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Abstract

This paper studies the general equilibrium implications of arbitrage trades in
segmented financial markets. Arbitrageurs choose a category of trades to spe-
cialize in. This results in an equilibrium network in which the various market
segments are linked by arbitrageurs. Arbitrageurs exert externalities on each
other depending on their position in the network. Due to these externalities,
the complete network architecture, in which all links are feasible, is in general
suboptimal for arbitrageurs; it is dominated by a hub-spoke architecture. The
hub acts as a repository of liquidity, facilitating trades with minimal price im-
pact. For an arbitrary architecture, as the mass of arbitrageurs grows, equilib-
rium prices converge to those of the frictionless economy with no segmentation.
On the other hand, even if the architecture is complete, equilibrium networks
may not be complete or even connected, regardless of the mass of arbitrageurs.
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1 Introduction

In the standard frictionless model of financial markets, all assets are traded on a cen-
tralized exchange, with a Walrasian auctioneer determining a price vector that clears
all markets simultaneously. Clearly actual markets do not correspond to such an ide-
alization. Assets are traded in a variety of markets, separated by both geography and
function, such as stock exchanges, options and futures exchanges, alternative trading
venues (such as Multilateral Trading Facilities, Electronic Communication Networks
and Dark Pools), as well as over-the-counter, i.e. in direct and private arms-length
transactions bypassing organized markets. Moreover, these market segments or trad-
ing platforms, which we shall refer to collectively as exchanges in this paper, attract
distinct clienteles. Very few retail clients trade on more than one exchange or across
all asset classes, let alone all asset classes across all trading venues simultaneously.

Market segmentation opens up the possibility for agents, such as market makers,
mutual and hedge funds, and proprietary trading desks of investment banks, to profit
by intermediating and facilitating trade across the various exchanges. A very large
percentage of asset trading is attributable to such traders, whom we shall refer to
simply as arbitrageurs. Our main object of interest is the resulting network, and
the externalities that arbitrageurs exert on each other due to their position in the
network.

In actual trading networks, arbitrageurs operate on only a few exchanges at best.
For instance, pairs trading is a fashionable component of equity long-short hedge
funds. What is more, even if these traders do operate between a number of exchanges
at the institutional level, the various trading desks do not seem to coordinate in
general. Anecdotal evidence puts this down to informational and other frictions
(for instance, Agnes (2000) cites local “market feel” as the reason for a concerted
strategy among global swaps banks to decentralize non-US swaps books to their
natural markets), to the fact that each desk is allocated a capital limit and operates
roughly as a stand-alone profit center, as well as to the fact that compensations
almost exclusively depend on a desk’s own P&L and lead to a natural rivalry among
dealers within the same institution (refer for instance to Drobny (2000)).

In the present paper, we allow arbitrageurs to link only two exchanges, but let
them choose which ones. Formally, we consider a two-period economy in which
assets are traded at date 0 and uncertainty is resolved at date 1. Trading occurs on
multiple exchanges. We assume that the aggregate excess demand function of the
local investors on each exchange is affine in prices. This is the case, for instance, if the
CAPM holds locally on all exchanges. Arbitrageurs, each of whom can choose a pair
of exchanges on which to trade, seek to exploit price differentials across exchanges.
Arbitrageurs behave competitively and face an arbitraging cost that bounds their
trades.

There is a given network architecture, which specifies which pairs of exchanges
can be arbitraged, i.e. which links between exchanges are admissible. For an arbitrary
network architecture, we characterize the endogenous distribution of arbitrageur ac-
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tivity across admissible links, and the resulting asset prices that clear markets on
each exchange. Comparing different architectures allows us to understand the exter-
nalities generated by arbitrageur trading.

Generally speaking, the complete architecture, in which all links are admissible, is
suboptimal for arbitrageurs; a hub-spoke architecture leads to higher profits. This is
because of externalities in the provision of liquidity. Imagine the equilibrium state-
price vectors on the various exchanges as points, or “nodes”, in Euclidean space,
with node k corresponding to exchange k. Controlling for arbitraging costs, the
profit from arbitraging a pair of exchanges, k and `, is proportional to the distance
(appropriately defined) between nodes k and `. As more arbitrageurs set up shop on
the link (k, `), they pull these nodes closer together, affecting the distance between
them and other nodes `′ 6= k, `. This is an externality, which may be positive or
negative, on arbitrageurs active on links (k, `′) and (`, `′). If all trades are channeled
through a node (the “hub”) that lies towards the center of all the nodes, arbitrageurs
on one side of the hub exert a positive externality on arbitrageurs on the other side.
This allows mispricings to be exploited with as little market impact as possible, with
the hub serving as a repository of liquidity. However, if arbitrageurs can operate on
any link, this cannot be sustained in equilibrium. Each arbitrageur has an incentive
to deviate and arbitrage two exchanges on opposite sides of the hub, since there is a
larger mispricing on such a link. Instead of contributing to liquidity, the deviating
agent uses up liquidity at both ends. All other agents act similarly, leading to a
Prisoner’s Dilemma style suboptimal outcome.

As the mass of arbitrageurs goes to infinity, state prices on all exchanges converge
to the state prices of the frictionless integrated economy. Thus, in the limiting case,
arbitrageurs connect markets and carry out trades in the aggregate that achieve
exactly the transfers of state-contingent consumption that a global auctioneer would
have performed. This is true for an arbitrary network architecture as long as it is
connected (i.e. it is possible to connect any pair of exchanges via a sequence of links),
despite the inefficiencies arising from network externalities, and from the fact that
each arbitrageur is allowed to operate on only one link.

On the other hand, even if all links are admissible, equilibrium networks need
not be complete, or indeed connected, regardless of the mass of arbitrageurs. Even
though asymptotically equilibrium prices are those that would obtain in a frictionless
economy, network structure does not become irrelevant.

Related Literature. This paper traces its antecedents to Zigrand (2004, 2006),
where the general segmented markets framework is introduced, and in particular to
Rahi and Zigrand (2009), which specializes this framework to the CAPM setting. In
these papers, each arbitrageur is simultaneously active on all exchanges, so network
effects are absent.

The usefulness of a general segmentation setup has been recognized for a long
time, in theory1 and in applied work as documented for instance in the success of

1Allais (1967) argued for a more realistic “economy of markets” in lieu of a “market economy.”
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the market segmentation hypothesis (Culbertson (1957)) and the preferred habitat
hypothesis (Modigliani and Sutch (1966)) in fixed income analytics. For example,
banks and building societies concentrate a large part of their activity at the short end
of the interest rate term structure, both for asset-liability and for regulatory reasons,
while pension funds and insurance companies operate at the long end. There is a
growing empirical literature in support of more general segmentation in financial
markets (see Rahi and Zigrand (2009) for a discussion of this literature). A stylized
fact that emerges from this research is that assets in different market segments are
priced by distinct groups of investors.

In order to focus on network structure, we assume in this paper that asset markets
are complete on every exchange. In actual fact, a considerable number of securities
are issued by agents whom we call arbitrageurs. In Rahi and Zigrand (2013) we allow
arbitrageurs to design the securities that they trade. Our characterization in the
present paper of equilibrium networks with complete markets in fact also holds when
markets are incomplete, but with asset payoffs that are determined endogenously.

In this paper each exchange is characterized by an affine demand function. We do
not explicitly model the behavior of the local investors or clientele. This can easily
be done, and indeed must be done, in order to carry out a complete welfare analysis.
We leave this task to a companion paper.

In the literature on networks in economics (see, for example, Goyal (2007), Jack-
son (2008) and Fique et al. (2013)), a typical network formation game consists of
nodes corresponding to players and links that these players form with other players.
Our approach to network formation is quite different. For us, the nodes are not
players at all. Instead, agents choose to link an arbitrary pair of nodes. Moreover,
the relative location of the nodes in Euclidean space (a property that is irrelevant in
most of the networks literature) is endogenously determined, and indeed is the key
attribute which characterizes the network. In that sense, the networks we study are
novel. In the present paper, we limit ourselves to competitive arbitrageurs, but the
theory can be extended to agents who behave strategically.

The paper is organized as follows. In the next section we formalize the notion
of a network architecture in the context of which arbitrageur activity takes place:
each arbitrageur chooses an admissible link and how much to buy or sell on the
two exchanges on which he is active. In Section 3, we solve for market-clearing
prices for an arbitrary distribution of arbitrageurs across links. We endogenize this
distribution in Section 4 and outline some basic features of the equilibrium. In
Section 5 we provide some benchmark results for equilibrium networks with a large
mass of arbitrageurs. In Section 6 we characterize equilibrium networks as polytopes
in Euclidean space. We then proceed to explicitly solve for equilibrium networks

In his Nobel speech he says: “. . . I was led to discard the Walrasian general model of the market
economy, characterized at any time, whether there be equilibrium or not, by a single price system,
the same for all the operators, - a completely unrealistic hypothesis, - and to establish the theory
of economic evolution and general equilibrium, of maximum efficiency, and of the foundations of
economic calculus, on entirely new bases resting on . . . a new model, the model of the economy of
markets (in the plural).”
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for economies in which autarky state prices are distributed symmetrically. Section 7
considers complete architectures, and Section 8 hub-spoke architectures, followed by
a comparison in Section 9. Proofs are in the appendix.

2 The Setup

There are two dates, t = 0, 1. Uncertainty, realized at date 1, is parametrized by S
states of the world, with typical state s. Assets, which are in zero net supply, are
traded on several exchanges, with complete markets on each exchange. The set of
exchanges is K := {0, . . . , K}, K ≥ 1.

We denote the state-price deflator (or pricing kernel) on exchange k ∈ K by p̂k, a
vector in RS (p̂ks is the price of the s’th Arrow security divided by the probability of
state s).2 Date 0 consumption serves as the numeraire. The aggregate excess demand
for date 1 state-contingent consumption on exchange k is θk(p̂k). We assume that
this demand function is affine, taking the following form:

θk(p̂k) =
1

βk
(pk − p̂k). (1)

The exogenously given vector pk is exchange k’s autarky state-price deflator (net
demand on k is zero when p̂k = pk). The coefficient βk captures the price impact
of an additional unit of state-contingent consumption supplied to exchange k; thus
1/βk is the “depth” of exchange k. We assume that pk ≥ 0, and βk > 0, for all
k ∈ K, and that the pk’s are not all the same.

One way to generate demand functions of the form given in (1) is to assume
that, associated with each exchange, there is a group of competitive investors with
quadratic preferences (as in Rahi and Zigrand (2009)). For the purposes of the
present paper, however, it does not matter how these demand functions are micro-
founded.

While exchanges do not interact with each other directly, there is a mass (or
measure) N of competitive arbitrageurs who can exploit price differentials across
them in the manner described below. Arbitrageurs have no endowments, and care
only about date 0 consumption.

Given the set of exchanges K, we specify a set A of links (k, `), i.e. A ⊂ {(k, `) :
k, ` ∈ K, k 6= `}. We will use the abbreviated notation k` instead of (k, `). To avoid
notational ambiguity, links k` and `k are taken to be the same link. Each arbitrageur
chooses to arbitrage one of the links in A. Let Nk` denote the mass of arbitrageurs
on link k` ∈ A. We have

∑
k`∈AN

k` = N . For notational convenience we define Nk`

to be zero if k` /∈ A.
Formally, G := (K,A) is a graph, with nodes K and links A.3 We say that ` is a

neighbor of k if k` ∈ A. The graph is complete if every node is a neighbor of every

2While we do not impose nonnegativity in the definition of a state-price deflator, the p̂k’s will
be nonnegative in equilibrium.

3A standard reference on graph theory is Diestel (2005). We employ the terms “node” and
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other node; if not, it is incomplete. If A = {k` : ` ∈ K, ` 6= k}, we say that G is a
hub-spoke graph with node k as the hub and the other nodes as the spokes. There
is a path connecting k and ` if there is a sequence of distinct nodes {k1, . . . , kI}
in K such that k1 = k, kI = ` and {k1k2, k2k3, . . . , kI−1kI} ⊂ A. We say that G
is connected if there is a path connecting any pair of nodes k, ` ∈ K; if not, it is
disconnected. A maximal connected subgraph of G is called a component of G. It
is convenient to denote a component of G simply by its nodes C ⊂ K, where it is
understood that the links between these nodes are those that are inherited from A.

While we have introduced the above (standard) terminology for the graph G,
it applies of course to any other graph that we consider in the paper (typically a
subgraph of G). G itself will be referred to as a network architecture (or, simply,
architecture), with A being the set of admissible links. While G is not necessarily
complete, we assume that it is connected. This is without loss of generality as each
component of G can be analyzed as a separate economy.

Each arbitrageur chooses a link on which to trade and how much to supply to the
two exchanges connected by this link. It is convenient to think of this competitive
interaction as occurring in two stages, with arbitrageurs choosing links at the network
formation stage, and subsequently choosing their supplies at the trading stage. We
solve for equilibrium by backwards induction, solving first for market-clearing prices
at the trading stage for an arbitrary distribution of arbitrageurs, and then solving
for an equilibrium distribution of arbitrageurs at the network formation stage.

Given an architecture G, let N := {Nk`}k`∈A be an arbitrary distribution of
arbitrageurs across links that are admissible in that architecture. A network is a
tuple (G,N). We say that an admissible link k` is active if Nk` > 0; likewise, a node
is active if it is an endpoint of an active link. Let A∗(N) ⊂ A be the set of active
links for arbitrary N.

3 The Trading Stage

We begin by studying optimal arbitrageur supplies and market-clearing prices for
(G,N), where N is an arbitrary distribution of arbitrageurs. Let ykk` ∈ RS be the
supply of state-contingent consumption on exchange k of a typical arbitrageur active
on link k` ∈ A∗(N). The arbitrageur faces a no-default constraint at date 1, namely
ykk` + y`k` ≤ 0. Since he cares only for date 0 consumption, this constraint will
necessarily hold with equality. We assume that he faces an arbitraging cost, which

for tractability is quadratic and takes the form 1
2
δk` ykk`

>
Πykk`, where δk` is a positive

cost parameter, and Π is the S × S diagonal matrix whose s’th diagonal element is
the probability of state s.4 Taking prices as given, the arbitrageur maximizes (net)

“link” instead of “vertex” and “edge”, reserving the latter terminology for its standard usage in the
theory of polytopes, which we make extensive use of later.

4If we think of ykk` as a random variable, the arbitraging cost is proportional to the size of the
induced state-contingent consumption E(ykk`)

2.
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profits from his arbitrage trades, i.e. he solves

max
ykk`∈RS

ykk`
>

Π(p̂k − p̂`)− 1

2
δk` ykk`

>
Πykk`.

The following is immediate:

Lemma 3.1 (Arbitrageur supplies) Given (G,N), the optimal supply of an ar-
bitrageur on link k` in A∗(N) is given by ykk` = −y`k` = 1

δk`
(p̂k − p̂`).

Arbitrageurs on link k` supply consumption in state s to exchange k when the price
that agents on exchange k are willing to pay for a unit of state s consumption exceeds
the price at which the arbitrageurs can procure that unit on exchange `. Arbitrageur
trades are scaled by the cost parameter δk`. For convenience, we define ykk` to be zero
if k` /∈ A∗(N).

We can solve for market-clearing state-price deflators p̂k, k ∈ K, as follows. Let
αk` := Nk`/δk` for k` ∈ A∗(N), and zero otherwise. Also define yk to be the aggregate
supply on exchange k of all arbitrageurs in the economy. From Lemma 3.1,

yk =
∑
`∈K

Nk`ykk` =
∑
`∈K

αk`(p̂k − p̂`). (2)

Setting yk equal to the aggregate demand on exchange k, θk (given by (1)), we have

p̂k = pk − βkyk. (3)

Let C(N) be the set of components of the graph (K,A∗(N)), with typical element C.
Then {p̂k}k∈K is a solution to the following system of equations:

p̂k + βk
∑
`∈C

αk`(p̂k − p̂`) = pk, k ∈ C, C ∈ C(N). (4)

Notice that the equations corresponding to any one component are independent of
those corresponding to the other components. Hence we can solve separately for
market-clearing prices {p̂k}k∈C for each component C.

Lemma 3.2 (Market-clearing prices) Given (G,N), there exists a unique profile
of market-clearing state-price deflators {p̂k}k∈K. For any C ∈ C(N) and k ∈ C, we
have p̂k =

∑
`∈C η

k`p`, for positive weights {ηk`}`∈C that satisfy (a)
∑

`∈C η
k` = 1; (b)

β`ηk` = βkη`k, ∀` ∈ C; and (c) ηkk > η`k, ∀` ∈ C, ` 6= k.

Thus the market-clearing outcome at the trading stage is unique and symmetric,
with all arbitrageurs on a given link supplying the same amount, and a unique
market-clearing state-price deflator for each exchange.

Note that p̂k ≥ 0 due to our assumption that pk ≥ 0. The market-clearing
state-price deflator on exchange k is a convex combination of the autarky state-price
deflators of all exchanges to which it is linked directly or indirectly, with the weights
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depending on the depths, arbitraging costs and distribution of arbitrageur activity
for these exchanges. Consider, for example, a neighbor ` of k. The higher is Nk`, and
the lower is δk`, the greater is the arbitrageur-mediated transfer of state-contingent
consumption between k and `. This activity reduces the mispricing p̂k − p̂`, and
increases the influence of p` on p̂k. Furthermore, given that yet other arbitrageurs
transfer resources between `′ and `, where `′ is a neighbor of ` but not of k, the state
prices of `′ also find their way into p̂k. And likewise for the neighbors of `′, and so
on.

Moreover, if pks , the autarky valuation of state s on exchange k, rises exogenously,
then p̂`s increases on all exchanges ` in the component to which k belongs, with the
largest increase occurring on k itself. While a local shock affects local state prices
the most, it affects the state prices of all exchanges directly or indirectly connected
to it.

For a vector v in RS, the L2(Π)-norm of v is defined as follows: ‖v‖2 := (v>Πv)
1
2 .

The following is immediate from Lemma 3.1:5

Lemma 3.3 (Arbitrageur profits) Given (G,N), the profit of an arbitrageur on
k` in A∗(N) is given by ϕk` := 1

2δk`
‖p̂k − p̂`‖2

2.

For an inactive link k` ∈ A, ϕk` has the interpretation of the “potential” profit on
k`.

4 Equilibrium Networks: Preamble

We have shown that, for any given distribution of arbitrageurs N, there exists a
unique market-clearing price vector for each exchange. We are now in a position
to analyze the network formation stage in which N is determined. Whenever we
wish to emphasize that an arbitrageur distribution is an equilibrium distribution, we
write it as N(N), i.e. as a function of the mass of arbitrageurs N . All the variables
introduced earlier, such as the set of active links, prices and profits, depend on N(N).
To save on notation, we write A∗(N) instead of A∗(N(N)). Similarly (unless it is
clear from the context), we write the equilibrium state-price deflator on exchange k
as p̂k(N); notice that p̂k(0) = pk. Given the graph G∗(N) := (K,A∗(N)) ⊂ G, we
refer to (G∗(N),N(N)) as an equilibrium network.

Since each arbitrageur is atomistic, and hence has no impact on prices, in an
equilibrium network profits must be equal on all active links, with (weakly) lower
potential profits on all inactive admissible links. Formally:

Lemma 4.1 N is an equilibrium distribution of arbitrageurs if and only if it satisfies
the following condition:

(N) There is a Φ(N) > 0 such that ϕk`(N) ≤ Φ(N), for all k` ∈ A, and ϕk`(N) =
Φ(N), for all k` ∈ A∗(N).

5If we view p̂k as a random variable with realization p̂ks in state s, then ‖p̂k− p̂`‖22 can be written
as E(p̂k − p̂`)2, the mean-square distance between p̂k and p̂`.
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We show in the appendix that there exists an N satisfying condition (N), so that:

Proposition 4.1 (Existence) There exists an equilibrium network.

However, in general, there is not a unique equilibrium network, as the following
example shows. Here, and elsewhere, when we speak of the arbitraging cost for link
k`, we refer to the parameter δk`.

Example 1 (Multiplicity of equilibrium networks) Suppose there are four ex-
changes, with p0 = p1 and p2 = p3. The architecture is complete, arbitraging costs
are the same for every link, and all the exchanges have the same depth. It is easy to
verify that each of the following is an equilibrium arbitrageur distribution (where we
have specified only the active links): (i) N02 = N13 = N/2; (ii) N03 = N12 = N/2;
and (iii) N02 = N03 = N12 = N13 = N/4. In all three cases, p̂0 = p̂1 and p̂2 = p̂3.
♦

We turn now to an analysis of the properties of equilibrium networks. We seek to
answer two sets of questions. The first relates to features of an equilibrium network,
for a given architecture. Which links attract the most arbitrageur activity? What
connectivity properties emerge in equilibrium? Are all admissible links active? If not,
is an equilibrium network still connected? The second set of questions pertain to the
“comparative statics” of equilibrium networks with respect to the architecture. How
are arbitrageur profits affected by the architecture? What connectivity properties
do desirable architectures possess?

Most of these questions boil down to a combinatorial problem which, as one
might expect, leads to very few clear-cut general results since so many tradeoffs
must be balanced, such as the various depths and arbitraging costs, and the various
initial mispricings across admissible links, taking into account that the prices on
each exchange depend on all flows across the network, no matter how “remote”, i.e.
no matter how many links away. In particular, one should not expect to obtain
general results of the sort “every equilibrium network is hub-spoke”, as have been
derived for instance in Bala and Goyal (2000), for in our paper nodes are exchanges
with heterogeneous intrinsic characteristics. Indeed, any given connectivity structure
can be perturbed by varying these underlying parameters. For instance, consider an
equilibrium network with a particular connectivity structure A∗(N). Pick an autarky
state-price deflator, say p0, and move it in RS space further away from the other pk’s.6

At some stage the resulting equilibrium network becomes hub-spoke with 0 as the
hub. On the other hand, if an equilibrium network has 0 as the hub, this can be
perturbed away by raising the costs of arbitraging with 0.

Since “scale” can always make or break any particular connectivity structure,
the most interesting effects are what one might call “network effects”, keeping scale
fixed (for example, taking the βk’s and δk`’s to be equal, and/or imposing symmetry

6When we provide Euclidean geometric intuition, we view the space L2(Π) with norm ‖v‖2 :=

(v>Πv)
1
2 as the Euclidean space RS with norm ‖w‖ := (w>w)

1
2 via the isomorphism v 7→ w :=

Π1/2v. For notational simplicity, we will not make this transformation explicit.
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restrictions on the pk’s). Before we study network effects in more detail, the next
example illustrates pure scale effects arising from the relative location of the pk’s.

Example 2 (Pure scale effects) Consider the class of networks in which only a
single link is admissible, and hence there are no externalities across links. Suppose
arbitraging costs are the same for every link, and all exchanges have the same depth.
Arbitrageur profits on an admissible link k` can be calculated directly from (4): ϕk` =

δ
2[δ+2βN ]2

· ‖pk − p`‖2
2. Therefore, the optimal single-link architecture for arbitrageurs

is the one that maximizes the autarky gains from trade, ‖pk − p`‖2
2. ♦

Assuming equal depths and arbitraging costs, it is tempting to conjecture that,
for an arbitrary architecture, Nk` > Nk′`′ whenever autarky gains from trade are
higher on k` than on k′`′. However, this is not true in general because of network
externalities. The following example illustrates.

Example 3 (Network externalities in a hub-spoke architecture) Consider a
hub-spoke architecture with four exchanges. Exchange 0 is the hub, and exchanges
1, 2 and 3 are the spokes. Arbitraging costs are the same for all admissible links, the
exchanges are equally deep, and the autarky state-price deflators lie on a straight
line segment with p1 at one extremity, p2 = p3 at the other extremity, and p0 half
way in between (see Figure 1). Even though ‖pk − p0‖2 is the same for all k 6= 0,

p1
p0

p2, p3. ..........................................................................................................................................................................................................................................................................................................................................................................................................................................t tt
Figure 1: Network externalities

there is no equilibrium with N0k = N/3, k = 1, 2, 3. If this were the case, there
would be mass 2N/3 of arbitrageurs pulling p̂0 towards p2 = p3 and only N/3 pulling
it towards p1. With an equal mass of arbitrageurs pulling p̂k, k = 1, 2, 3, towards
the middle, profits on link 01 would be higher than on 02 or 03 (this can be verified
via an explicit calculation). In equilibrium, we must have N01 > N02 = N03. It is
clear that this is robust to small perturbations of the pk’s. In particular, there will
be more arbitrageurs on 01 even if ‖p1 − p0‖2 is (slightly) lower than ‖p2 − p0‖2 and
‖p3 − p0‖2. ♦

5 Equilibrium Networks with Many Arbitrageurs

Equilibrium networks with a large mass of arbitrageurs provide a useful benchmark
for our analysis. We show that, as the mass of arbitrageurs N goes to infinity,
equilibrium state prices on every exchange converge to the equilibrium state prices
of the entire integrated economy. This is true for an arbitrary architecture (provided
it is connected, which we have assumed throughout).
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For any subset K′ of K, let p∗K′ be the (unique) state-price deflator for which
excess demand for state-contingent consumption, aggregated across the exchanges in

K′, is zero. From (1), we see that p∗K′ =
∑

k∈K′ λ
k
K′ p

k, where λkK′ := (βk)−1∑
j∈K′ (β

j)−1 . We

interpret p∗K′ as the equilibrium state-price deflator for the integrated subeconomy
corresponding to K′, with no arbitrageurs. It is equal to the average willingness
to pay in this subeconomy, with the willingness to pay on each exchange weighted
by its relative depth. Let p∗ := p∗K be the global equilibrium state-price deflator,7

with λk := λkK. Thus p∗ =
∑

k∈K λ
kpk. In fact, multiplying equation (4) by λk

and summing over k ∈ K, we get p∗ =
∑

k∈K λ
kp̂k, for an arbitrary distribution of

arbitrageurs N. In particular, for an equilibrium distribution of arbitrageurs N(N),
we have:

p∗ =
∑
k∈K

λkp̂k(N), ∀N ≥ 0. (5)

We write p̂k(∞) for limN→∞ p̂
k(N), and similarly for other variables.

Proposition 5.1 (Convergence) State prices on all exchanges converge to the
state prices of the integrated economy, i.e. p̂k(∞) = p∗, for all k ∈ K. Moreover, if
G∗(∞) exists, then p∗C = p∗, for all components C of G∗(∞).

As the mass of arbitrageurs increases without bound, all mispricings across exchanges
vanish, even though no single arbitrageur ties all the markets together. From Lemma
3.1, individual arbitrageur trades also vanish as N goes to infinity. Convergence need
not be monotone, however, as we shall see in Example 6 below.

Notice that price differentials between a pair of exchanges go to zero even if there
is no active link between them. Indeed, there may be admissible links that remain
inactive for all N :

Example 4 (Incomplete equilibrium network) Consider the complete architec-
ture with three equally deep exchanges, and the same arbitraging costs for all links.
The autarky state-price deflators for exchanges 1 and 2 are the same (see Figure
2). There is a unique equilibrium network, with the following arbitrageur distri-

p0
p∗

p1, p2. ..........................................................................................................................................................................................................................................................................................................................................................................................................................................t tt
Figure 2: Incomplete equilibrium network

bution: N01 = N02 = N/2, and N12 = 0. Notice that this network is hub-spoke
with exchange 0 as the hub. Link 12 is admissible but inactive for all N , since
p̂1(N) = p̂2(N).

7If the demand function on each exchange is generated by competitive investors, as in Rahi and
Zigrand (2009), then p∗ is the Walrasian state-price deflator of the integrated economy.
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Now suppose we perturb this economy so that p1 and p2 are close but not equal.
Initially, as N increases, there will be arbitrageur activity only on the longer of
the two links, 01 and 02. Once profits are equalized across these two links, they
will remain equal in length as they shrink to p∗. It can be shown via an explicit
computation that the 12 link remains less profitable for all N ; as N increases, profits
fall on 01 and 02, but so does the potential profit on 12 as p̂1 and p̂2 get pulled even
closer together. Thus, once again, the equilibrium network is hub-spoke, with the 12
link remaining inactive even asymptotically. ♦

This is a robust example of a complete architecture for which the equilibrium
network is incomplete for all N . In fact, the equilibrium network may even be
disconnected. For v, w ∈ RS, we denote by L[v, w] the line segment joining the
points v and w.

Example 5 (Disconnected equilibrium network) Suppose there are four equally
deep exchanges with nodes {pk} as in Figure 3, the architecture is complete, and
arbitraging costs are the same for every link. The integrated economy state-price

p0
p∗

p1

p2

p3

. ..........................................................................................................................................................................................................................................................................................................................................................................................................................................

.

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..t ttt
t

Figure 3: Disconnected equilibrium network

deflator p∗ is at the common midpoint of the two line segments L[p0, p1] and L[p2, p3].
For small N , all arbitrageurs are on the longer link 01. As N grows, p̂0(N) and p̂1(N)
converge along L[p0, p1] until N = N̄ for which ‖p̂0(N̄)− p̂1(N̄)‖2 = ‖p2 − p3‖2. For
N > N̄ , two active links appear, 01 and 23, and the network consists of two disjoint
subnetworks. As N increases without bound, all four nodes converge to p∗. Even as
profits on 01 and 23 converge to zero, they are higher than potential profits on any
of the other links. ♦

This is an example in which the nodes {pk} are symmetrical with respect to
p∗. We provide a precise characterization of this class of disconnected equilibrium
networks later (Proposition 7.1, part (iii)).

Notice that while the asymptotic incompleteness property of Example 4 is robust
to perturbations of the pk’s, this is not the case for the asymptotic disconnectedness
property of Example 5; the latter depends on the integrated economy state-price
deflator being the same for the two components.

6 The Geometry of Equilibrium Networks

We now proceed to derive some general results on the properties of equilibrium
networks. As we argued in Section 4, such results require some sort of symmetry.
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Our first task then is to describe the geometry of networks, wherein a notion of
symmetry can be formalized.

Recall that the convex hull of a Euclidean subset A, denoted by conv(A), is the set
of all convex combinations of points in A. The convex hull of a finite number of points
in Euclidean space is called a polytope.8 Geometrically we can view the nodes of a
network as points in RS. The nodes are given by {p̂k(N)}k∈K (we refer to both k ∈ K
and p̂k ∈ RS as the node corresponding to exchange k). Let P̂(N) := conv({p̂k(N)})
and P := P̂(0) = conv({pk}). Thus P and P̂(N) are polytopes with P̂(N) ⊂ P for
all N (from Lemma 3.2), and P̂(∞) = {p∗} (from Proposition 5.1). If nodes k and
` are connected by an active link, the squared distance between them is 2δk` times
the equilibrium profit of an arbitrageur (this follows from Lemma 3.3).

We will need some basic definitions and facts about polytopes. Consider a poly-
tope P . The circumsphere of P , if it exists, is the sphere that circumscribes P ,
i.e. whose surface contains all the vertices of P . If the circumsphere exists, its cen-
ter is called the circumcenter of P ; it is the point from which all the vertices are
equidistant. A polytope P is centrally symmetric about 0 if P = −P . P is centrally
symmetric about a point x if P = x + P ′, and P ′ is centrally symmetric about 0; x
is called the center of symmetry of P . Centrally symmetric polytopes have an even
number of vertices: each vertex is symmetric with respect to another vertex. The
line segment joining such a pair of vertices is called an axis of P . We say that a point
is the center of P if it is either the circumcenter or the center of symmetry of P (it
is both if and only if P is centrally symmetric with equal axes).

We refer to a d-dimensional polytope as a d-polytope. A simplex can be defined
inductively as follows: a 1-simplex is a line segment, a 2-simplex is a triangle, a 3-
simplex is a pyramid bounded by triangles, and so on in higher dimensions. A regular
polytope is a generalization of a regular polygon, i.e. a polygon that is equilateral
and equiangular. Roughly speaking, a polytope is regular if it has congruent faces
and angles. All regular polytopes are centrally symmetric, except the simplices of
dimension greater than or equal to 2 and the odd polygons (i.e. 2-polytopes with an
odd number of vertices). For formal definitions of the dimension of a polytope, of a
simplex, and of a regular polytope, see Appendix B.

We call a polytope symmetric if it is either regular or centrally symmetric. Of
course, it can be both, e.g. the cube. Examples of non-regular polytopes that are
centrally symmetric are the parallelogram, or any prism based upon an even regular
polygon. Symmetric polytopes provide us with a clear intuition as well as tractable
closed-form solutions. Imposing symmetry amounts to assuming that state prices
are distributed evenly in Euclidean space.

We refer to nodes p̂k that are not vertices of P̂ as internal nodes (note that the
internality of a given node depends on N , and also that an internal node may not
be in the interior of P̂).

Proposition 6.1 (Internal nodes) Suppose that A is either complete or hub-spoke,

8Only convex polytopes are considered in this paper.
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and δk` = δ for all k` ∈ A. Then an equilibrium network never has an active internal
node unless A is hub-spoke with the internal node being the hub.

In particular, if the architecture is complete, an equilibrium network can never be
hub-spoke with an internal hub. It can, however, be hub-spoke with a vertex hub,
as in Example 4.

In the next section we characterize equilibrium networks when the architecture
is complete. In Section 8, we consider equilibrium networks when the architecture
is hub-spoke. We say that a network is symmetric if the corresponding polytope is
symmetric. We obtain explicit characterizations under the assumption of symmetry,
but these results serve to guide our intuition in the general non-symmetric case as
well.

We refer to an architecture which is hub-spoke with node k as the hub as the hk-
architecture. We denote by Φc and Φhk the profit of an arbitrageur (which is the same
on all active links) associated with the complete architecture and the hk-architecture
respectively.

7 Equilibrium Networks: Complete Architecture

The main geometric intuition is clearest when the architecture is complete, and
arbitraging costs are the same for every link. Consider the polytope P̂(N). As N
increases from zero, arbitrageurs locate on its vertices. They never trade with internal
nodes. P̂(N) is a subset of P . If Nk`(N) > 0, then ‖p̂k(N)−p̂`(N)‖2 = [2δΦc(N)]

1
2 =

maxx,y∈P̂(N) ‖x− y‖2. In other words, an active link arises only between those pairs
of vertices that are furthest apart. All such links generate the same profits, i.e. the
linked vertices are equally far apart. Not all vertices are necessarily active. But as
N increases, the equilibrium polytope contracts along the links that are active, while
remaining “centered” around p∗, which is equal to

∑
λkp̂k(N) for all N . For N large

enough, this implies that an inactive vertex becomes active as the length of the active
links contracts to the length of the longest link emanating from the hitherto inactive
vertex. At the same time, as the polytope contracts, an internal node (typically)
becomes a vertex for some N large enough and, at some yet higher N , becomes an
active vertex. This pattern continues until the polytope converges to the point p∗.

Under the assumption of symmetry, this convergence is very regular and well-
behaved:9

Proposition 7.1 (Symmetric networks with complete architecture) Suppose
A is complete, δk` = δ for all k` ∈ A, and βk = β for all k ∈ K. Suppose further that
there is an N̄ ≥ 0 such that P̂(N̄) is symmetric with vertex set {p̂k(N̄)}k∈K.10 Then
there is an equilibrium network that can be characterized as follows: for N ≥ N̄ , p∗

is the center of P̂(N), and

9In this result, as well as in later results where we invoke symmetry, we conjecture that this
equilibrium network computed in closed form is in fact unique.

10In particular, this means that the vertices {p̂k(N̄)}k∈K are distinct.
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i. If P̂(N̄) is a regular simplex, so is P̂(N). The equilibrium network is complete.

ii. If P̂(N̄) is a regular odd polygon, so is P̂(N). The equilibrium network is a
cycle: the neighbors of node k are the vertices of the segment opposite to k.

iii. If P̂(N̄) is centrally symmetric, so is P̂(N). The equilibrium network is not
connected for K > 1: the active links correspond to the axes of maximal length.
Moreover, there is an ¯̄N ≥ N̄ such that, for all N ≥ ¯̄N, P̂(N) is centrally
symmetric with equal axes.

In all three cases, Nk` is strictly increasing in N , for k` ∈ A∗(N), Φc(N) is strictly
decreasing in N , and p̂k(N) converges monotonically to p∗ along the line segment
L[p̂k(N̄), p∗], for all k ∈ K. Furthermore, in cases (i) and (ii), A∗(N) = A∗(N̄), for
N ≥ N̄ , while in case (iii), A∗(N) = A∗( ¯̄N), for N ≥ ¯̄N .11 Finally, if N̄ = ¯̄N = 0,
there is an equal mass of arbitrageurs on each active link.

Note that the cases (i)–(iii) in the proposition cover all possible symmetric (i.e.
regular or centrally symmetric) polytopes. We can specialize the proposition to the
case where N̄ = 0, so that P is symmetric with vertex set {pk}k∈K. Then P̂(N) is
a smaller symmetric polytope within the autarky polytope P , and contracts evenly
to p∗ as N goes to infinity, with each state-price deflator p̂k converging on a straight
line segment towards p∗. Equilibrium profits converge monotonically to zero.

In case (i), arbitrageurs spread equally across all the edges of the simplex. The
same is true in case (ii) if the polygon has three vertices (and is therefore a simplex).
If the polygon has five or more vertices,12 the equilibrium network is connected but
not complete: it is a cycle, i.e. the K+1 nodes can be ordered as {k1, . . . , kK+1} such
that A∗(N) = {k1k2, k2k3, . . . , kKkK+1, kK+1k1}. In a cycle, each node has precisely
two neighbors. The cycle should obviously not be visualized as the polygon itself,
since the neighbors of k are not the nodes adjacent to it in the polytope but the
ones that are maximally distant from k. In case (iii), arbitrageurs gravitate to the
links that correspond to the longest axes of the polytope. As N increases, these
axes become shorter until there is activity on all the axes. From this point on,
the equilibrium polytope is centrally symmetric with equal axes. Example 5 is an
illustration of this: the autarky polytope is a parallelogram which converges to a
rectangle, after which the rectangle shrinks uniformly to its center. While in the
case of the simplex every edge corresponds to an active link, no edge is active in the
other cases.

For arbitrary polytopes, convergence of state-price deflators to p∗ need not be
along a linear trajectory, either globally or piecewise. However, even if P is not
symmetric, P̂(N̄) may be for some N̄ . Interestingly, convergence is linear from that
N̄ onwards, with active links as described in the proposition.

11We define A∗(0) := limN→0A∗(N).
12Note that a regular even polygon is centrally symmetric, and hence covered by case (iii) of the

proposition.
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If P̂(N̄) is symmetric but has some internal nodes, the proposition still applies
for N ≥ N̄ as long as the nodes that are internal for P̂(N̄) are also internal for P̂(N).
Let Nmax be the maximum N for which this is the case and let K̄ be the vertex set
of P̂(N̄). Then we have linear convergence of p̂k to p∗K̄, for N ∈ [N̄,Nmax], for all
k ∈ K̄.

Figure 4 depicts the case where the autarky polytope is a simplex with node
0 at the center. Node 0 is internal, and hence inactive, for all N . Proposition
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(b) 2-simplex

Figure 4: Convergence in the complete architecture (p0 = p∗)

7.1 applies to the polytope generated by {pk}k 6=0. In the 1-simplex (which is also
centrally symmetric), p̂1 and p̂2 converge along the segment to the center p0 = p∗,
while in the 2-simplex the equilibrium deflators on the vertices converge linearly to
the center along the dotted lines.

8 Equilibrium Networks: Hub-Spoke Architecture

We now analyze the geometry of hub-spoke networks. The following proposition
provides a characterization of symmetric networks when the hub is at the center of
the polytope.

Proposition 8.1 (Symmetric networks with central hub) Consider the
h0-architecture with K ≥ 2. Suppose δ0k = δ and βk = β, for all k 6= 0. Suppose
further that P is symmetric with vertex set {pk}k 6=0, and p0 = p∗. Then there is an
equilibrium network that can be characterized as follows: for all N , p∗ is the center
of P̂(N), and

i. If P is a regular simplex or a regular odd polygon, so is P̂(N), and N0k = N/K
for all k 6= 0.

ii. If P is centrally symmetric, so is P̂(N). There is an N̄ such that, for all
N ≥ N̄, P̂(N) is centrally symmetric with equal axes, and all spokes are active.
If P is centrally symmetric with equal axes, then N0k = N/K for all k 6= 0.
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In both cases, Φh0(N) is strictly decreasing in N , p̂0(N) = p0 = p∗, and p̂k(N)
converges monotonically to p∗ along L[pk, p∗], for all k 6= 0.

Due to the symmetry of the nodes with respect to the central hub, the state-
price deflator on the hub remains unchanged at p∗ as N increases. As in the case of
the complete architecture, the equilibrium polytope contracts to its center p∗, with
the state-price deflators on the spokes following a linear trajectory towards it. For
example, in the case of the simplices shown in Figure 4, convergence is along the
same trajectory as in the complete architecture. However, as we shall see in the next
section, convergence is slower as N increases, and arbitrageurs earn higher profits
for any given N .

The analysis of hub-spoke networks is less straightforward if state prices on the
hub depend on the mass of arbitrageurs. We can, however, obtain an explicit char-
acterization in the case where the autarky polytope is a simplex and the hub is one
of its vertices. When we consider vertex hubs we adopt the convention of choosing
exchange 1 as the hub (this is to facilitate comparison with a central hub).

Proposition 8.2 (Simplex networks with vertex hub) Consider the
h1-architecture with K ≥ 2. Suppose δ1k = δ for all k 6= 1, and βk = β for all
k ∈ K. Suppose further that P is a regular simplex with vertex set {pk}k∈K. Then, p∗

is the center of P, and there is an equilibrium network with the following properties:
N1k = N/K for all k 6= 1, Φh1(N) is strictly decreasing in N , p̂1(N) converges
monotonically to p∗ along L[p1, p∗], and p̂k(N) converges monotonically to p̂1(N)
along L[pk, p̂1(N)], for k 6= 1.

Under the symmetry assumptions of the proposition, the equilibrium state-price
deflator on the hub is pulled evenly “from all sides” and follows a linear trajectory
towards p∗. Equilibrium state-price deflators on other exchanges converge linearly to
the equilibrium deflator on the hub, and hence converge to p∗ along an arc. This is
illustrated in Figure 5(b), where the dotted lines indicate the path along which the
equilibrium deflators travel as N increases. Here p0 is at the center of the simplex,
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Figure 5: Convergence in a 2-simplex (p0 = p∗)
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so that Proposition 8.2 applies to the simplex with vertices {pk}k 6=0. For comparison,
Figure 5(a) shows the case where exchange 0 is the hub. As we remarked above, this
is the same pattern of convergence as in the complete architecture (Figure 4(b)).

More generally, convergence need not be monotonic, as we show in the following
example:

Example 6 (Non-monotonic convergence) Consider the h0-architecture with
four equally deep exchanges.13 Arbitraging costs are the same for all admissible links.
Autarky state-price deflators lie on a straight line in RS, as depicted in Figure 6. The

s
p0

s
p1

s
p∗K1

s
p2, p3

s
p∗

sp̂0(N∗) sp̂1(N∗)

Figure 6: Non-monotonic convergence of p̂0(N) to p∗

nodes p0 and p1 are the endpoints of the segment, while p2 = p3 is located between
p0 and p∗K1

, K1 = {0, 1}. Note that p∗K1
= 1

2
(p0 + p1). Since the gains from trade

between 0 and 1 are the largest, for small enough N we have N01 = N , with p̂0(N)
and p̂1(N) converging linearly to p∗K1

. This will be true until N = N∗ which satisfies
p̂0(N∗) − p2 = p̂1(N∗) − p̂0(N∗). Due to (5), we have p∗K1

= 1
2
[(p̂0(N∗) + p̂1(N∗)],

so that p̂1(N∗) − p̂0(N∗) = 2[p∗K1
− p̂0(N∗)]. Therefore, p̂0(N∗) = 1

3
p2 + 2

3
p∗K1

. For
N > N∗, all admissible links are active and p̂0(N) converges linearly to p∗. Now
p∗ = 1

4
(p0 + p1 + p2 + p3) = 1

2
(p2 + p∗K1

), i.e. p∗ lies between p0 and p̂0(N∗). So for
N > N∗, p̂0(N) reverts back in the direction of p0 towards its limit p∗. ♦

9 Comparing Network Architectures

In this section we study comparative statics with respect to the network architecture.
We first consider the case where the autarky polytope is symmetric, and compare
the complete architecture to the hub-spoke architecture in which the hub is at the
center of the polytope.

Proposition 9.1 (Complete architecture vs central hub) Suppose K ≥ 2,
δk` = δ for all k` ∈ A, and βk = β for all k 6= 0. Suppose further that P is symmetric
with vertex set {pk}k 6=0, and p0 = p∗. Then, in the complete architecture, node 0 is
inactive for all N . We have Φh0(N) > Φc(N), provided N > δ

β
|A∗|, where |A∗| is

the number of active links in the complete architecture.14

13Examples of non-monotonic convergence can also be constructed for the complete architecture.
We choose to present an example with a hub-spoke architecture because it is simpler.

14From Proposition 7.1 it follows that A∗ does not depend on N .
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Thus, if all exchanges other than 0 have equal depth, and arbitraging costs are the
same for all admissible links, the complete architecture is dominated by the central
hub architecture as long as the mass of arbitrageurs is sufficiently large. The central
hub architecture leads to higher arbitrageur payoffs even if the depth of the hub is
lower than that of the spokes (and regardless of how low that depth is).

For the sake of intuition, let us first focus on the case where P is centrally
symmetric (the simplest case is that of a line segment, as in Figure 4(a)). Then the
vertices come in pairs (k, `k) that are symmetrical with respect to p∗. Equilibrium
profits are higher with a central hub, as long as N is sufficiently large. The reason
is the positive externality that arbitrageurs on link 0k exert on arbitrageurs on the
symmetrical link 0`k. Arbitrageurs on 0k pull p̂0 towards pk, thereby increasing
‖p̂0 − p̂`k‖2. Arbitrageurs on 0`k pull p̂0 in the opposite direction, towards p`k . Due
to symmetry, the net impact on state prices on the hub is in fact zero, i.e. p̂0 = p0.
The aggregate supply of arbitrageurs on the hub is also zero; any state-contingent
consumption that is supplied to the hub by arbitrageurs on one spoke is absorbed by
arbitrageurs on the symmetrical spoke. Thus the hub acts as a liquidity repository,
channeling trades in such a manner that the two groups of arbitrageurs on each pair of
spokes complement each other. This network-induced complementarity is sufficient
to compensate for the fact that the autarky gains from trade between the center and
any one of the extremes are considerably lower than the gains from trade between
two symmetrically located extremes, ignoring the central exchange altogether.

When the architecture is complete, the market mechanism fails to achieve this
outcome due to a Prisoner’s Dilemma. If arbitrageurs could agree to designate the
central exchange as the hub, and trade only through it, they would be able to mini-
mize price impact and increase profits. But, given the opportunity, each arbitrageur
would rather arbitrage one of the longer links corresponding to an axis of the poly-
tope. The result is a suboptimal arrangement with all arbitrageurs on the axes.

Notice that the common measure of liquidity as depth does not do justice to
exchange 0. If exchange 0 is the hub, it will attract a lot of trade with zero equilibrium
price impact, irrespective of β0. On the other hand, in the complete architecture,
there is no trade with exchange 0. An important determinant of the liquidity of
an exchange is the network architecture, and the position of the exchange in the
network.

For the case where P is symmetric but not centrally symmetric, essentially the
same intuition applies. Once again, consider the hub-spoke architecture, with the
central exchange 0 as the hub. For each vertex k there is a facet that is opposite to
it. The vertices of this facet pull p̂0 away from pk. Due to symmetry, the net impact
on p̂0 is zero. This is illustrated in Figure 5(a).

In fact, if P is a regular simplex, a hub-spoke architecture delivers higher profits
for arbitrageurs than the complete architecture even if the hub is a vertex of the
simplex. We have the following result:15

15The condition K ≥ 3 is only needed here to ensure that the simplex is not simply a line segment,
for in that case the complete and vertex hub architectures give rise to the same equilibrium network.
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Proposition 9.2 (Complete architecture vs central/vertex hub) Suppose
K ≥ 3, δk` = δ for all k` ∈ A, and βk = β for all k ∈ K. Suppose further that P is
a regular simplex with vertex set {pk}k 6=0, and p0 = p∗. Then, in the complete and
h1-architectures, node 0 is inactive for all N . We have Φh0(N) > Φh1(N) > Φc(N),
provided N ≥ δ

β
K.

Since node 0 is always inactive in the complete and h1-architectures, the ranking of
profits in these architectures also holds if P has no internal nodes (replacing K by
K + 1 in the proposition).

The reason why a vertex hub leads to higher profits is similar to the one we
gave for the central hub. Consider vertices k and `, neither of which is the hub. As
N increases, p̂k and p̂` converge to p∗ along an arc, while p̂1 moves more quickly16

towards the middle between p̂k and p̂` (see Figure 5(b)). The effect of this is again to
induce a complementarity, with arbitrageurs on opposite sides of the hub providing
liquidity to each other to some extent (but less than in the central hub case). If trade
on k` was now allowed, every arbitrageur would want to deviate to that link. Again
a Prisoner’s Dilemma type of result obtains. In particular, in Figure 5(b), adding the
link 23, and thus moving from the 1-hub architecture to the complete architecture,
makes all arbitrageurs worse off.

Thus, for both the central and vertex hub-spoke architectures, the restrictions
implicit in the architecture coordinate arbitrageur actions by pooling liquidity and
by preventing Prisoner’s Dilemma type deviations. The state prices on the hub are
in equilibrium (though not necessarily in autarky) to some extent “in-between” the
other state prices. Arbitrageurs on one side of the hub generate positive externalities
for arbitrageurs on the other side.

One way to interpret Propositions 9.1 and 9.2 is that profits are lower in the
complete architecture because convergence to the economy-wide state-price deflator
p∗ is faster as we increase N . Let dk,c(N) and dk,h`(N) denote ‖p̂k(N) − p∗‖2

2 for
the complete and h`-architectures respectively. The following result complements
Proposition 9.1:

Proposition 9.3 (Speed of convergence: complete architecture vs central hub)
Suppose K ≥ 2, δk` = δ for all k` ∈ A, and βk = β for all k 6= 0. Suppose further
that P is symmetric with vertex set {pk}k 6=0, and p0 = p∗. Then, for all N > 0,

d0,c(N) = d0,h0(N) = 0,
dk,c(N) < dk,h0(N), k 6= 0.

Also, dk,c(N) and dk,h0(N) are strictly decreasing in N for k 6= 0.

For example, in Figure 5(a), while the pattern of convergence is the same for both
architectures, it is faster in the case of the complete architecture. Our final result
provides a similar interpretation for Proposition 9.2:

16Proposition 9.4 below implies that p̂1(N) is closer to p∗ than p̂k(N), for any vertex k 6= 1.
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Proposition 9.4 (Speed of convergence: complete vs central/vertex hub)
Suppose K ≥ 3, δk` = δ for all k` ∈ A, and βk = β for all k ∈ K. Suppose further
that P is a regular simplex with vertex set {pk}k 6=0, and p0 = p∗ Then, for all N > 0,

d0,c(N) = d0,h1(N) = d0,h0(N) = 0,
d1,h1(N) < d1,c(N) < d1,h0(N),
dk,c(N) < dk,h1(N) < dk,h0(N), k /∈ {0, 1}.

Also, the distance of each node k, k 6= 0, from p∗ is strictly decreasing in N for all
three architectures.

Like Proposition 9.2, this result holds for the complete and h1-architectures even if
P has no internal nodes. In Figure 5, the speed of convergence of p̂2 and p̂3 towards
the center is fastest when the architecture is complete, and slowest when the center
is the hub. On the other hand, p̂1 converges to the center at the fastest rate when
node 1 is the hub.

While the results in this section require the assumption of symmetry, the intuition
is clearly more general. Profits are higher when the architecture induces arbitrageurs
to exert positive externalities on each other. In such an architecture, trades are
channeled through a hub (or possibly several hubs). A good candidate for a hub is
a node that lies towards the center of all the nodes.

10 Conclusion

Network structure is irrelevant in frictionless financial markets. Actual markets are
segmented, however, and a natural question that arises is how the various market
segments are linked to each other. In this paper we obtain a tractable framework by
assuming that demand functions are affine.

Equilibrium networks display several subtle and interesting features. Even if all
links are admissible, an equilibrium network may not be complete or even connected.
Prices nevertheless converge (not necessarily monotonically) to those that would
obtain in a frictionless economy, as the mass of intermediaries grows without bound.
In particular, price differentials between a pair of nodes converge to zero even if there
is no active link between these nodes.

While the connectivity properties of equilibrium networks can be completely ar-
bitrary in general, symmetric networks have an elegant and regular structure. We
focus on complete and hub-spoke network architectures, and in particular on the na-
ture of network externalities induced by these architectures. Hub-spoke architectures
generally lead to higher payoffs for intermediaries by pooling liquidity.

We explicitly characterize equilibrium networks only in the symmetric case. But
the intuitions are more general. Centrally located nodes can serve as a repository
of liquidity, even if their depth is low. Arbitrageurs on one “side” of a centrally
located node exert positive externalities on arbitrageurs on the other “side”. These
externalities are of the Prisoner’s Dilemma type.
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A number of interesting questions remain. We address some of these, in particular
financial innovation and welfare in arbitrage networks, in ongoing work. The question
of how local shocks are propagated through the economy, via the endogenous linkages
created by intermediaries, is a topic for future research; this is one area in which
network structure is likely to play a key role. Also of interest are various network-
theoretic questions, such as the properties of other architectures that have been
studied in the networks literature (e.g. interlinked stars and core-periphery networks),
and the relative importance of different links for agents’ payoffs.

Appendices

A Proofs

Proof of Lemma 3.2 Fix a C ∈ C(N). For k ∈ C, let αk :=
∑

`∈K α
k` =∑

`∈C,` 6=k α
k`. Then we can write the equation system (4) for the given C as fol-

lows:
(1 + βkαk)p̂k − βk

∑
`∈C,` 6=k

αk`p̂` = pk, k ∈ C. (6)

Define the matrix M = [mk`]k,`∈C by mkk := 1 + βkαk and mk` := −βkαk` for
` 6= k. Since

∑
6̀=k |mk`| = βkαk < |mkk|, M is strictly row diagonally dominant.

Let M := M ⊗ IS×S. Then, letting p̂ := {p̂k}k∈C and p := {pk}k∈C, the equation
system (6) can be written as Mp̂ = p. M inherits the property of strict row diagonal
dominance from M .

We appeal to the theory of M-matrices; see Berman and Plemmons (1979), hence-
forth BP (an M-matrix is a square matrix of the form sI − A, where A ≥ 0, and
s ≥ rad(A), the spectral radius of A). By Theorem 6.2.3 in BP (in particular, con-
dition M35 on page 137), both M and M are nonsingular M-matrices. Hence, there
exists a unique p̂ solving Mp̂ = p, namely p̂ = M−1p. Now fix a k ∈ C. Since
M−1 = M−1 ⊗ IS×S, we can write p̂k =

∑
`∈C η

k`p`, where ηk` is element (k, `) of
M−1. The matrix M is irreducible, also called indecomposable (indeed it is irre-
ducible if and only if C is connected; see Theorem 2.2.7 in BP). Hence M−1 � 0
by Theorem 6.2.7 in BP, i.e. ηk` > 0, all ` ∈ C. Let 1 := (1 . . . 1)>. Since M1 = 1
we also have M−11 = 1, i.e.

∑
`∈C η

k` = 1. Let B be the diagonal matrix with
typical diagonal entry β`, ` ∈ C. Notice that B−1M is symmetric. Therefore, M−1B
is symmetric as well, i.e. β`ηk` = βkη`k, ` ∈ C. Finally, from Theorem 2.5.12 in
Horn and Johnson (1991), M−1 is strictly diagonally dominant of its column entries:
ηkk > η`k, ∀` ∈ C, ` 6= k. �

Proof of Proposition 4.1 Let nk` := Nk`/N , and d := |A|. Then n := {nk`}k`∈A
lies in the standard simplex ∆d−1 := {x ∈ Rd

+ :
∑d

i=1 xi = 1}. For given N , we can
regard ϕk` as a function of n. Also let Φ(n) :=

∑
k`∈A n

k`ϕk`(n), the average profit,
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and define f(n) := [ϕk`(n) − Φ(n)]k`∈A. Then f : ∆d−1 → Rd is continuous, and
f(n) · n = 0, for all n. By Theorem 8.3 in Border (1989), there is an n∗ such that
f(n∗) ≤ 0. Moreover, since f(n∗) · n∗ = 0, we must have n∗k`fk`(n∗) = 0, for all
k` ∈ A. Therefore, the arbitrageur distribution Nn∗ satisfies condition (N). The
result then follows from Lemma 4.1. �

Proof of Proposition 5.1 The equilibrium profit of an arbitrageur is Φ(N) =
1

2δk`
‖p̂k(N)− p̂`(N)‖2

2, k` ∈ A∗(N). We claim that Φ(∞) = 0. If not, there exists a
constant κ > 0 such that Φ(N) > κ for arbitrarily largeN . Now, asN goes to infinity,
Nk` is unbounded, for some k` ∈ A. For such a link k`, total arbitrageur supply on
k by arbitrageurs on k`, given by Nk`ykk` = Nk`

2δk`
[p̂k(N) − p̂`(N)], is unbounded: for

any constant κ̄, howsoever large, there is an N and a state s for which this supply
is greater than κ̄ in absolute value. Suppose that the supply is in fact positive (if it
is negative, then we can consider instead the state-s supply by arbitrageurs on k` to
`). Since p̂k ≥ 0, (3) implies that yk is bounded above. Due to (2), Nkk1ykkk1 must
be unboundedly negative in state s, for some k1. But then the state-s supply on
exchange k1 by arbitrageurs active on kk1 is unboundedly positive, which places k1

in the same situation as k was. Eventually the unboundedly large supply in state s
must end up on some exchange km. If km 6= k, the condition that p̂km ≥ 0 will be
violated due to (3). If km = k, consider the following sequence of inequalities that
must hold: p̂ks < p̂k1s < p̂k2s < . . . < p̂kms = p̂ks , a contradiction. Basically, arbitrageurs
cannot be trading unboundedly large amounts without running afoul of the fact that
equilibrium prices are nonnegative on every exchange.

Since Φ(N) → 0, and Φ(N) ≥ 1
2δk`
‖p̂k(N) − p̂`(N)‖2

2, for all k` ∈ A, we must
have p̂k(N)− p̂`(N) converging to zero, for all k` ∈ A. We claim that this is in fact
true for all k, ` ∈ K. For arbitrary k and `, there is a path connecting them, since G
is connected, i.e. there is a sequence of distinct vertices {k1, . . . , kI} in K such that
k1 = k, kI = ` and (ki, ki+1) ∈ A for all i = 1, . . . , I − 1. By the triangle inequality,
‖p̂k(N) − p̂`(N)‖2

2 ≤
∑I−1

i=1 ‖p̂i(N) − p̂i+1(N)‖2
2. Since each of the terms in the sum

converges to zero, p̂k(N)− p̂`(N) converges to zero as well.
Using (5), and the triangle inequality, we have, for all k ∈ K,

‖p̂k(N)− p∗‖2 =
∥∥∥∑
j∈K

λj
[
p̂k(N)− p̂j(N)

]∥∥∥
2
≤
∑
j∈K

λj‖p̂k(N)− p̂j(N)‖2.

Since each term in the last sum converges to zero, p̂k(N) converges to p∗, for all
k ∈ K.

Now suppose G∗(∞) exists, and consider a component C of G∗(∞). Define N̄
large enough so that for all N > N̄ , G∗(N) = G∗(∞). Multiplying the equation
system (4), corresponding to the component C, by λkC, and summing over k ∈ C, we
have

∑
k∈C λ

k
C p̂

k(N) = p∗C, for all N > N̄ . Taking limits as N goes to infinity, we get
p∗C = p∗. �

Proof of Proposition 6.1 Consider first the complete architecture and suppose
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p̂j is internal. Then p̂j =
∑

k∈K∗ ν
kp̂k, where K∗ is a subset of the vertex set of

P̂ , |K∗| ≥ 2, and the weights {νk}k∈K∗ are strictly positive and sum to one. For any
` ∈ K, we have

‖p̂j − p̂`‖2
2 =

∥∥∥∑
k∈K∗

νk(p̂k − p̂`)
∥∥∥2

2
≤
[∑
k∈K∗

νk‖p̂k − p̂`‖2

]2

(7)

<
∑
k∈K∗

νk‖p̂k − p̂`‖2
2 (8)

≤ max
k∈K∗
‖p̂k − p̂`‖2

2,

where (7) follows from the triangle inequality and (8) from Jensen’s inequality. Hence
ϕj` < ϕk`, for some k ∈ K∗, so that j` is inactive.

For a hub-spoke architecture the same argument goes through, taking ` to be the
hub. �

Proof of Proposition 7.1 Since βk = β, all k, (5) implies that

p∗ =
1

K + 1

∑
k∈K

p̂k(N), ∀N. (9)

Therefore, p∗ is the center of P̂(N) as long as this polytope is symmetric.
Let {N̄k`} be the equilibrium arbitrageur distribution for N = N̄ . We first

consider cases (i) and (ii). We conjecture that, for N ≥ N̄ , there is a strictly
decreasing function x(N), with x(N̄) = 1 and x(∞) = 0, such that

p̂k(N) = x(N)p̂k(N̄) + [1− x(N)]p∗, (10)

Nk`(N) =
1

x(N)

[
N̄k` +

Nx(N)− N̄
|A∗(N̄)|

]
, k` ∈ A∗(N), (11)

A∗(N) = A∗(N̄), (12)

Φc(N) = [x(N)]2Φc(N̄). (13)

It follows from (11) and (12) that
∑

k`∈A∗(N) N
k`(N) = N . Also, for N ≥ N̄ , we

have C(N) = C(N̄), where C(N) is the set of components of G∗(N).
We see from (4) that, for N ≥ N̄ , equilibrium prices solve the following system

of equations:

∆k := p̂k(N)− pk +
β

δ

∑
`∈C

Nk`[p̂k(N)− p̂`(N)] = 0, k ∈ C, C ∈ C(N̄). (14)

Using (10) and (11):

∆k = x(N)p̂k(N̄) + [1− x(N)]p∗ − pk +
β

δ

∑
`∈C

N̄k`[p̂k(N̄)− p̂`(N̄)]

+
β

δ
· Nx(N)− N̄
|A∗(N̄)|

∑
`∈C

[p̂k(N̄)− p̂`(N̄)].
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Using (14) evaluated at N = N̄ , the above equation simplifies to:

∆k = [1− x(N)][p∗ − p̂k(N̄)] +
β

δ
· Nx(N)− N̄
|A∗(N̄)|

∑
`∈C

[p̂k(N̄)− p̂`(N̄)]. (15)

If P̂(N̄) is a regular simplex, we conjecture that all links are active, so that there
is a single component C, equal to the set K of all the nodes, and

|A∗(N̄)| = 1

2
K(K + 1). (16)

Using (9), ∑
`∈C

[p̂k(N̄)− p̂`(N̄)] = (K + 1)[p̂k(N̄)− p∗].

Therefore, from (15), ∆k = 0, for all k, if and only if

x(N) =
δK + 2βN̄

δK + 2βN
. (17)

It follows from (10) that

‖p̂k(N)− p̂`(N)‖2
2 = [x(N)]2‖p̂k(N̄)− p̂`(N̄)‖2

2, (18)

which is independent of k` due to the regularity of the simplex P̂(N̄). Therefore,
profits are equalized across all links, with Φc(N) = [x(N)]2Φc(N̄), and the network
is complete, for all N ≥ N̄ . Indeed, as N increases, all the edges of P̂(N) contract
uniformly, so that P̂(N) is a smaller K-simplex within P̂(N̄), with the same center
p∗.

Now suppose P̂(N̄) is a regular odd polygon. Clearly, the nodes that have max-
imal distance from k are the vertices of the segment that is opposite to k. Let us
denote these by `k and mk. Then we have, for k ∈ C,∑

`∈C

[p̂k(N̄)− p̂`(N̄)] = 2

[
p̂k(N̄)− 1

2
[p̂`k(N̄) + p̂mk(N̄)]

]
= 2

[
p̂k(N̄)− p∗

] [
1 + cos

(
π

K + 1

)]
,

where the second equality follows from a simple trigonometric calculation (see Cox-
eter (1963), Fig. 1.1A). Also,

|A∗(N̄)| = K + 1. (19)

Therefore, from (15), ∆k = 0, for all k, if and only if

x(N) =
δ(K + 1) + 2βN̄

[
1 + cos

(
π

K+1

)]
δ(K + 1) + 2βN

[
1 + cos

(
π

K+1

)] . (20)
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Just as in the case of the simplex, equation (18) holds. The sides of the polygon
shrink uniformly as N increases.

Finally, we turn to case (iii) in which P̂(N̄) is centrally symmetric. As in cases
(i) and (ii), we conjecture that equations (10)–(13) hold, but with (N̄, N̄k`) replaced
by ( ¯̄N, ¯̄Nk`). Then, clearly, equation (14) applies and hence so does (15), once we
replace N̄ by ¯̄N .

Consider a link k`k corresponding to an axis of P̂(N̄) that is maximal in length
(there can be many such axes). Clearly there is no activity on any of the shorter
axes. There is also no activity on any link m` that does not correspond to an axis,
since

‖p̂k(N̄)− p̂`k(N̄)‖2 = ‖p̂k(N̄)− p∗‖2 + ‖p`k(N̄)− p∗‖2 (21)

≥ ‖p̂m(N̄)− p∗‖2 + ‖p̂`(N̄)− p∗‖2 (22)

> ‖[p̂m(N̄)− p∗] + [p∗ − p̂`(N̄)]‖2 (23)

= ‖p̂m(N̄)− p̂`(N̄)‖2.

Equation (21) follows from the symmetry of k and `k with respect to p∗, (22) holds as
an equality if and only if both m and ` correspond to one end of an axis of maximal
length, and (23) follows from the triangle inequality, which is a strict inequality
because because m and ` are not the end points of an axis (and hence p̂m(N̄)− p∗ is
not proportional to p̂`(N̄)− p∗). As N increases, the axes of maximal length shrink
uniformly towards the center of symmetry p∗ until the length of all axes is equalized
at some N = ¯̄N .

At ¯̄N , the active links are k`k, all k ∈ K. Thus

|A∗( ¯̄N)| = 1

2
(K + 1). (24)

Since p̂`k( ¯̄N) = −p̂k( ¯̄N) + 2p∗, we have, for k ∈ C,∑
`∈C

[p̂k( ¯̄N)− p̂`( ¯̄N)] = p̂k( ¯̄N)− p̂`k( ¯̄N) = 2(p̂k( ¯̄N)− p∗).

Therefore, equation (15) holds for all k, with N̄ replaced by ¯̄N , if and only if

x(N) =
δ(K + 1) + 4β ¯̄N

δ(K + 1) + 4βN
. (25)

Also, from (10), with N̄ replaced by ¯̄N , we have

‖p̂k(N)− p̂`k(N)‖2
2 = [x(N)]2‖p̂k( ¯̄N)− p̂`k( ¯̄N)‖2

2,

which is independent of k since the axes of P̂( ¯̄N) are equal. Therefore, profits are
equalized across all such links. Clearly, P̂(N) contracts uniformly as N increases
beyond ¯̄N . So the same pairs of nodes remain symmetric and maximally distant.

26



In all the three cases, it can be verified that Nk`(N) is strictly increasing in N ,
and if N̄ = ¯̄N = 0, Nk` is the same for all active links. �

Proof of Proposition 8.1 Using (4), the general form of equilibrium prices in the
h0-architecture, for an arbitrary arbitrageur distribution N, is as follows:

p̂0 =
∑
k∈K

γkpk,

where

γ0 :=
1

1 + β0
∑

j
α0j

1+βjα0j

; γk :=

β0α0k

1+βkα0k

1 + β0
∑

j
α0j

1+βjα0j

, k 6= 0,

and
p̂k = (1 + βkα0k)−1(pk + βkα0kp̂0), k 6= 0. (26)

From (26), the profit of an arbitrageur on link 0k is

ϕ0k =
δ0k

2[δ0k + βkN0k]2
· ‖pk − p̂0‖2

2, k 6= 0. (27)

For the proof of this proposition as well as that of Proposition 8.2, it is useful to
specialize these formulas to the case where βk = β, δ0k = δ, and N0k = N/K, for
all k 6= 0. It will turn out that, in the applications we have in mind, the specified
arbitrageur distribution is in fact an equilibrium arbitrageur distribution. Antici-
pating this, we write state-price deflators and other variables as functions of N , in
keeping with our convention that this notation indicates that these variables are as-
sociated with an equilibrium arbitrageur distribution N(N). Direct substitution into
the above formulas yields:

γ0(N) =
δK + βN

δK + βN + β0NK
; γk(N) =

β0N

δK + βN + β0NK
, k 6= 0,

so that

p̂0(N) = γ0(N)p0 +
∑
k 6=0

γk(N)pk = γ0(N)p0 + [1− γ0(N)]

(
1

K

∑
k 6=0

pk

)
. (28)

Also, since βk = β for k 6= 0,

p∗ =
∑
k∈K

λkpk = (β + β0K)−1

[
βp0 + β0

∑
k 6=0

pk

]
. (29)

Solving for
∑

k 6=0 p
k, and substituting into (28), we obtain:

p̂0(N) = y(N)p0 + [1− y(N)]p∗, (30)
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where

y(N) =
δK

δK + βN + β0NK
. (31)

From (26), we have:

p̂k(N) = z(N)pk + [1− z(N)]p̂0(N), k 6= 0, (32)

where

z(N) =
δK

δK + βN
. (33)

Finally, from (27),

ϕ0k =
[z(N)]2

2δ
‖pk − p̂0(N)‖2

2, k 6= 0. (34)

We now proceed with the proof of the proposition. Since p0 = p∗, we see from
(29) that p∗ = 1

K

∑
k 6=0 p

k. Therefore, p∗ is the center of P . Suppose first that p∗ is
the circumcenter of P (this covers case (i) of the proposition as well as case (ii) if the
axes of P are equal). We conjecture that N0k = N/K. Then equilibrium prices are
characterized by (30)–(33). Since p0 = p∗, we have p̂0(N) = p∗. This fact, together
with the assumption that p∗ is the circumcenter of P , implies that profits, given by
(34), are equal for all k 6= 0, which verifies the conjecture that N0k = N/K. Thus
we can write

Φh0(N) =
[z(N)]2

2δ
‖pk − p0‖2

2, k 6= 0. (35)

The convergence statements in the proposition follow directly from equations (32)
and (35), using (33).

If p∗ is not the circumcenter of P , then P is centrally symmetric with unequal
axes. As we increase N from zero, the foregoing analysis applies, if we consider only
the nodes that are endpoints of axes of maximal length. As hitherto shorter axes
become maximal, the analysis applies again to a larger number of nodes (though
the mass of arbitrageurs is lower on the hitherto shorter axes). Each axis shrinks
uniformly to p∗. �

Proof of Proposition 8.2 We conjecture that N1k = N/K, k 6= 1. Then equa-
tions (30)–(34) hold with node 0 replaced by node 1, and all the βk’s equal to β,
i.e.

p̂1(N) = y(N)p1 + [1− y(N)]p∗, (36)

p̂k(N) = z(N)pk + [1− z(N)]p̂1(N), k 6= 1, (37)

ϕ1k =
[z(N)]2

2δ
‖pk − p̂1(N)‖2

2, k 6= 1, (38)

where

y(N) =
δK

δK + βN(K + 1)
, (39)
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and z(N) is given by (33). It follows that prices converge as stated in the proposition.
We only need to verify that the profit ϕ1k is the same for all k 6= 1, and is strictly
decreasing in N .

Since βk = β for all k, p∗ is given by (9). In particular, p∗ is the circumcenter of
the regular simplex P . Suppressing the dependence of p̂1 and y on N , we have:

‖pk − p̂1‖2
2 = ‖pk − p1 + (1− y)(p1 − p∗)‖2

2

= ‖pk − p1‖2
2 + (1− y)2‖p1 − p∗‖2

2 + 2(1− y)〈pk − p1, p1 − p∗〉2, (40)

where 〈·, ·〉2 is the inner product associated with the L2(Π) norm ‖ · ‖2. For vectors
u, v and w in RS, we have

‖u− w‖2
2 = ‖u− v + v − w‖2

2 = ‖u− v‖2
2 + ‖v − w‖2

2 + 2〈u− v, v − w〉2,

so that
2〈u− v, v − w〉2 = ‖u− w‖2

2 − ‖u− v‖2
2 − ‖v − w‖2

2. (41)

Using this to evaluate the inner product in (40), we get

‖pk − p̂1‖2
2 = (1− y)2‖p1 − p∗‖2

2 + y‖pk − p1‖2
2, (42)

where we have exploited the fact that p∗ is the circumcenter of P and hence ‖pk−p∗‖2

is invariant with respect to k. The (squared) ratio of the circumradius and the edge
length of P is given by a standard formula (see Coxeter (1963), p. 292–295):

‖pk − p∗‖2
2

‖pk − p`‖2
2

=
K

2(K + 1)
, k, ` ∈ K, k 6= `. (43)

In particular, ‖p1 − p∗‖2
2 = K

2(K+1)
‖pk − p1‖2

2. Substituting this into (42), we get

‖pk − p̂1‖2
2 =

[
K(1− y)2

2(K + 1)
+ y

]
‖pk − p1‖2

2,

which does not depend on k, k 6= 1, because the edges of a regular simplex are
congruent. Therefore, from (38), ϕ1k is the same for all k 6= 1, so we can write

Φh1(N) =
[z(N)]2

2δ

[
K[1− y(N)]2

2(K + 1)
+ y(N)

]
‖pk − p1‖2

2, k 6= 1. (44)

It is easy to check, using (33) and (39), that Φh1(N) is strictly decreasing in N . �

Proof of Proposition 9.1 The following proof assumes that, if P is centrally
symmetric, its axes are equal. The unequal axes case is straightforward to deal with
and we omit the details.

Consider the complete architecture. Since p0 = p∗ is the center of P̂(N) for all
N , it is also internal for all N . By Proposition 6.1, no trade occurs with exchange 0
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and we can simply ignore it. Proposition 7.1 applies with K instead of K + 1 nodes.
From (13), equilibrium profits for the complete architecture are

Φc(N) = [x(N)]2 Φc(0)

=
1

2δ
[x(N)]2‖pk − p`‖2

2, k` ∈ A∗

≤ 1

2δ
[x(N)]2

[
‖pk − p0‖2 + ‖p` − p0‖2

]2
, k` ∈ A∗ (45)

=
2

δ
[x(N)]2‖pk − p0‖2

2, k 6= 0, (46)

where (45) follows from the triangle inequality ((45) holds as an equality if and only
if the polytope P is centrally symmetric), and (46) from the centrality of p0. Note
that A∗ does not depend on N .

For the h0-architecture, profits Φh0(N) are given by (35). Comparing (46) with
(35), Φh0(N) > Φc(N) if and only if z(N) > 2x(N). The function z(N) is given
by (33). The function x(N) and the number of active links |A∗| are respectively
given by (17), (20) or (25), and (16), (19) or (24), depending upon the case under
consideration, with N̄ = 0 and K replaced by K − 1 (recall that we are applying
Proposition 7.1 for K, not K + 1, nodes). Therefore, Φh0(N) > Φc(N) if and only
if, for the case of the simplex:

N >
δ

2β
K(K − 1) =

δ

β
|A∗|;

for the case of the odd polygon:

N >
δK

2β cos(π/K)
=

δ|A∗|
2β cos(π/K)

;

and, for the centrally symmetric case:

N >
δ

2β
K =

δ

β
|A∗|.

Now note that the condition for the odd polygon is most stringent for K = 3, in
which case it is simply N > δ

β
|A∗|, i.e. the same condition as for the other polytopes.

�

Proof of Proposition 9.2 For the complete and h1-architectures, node 0 is inac-
tive by Proposition 6.1. Therefore, we can ignore node 0 and apply our results for
these architectures, replacing K by K − 1.

Profits in the h1-architecture are given by (44). Substituting for y(N) and z(N)
from (39) and (33) respectively, and using (43) and the fact that p0 = p∗ (and also
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replacing K by K − 1),

Φh1(N) =
δ(K − 1)3[2δ2(K − 1) + βNK(2δ + βN)]

4[δ(K − 1) + βN ]2[δ(K − 1) + βNK]2
‖pk − p1‖2

2 (47)

=
δK(K − 1)2[2δ2(K − 1) + βNK(2δ + βN)]

2[δ(K − 1) + βN ]2[δ(K − 1) + βNK]2
‖pk − p0‖2

2, (48)

for k /∈ {0, 1}. Comparing (48) with (35), Φh0(N) > Φh1(N) if and only if

K[δ(K−1)+βN ]2[δ(K−1)+βNK]2 > (K−1)2(δK+βN)2[2δ2(K−1)+βNK(2δ+βN)],

or, equivalently,

K(2K−1)Q4+2K(K+1)(K−1)Q3 > (K−1)2
[
(K−2)Q2+2K(2K−1)Q+K(K2−1)

]
,

where Q := βN/δ. The condition N ≥ δ
β
K in the statement of the proposition is

equivalent to Q ≥ K. In particular, Q > K − 1, so it suffices to show that

K(2K−1)(K−1)2Q2+2K(K+1)(K−1)2Q2 > (K−1)2
[
(K−2)Q2+2K(2K−1)Q+K(K2−1)

]
,

or
2(2K2 + 1)Q2 − 2K(2K − 1)Q−K(K2 − 1) > 0. (49)

It is easy to check that this expression is increasing in Q for Q ≥ K, and is positive
for Q = K. Hence (49) holds.

For the complete architecture, using (13) and (17), with K − 1 instead of K, we
get

Φc(N) =
δ

2

[
K − 1

δ(K − 1) + 2βN

]2

‖pk − p1‖2
2,

for k /∈ {0, 1}. Comparing with (47), Φh1(N) > Φc(N) if and only if

(K−1)[2δ2(K−1)+βNK(2δ+βN)][δ(K−1)+2βN ]2 > 2[δ(K−1)+βN ]2[δ(K−1)+βNK]2,

or, equivalently

2KQ3 − (K + 3)(K − 1)2Q− 2(K − 1)3 > 0.

The remainder of the proof is along the same lines as in the previous case. It suffices
to show that

2K(K − 1)Q2 − (K + 3)(K − 1)2Q− 2(K − 1)3 > 0,

or
2KQ2 − (K + 3)(K − 1)Q− 2(K − 1)2 > 0.

Now we simply check that this expression is increasing in Q for Q ≥ K, and is
positive for Q = K. �
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Proof of Proposition 9.3 We omit the details for the case in which P is centrally
symmetric with unequal axes. The following arguments apply in all the other cases.
Using (10), (32) and (33):

dk,c(N) = [x(N)]2‖pk − p∗‖2
2, k ∈ K, (50)

dk,h0(N) =

[
δK

δK + βN

]2

‖pk − p∗‖2
2, k ∈ K. (51)

These equations hold trivially for k = 0 since p̂0 = p0 = p∗ (in the complete archi-
tecture, node 0 is inactive by Proposition 6.1, while in the h0-architecture p̂0 = p0

by Proposition 8.1). It is easy to check that x(N) < δK
δK+βN

in all the three cases

studied in Proposition 7.1 (as in the proof of Proposition 9.1, we apply Proposition
7.1 for K nodes, not K + 1). The result follows. �

Proof of Proposition 9.4 For the complete and h1-architectures, node 0 is
inactive by Proposition 6.1. So we apply our results for these architectures, replacing
K by K − 1.

From (50) and (17),

dk,c(N) =

[
δ(K − 1)

δ(K − 1) + 2βN

]2

‖pk − p∗‖2
2, k ∈ K. (52)

From (36) and (39),

p̂1(N)− p∗ =
δ(K − 1)

δ(K − 1) + βNK
(p1 − p∗), (53)

so that

d1,h1(N) =

[
δ(K − 1)

δ(K − 1) + βNK

]2

‖p1 − p∗‖2
2. (54)

For k /∈ {0, 1}, we use (37), (33) and (53) to get:

p̂k(N)− p∗ =
δ(K − 1)

δ(K − 1) + βN
(pk − p∗) +

βN

δ(K − 1) + βN
[p̂1(N)− p∗]

=
δ(K − 1)

δ(K − 1) + βN

[
(pk − p∗) +

βN

δ(K − 1) + βNK
(p1 − p∗)

]
.

Therefore,

dk,h1(N) =

[
δ(K − 1)

δ(K − 1) + βN

]2
[
‖pk − p∗‖2

2 +

(
βN

δ(K − 1) + βNK

)2

‖p1 − p∗‖2
2

+

(
2βN

δ(K − 1) + βNK

)
〈pk − p∗, p1 − p∗〉2

]
. (55)
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Using (41) and (43), and the fact that all vertices of P are equidistant from p∗, we
see that 〈pk − p∗, p∗ − p1〉2 = 1

K−1
‖pk − p∗‖2

2, for k /∈ {0, 1}. Substituting into (55),
some algebraic manipulations give us:

dk,h1(N) =
δ2(K − 1)

[δ(K − 1) + βN ]2[δ(K − 1) + βNK]2

· [δ2(K − 1)3 + 2δβN(K − 1)(K2 −K − 1) + β2N2(K3 −K2 −K − 1)]

· ‖pk − p∗‖2
2 (56)

for k /∈ {0, 1}.
The rankings in the proposition can now be verified from (51), (52) and (54) for

exchange 1, and from (51), (52) and (56) for exchanges k /∈ {0, 1}. Monotonicity
with respect to N can also be deduced from these equations. �

B Polytopes

In Section 6 we defined a polytope as the convex hull of a finite number of points
in Euclidean space. In that discussion we had sidestepped some formal definitions,
which we briefly summarize below. The reader may consult Coxeter (1963) and
Grünbaum (2003) for further details.

Let A ⊂ Rd, and {xi} a finite number of points in A. An affine combination of
{xi} is a linear combination

∑
νixi in which the weights {νi} add up to one. The

points {xi} are affinely independent if none of these points can be expressed as an
affine combination of the other points. An affine subspace is a translate of a linear
subspace, i.e. of the form x+ V , where x is a point in Rd and V is a linear subspace
of Rd. The affine hull of A is the smallest affine subspace containing A; it is the set
of all affine combinations of points in A. The dimension of A is the dimension of
the affine hull of A, which is defined to be the dimension of the corresponding linear
subspace.

Let P be a d-polytope. A face of P is the intersection of P with a supporting
hyperplane. Each face is itself a polytope. The 0-faces are called vertices, the 1-faces
are called edges, and the (d − 1)-faces are called facets.17 Thus a 1-polytope is a
line segment, a 2-polytope is a polygon whose facets (which are also its edges) are
segments, a 3-polytope is a three-dimensional solid, whose facets are polygons and
whose edges are segments, and so forth. A simplex is a polytope whose vertices are
affinely independent.

If the midpoints of the edges incident at a vertex v of P lie on a hyperplane,
then these midpoints are the vertices of a (d − 1)-polytope called the vertex figure
of P at v. The notion of a regular polytope can be defined inductively as follows. A

17As mentioned in footnote 3, we employ the terms “vertex” and “edge” as is standard in the
theory of polytopes. We do not use these terms in the graph-theoretic sense.
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regular polygon is a polygon that is equilateral and equiangular. A regular polytope
is a polytope with regular facets and vertex figures. This definition implies that the
facets are in fact congruent and so are the vertex figures.
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