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Abstract

Most of those who take macro and monetary policy decisions are
agents. The worst penalty which can be applied to these agents is to
sack them if they are perceived to have failed. To be publicly sacked
as a failure is painful, often severely so, but the pain is …nite. Agents
thus have loss functions which are bounded above, in contrast to the
unbounded quadratic loss functions which are usually assumed for policy
analysis. We …nd a convenient mathematical form for such a loss function,
which we call a bell loss function. We contrast the di¤erent behaviour
of agents with quadratic and bell loss functions in three settings. Firstly
we consider an agent seeking to reach multiple targets subject to linear
constraints. Secondly we analyse a simple dynamic model of in‡ation
with additive uncertainty. In both these settings certainty equivalence
holds for the quadratic, but not the bell loss function. Thirdly we con-
sider a very simple model with one target and multiplicative (Brainard)
uncertainty. Here certainty equivalence breaks down for both loss func-
tions. Policy is more conservative than in the absence of multiplicative
uncertainty, but less so with the bell than the quadratic loss function.

1 Introduction
Most of those who take macro and monetary policy decisions are agents, not
themselves principals. The government is an agent of the electorate; the Central
Bank is an agent of the government, and through them of the public more widely.
By the same token many, perhaps most, …nancial decisions are similarly taken
by agents. Bank and fund managers are agents of those that have committed
funds to them.
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The thesis of this paper is that insu¢cient attention has been given to this
fact in analysing the likely behaviour of such decision-making agents, in partic-
ular to the implications for the shape of such an agent’s loss function.

What is the worst penalty, or sanction, that principals can normally apply to
their agent? The standard answer is to sack them, if they are perceived to have
failed. It is feasible to think of applying more severe penalties, as the scale of
failure rises, but this leads to greater di¢culties in attracting high-quality people
to act as agents. Be that as it may, we shall assume that in the present state
of a¤airs the main sanction for failure is dismissal. To be (publicly) sacked
as a failure is painful, often severely so, especially for agents with previously
established reputations, but the pain is …nite. As the likelihood of being sacked
approaches unity, with the outcomes deviating increasingly from the objective
agreed with the principal, so the loss function will become asymptotically equal
to this …nite loss.

This contrasts sharply with the implications of the standard quadratic loss
function, where the loss increases towards in…nity as the outcome di¤ers from
that desired. This has some natural justi…cation in certain physical cases (e.g.
heat, ‡uid intake) where deviation from the optimum (in either direction) at
some point leads to death. Being removed from o¢ce is only rarely perceived
as being on the same plane!

Indeed the main justi…cation usually given for employing a quadratic loss
function, apart from the fact that everyone else does so, is that it is mathe-
matical tractable, and also that, within limits, it may be a reasonably robust
model of reality, (Chadha and Schellekens 1999; for some recent variants, see
Schellekens, 2002 and al-Nowaihi and Stracca, 2001; for a more generalised cri-
tique of quadratic loss functions on behavioural grounds, see Kahneman and
Tversky, 2000). Our purpose here is to suggest an alternative, and more real-
istic, loss function for an agent, which has a reasonably simple mathematical
formulation, and to examine how agents’ behaviour, with such a loss function,
will di¤er from that of someone (e.g. a principal) with a quadratic loss function.

Principals will (should) normally be able to specify relatively clearly to their
agents what their objectives may be, though even here a multiplicity of ob-
jectives and horizons may complicate matters. But in a world of uncertainty
the ‘best’ results in any time period may occur because the agent is luckier,
less risk-averse, cuts legal corners, or for a variety of other reasons not directly
connected with either ‘e¤ort’ or ability. So how do principals decide when to
abandon (sack) their initial choice of agent, and move their custom (e.g. money
or vote) to another, especially given that frictions (e.g. information linkages;
‘the devil you know is better than the devil that you do not know’) cause any
such moves to be expensive to the principal?

The standard answer is to apply some form of ‘bench-marking’. (See for
example Basak, Shapiro and Teplá, 2002; Basak, Pavlova and Shapiro, 2002;
Jorion, 2000; Teplá, 2001; Chan, Karceski and Lakonishok, 1999; Chevalier and
Ellison, 1997; Fung and Hsieh, 1997, Grossman and Zhou, 1996). That is the
principal compares the results obtained by the agent either to some absolute,
or to some relative, measure of achievement. So long as the agent remains on
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the right side of the benchmark, she is regarded as ‘successful’, and would as a
generality expect to be continued in position as agent. Indeed, an agent who
was summarily sacked without proper cause while still being on the right side
of the agreed benchmark would often be able to sue for unfair dismissal. In
contrast the agent that failed to meet the pre-arranged benchmark by a large
margin might not only be sacked, but even face a legal suit for negligence; the
case in the UK in 2001 of Unilever against Mercury Asset Management was in
point. In the monetary …eld, the establishment of publicly-announced ranges for
the maintenance of in‡ation is another example; the requirement for the UK’s
Monetary Policy Committee to write a letter to the Chancellor when in‡ation
diverges by more than 1% from its current objective is again a case.

Such benchmarks are inherently somewhat arbitrary. Why, for example,
was the trigger for the Monetary Policy Committee to write a letter set at 1%,
rather than say 1 1

2%? Historical experience of (absolute and relative) deviations
from the (optimal) target is likely to play a large role, and benchmarks may
well be adjusted in the light of such developing experience. But even when
such benchmarks have been set, it is usually well understood that they may
be broken for reasons that are no ‘fault’ of the agent. In the case of monetary
policy, there may have been an adverse supply shock (say an unforeseeable rise
in the price of oil or food). In the case of fund management, the manager may
have taken a rational, strategic view that the rise in price of some asset class,
e.g. Japanese equities, TMT shares, etc., etc., was overdone, and hence be short
of that class of assets that was driving the index up. For whatever reason, an
initial, and/or minor, infringement of a benchmark is usually taken as a trigger
for a formal explanation, and discussion, rather than leading to an immediate
dismissal. This is certainly the case with the letter-writing requirement for
the Monetary Policy Committee in the UK. It is only when the infringement
is persistent, or of large-scale, that sacking becomes likely. So, even though
benchmarks themselves are frequently precisely de…ned, the e¤ect on the future
employment of the agent is usually much fuzzier.

Such fuzziness will be all the greater when the number of stake-holding
principals and/or their objectives becomes much larger. There are many voters
with widely di¤ering objectives, but at some point they must each decide their
own individual trigger, whether to vote against the incumbent government, or
not. Similarly equity holders must decide whether to sell their shares, or not;
and in the case of some large individual (potential) stake-holders whether to try
to replace the management, or not.

The gist of this paper is that agents must get some utility from their role,
whether it is pecuniary, power or reputation. Otherwise they would walk away.
Hence what must matter to them greatly is whether their outcomes are su¢-
ciently successful to fall within the range that constitutes ‘success’ and contin-
ued employment. Per contra, once the pay-o¤ is bad enough that sacking is
inevitable, then they will have lost all the prospective bene…t from the role. If
the outcome becomes even worse, there is no signi…cant further loss of utility.
You can only get sacked once; you might as well be hung for a sheep as a lamb.

Frequently the utility (loss) attached to pay-o¤s will not be symmetric
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around an interior optimum. In fund management, for example, you get …red
for doing persistently, or seriously, worse than the competition, not when you
out-distance them on the up-side, (even though this often should be a trigger for
explanation and careful re-examination). But in the rest of this paper we shall
ignore such asymmetries. One reason is that the UK’s monetary policy objec-
tive, with which one of us was intimately concerned, was symmetric. A second
reason is to make the exercise simpler and more (mathematically) tractable.

The basic assumption that we make is that an agent is (rationally) sel…sh,
and cares primarily about his (her) job, and not the pay-o¤ to the principal.
At some point the pay-o¤ to the principal is so far from the optimum that
sacking is certain. At that point the loss to the agent (asymptotically) reaches
a maximum, which will usually be …nite. Since the agent is concerned with
keeping her (his) job inter-temporally, the starting point for the next play will
usually be the outcome of the current game. So, even though being within the
range of ‘success’ between the benchmark triggers may guarantee with certainty
the agents’ job on the next play, the closer that the outcome comes to one of the
symmetric benchmarks, the greater the likelihood of (stochastically) triggering
the benchmark on the very next play. For example, if the current rate of (RPIX)
in‡ation in the UK is currently 1.6%, the likelihood of falling below the trigger
of 1.5% next month is much greater than if the rate of in‡ation was 21

2% in the
middle of the band.

If we assume a reasonably risk averse agent, then the loss function between
the benchmark triggers, within the region of ‘success’, is convex. But, since the
maximum loss to the agent is, we have argued …nite, i.e. loss of position, then
the loss function must eventually ‡atten out. As the outcomes move from the
region of ‘success’ to the region of ‘failure’, so the loss function must, logically,
pass through a point of in‡exion, and the curvature of the function change from
convex to concave.

The mathematical functional form that most closely and simply meets these
desiderata has the functional form 1 ¡ exp

¡
¡k(x ¡ a)2

¢
. Figure 1 illustrates

the curve for a = 0, and k = 1
2 : Mathematically this is closely related to the

bell shaped normal density function 1p
2¼¾2 exp

³
¡ 1

2¾2 (x ¡ ¹)2
´
, so we call it a

bell loss function. Figure 1 plots the quadratic loss function
¡
1 ¡ exp

¡¡ 1
2

¢¢
x2

and the bell loss function 1 ¡ exp
¡
¡ 1

2x
2
¢
, which has points of in‡ection at 1

and ¡1: The two functions coincide at x = ¡1; 0; 1: In the interval (¡1; 1)
the bell loss function is convex, and is closely approximated by the quadratic
loss function. Outside the interval [¡1; 1] the bell and quadratic loss functions
diverge wildly. Figure 2 shows the bell loss function 1 ¡ exp

¡¡ 1
2k(x ¡ a)2

¢
for

a = 0 and k = 1
4 ; 1

2 and 8: The larger k; the narrower the interval of acceptable
performance.

Sections 2-5 contrast behaviour with quadratic and bell loss functions. Sec-
tion 2 analyses resource allocation in a simple linear model; section 3 is a dy-
namic programming model of in‡ation and output. Sections 2 and 3 consider
only additive uncertainty, whereas section 5 considers multiplicative (Brainard)
uncertainty. Section 6 concludes.
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Figure 1: The quadratic loss function [1 ¡ exp(¡1=2)] x2 and the bell loss func-
tion 1 ¡ exp(¡1=2x2):
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Figure 2: The bell loss function 1 ¡ exp(¡kx2) for k = 1=4; 1=2 and 8:
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2 Attitudes to risk
The key mathematical di¤erence between the quadratic loss function Lq(x) =
(x ¡ a)2 and the bell loss function Lb(x) = 1 ¡ exp

¡
¡k(x ¡ a)2

¢
is that the

quadratic loss function is convex for all values of x; whereas the bell loss function
is convex for values of x close to a and concave for values of x far from a
(see Figures 1 and 2). The derivative of the quadratic loss function dLq (x)

dx =
2 (x ¡ a) increases in size as x moves away from its target a: Thus with a
quadratic loss function the further x is from its target value a, the larger the gain
from moving x towards a: Compare the bell loss function with …rst derivative

dLb

dx
= 2k (x ¡ a) exp

¡
¡k(x ¡ a)2

¢

and second derivative
d2Lb

dx2 =
³
2k ¡ 4k2 (x ¡ a)2

´
exp

¡
¡k(x ¡ a)2

¢
:

The second derivative is positive, so the loss function is convex when the distance
between x and a is less than 1p

2k
; within this region the further x is from a the

greater the gain from moving x towards a: However the second derivative is
negative and the bell loss function is concave, when the distance between x and
a is greater than 1p

2k
; in this case the gain from moving x towards a becomes

smaller as the distance between x and a increases.
This can have major implications for policy. Suppose that there is a very

slight possibility of a major disruption of oil supply, which would push both
in‡ation and output way outside their target ranges, i.e. x would deviate far
from a. A government with a quadratic loss function would respond to that
slight possibility, perhaps by using taxes to increase the domestic price of oil
in order to maintain oil stocks and encourage the search for substitutes. With
a quadratic loss function the prospective gain in the unlikely event of a future
shock is worth the cost in terms of current output and in‡ation. But the re-
sulting self-administered supply side shock might well cause the government to
be regarded as a failure, and voted out of o¢ce. With a bell loss function the
prospective gain in the unlikely event of an oil price shock would be too small
to outweigh the current losses from policy measures that anticipate the shock.

The concavity of the bell loss function once beyond some distance from the
target implies risk-accepting behaviour in certain circumstances. An agent with
a bell loss function will be willing to take a gamble giving some probability of
hitting the target, and some of missing it by a long way, which an agent with a
quadratic loss function would reject.

3 Targets and Certainty Equivalence

We look at a simple example to gain further insight into the di¤erences between
the behaviour of an agent with a bell loss function, and the behaviour of an agent
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with a quadratic loss function. The most important feature of this example is
that the certainty equivalence which holds with a quadratic loss function breaks
down with a bell loss function. In this simple model there is a manager with a
…nite amount of resources M trying to hit n di¤erent targets fa1; a2; :::ang : If
the manager puts ¹i resources into meeting the target i the gap between target
and outcome is xi ¡ ai where xi = ¹i + ei; and fe1; e2; :::eng are independent
normal random variables with mean Eei = 0i and var ei = ¾2

i : The manager’s
problem is to choose resources f¹1; ¹2; :::¹ng ; subject to a constraint

nX

i=1

¹i · M;

in order to minimize the expectation of either the quadratic loss function

Lq =
nX

i=1

ki (xi ¡ ai)
2

or the bell loss function

Lb = 1 ¡ exp

Ã
¡

nX

i=1

ki (xi ¡ ai)
2

!
:

The loss functions are symmetric; overshooting a target is as bad as under-
shooting. We could tell stories about why managers might be penalized in this
way, e.g. for wasting resources. We are not completely convinced by these
stories; even if there are penalties for overshooting we think loss functions may
well not be symmetric. However assuming symmetry makes the mathematics
much simpler; which is why symmetric loss functions are so widely used in the
literature.

Firstly consider the case with no uncertainty. In this case it makes no
di¤erence whether the loss function is bell or quadratic, because Lb = 1 ¡
exp (¡Lq) which is a strictly increasing function of Lq . If

Pn
j=1 aj · M and

there is no uncertainty the manager is in the happy position of being able to
meet all the targets simultaneously by setting ¹i = xi = ai for all i making both
loss functions zero. If

Pn
j=1 aj > M it is impossible to meet all the targets.

Minimising
Pn

i=1 ki (¹i ¡ ai)
2 subject to

Pn
j=1 ¹j · M is easily solved using

standard Lagrangian techniques. The Lagrangian is

L = ¡
nX

i=1

ki (¹i ¡ ai)
2 + ¸

Ã
M ¡

nX

i=1

¹i

!

the …rst order conditions ¡2ki (¹i ¡ ai) ¡ ¸ = 0 imply that

¹i = ai ¡ 1
2
¸k¡1

i :
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Assuming that the constraint is satis…ed as an equality gives

nX

j=1

¹j =
nX

j=1

aj ¡ 1
2
¸

nX

j=1

k¡1
j = M;

so 1
2¸ =

³Pn
j=1 aj ¡ M

´
=

³Pn
j=1 k¡1

j

´
and the solution is

¹i = ai ¡ k¡1
iPn

j=1 k¡1
j

0
@

nX

j=1

aj ¡ M

1
A :

There is a shortfall on every target, the size of the shortfall ai¡¹i is proportional
to the gap

Pn
j=1 aj ¡ M between the resources

Pn
j=1 aj needed to meet all the

targets and the resources available M: The constant of proportionality for
target i k¡1

iP n
j=1 k¡1

j
depends inversely upon the weight ki given to the target in

the objective. The shortfall is largest for the targets with the lowest weight ki:
We now consider the case with uncertainty. Our assumption that xi = ¹i+ei

Eei = 0i and var ei = ¾2
i implies that E (xi ¡ ai)

2 = (¹i ¡ ai)
2 + ¾2

i : With the
quadratic loss function the objective becomes

ELq = E

Ã
nX

i=1

ki (xi ¡ ai)2
!

=
nX

i=1

ki

h
(¹i ¡ ai)2 + ¾2

i

i
;

which is minimised by choosing f¹1; ¹2; :::¹ng to minimise
Pn

i=1 ki (¹i ¡ ai)
2.

This is mathematically the same problem as we solved for the certainty case.
The solution is to set ¹i = ai if

Pn
j=1 aj · M; the total resources available and

set

¹i = ai ¡ k¡1
iPn

j=1 k¡1
j

0
@

nX

j=1

aj ¡ M

1
A (1)

if
Pn

j=1 aj > M: This is an example of the well known phenomenon of certainty
equivalence. The solutions to optimization problems with quadratic objective
functions of random variables with linear constraints are the same as the solu-
tion to the same problem with the random variables replaced by their mean.
However the bell loss function does not give certainty equivalence. The result
which makes the bell loss function tractable is Proposition 1, which we prove in
the appendix.

Proposition 1 If x is normally distributed with mean ¹ and variance ¾ 2 and
k and a are real numbers

E
h
exp (¡k(x ¡ a)2)

i
=

1p
1 + 2k¾2

exp

Ã
¡k (¹ ¡ a)2

1 + 2k¾2

!
:
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Given our assumptions that fx1; x2; :::xng are normally distributed and inde-
pendent, but not identically distributed, Exi = ¹i and var xi = ¾2

i , this implies
that

ELb = 1 ¡ E exp

Ã
¡

nX

i=1

ki (xi ¡ ai)2

!

= 1 ¡ ¦n
i=1

Ã
1p

1 + 2ki¾2
i

exp

Ã
¡ki (¹i ¡ ai)

2

1 + 2ki¾2
i

!!

= 1 ¡
Ã

¦n
i=1

1p
1 + 2ki¾2

i

!
exp

Ã
¡

nX

i=1

¡
k¡1

i + 2¾2
i
¢¡1 (¹i ¡ ai)

2

!
:

Thus the solution minimises
Pn

i=1

¡
k¡1

i + 2¾2
i

¢¡1 (¹i ¡ ai)
2 subject to the re-

source constraint
Pn

i=1 ¹i · M: This is mathematically the same problem
as before with ki replaced by

¡
k¡1

i + 2¾2
i
¢¡1

: The solution is to set ¹i = ai
i = 1; 2::n if

Pn
j=1 aj · M; and if

Pn
j=1 aj > M

¹i = ai ¡ k¡1
i + 2¾2

iPn
j=1

¡
k¡1

j + 2¾2
j
¢

0
@

nX

j=1

aj ¡ M

1
A : (2)

Contrast the policy function for the quadratic loss function (equation 1) and the
bell loss function (equation 2). In both cases the shortfall ai ¡ ¹i between the
target ai and the expected value ¹i of xi is proportional to the overall shortfallPn

j=1 aj ¡ M: With the quadratic loss function there is certainty equivalence,

the coe¢cient k¡1
iP n

j=1 k¡1
j

depends only on the weights fkig in the loss function.

With the bell loss function there is no certainty equivalence, the coe¢cient
k¡1

i +2¾2
iP n

j=1(k¡1
j +2¾2

j)
now depends both on the weights fkig and the variances

©
¾2

i

ª
:

There is a large shortfall for targets with small weights ki and large variances
¾2

i , so considerable uncertainty about whether the target will be met even if
resources are provided.

In the quadratic case only the relative sizes of fk1; k2; :::kng matter; without
loss of generality we can assume that

Pn
i=1 ki = 1: In the bell case both

the relative and absolute values of fk1; k2; :::kng matter. Let K =
Pn

i=1 ki

and ·i = ki=K; so
Pn

i=1 ·i = 1:We can write the coe¢cient k¡1
i +2¾2

iP n
j=1(k¡1

j +2¾2
j)

as

·¡1
i +2K¾2

iP n
j=1(·¡1

j +2K¾2
j)

: Larger values of K correspond to a smaller range of acceptable

values (Figure 2), in which case the variances become relatively more important
in determining the size of the short fall on the di¤erent targets, even fewer
resources are put into more uncertain targets.

The optimal policy for both the quadratic and bell loss functions have the
same functional form; so an outsider observing the policy responses f¹1; :::¹ng
but not knowing the weights would not be able to distinguish between the policy
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resulting from a bell loss function with weights fkig or a quadratic loss function
with weights fk0

ig where k 0
i =

¡
k¡1

i + 2¾2
i
¢¡1

: We will show that the in‡ation
targeting problem which we discuss in the next section has a similar property.
So it is not usually possible to distinguish between these functional forms by
observation of outcomes.

4 In‡ation Targeting

We now turn to a very simple dynamic model of in‡ation,

xt = ¡¯ (it ¡ ¼t) + ut (3)

¼t+1 = ®xt + ¼t + et+1

where xt is the output gap, it the interest rate, and ¼t the in‡ation rate. We
assume that the disturbance terms ut and et+1 are uncorrelated normal random
variables with zero mean, and no serial correlation; var ut = ¾2

u and var et+1 =
¾2

e : We consider a quadratic loss function

EtLq
t = Et

1X

¿=0

±¿
h
a (¼t+¿ ¡ ¼¤)2 + bx2

t+¿

i

and a bell loss function

EtLb
t = Et

(
1 ¡ exp

"
¡

1X

¿=0

±¿
³
a (¼t+¿ ¡ ¼¤)2 + bx2

t+¿

´#)
:

We prove propositions 2 and 3 in the appendix using dynamic programming.

Proposition 2 The optimal policy interest rate policy at date t with the quadratic
loss function minimises

Et

h
a (¼t ¡ ¼ ¤)2 + bx2

t + ±cq (¼t+1 ¡ ¼¤)2
i

and is implemented by setting

it = ¼t + mq (¼t ¡ ¼¤) (4)

where
mq =

®±cq

¯ (b + ±cq®2)

and cq is the unique positive root of the equation

c = a +
b±c

b + ±c®2
: (5)
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The optimal policy rule 4 depends upon the weights a and b given to output and
in‡ation only through the ratio a=b: In the policy rule given by equation 4 the
real interest rate it ¡ ¼t is proportional to the deviation of in‡ation from target
¼t ¡¼¤ : The constant of proportionality mq = 0 when a = 0; mq = 1=®¯ when
b = 0; and mq is an increasing function of a=b:

Policy with the quadratic loss function satis…es certainty equivalence. Vari-
ances do not a¤ect policy. Only the relative sizes of the weights a and b given to
deviations of output and in‡ation from their targets a¤ects policy. The policy
response to a deviation of in‡ation ¼t from target ¼¤ is larger if relatively more
weight is to in‡ation rather than output. The situation is di¤erent with a bell
loss function.

Proposition 3 The optimal policy interest rate policy at date t with the bell
loss function minimises

Et

n
1 ¡ exp

³
¡

h
a (¼t ¡ ¼¤)2 + bx2

t + ±cb (¼t+1 ¡ ¼¤)2
i´o

and is implemented by setting

it = ¼t + mb (¼t ¡ ¼ ¤) (6)

where

mb =
®±cb

¯ (b (1 + 2±cb¾2
e) + ±cb®2)

cb is the unique positive root of the equation

c = a +
b±c

b (1 + 2±c¾2
e) + ±c®2 : (7)

When a and b are both positive cb < cq and mb < mq ; the bell loss function gives
less weight to the future than the quadratic loss function and interest rate policy
is less aggressive with a bel l loss function. In the polar cases where a = 0 or
b = 0 policy is the same with the bell and quadratic loss function. The constant
of proportionality in equation 6 is mq = 0 when a = 0; and mq = 1=®¯ when
b = 0:

There is no certainty equivalence with the bell loss function; the variance of
the disturbance term in the in‡ation equation ¾2

e a¤ects the value the solution
of 7 cb ; and the policy rule 6. As with the quadratic loss function the optimal
policy rule with a bell loss function makes the real interest rate it ¡ ¼t propor-
tional to the gap between actual and target in‡ation ¼t ¡ ¼¤: The constant of
proportionality mb depends upon the parameters ® and ¯ of the in‡ation and
output equations, the weights a and b given to output and in‡ation and the vari-
ance ¾2

e : Someone observing policy without knowing the policy weights would
not be able to tell whether it stemmed from a quadratic or bell loss function.
Agents, for example politicians in o¢ce and fund managers, are often accused
of being myopic becuase of a wish to remain in o¢ce. In this section we have
demopnstrated why this follows formally from the inherent nature of their loss
function.
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5 Multiplicative (Brainard) Uncertainty
Up to now we have looked at situations where uncertainty is additive, policy
choices a¤ect the mean, but not the variances of random variables. However if
¯ is a random variable in equation 3, uncertainty is multiplicative, both mean
and variance being a¤ected by the interest rate (Brainard 1967). This makes
the problem much less tractable; we cannot solve for the value function in the
dynamic programming problem and characterise the optimal policy as we can
with solely additive uncertainty. We can however say something about a simpler
problem. Consider the simplest case of multiplicative uncertainty, minimising
either the expected quadratic loss Lq = (¯x + u ¡ ®)2 or the expected bell loss
Lb = 1 ¡ exp

³
¡k (¯x + u ¡ ®)2

´
where x is a policy variable, and ¯ and u

are independent normal variables, E¯ = ¯o; var¯ = ¾2
¯ ; Eu = 0; varu = ¾2

u:
Firstly consider the quadratic loss function.

ELq = x2 ¡
¯2

0 + ¾2
¯
¢

¡ 2®¯0x + ®2 + ¾2
u;

which is minimised by setting x = ®¯0

(¯2
0+¾2

¯) : If there is no uncertainty, ¾2
¯ = 0;

and x = ®
¯0

, as ¾2
¯ tends to in…nity x tends to 0: The policy is more conservative

than in the absence of multiplicative uncertainty, that is closer to the value of
x (in this case 0) which minimises uncertainty.

Now consider the bell loss function. From proposition 1 in the appendix

ELb = 1 ¡ 1p
1 + 2k var (¯x + u)

exp

Ã
¡k (E (¯x + u) ¡ ®)2

1 + 2k var (¯x + u)

!

= 1 ¡ 1r
1 + 2k

³
¾2

¯x2 + ¾2
u

´ exp

0
@¡ k (¯0x ¡ ®)2

1 + 2k
³
¾2

¯x2 + ¾2
u

´

1
A ; (8)

we have been able to prove

Proposition 4 If ®=¯0 > 0 the optimal policy x¤ lies in the interval
³

®¯0
¾2

¯+¯2
0
; ®

¯0

´
;

is decreasing in ¾2
u and increasing in k; 0 < ®¯0

¾2
¯ +¯2

0
< limk!1 x¤ < ®

¯0
If

®=¯0 < 0; x¤ lies in the interval
³

®
¯0

; ®¯0
¾2

¯ +¯2
0

´
; is increasing in ¾2

u and decreas-

ing in k; 0 > ®¯0
¾2

¯+¯2
0

> limk!1 x¤ > ®
¯0

. In either case

lim
k!0

x¤ = lim
¾2

u!1
x¤ =

®¯0

¾2
¯ + ¯2

0

and
lim

¾2
¯ !0

x¤ =
®
¯0

:
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Figure 3: The expected loss function ELb =

E
n

1 ¡ exp
³
¡k (¯x + u ¡ ®)2

´o
= 1¡ 1q

1+2k(¾2
¯x2+¾2

u)
exp

µ
¡ k(¯0x¡®)2

1+2k(¾2
¯x2+¾2

u)

¶

with ¾2
¯ = ¾2

u = ® = ¯0 = 1; plotted as a function of the policy variable x for
di¤erent values of k:
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The optimal policy with multiplicative uncertainty and a quadratic loss func-
tion is x¤ = ®¯0

¾2
¯ +¯2

0
: This is a compromise between the most conservative policy

x¤ = 0; which eliminates the e¤ects of multiplicative uncertainty, and the policy
x¤ = ®

¯0
which would be optimal in the absence of multiplicative uncertainty

when ¾2
¯ = 0: Proposition 4 establishes that the optimal policy with a bell loss

function lies between the quadratic loss policy x¤ = ®¯0
¾2

¯+¯2
0

which is optimal
with multiplicative uncertainty, and the policy x¤ = ®

¯0
which would be opti-

mal in the absence of of multiplicative uncertainty. As k increases from zero
towards in…nity the optimal policy moves from ®¯0

¾2
¯ +¯2

0
towards ®

¯0
; but contrary

to our original intuition it is bounded away from ®
¯0

: Policy with a bell loss
function and multiplicative uncertainty is to some degree conservative, but less
so than with a quadratic loss function. Figure 3 illustrates this point, showing

the value of the expected loss 1 ¡ 1q
1+2k(¾2

¯ x2+¾2
u)

exp
µ

¡ k(¯0x¡®)2

1+2k(¾2
¯x2+¾2

u)

¶
; for

di¤erent values of x¤ and k; with ¾2
¯ = ¾2

u = ® = ¯0 = 1: The higher the value
of k the greater the loss for all values of x, and the higher the loss minimising
policy, which is, however, always less than than ®

¯0
= 1:

In summary, a bell loss function can, at one extreme, when k = 0, mimic a
quadratic loss function; not surprisingly, therefore, under these circumstances
the optimal policy under multiplicative uncertainty remains the same in both
cases. As k increases, the width of the convex range (of success) narrows. Since,
outside that range, one might as well be hung for a sheep as a lamb, so policy in
conditions of multiplicative uncertainty becomes more aggressive, less conserv-
ative, than under a quadratic loss function. We had, at one stage, thought that
as k became in…nitely large, i.e. that the region of success became restricted to
a point, that policy would just aim to hit that one point, ignoring multiplicative
uncertainty altogether. In practice, however, there is always su¢cient curvature
in the relationships to trade-o¤ some variance against some chance of hitting
the mean, i.e. the optimal policy is bounded away from ®=¯0:

6 Conclusion
We set out to compare policy making behaviour with a bell loss function and
a conventional quadratic loss function. The most important di¤erence is that
certainty equivalence no longer holds with a bell loss function, even with additive
uncertainty. In the two linear examples we studied behaviour with the policy
rules have the same linear functional form with both loss functions, but the
weights di¤er with the bell loss function and depend on variances. Brainard
uncertainty is much less tractable with a bell loss function; in even the simplest
case the optimal policy is characterised by a cubic equation. However we were
able to show that in this case a bell loss function and Brainard uncertainty
makes for conservative policy, although not as much so as with a quadratic loss
function.
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A Appendix.
A.1 Proof of Proposition 1
We are evaluating

E exp
³
¡k (x ¡ a)2

´
=

1p
2¼¾ 2

Z +1

¡1
exp

Ã
¡k (x ¡ a)2 ¡ (x ¡ ¹)2

2¾ 2

!
dx:

Expanding and then completing the square implies that

k (x ¡ a)2 +
(x ¡ ¹)2

2¾2

=
1

2¾2

£¡
1 + 2k¾2¢x2 ¡ 2

¡
¹ + 2ka¾2¢ x + ¹2 + 2k¾2a2¤

=
1

2¾2

"
¡
1 + 2k¾2¢

µ
x ¡ ¹ + 2ka¾2

1 + 2k¾2

¶2

+ ¹2 + 2k¾2a2 ¡
¡
¹ + 2ka¾2

¢2

1 + 2k¾2

#

=

" ¡
1 + 2k¾2

¢

2¾2

µ
x ¡ ¹ + 2ka¾2

1 + 2k¾2

¶2

+
k (¹ ¡ a)2

1 + 2k¾2

#

so

E exp
³
¡k (x ¡ a)2

´
=

1p
2¼¾2

exp

Ã
¡k (¹ ¡ a)2

1 + 2k¾2

! Z +1

¡1
exp

Ã
¡ (x ¡ b¹)2

2b¾2

!
dx

where b¹ = ¹+2ka¾2

1+2k¾2 and b¾ 2 = ¾2

1+2k¾2 : But as 1p
2¼b¾2 exp

³
¡ (x¡b¹)2

2b¾2

´
is a normal

density function

1p
2¼b¾2

Z +1

¡1
exp

Ã
¡ (x ¡ b¹)2

2b¾2

!
dx = 1:

Hence

E exp
³
¡k (x ¡ a)2

´
=

p
2¼b¾2

p
2¼¾2

exp

Ã
¡k (¹ ¡ a)2

1 + 2k¾2

!

=
1p

1 + 2k¾2
exp

Ã
¡k (¹ ¡ a)2

1 + 2k¾2

!
:

A.2 Proof of Proposition 2
We are seeking to solve the dynamic programming problem of minimising the
expectation of

Lq
t = Et

1X

¿=0

±¿
h
a (¼t+¿ ¡ ¼¤)2 + bx2

t+¿

i
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by choosing the interest rate it+¿ at dates t + ¿ when

xt = ¡¯ (it ¡ ¼t) + ut

and
¼t+1 = ®xt + ¼ t + et+1:

We conjecture that the value function is of the form v (¼t) = c (¼t ¡ ¼¤ )2 + d in
which case the Bellman equation is satis…ed if there are numbers c and d with
c ¸ 0 such that

c (¼t ¡ ¼¤ )2 + d

= min
it

E
h
a (¼t ¡ ¼¤)2 + bx2

t + ±
³
c (¼t+1 ¡ ¼¤)2 + d

´i

= min
it

E
h
a (¼t ¡ ¼¤)2 + bx2

t + ±
³
c (®xt + ¼t ¡ ¼¤ + et+1)

2 + d
´i

= min
it

E
h
a (¼t ¡ ¼¤)2 +

¡
b + ±c®2¢ x2

t + 2®±cxt (¼t ¡ ¼¤) + ±c (¼t ¡ ¼¤)2 + ±c¾2
e + ±d

i

= min
it

h¡
b + ±c®2¢³

¯2 (it ¡ ¼t)2 + ¾2
u

´
¡ 2®±c¯ (it ¡ ¼t) (¼t ¡ ¼¤)

i

+a (¼t ¡ ¼¤)2 + ±c (¼t ¡ ¼¤)2 + ±c¾2
e + ±d:

Di¤erentiating with respect to it to get the minimum implies that the optimal
policy satis…es

it = ¼t + mq (¼t ¡ ¼¤) (A1)

where
mq =

®±c
¯ (b + ±c®2)

and

c (¼ t ¡ ¼¤ )2 + d

= ¡ ®2±2c2

(b + ±c®2)
(¼t ¡ ¼¤)2 + a (¼t ¡ ¼¤)2 + ±c (¼t ¡ ¼¤)2

+
¡
b + ±c®2

¢
¾2

u + ±c¾2
e + ±d:

Our conjecture holds and the Bellman equation is satis…ed if left hand and right
hand sides of this expression are the same function of ¼t, that is provided the
coe¢cients of (¼t ¡ ¼¤)2 are the same so

c = a ¡ ®2±2c2

(b + ±c®2)
+ ±c

or equivalently

c = a +
b±c

(b + ±c®2)
(A2)

and
d =

¡
b + ±c®2

¢
¾2

u + ±c¾2
e + ±d:
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or equivalently

d =

¡
b + ±c®2

¢
¾2

u + ±c¾2
e

1 ¡ ±
:

Equation A2 can be written as

f q (a; b; c) = (c ¡ a)
¡
b + ±c®2¢ ¡ b±c = 0:

Considering f q (a;b; c) as a function of c it is quadratic with a positive coe¢cient
on c2 whilst f q (a; b; 0) = ¡ab < 0 if a and b are both positive. Then there is
a unique positive root cq and @f q=@c > 0 when c = cq : We have indeed got a
solution to the Bellman equation. The optimal policy is given by A1 where

mq =
®±cq

¯ (b + ±cq®2)
(A3)

and cq is the unique positive root of (c ¡ a)
¡
b + ±c®2

¢ ¡ b±c = 0:
As f q (a; b;c) is homogeneous of degree 2 in (a; b; c) if f q (a; b; c) = 0 then

f q (¸a; ¸b; ¸c) = 0; so the root cq is homogeneous of degree 1 in (a;b) : Then
equation A3 implies that the coe¢cient mq of the policy response of the real
interest rate to deviations of in‡ation from its target value is homogeneous of
degree 0 in (a; b) ; only the ratio of the weights a=b matters to policy. When
a = 0 so no weight is given to in‡ation c = 0 solves f q (a; b; c) = 0, mq = 0;
the optimal policy is to set it = ¼t so the real interest rate is zero which
minimises the output gap. When b = 0 no weight is given to output, the optimal
policy response has mq = 1

®¯ ; so it ¡ ¼t = 1
®¯ (¼t ¡ ¼¤) which makes expected

in‡ation at t + 1 equal to the target ¼¤: We now show that a=b increases from
zero to in…nity the coe¢cient mq increases, interest rate policy becomes more
aggressive. As only the ratio a=b matters this can be done by showing that mq

is an increasing function of a: As @cq=@a = ¡ (@f q=@a) = (@fq=@c) at c = cq ;
and we have already argued that @f q=@c > 0 when c = cq; it is enough to show
that @f q=@a = ¡ ¡

b + ±c®2¢ < 0:

A.3 Proof of Proposition 3
We are seeking to solve the dynamic programming problem of minimising the
expectation of

EtLb
t = 1 ¡ Et exp

Ã
¡

1X

¿=0

±¿
h
a (¼ t+¿ ¡ ¼¤)2 + bx2

t+¿

i!

by choosing the interest rate it+¿ at dates t + ¿ when

xt = ¡¯ (it ¡ ¼t) + ut

and
¼t+1 = ®xt + ¼ t + et+1:
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We conjecture that the value function is of the form v (¼t) = 1¡exp
³
¡c (¼t ¡ ¼¤)2 ¡ d

´

in which case the Bellman equation is satis…ed if

exp
³
¡c (¼t ¡ ¼¤)2 ¡ d

´

= max
it

E
h
exp

³
¡a (¼t ¡ ¼¤)2 ¡ bx2

t ¡ ±
³
c (¼t+1 ¡ ¼¤)2 + d

´´i

= max
it

E
h
exp

³
¡a (¼t ¡ ¼¤)2 ¡ bx2

t ¡ ±c (®xt + ¼t ¡ ¼ ¤ + et+1)2 ¡ ±d
´i

which from Proposition 1 is equal to

max
it

1p
1 + 2±c¾2

e

E [exp (¡Z)]

where
Z = a (¼t ¡ ¼¤ )2 + bx2

t + b±c (®xt + ¼t ¡ ¼¤)2 + ±d

and
b± =

±
1 + 2±c¾2

e
: (A4)

Since xt = ¡¯ (it ¡ ¼t) + ut the expression Z can be written as

Z = a (¼t ¡ ¼¤)2 +
³
b + b±c®2

´
x2

t + 2®b±cxt (¼t ¡ ¼¤) + b±c (¼t ¡ ¼¤)2 + ±d

=
³
b + b±c®2

´
0
@¡¯ (it ¡ ¼t) + ut +

®b±c (¼t ¡ ¼¤ )³
b + b±c®2

´

1
A

2

¡ ®2b±2
c2 (¼t ¡ ¼¤)2³
b + b±c®2

´

+a (¼t ¡ ¼¤)2 + b±c (¼t ¡ ¼¤)2 + ±d:

From Proposition 1

E exp (¡Z) =
1r

1 + 2
³
b +b±c®2

´
¾2

u

exp (¡Y )

where

Y =

³
b + b±c®2

´

1 + 2
³
b + b±c®2

´
¾2

u

0
@¡¯ (it ¡ ¼t) +

®b±c (¼t ¡ ¼¤)³
b + b±c®2

´

1
A

2

¡®2b±2
c2 (¼t ¡ ¼¤)2

³
b + b±c®2

´ + a (¼t ¡ ¼¤)2 + b±c (¼t ¡ ¼¤)2 + ±d:

The optimal interest rate policy minimises Y by setting

it = ¼t + mb (¼t ¡ ¼ ¤) (A5)
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where

mb =
®b±c

¯
³
b + b±c®2

´

implying that

Y = ¡®2b±2
c2 (¼ t ¡ ¼¤ )2³
b + b±c®2

´ + a (¼t ¡ ¼¤)2 + b±c (¼t ¡ ¼¤)2 + ±d

so the Bellman equation is satis…ed if

exp
³
¡c (¼t ¡ ¼¤)2 ¡ d

´

= max
it

1p
1 + 2±c¾ 2

e
E [exp (¡Z)]

=
1r³

1 + 2
³
b + b±c®2

´
¾2

u

´
(1 + 2±c¾2

e)
exp (¡Y ) :

Equating coe¢cients of (¼t ¡ ¼¤)2 implies

c = a ¡ ®2b±2
c2

³
b + b±c®2

´ + b±c (A6)

or equivalently

c = a +
bb±c³

b + b±c®2
´

whilst equating the other terms

exp (¡d) =
1r³

1 + 2
³
b + b±c®2

´
¾2

u

´
(1 + 2±c¾2

e)
exp (¡±d) : (A7)

Using A4 equation A2 can be written as

c = a +
bb±c³

b + cb±®2
´ = a +

b±c
b (1 + 2±c¾ 2

e) + c±®2

or
f (a; b; c) = (c ¡ a)

¡
b
¡
1 + 2±c¾2

e
¢

+ ±c®2¢ ¡ b±c = 0:

Considered as a quadratic function of c has a positive coe¢cient on c2 whilst if
c = 0 f = ¡ab < 0 if a and b are both positive, in which case there is a unique
positive root cb. Equations A4 and A7 imply

d =
1

2 (1 ¡ ±)

·
ln

µ
1 + 2

µ
b +

±c®2

1 + 2±c¾2
e

¶
¾2

e

¶
+ ln

¡
1 + 2±c¾2

e
¢¸
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Our conjecture is satis…ed, we have a solution to the Bellman equation. From
A1 the optimal policy at t can be written as

it = ¼t + mb (¼t ¡ ¼ ¤)

where

mb =
®±cb

¯ (b (1 + 2±cb¾2
e) + ±cb®2)

(A8)

and cb is the unique positive root of (c ¡ a)
¡
b
¡
1 + 2±c¾2

e
¢

+ ±c®2
¢

¡ b±c = 0:
The optimal policy minimises the expectation of

exp
h
¡

³
a (¼t ¡ ¼¤)2 + bx2

t + ±cb (¼t+1 ¡ ¼¤)2
´i

:

When a = 0 so no weight is given to in‡ation c = 0 solves f b (a; b; c) = 0,
mb = 0; the optimal policy is to set it = ¼t so the real interest rate is zero
which minimises the output gap. When b = 0 no weight is given to output, the
optimal policy response has mb = 1

®¯ ; so it ¡ ¼t = 1
®¯ (¼t ¡ ¼¤) which makes

expected in‡ation at t +1 equal to the target ¼¤: In both these polar cases the
optimal policy is the same with the bell and the quadratic loss functions. For
all other cases the policy di¤ers.

The last step in the proof is establishing that less weight is given to the future
with bell loss function, that is cb < cq and mb < mq . Given the de…nition of
cq as the positive root of

fq (c) = (c ¡ a)
¡
b + ±c®2¢ ¡ b±c = 0

cq ¡ a > 0 and
(cq ¡ a)

¡
b + ±cq®2¢ ¡ b±cq = 0

so subtracting this expression from fb (cq) = (cq ¡ a)
¡
b
¡
1 + 2±cq¾2

e
¢

+ ±cq®2
¢
¡

b±cq implies that
fb (cq) = 2±cq¾2

e (cq ¡ a) > 0:

As fb (c) is a quadratic, with fb (0) < 0 and a positive coe¢cient on c2 this
implies that cq > cb : From A8

mb =
®±cb

¯ (b (1 + 2±cb¾2
e) + ±cb®2)

<
®±cb

¯ (b + ±cb®2)
<

®±cq

¯ (b + ±cq®2)
= mq

since ®±c
¯(b+±c®2) is an increasing function of c: Hence mb < mq interest rate

policy with a bell loss function is less aggressive than with the corresponding
quadratic loss function.

A.4 Proof of Proposition 4
If ®¯0 is positive and x is negative replacing x by ¡x does not change x2

and increases (¯ 0x ¡ ®)2 so increases the expected loss, thus the optimal x is
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non-negative A similar argument implies that if ®¯0 < 0 the optimal x is
non-positive: Assume temporarily that ®¯ 0 is positive. From equation 8

ELb = 1 ¡ 1r
1 + 2k

³
¾2

¯ x2 + ¾2
u

´ exp

0
@¡ k (¯0x ¡ ®)2

1 + 2k
³
¾2

¯x2 + ¾2
u

´

1
A :

@ELb

@x
=

2k
³
1 + 2k

³
x2¾2

¯ + ¾2
u

´´5=2
exp

0
@¡ k (¯0x ¡ ®)2

1 + 2k
³
x2¾2

¯ + ¾2
u

´

1
A f (x) (A9)

where

f (x) =
¡
1 + 2k¾2

u + 2k¾2
¯x2¢ ¡

x
¡
¾2

¯ + ¯ 2
0
¢ ¡ ®¯0

¢¡2xk (¯0x ¡ ®)2 ¾2
¯ : (A10)

The …rst two terms on the right hand side of A9 are strictly positive, so the
stationary points are the roots of the cubic function f (x) : When x = ®¯0

¾2
¯+¯2

0

f (x) is negative, and when x = ®
¯0

f (x) is positive, so by continuity there is at

least one positive root in the interval
³

®¯0
¾2

¯ +¯2
0
; ®

¯0

´
: Let bx be the largest positive

root. Expanding f (x) gives

f (x) = ¡®¯ 0 ¡ 2k¾2
u®¯ 0 + x

¡
¾2

¯ + ¯2
0 + 2k¾2

u¾2
¯ + 2k¾2

u¯2
0 ¡ 2k¾2

¯ ®2¢

+2k¾2
¯x2®¯0 + 2k¾4

¯x3: (A11)

implying that
@2f (x)

@x2 = 4k¾2
¯®¯0 + 12k¾4

¯x

which is positive for positive x: Hence f (x) is a convex function for positive x:
From 9 f (0) = ¡®¯0 which is by our temporary assumption negative. For any
x in the interval (0; bx) convexity of f implies that

f (x) = f
³x

bx bx +
³
1 ¡ x

bx
´

0
´

· x
bxf (bx) +

³
1 ¡ x

bx
´

f (0)

=
x
bx0 +

³
1 ¡ x

bx
´

f (0) < 0

so f (x) cannot have any roots in the interval (0; bx) : As we assumed that bx
is the largest positive roots, and there cannot be any smaller positive roots,
bx must be the unique positive root of f (x) = 0: We have argued that given
our temporary assumption that ®¯ 0 is positive, the optimal policy is positive;
we have also argued that there is a root in the interval

³
®¯0

¾2
¯+¯2

0
; ®

¯0

´
; so this

root must be the optimal policy. Use notation x¤ for the optimal policy. As
f

³
®¯0

¾2
¯+¯2

0

´
< 0; and f

³
®

¯0

´
> 0; fx (x¤) > 0: Thus as

@x¤

@k
= ¡fk (x¤)

fx (x¤)
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@x¤

@k has the opposite sign to fk (x¤) : From A10

f (x) =
¡
x

¡
¾2

¯ + ¯2
0
¢

¡ ®¯0
¢

+ 2kg (x) (A12)

where

g (x) =
¡
¾2

u + ¾2
¯x2

¢ ¡
x

¡
¾2

¯ + ¯ 2
0

¢
¡ ®¯ 0

¢
¡ x (¯0x ¡ ®)2 ¾2

¯ : (A13)

As x¤ > ®¯0
¾2

¯ +¯2
0

the term x¤
³
¾2

¯ + ¯2
0

´
¡ ®¯ > 0; thus from A12, as f (x¤) =

0; g (x¤) < 0: But A12 and A13 also imply that fk (x¤) = 2g (x¤) : Thus
fk (x¤) < 0, and so @x¤

@ k > 0; the optimal policy is an increasing function of
k: A similar argument implies that @x¤

@ ¾2
¯

is opposite in sign to f¾2 (x¤ ) : From

A12 and A13 f¾2 (x¤) =
³
x¤

³
¾2

¯ + ¯2
0

´
¡ ®¯

´
> 0; so the optimal policy is a

decreasing function of ¾2
¯ :

To get the limits as k tends to 0; note that the …rst order condition with
k = 0 is x

³
¾2

¯ + ¯ 2
0

´
¡ ®¯ = 0: As we have shown that the optimal policy

x¤ is increasing in k and bounded above by ®=¯0, x¤ must tend to a …nite
limit as k tends to in…nity. At this limit the …rst order condition becomes
g (x) = 0: Note from A13 that g (®=¯0) > 0; so the upper limit is strictly less
than ®=¯0: Finally note that as ¾2

¯ tends to zero, so the Brainard uncertainty

disappears, the interval
³

®¯0
¾2

¯ +¯2
0
; ®

¯0

´
and thus the optimal policy collapses to

the point ®=¯0:
Now suppose that contrary to our temporary assumption ®¯ 0: As (¯ 0x ¡ ®)2 =

(¯0 (¡x) ¡ (¡®))2 and (¡x)2 = x2; we can consider ¡x as the policy variable,
and note that ¡®¯0 is positive. Then everything we have proved about x and ®
applies to ¡x and ¡®; in particular the limiting arguments hold, and increasing
functions become decreasing functions.
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