of the SDF;
and they also simulate a time series of the market return and the risk free rate.
Using the simulated sample, they then recover the distribution F using the SEL
approach: 8i 2 {1, . . . , T},
(48)
⇣
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This procedure is then repeated 500 times to obtain the sampling distribution of
the recovered F.
Note that the implementation of the SEL approach requires specification of two

inputs – the test assets and the conditioning set. The authors’ use the excess re-
turn on the market as the sole test asset and the two model-implied state variables
as constituting the conditioning set. Also, the SEL estimation approach, like all
other nonparametric procedures, requires specification of the kernel function and
the associated bandwidth parameter. All the authors’ results are computed with
the Epanechnikov kernel function and with the bandwidth parameter bv,T = 3�̂v,
where �̂v is the empirical standard deviation of the conditioning variable v.12

Note that, since the SDF is fully specified and not missing any components and
there are no beliefs distortions, the measure F in Equation (47) coincides with
the physical measure P, i.e.  ⌘ 1 and F ⌘ P. Ghosh and Roussellet (2019) show

that Equation (48) identifies the physical measure very well, i.e.
n
bfSEL
i,j

oT

i,j=1

recovers the time series of the conditional moments of the consumption growth

12
The results are robust to alternative choices of the kernel function and the smoothing parameter

within four standard deviations of the volatilities of the conditioning variables.
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rate with a high degree of accuracy.

C. Empirical Results

We now proceed to use the SEL method to estimate the cost of aggregate
consumption fluctuations in di↵erent states (or, times). We focus on the cost of
all one-period consumption fluctuations, given by Equation (46).
We first estimate the time series of the cost in our baseline sample covering

the period 1930-2015. Each year corresponds to a particular state and the SEL
approach estimates the welfare benefits of eliminating all consumption uncer-
tainty in the subsequent year. In our implementation, we use nondurables and
services consumption as the measure of the aggregate consumption expenditures
and the excess return on the market portfolio as the sole test asset. Note that
the SEL procedure requires the specification of the investors’ conditioning set. In
our baseline results, we use an exponentially-weighted moving average of lagged
consumption growth as the conditioning variable.

Figure 5. Time-Varying Cost of One-Period Consumption Fluctuations, 1929-2015
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Notes: The figure plots the time series of the cost of one-period consumption uncertainty. The cost

is estimated using the SEL approach, using nondurables and services consumption as the measure of

the consumption expenditures, the excess return on the market portfolio as the sole test asset, and an

exponentially-weighted moving average of lagged consumption growth as the conditioning variable. The

sample is annual, covering the period 1930-2015.

Figure 5 presents the time series of the cost. Several features are immediately
evident from the figure. First, the cost is strongly time-varying – it varies from
0.15% to 8.0% a year, with an average of 0.75%. Second, the cost is strongly
countercyclical, rising sharply during recessionary episodes. The average of the
cost over a subsample that corresponds to recession years, where a year is classified
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as a recession year if there is an NBER-designated recession in any of its quarters,
is 1.17%. The estimated costs are particularly high during the period of the Great
Depression 1930-1933, with a mean of 5.8% and a maximum as high as 8.0%. In
contrast, the average cost over the subsample comprised of expansionary episodes
alone is less than half of that during recessions at 0.53%. The correlation between
the cost and a dummy variable that takes the value 1 in a given year if there is
an NBER-designated recession in any of its quarters and 0 otherwise is 36.1%.
Finally, the estimates of the cost are large, given that they represent the welfare
benefits of eliminating all consumption uncertainty for one period alone.
Next, to establish robustness of the results, we present the time series of the

cost for alternative choices of the sample period, conditioning set, and the SDF
parameter �. First, note that our baseline results were obtained for the 1929-
2015 sample period. This raises the potential concern that our results may be
largely driven by the volatile prewar period, that included the episodes of the
Great Depression and the aftermath of World War II (the two disaster macroe-
conomic episodes identified in Robert J. Barro (2006)). To mitigate this concern,
Figure 6 presents the time series of the annualized cost (red line) using quarterly
data over the postwar period 1947:Q1–2015:Q4. As in the baseline case, non-
durables and services consumption is the measure of the aggregate consumption
expenditures, the excess return on the market portfolio is the test asset, and an
exponentially-weighted moving average of lagged consumption growth is the con-
ditioning variable. The strong countercyclical variation in the cost is immediately
evident from the figure. In fact, the countercyclicality is even more pronounced
in the postwar period, compared to the longer 1929–2015 sample – the correla-
tion with the recession dummy is 49.2% over the former period compared with
36.1% in the latter longer sample. Also, the magnitudes of the costs over the
postwar subperiod are similar, regardless of whether the full 1929-2015 sample or
the postwar period alone is used in the estimation of these costs. For instance,
during the period of the Great Depression, 2008–2009, the cost of removing one-
year fluctuations is estimated to be 1.20% on average using the longer sample,
similar to the average cost of 0.86% obtained using the postwar sample.
As a second robustness check, we present results for an expanded conditioning

set. Note that our baseline results were obtained using a weighted average of past
consumption growth as the sole conditioning variable. This may potentially raise
concerns about the robustness of the findings. Therefore, we estimate the time
series of the cost when the conditioning set includes not only an exponentially-
weighted average of past consumption growth, but also an exponentially-weighted
average of a principal component extracted from a broad cross section of over a
hundred macro variables. Specifically, we obtain panel data on 106 macroeco-
nomic variables from Sydney Ludvigson’s web site, based on the Global Insights
Basic Economics Database and The Conference Board’s Indicators Database. The
variables cover six broad categories of macroeconomic data: output, labor market,
housing sector, orders and inventories, money and credit, and price levels. We
transform each variable to make it stationary and then extract a principal com-
ponent from the cross section of transformed variables.13 The time series of the

13
We refer the reader to Ludvigson’s website for a detailed description of these variables and the
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cost is presented in Figure 6 (black line). Since data on the broad cross section
are only available from the mid-sixties, the cost estimates start from 1966:Q1.
The figure shows that the recovered time series of the cost seems quite robust to
the choice of the conditioning set.

Figure 6. Time-Varying Cost: Robustness to Sample Period and Conditioning Set
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Notes: The figure plots the time series of the cost of one-period consumption uncertainty. The cost

is estimated using the SEL approach, using nondurables and services consumption as the measure of

the consumption expenditures and the excess return on the market portfolio as the sole test asset. The

conditioning set consists of an exponentially-weighted moving average of lagged consumption growth (red

line) and lagged consumption growth and a principal component extracted from a broad cross section of

106 macro variables (black line). The sample is quarterly, covering the period 1947:Q1–2015:Q4 (red

line) or 1966:Q1–2015:Q4 (black line).

Finally, we present the time series of the cost for alternative choices of the SDF
parameter �. The results so far set � = 10. In Figure 7, we plot the time series of
the cost for alternative choices of �. Specifically, we consider � = 0 (black line), 5
(blue line), 10 (red line), and 15 (green line). Panels A and B present the results
using annual data over 1929–2015, and quarterly data over 1947:Q1–2015:Q4,
respectively.
Consider first the results obtained using quarterly data in Panel B. The panel

shows that the estimated time series of the cost is quite robust to the choice of the
power utility parameter. The estimates increase marginally with the � parameter,
but the di↵erences are economically small. Somewhat bigger di↵erences are ob-
tained in Panel A that uses annual data over the longer available sample. These
di↵erences are largely driven by the very low consumption growth realizations
during the Great Depression period that have a very large e↵ect on the marginal

transformations applied to make them stationary.
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utility for high values of the utility curvature parameter � and make investors very
concerned about the recurrence of this particularly bad state in future periods as
well. However, the estimates of the cost are strongly countercyclical even in the
limiting scenario when we set � = 0 and thereby rule out the ex ante dependence
of the SDF on aggregate consumption growth – the average cost during the four
years 1930–1933 of the Great Depression is 3.5% for � = 0 versus 5.8% for � = 10
with a maximum value of 4.9% for � = 0 versus 8.0% for � = 10; and the average
cost during the two years 2008–2009 of the Great Depression is 0.49% for � = 0
versus 1.2% for � = 10. Note that the estimates of the cost are large for both
values of �, given that these are the costs of one-year fluctuations alone.

Figure 7. Time-Varying Cost: Robustness to SDF Parameter
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Notes: The figure plots the time series of the cost of one-period consumption uncertainty, for di↵erent

values of the SDF parameter �. The black, blue, red, and green lines plot the cost for � = 0, 5, 10, and 15,

respectively. The cost is estimated using the SEL approach, using nondurables and services consumption

as the measure of the consumption expenditures, the excess return on the market portfolio as the test

asset, and an exponentially-weighted moving average of lagged consumption growth as the conditioning

variable. The sample is annual, covering the period 1930-2015 (Panel A) or quarterly, covering the

period 1947:Q1–2015:Q4 (Panel B).

Overall, our results suggest that the cost of consumption fluctuations is strongly
countercyclical and this o↵ers, at least a partial, explanation of the high costs of
business cycle fluctuations that we estimate in Sections V.A and V.B.

VII. What Drives the Results?

Our results suggest that the welfare benefits of eliminating all consumption
uncertainty as well business cycle fluctuations in consumption are substantially
bigger than those obtained with the CRRA kernel or with Lucas’ original specifi-
cation that imposes the additional assumption of lognormal consumption growth
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to the CRRA kernel. Moreover, the cost of consumption uncertainty is strongly
time-varying and countercyclical, rising sharply during economic downturns. A
natural question arises as to which features of the I-SDF drive these results. In
this section, we highlight two characteristics of the I-SDF that can help interpret
our findings.
First, the I-SDF can successfully explain the historically observed average re-

turns on both the aggregate stock market index as well as returns on broad
diversified portfolios formed by sorting stocks on the basis of observable charac-
teristics such as size and the book-to-market-equity ratio, i.e. it accurately prices
assets. The CRRA kernel and Lucas’ specification, on the other hand, produce
large average pricing errors for these assets. Figure 8 plots the historical average
excess returns (y-axis) along with the average excess returns implied by a par-
ticular pricing kernel (x-axis), for the six size-and book-to-market-equity sorted
portfolios of Fama and French. For a candidate pricing kernel M , the average

excess return on portfolio i implied by the kernel is obtained as �Cov(Mt,Re
i,t)

E(Mt)
.

The average excess returns on these portfolios implied by the I-SDF are denoted
by black circles, while those implied by the CRRA kernel are denoted by red
triangles.

Figure 8. Unconditional Pricing Errors, 1929-2015
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denoted by black circles, while those implied by the CRRA kernel are denoted by red triangles. The

sample is annual, covering the period 1929-2015.

The figure shows that the CRRA kernel grossly underestimates the average
excess returns. Specifically, the historical average excess return across the 6 port-
folios is 10.8%, whereas the CRRA kernel implies an average of only 2.0%. Also,
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the kernel fails to explain the substantial cross-sectional di↵erences in average re-
turns across the portfolios. The historical average excess return varies from 7.3%
for the portfolio comprised of large market cap and growth stocks to more than
double at 15.4% for the portfolio of small market cap and value stocks. To the
contrary, the average excess returns implied by the CRRA kernel are 1.4% and
2.3%, respectively, for these two portfolios. The cross-sectional R2, defined as
the ratio of the cross-sectional variance of the average excess returns implied by
the CRRA model and the cross-sectional variance of the historical average excess
returns is only 1.8%. These shortcomings of the CRRA model have been widely
documented in the literature and our results confirm these findings.

The above observations suggest that the CRRA model misses important com-
ponents of the underlying sources of systematic risk. Since the welfare costs of
consumption fluctuations depend critically on people’s attitudes towards di↵er-
ent sources of risk, the estimates of this cost obtained using the CRRA ker-
nel should, at best, be interpreted with caution. Moreover, Ghosh, Julliard
and Taylor (2016b) evaluate the pricing performance of several other prominent
consumption-based models (that were intended to overcome the shortcomings of
the CRRA model) and show that they too perform quite poorly, producing large
pricing errors and low (and often negative) cross-sectional R2. This may partly
account for the wildly di↵erent costs of fluctuations obtained using these alterna-
tive model specifications. More importantly, it suggests that the concerns with
using the CRRA kernel to estimate the cost of aggregate fluctuations may carry
over to many of the more recent pricing kernel specifications as well.

Figure 8 shows that the I-SDF, on the other hand, accurately prices assets. This
result, per se, is hardly surprising because the I-SDF was constructed to price the
assets in-sample (see Equation (15)). This may potentially raise concerns regard-
ing over-fitting and spurious inference. In this regard, Ghosh, Julliard and Taylor
(2016a) show that the good pricing performance of the I-SDF also obtains out-
of-sample for broad cross-sections of assets, including domestic and international
equities, currencies, and commodities. The out-of-sample performance of the I-
SDF is superior to not only the single factor CAPM and the Consumption-CAPM,
but also to the more recent Fama-French 3 and 5 factor models.

We next show that, not only does the I-SDF price assets unconditionally deliv-
ering zero average pricing errors, it also produces zero conditional pricing errors.
This is an important feature of the I-SDF that lends further support to the claim
that it more accurately captures investors’ attitude towards risk and, therefore,
constitutes an attractive candidate kernel with which to measure the cost of ag-
gregate economic fluctuations. Furthermore, the success of the I-SDF at pricing
assets conditionally is not shared by most other candidate kernels. Stefan Nagel
and Kenneth Singleton (2011) show that asset pricing models, even the ones that
produce small average or unconditional pricing errors, typically produce large
and volatile conditional pricing errors. They conclude that models are unable to
simultaneously match the cross section and time series of asset returns.

Figure 9 plots the time series of the conditional pricing errors for the excess stock
market return implied by the I-SDF (red line) and the CRRA kernel (green line).
The SEL approach, described in Section VI, is used to compute the conditional
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pricing errors implied by the I-SDF. Specifically, the conditional pricing error for
the excess market return at each date t is given by

PT
j=1

bfSEL
t,j ⇥ (�cj)

�� rem,j ,

where bfSEL
t,j =  t,j!t,j . Figure 9 shows that the pricing errors are identically equal

to zero at each time period, demonstrating the strength of the SEL method. The
conditional pricing error at date-t implied by the CRRA kernel, on the other hand,
is given by

PT
j=1

!t,j ⇥ (�cj)
�� rem,j . The figure shows that the pricing errors are

economically large in this case, varying from �7.0% to 6.3%. The CRRA kernel
fails to match even the historically observed average level of the stock market
return, producing a large unconditional pricing error. Not surprisingly, it also
generates large conditional pricing errors for the market return.

Figure 9. Conditional Pricing Errors, 1929-2015
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the excess return on the market portfolio as the sole test asset, and an exponentially-weighted moving

average of past consumption growth as the conditioning variable. The sample is annual, covering the

period 1929-2015.

Overall, the I-SDF seems to be more e↵ective at capturing the relevant sources
of priced risk and is, therefore, likely to provide more reliable estimates of the
welfare costs of aggregate fluctuations.
A second important feature of the I-SDF is that it has a strong business cycle

component. Figure 10 plots the time series of the I-SDF (red line), recovered using
the excess return on the market portfolio as the test asset, and the CRRA kernel
(black line). The more pronounced business cycle component of the I-SDF relative
to the CRRA kernel is immediately apparent. The I-SDF is typically substantially
higher than the CRRA kernel during recessionary episodes and lower than the
former during the expansionary phase of the business cycle. The time series of
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the I-SDF looks very similar when it is recovered using the 6 FF portfolios as
test assets. This suggests that business cycle risk is an important source of priced
risk, helping interpret our finding that the cost of business cycle fluctuations in
consumption constitutes a substantial proportion of the cost of all consumption
fluctuations.

Figure 10. Time Series of the SDF, 1929-2015
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sample is annual, covering the period 1930-2015.

VIII. Conclusion

We propose a novel approach to measure the welfare costs of aggregate economic
fluctuations. Our methodology does not require specific assumptions regarding
either the preferences of consumers or the dynamics of the data generating pro-
cess. Instead, using data on consumption growth and returns on a chosen set
of assets, we rely on an information-theoretic (or relative entropy minimization)
approach to estimate the pricing kernel. We refer to the resulting kernel as the
information kernel, or the I-SDF, because of the information-theoretic approach
used in its recovery. Unlike the CRRA kernel or Lucas’ original specification that
imposes the additional assumption of lognormality of consumption growth on the
CRRA model, the I-SDF accurately prices a broad set of assets – unconditionally
as well as conditionally, in-sample as well as out-of-sample – thereby successfully
capturing the relevant sources of systematic risk in the economy. Using the I-
SDF, we show that the welfare benefits from the elimination of all consumption
uncertainty are very large – typically, an order of magnitude bigger than those
implied by Lucas’ specification. Moreover, the costs of business cycle fluctuations
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in consumption constitute a substantial proportion – typically between a quarter
to a third – of the costs of all consumption uncertainty. Finally, using an ex-
tension of our information-theoretic methodology, we present evidence that the
welfare benefits of eliminating aggregate consumption fluctuations are strongly
time-varying and countercyclical.
The di↵erence in the results from earlier literature can be attributed, at least

in part, to two factors. First, the I-SDF correctly prices broad cross sections of
assets, and thereby identifies the relevant sources of priced risk more e↵ectively
than existing models. Second, the I-SDF has a strong business cycle component,
suggesting that business cycle risk is an important source of priced risk.
Note that, while our results indicate that the cost of business-cycle fluctuations

may be higher than previously thought, this does not imply that government
policies intended to control these fluctuations are more desirable than previously
thought. Even if government policies were e↵ective in curbing fluctuations, one
should not assume that the trend growth in consumption will be una↵ected by
them.
Finally, the present paper focuses on estimating the welfare costs of aggregate

consumption uncertainty. However, our methodology is considerably general and
may also be applied to obtain the costs of uninsurable idiosyncratic risk, such as
labor income risk. This is left for future research.
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