The Liquidity State-Dependence of Monetary Policy

Oliver Ashtari Tafti (LSE) Rodrigo Guimaraes (BoE) Gabor Pinter (BIS) Jean-Charles Wijnandts (BoE)

16th Annual Paul Woolley Centre Conference and 4th Annual Conference on Non-Bank Financial Sector and Financial Stability

7 June 2024

Motivation

"The effectiveness of changes in central-bank targets (...) in affecting spending decisions is wholly dependent upon the impact of such actions upon other financial-market prices such as longer-term interest rates (...) These are plausibly linked, through arbitrage relations to the short-term interest rates most directly affected by central-bank actions." (Woodford, 2003)

Motivation

"The effectiveness of changes in central-bank targets (...) in affecting spending decisions is wholly dependent upon the impact of such actions upon other financial-market prices such as longer-term interest rates (...) These are plausibly linked, through arbitrage relations to the short-term interest rates most directly affected by central-bank actions." (Woodford, 2003)

- Growing consensus that frictions to arbitrage matter for the macroeconomy Gromb-Vayanos (2002), He-Krishnamurthy (2013).
- Frictions even in the most liquid market in the world: US Treasuries (Duffie, 2023) and UK gilts (Pinter-Siriwardane-Walker, 2024)
- Conventional monetary policy transmission relies on arbitrage, but even in liquid bond markets arbitrage is imperfect

 Research question: how does bond market liquidity affect the transmission of conventional monetary policy to long-term rates?

- Research question: how does bond market liquidity affect the transmission of conventional monetary policy to long-term rates?
- Prior work: puzzling (high) degree of Monetary Non-Neutrality (Hanson-Stein (2015), Nakamura-Steinsson (2018))

- Research question: how does bond market liquidity affect the transmission of conventional monetary policy to long-term rates?
- Prior work: puzzling (high) degree of Monetary Non-Neutrality (Hanson-Stein (2015), Nakamura-Steinsson (2018))
- Our work: MP transmission to long-term rates only happens when markets are more liquid \rightarrow "Liquidity State-Dependence" (LSD)

- Research question: how does bond market liquidity affect the transmission of conventional monetary policy to long-term rates?
- Prior work: puzzling (high) degree of Monetary Non-Neutrality (Hanson-Stein (2015), Nakamura-Steinsson (2018))
- Our work: MP transmission to long-term rates only happens when markets are more liquid → "Liquidity State-Dependence" (LSD)

Use both macro and micro data to explore if arbitrageur activity is a driver (Nakamura-Steinsson (2018) meets Vayanos-Villa (2021)

- Result 1: Transmission of monetary policy shocks to long-maturity interest rates occurs when liquidity is high
 - ullet 100 bps shock to nominal 1Y yield o 10Y moves by 38 bps
 - When liquidity is high, same shock moves 10Y by 124 bps!
 - ⇒ The Liquidity-State Dependence

- Result 1: Transmission of monetary policy shocks to long-maturity interest rates occurs when liquidity is high
 - ullet 100 bps shock to nominal 1Y yield ightarrow 10Y moves by 38 bps
 - When liquidity is high, same shock moves 10Y by 124 bps!
 - ⇒ The Liquidity-State Dependence
- **Result 2**: The liquidity state-dependence works through the real risk premium, not the inflation / expectation components

- Result 1: Transmission of monetary policy shocks to long-maturity interest rates occurs when liquidity is high
 - ullet 100 bps shock to nominal 1Y yield ightarrow 10Y moves by 38 bps
 - When liquidity is high, same shock moves 10Y by 124 bps!
 - ⇒ The Liquidity-State Dependence
- Result 2: The liquidity state-dependence works through the real risk premium, not the inflation / expectation components
- Result 3: Persistent state-dependent response also for mortgage rates (macro-relevance)

- Result 1: Transmission of monetary policy shocks to long-maturity interest rates occurs when liquidity is high
 - ullet 100 bps shock to nominal 1Y yield o 10Y moves by 38 bps
 - When liquidity is high, same shock moves 10Y by 124 bps!
 - ⇒ The Liquidity-State Dependence
- Result 2: The liquidity state-dependence works through the real risk premium, not the inflation / expectation components
- Result 3: Persistent state-dependent response also for mortgage rates (macro-relevance)

Both macro and micro data show that arbitrage activity is a key driver!

Data

Aggregate data

- Proxy liquidity with the noise measure of Hu et al (2013)
- Proxies for arbitrage capital (hedge fund strategies returns)
- Zero-coupon Yield Curves (Gurkaynack, Sack and Swanson (2006))
- High-Frequency MP shocks (Nakamura-Steinsson (2018), Acosta (2023))

Data

Aggregate data

- Proxy liquidity with the noise measure of Hu et al (2013)
- Proxies for arbitrage capital (hedge fund strategies returns)
- Zero-coupon Yield Curves (Gurkaynack, Sack and Swanson (2006))
- High-Frequency MP shocks (Nakamura-Steinsson (2018), Acosta (2023))

@ Granular transaction-level dataset (MIFID II)

- Trades by UK-regulated entities in US Treasuries (6%< of the market)
- identify arbitrageurs from trading behavior (in line with theory)
- More trading done by arbitrageurs in days where liquidity is high, particularly so for longer maturities

The Liquidity-State Dependence

$$\Delta f_{i,t}^{(\tau)} = \alpha + \beta_i^{(\tau)} \Delta \textit{mps}_t + \epsilon_{i,t}^{(\tau)}$$

Table: The Liquidity State Dependence in Nakamura-Steinsson (QJE, 2018)

	Raseline			
	Nom.	Real	Inf.	
3M Treasury yield	0.67***			
**	(0.14)			
6M Treasury yield	0.85***			
	(0.11)			
1Y Treasury yield	1.00***			
	(0.14)			
2Y Treasury yield	1.10***	1.06***	0.04	
	(0.33)	(0.24)	(0.18)	
3Y Treasury yield	1.06***	1.02***	0.04	
	(0.36)	(0.25)	(0.17)	
5Y Treasury yield	0.73***	0.64***	0.09	
	(0.20)	(0.15)	(0.11)	
10Y Treasury yield	0.38**	0.44***	-0.06	
	(0.17)	(0.13)	(0.08)	
2Y Treasury inst. forward rate	1.14**	0.99***	0.15	
	(0.46)	(0.29)	(0.23)	
3Y Treasury inst. forward rate	0.82*	0.88***	-0.06	
	(0.43)	(0.32)	(0.15)	
5Y Treasury inst. forward rate	0.26	0.47***	-0.21**	
	(0.19)	(0.17)	(0.08)	
10Y Treasury inst. forward rate	-0.08	0.12	-0.20**	
	(0.18)	(0.12)	(0.09)	

The Liquidity-State Dependence

$$\Delta \textit{f}_{\textit{i},t}^{(\tau)} = \alpha + \beta_{\textit{i},\textit{hl}}^{(\tau)} \Delta \textit{mps}_t 1_{\mathsf{HighLiq}_{t-1}} + \beta_{\textit{i},\textit{ll}}^{(\tau)} \Delta \textit{mps}_t 1_{\mathsf{LowLiq}_{t-1}} + \epsilon_{\textit{i},t}^{(\tau)}$$

Table: The Liquidity State Dependence in Nakamura-Steinsson (QJE, 2018)

	Baseline			Low noise			High noise		
	Nom.	Real	Inf.	Nom.	Real	Inf.	Nom.	Real	Inf.
3M Treasury yield	0.67***			0.61***			0.69***		
	(0.14)			(0.16)			(0.19)		
6M Treasury yield	0.85***			0.74***			0.90***		
	(0.11)			(0.16)			(0.14)		
1Y Treasury yield	1.00***			1.48***			0.81***		
	(0.14)			(0.12)			(0.18)		
2Y Treasury yield	1.10***	1.06***	0.04	1.83***	1.69***	0.14	0.69*	0.70**	-0.01
	(0.33)	(0.24)	(0.18)	(0.23)	(0.32)	(0.33)	(0.41)	(0.29)	(0.20)
3Y Treasury yield	1.06***	1.02***	0.04	1.92***	1.72***	0.20	0.57	0.62**	-0.05
	(0.36)	(0.25)	(0.17)	(0.27)	(0.33)	(0.28)	(0.43)	(0.29)	(0.20)
5Y Treasury yield	0.73***	0.64***	0.09	1.68***	1.58***	0.10	0.34	0.26*	0.08
	(0.20)	(0.15)	(0.11)	(0.24)	(0.20)	(0.18)	(0.21)	(0.14)	(0.14)
10Y Treasury yield	0.38**	0.44***	-0.06	1.24***	1.24***	0.00	0.03	0.11	-0.08
	(0.17)	(0.13)	(0.08)	(0.20)	(0.16)	(0.12)	(0.17)	(0.12)	(0.11)
2Y Treasury inst. forward rate	1.14**	0.99***	0.15	2.25***	1.76***	0.49*	0.50	0.55*	-0.05
	(0.46)	(0.29)	(0.23)	(0.35)	(0.38)	(0.29)	(0.51)	(0.33)	(0.25)
3Y Treasury inst. forward rate	0.82*	0.88***	-0.06	1.96***	1.77***	0.18	0.17	0.38	-0.21
	(0.43)	(0.32)	(0.15)	(0.45)	(0.42)	(0.20)	(0.44)	(0.31)	(0.19)
5Y Treasury inst. forward rate	0.26	0.47***	-0.21**	1.17***	1.26***	-0.09	-0.12	0.15	-0.26*
	(0.19)	(0.17)	(0.08)	(0.30)	(0.25)	(0.13)	(0.19)	(0.17)	(0.11)
10Y Treasury inst. forward rate	-0.08	0.12	-0.20**	0.58***	0.68***	-0.10	-0.34*	-0.10	-0.24*
	(0.18)	(0.12)	(0.09)	(0.18)	(0.12)	(0.13)	(0.20)	(0.13)	(0.13)

The Liquidity-State Dependence

$$\Delta \textit{f}_{\textit{i},t}^{(\tau)} = \alpha + \beta_{\textit{i},\textit{hl}}^{(\tau)} \Delta \textit{mps}_t 1_{\mathsf{HighLiq}_{t-1}} + \beta_{\textit{i},\textit{ll}}^{(\tau)} \Delta \textit{mps}_t 1_{\mathsf{LowLiq}_{t-1}} + \epsilon_{\textit{i},t}^{(\tau)}$$

Expectations vs Risk Premium

$$f_{i,t}^{(\tau)} = eh_{i,t}^{(\tau)} + rp_{i,t}^{(\tau)}$$

Persistence

$$f_{r,t+k-1}^{(au)} - f_{r,t-1}^{(au)} = lpha_k + eta_{k,hl}^{(au)} mps_t +
u_{k,t}$$

Inspecting the Mechanism

 \bullet Hu, Pan & Wang (2013) motivation: \uparrow liquidity $\Leftrightarrow \uparrow$ arbitrage capital

Inspecting the Mechanism

- \bullet Hu, Pan & Wang (2013) motivation: \uparrow liquidity $\Leftrightarrow \uparrow$ arbitrage capital
- We test this mechanism in two ways:
 - Aggregate data: test if arbitrageurs capital can explain liquidity and liquidity state-dependence
 - Transaction-Level data: test if arbitrageurs activity is higher in high liquidity FOMC days

Inspecting the Mechanism

What Explains Noise?

Table:
$$\triangle Noise_t = \alpha + \beta' X_t + \epsilon_t$$

	Monthly Changes in Noise									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Δ MOVE	0.02***							0.01***		
	(4.24)							(3.59)		
Δ Unemp.		0.14***						0.10***		
		(2.68)						(2.95)		
$\Delta Unc.$			0.71**					-0.32		
			(2.44)					(-1.27)		
Δ Lev.				1.43***				0.59*		
				(3.90)				(1.93)		
FIA Ret.					-0.41***		-0.18***	-0.17***		
					(-7.95)		(-3.02)	(-2.63)		
ConvArb Ret.						-0.45***	-0.32***	-0.32***		
						(-5.35)	(-3.38)	(-2.82)		
Adj. R ²	15.94	2.53	16.10	16.35	34.52	40.89	43.47	50.77		
N	205	240	240	240	240	240	240	205		

• Evidence points to specialized investors (Duffie (2010), Siriwardane et al (2023))

State-Dependence with Fixed-Income Arb. Returns

$$\Delta f_{j,t}^{(\tau)} = \alpha + \beta_{j,hr}^{(\tau)} \cdot [\textit{mps}_t \times 1_{\textit{HighFIAret}_{t-1}}] + \beta_{j,lr}^{(\tau)} \cdot [\textit{mps}_t \times 1_{\textit{LowFIAret}_{t-1}}] + \epsilon_{j,t}^{(\tau)}$$

Figure: Real Forward Curve(j = r)

Figure: Inflation Forward Curve (i = i)

Inspecting the Mechanism - Transaction-Level Data

Question: is there more arbitrage activity around FOMC meeting when yield-curve noise is low?

Inspecting the Mechanism - Transaction-Level Data

Question: is there more arbitrage activity around FOMC meeting when yield-curve noise is low?

MiFID II dataset covering the universe of UK financial market participants

- Key advantages: client identifiers and coverage (>6% of US treasury volume)
- Limitations: shorter sample period (2018 present)

Sample Representativeness

Measuring two dimensions of arbitrage:

- Trading across the yield curve
 - standard deviation of maturities traded (weighted by trade size)
- ② Duration-neutral exposure
 - net duration exposure of all trades

Measuring two dimensions of arbitrage:

- Trading across the yield curve
 - standard deviation of maturities traded (weighted by trade size)
- ② Duration-neutral exposure
 - net duration exposure of all trades

Each month, we rank traders along the two dimensions, we then create a composite score:

$$I_{i,t} = \rho_{i,t}^{\sigma} * \rho_{i,t}^{Dur}$$

Measuring two dimensions of arbitrage:

- Trading across the yield curve
 - standard deviation of maturities traded (weighted by trade size)
- Duration-neutral exposure
 - net duration exposure of all trades

Each month, we rank traders along the two dimensions, we then create a composite score:

$$I_{i,t} = \rho_{i,t}^{\sigma} * \rho_{i,t}^{Dur}$$

Then, average over the entire sample

$$I_i = \frac{1}{N_{i,t}} \sum_{t=1}^{T} I_{i,t}$$

Measuring two dimensions of arbitrage:

- Trading across the yield curve
 - standard deviation of maturities traded (weighted by trade size)
- 2 Duration-neutral exposure
 - net duration exposure of all trades

Each month, we rank traders along the two dimensions, we then create a composite score:

$$I_{i,t} = \rho_{i,t}^{\sigma} * \rho_{i,t}^{Dur}$$

Then, average over the entire sample

$$I_i = \frac{1}{N_{i,t}} \sum_{t=1}^{T} I_{i,t}$$

[⇒] Arbitrageurs are IDs in the top-tercile of the index

Who are the Arbitrageurs?

Arbitrageurs Trade More When Noise is Low

- Arbs > 0, increase trading (almost) monotonically across maturities (15%-25% more trading)
- Non-arbs < 0: they trade less

Robustness

- Macro results hold with all main measures of monetary policy shocks, accounting for information effects and other known predictability anout our baseline shocks by Nakamura & Steinsson (2018), including: Jarocinski & Karadi (2015), Bauer & Swanson (2023), Karnaugh & Vokata (2022), and Swanson (2021)
- Robust to excluding recessions, QE dates, easing cycles and purging from the Fed Information Effect
- Robust to different ways of de-trending the noise measure, or using the original series without de-trending
- Results also hold when we include a number or controls or purge the liquidity measure from the component explained by these controls
- Results hold for different time samples, including a pre-GFC sample (for nominal only, lack of real data), and using different model decompositions into expectations and risk premium components
- Results also apply to the UK

Policy Implications and Future Work

- The Liquidity State-Dependence is entirely about the long-term real rates and it is persistent: it matters for macroeconomic policy
- The role of arbitrageurs is supported by evidence from both aggregate and transaction-level data
- Policy complementarity: market functioning/liquidity in bond markets important for both financial stability and monetary policy

THANK YOU FOR YOUR ATTENTION!

Appendix: The Noise Measure

Hu, Pan Wang (2013)

Each day t, there are N_t government bonds trading in the market

- ullet Denote the (cont. compounded) yield on the maturity-au bond $y_t^{(au)}$
- ullet Svensson (1994) to find line of best fit: the *yield curve* $\hat{y}_t^{(au)}$

$$extit{Noise}_t = \sqrt{rac{1}{N_t}\sum_{ au=1}^{N_t} \left(y_t^{(au)} - \hat{y}_t^{(au)}
ight)^2}$$

- Cross-sectional dispersion of actual yields around the fitted curve
- Captures information over entire curve (not just on-/off-the run)/ not driven by demand shocks for individual bonds / not related to level, slope or volatility of interest rates
 - Shown to be priced aggregate liquidity, not just UST-specific liquidity
 - Priced in HFs and carry trade returns
 - ightarrow Close link with supply of capital by arbitrage desks

Appendix: The Noise Measure

Hu, Pan Wang (2013)

Figure: On normal days

Figure: Lehman Bankruptcy

Source: Hu, Pan and Wang (2013)