
Skewness and Kurtosis Implied by Option
Prices: A Second Comment¤

Emmanuel Jurczenkoy Bertrand Mailletz Bogdan Negreax

- July 2002 -

Abstract

Several authors have proposed series expansion methods to price op-
tions when the risk-neutral density is asymmetric and leptokurtic. Among
these, Corrado and Su (1996) provide an intuitive pricing formula based
on a Gram-Charlier Type A series expansion. However, their formula con-
tains a typographic error that can be signi…cant. Brown and Robinson
(2002) correct their pricing formula and provide an example of economic
signi…cance under plausible market conditions. The purpose of this com-
ment is to slightly modify their pricing formula to provide consistency
with a martingale restriction. We also compare the sensitivities of op-
tion prices to shifts in skewness and kurtosis using parameter values from
Corrado- Su (1996) and Brown-Robinson (2002), and market data from
the French options market. We show that di¤erences between the origi-
nal, corrected, and our modi…ed versions of the Corrado-Su (1996) original
model are minor on the whole sample, but could be economically signif-
icant in speci…c cases, namely for long maturity and far-from-the-money
options when markets are turbulent.

Keywords: Option Pricing Models, Skewness, Kurtosis.
JEL Classi…cation: G.10, G.12, G.13.

¤We a r e g ra t e fu l t o C h a r l e s C o r ra d o a n d M ika ë l R o ck in g e r fo r h e lp a n d e n c o u r a g em e nt in p r e p a r in g t h i s w o r k .

T h a n k s a ls o t o T h ie r r y C h a u v e a u a n d T h ie r r y M ich e l fo r h e lp fu l r em a rk s . T h i s w o r k w a s c om p le t e d w h i l e t h e

s e c o n d a u th o r w a s a V i s it in g R e s e a r ch e r a t th e L SE -FM G . T h e u s u a l d i s c la im e r s a p p ly.
yE SC P -EA P, A .A .A d v is o r s (A BN Am ro G r o u p ) a n d T EAM /C N R S - U n iv e r s i ty P a r i s -1 (P a n th é o n -S o rb o n n e ) .

E -m a i l : e ju r c z e n k o@ a o l .c om .
zT EAM /C N R S - U n iv e r s i ty P a r is - 1 (P a n th é o n -S o rb o n n e ) , E SC P -E A P an d A .A .A d v is o r s (A B N Am ro G ro u p ) .

C o r r e s p o n d in g a u th o r : D r . B . B . M a i l le t , T EAM /C N R S , M SE , 1 0 6 B d d e l ’H ô p i t a l F - 7 5 6 4 7 P a r i s C ed ex 1 3 . Te l :

+ 3 3 1 4 4 0 7 8 2 6 9 / 7 0 ( fa c s im il e ) . E -m a il : bm a i l le t@ u n iv -p a r i s1 . f r .
xT EAM /C N R S - U n iv e r s i ty P a r i s - 1 (P a n t h é o n -S o r b o n n e ) . E -m a il : n e g r e a@ u n iv -p a r is 1 . f r .

1



Skewness and Kurtosis Implied by Option Prices: A

Second Comment

- July 2002 -

Abstract

Several authors have proposed series expansion methods to price options when the

risk-neutral density is asymmetric and leptokurtic. Among these, Corrado and Su

(1996) provide an intuitive pricing formula based on a Gram-Charlier Type A series

expansion. However, their formula contains a typographic error that can be signi…cant.

Brown and Robinson (2002) correct their pricing formula and provide an example of

economic signi…cance under plausible market conditions. The purpose of this comment

is to slightly modify their pricing formula to provide consistency with a martingale

restriction. We also compare the sensitivities of option prices to shifts in skewness

and kurtosis using parameter values from Corrado- Su (1996) and Brown-Robinson

(2002), and market data from the French options market. We show that di¤erences

between the original, corrected, and our modi…ed versions of the Corrado-Su (1996)

original model are minor on the whole sample, but could be economically signi…cant in

speci…c cases, namely for long maturity and far-from-the-money options when markets

are turbulent.

Keywords: Option Pricing Models, Skewness, Kurtosis.

JEL Classi…cation: G.10, G.12, G.13.

1



Skewness and Kurtosis Implied by Option Prices:

A Second Comment

1 Introduction

The main goal of this note is to correct a common misuse of the martingale restriction within

the context of the Corrado-Su (1996) model. We also evaluate some approximations made in

the literature in order to obtain tractable pricing and implied risk-neutral density formulae.

To correct the well-documented Black and Scholes (1973) option pricing model biases,

several authors have proposed series expansions of a given probability density in order to

approximate the “true” underlying risk-neutral implied return distribution. Under this ap-

proach, skewness and kurtosis may have signi…cant impact on option prices and correction

terms in the Black-Scholes formula might lead to a plausible explanation of strike price and

time-to-maturity biases.

Following the seminal paper by Jarrow and Rudd (1982) - who appear to be the …rst

to use a Gram-Charlier series expansion of the lognormal density function - Corrado and

Su (1996) …nd an approximate implied density function by using a Gram-Charlier type A

series expansion of the (normal) density function of underlying log-returns. The option price

is then an intuitive function of the third and fourth moments of the risk-neutral log-return

distribution. The …rst two moments of the approximating distribution remain the same as

that of the normal distribution, but third and fourth moments are introduced as higher

order terms of the density expansion. Brown and Robinson (2002) correct two typographic

errors in Corrado and Su (1996) and provide examples of how these errors can have economic

signi…cance.

This note is organized as follows. Section 2 starts with the martingale restriction to be
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used in a Multi-moment Approximate Option Pricing Models framework. Section 3 provides

the di¤erent expressions of option price sensitivities to departures from Gaussianity. Section

4 evaluates the di¤erent expressions of sensitivities of option prices corresponding to the

original, corrected, and modi…ed Corrado-Su (1996) models. The study case parameter

values provided by Corrado and Su (1996) and Brown and Robinson (2002) are presented

and, as an illustration, densities of pricing errors are estimated on the French CAC 40 options

market. Section 5 summarizes and concludes this note.

2 Option Pricing and the Martingale Restriction

Consider an European call option written on an underlying asset whose price at time t is

denoted St, with a strike price K, a maturity ¿ and a date of expiration T . Under the

assumptions of a complete market with no-arbitrage opportunity, and further assuming that

the risk-free rate of interest, denoted by r, is constant, the price of the option at time t is

the present value of the expected payo¤ at expiry, given by the following pricing kernel (see

Harrison and Kreps, 1979):

C = e¡r¿EQ [Max (ST ¡K; 0)]

= e¡r¿
Z +1

ST=K

(ST ¡K) f (ST ) dST (1)

where EQ [:] is the expectation under the risk-neutral probability measure, ST is the under-

lying asset terminal price and f (:) is the risk-neutral density.

Let the ¿ -period log-return of the underlying asset log (ST=St) have a conditional mean

¹¿ and a standard deviation ¾
p
¿ , then, introducing the standardized variable z:

z =
log (ST=St)¡ ¹¿

¾
p
¿

(2)
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the fair price of the call becomes:

C = e¡r¿
Z +1

z=
log(K=St)¡¹¿

¾
p
¿

³
Ste

¹¿+z¾
p
¿ ¡K

´
f (z) dz (3)

Under the no-arbitrage condition, the expected price under the correct probability mea-

sure should be equal to the current asset price compounded at the risk-free rate. Accordingly,

the probability measure to be considered must satisfy the so-called martingale restriction (see

Longsta¤, 1995):

EQ [ST ] = e
r¿St (4)

and then the risk-neutral density f (z) must respect:

¹¿ = r¿ ¡ ln
·Z +1

¡1
e¹¿+z¾

p
¿f (z) dz

¸
(5)

The choice of the density representing the “true” underlying risk-neutral density leads to

di¤erent expressions for the mean of the log-return. In particular, when assuming a log-

normal distribution for the terminal price of the asset, as in Black and Scholes (1973), the

“traditional” martingale restriction is (see Baxter and Rennie, 1996, p.85):

¹¿ = r¿ ¡ 1
2
¾2¿ (6)

If instead a statistical series expansion of the density related to the continuously com-

pounded return (as in Corrado and Su, 1996) is used, the martingale restriction implies now

(see for instance1, Kochard, 1999, Jurczenko et al., 2002):

¹¿ = r¿ ¡ 1
2
¾2¿ ¡ ln

·
1 +

°1 (f)

3!
¾3¿ 3=2 +

°2 (f)

4!
¾4¿2

¸
(7)

where f is the “true” density and °1 (:) and °2 (:) are the Fisher parameters for skewness

and kurtosis:

°1 (:) =
¹3 (:)

¹3=22 (:)
and °2 (:) =

¹4 (:)

¹22 (:)
¡ 3

1See also Brenner and Eom (1997) in the context of option pricing with Laguerre polynomial series.
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with ¹i (:) the corresponding centered moments of order i, for i = [2; 3; 4].

The di¤erence between the two martingale restrictions - the traditional (6) and the Gram-

Charlier induced one (7) - depends on terms such as °1 (:), °2 (:), ¾
3¿3=2 and ¾4¿2:

The purpose of this note is to evaluate the impact of these terms on the pricing of

options. Indeed, the implicit martingale restriction used by Corrado-Su (1996) is mispeci…ed.

Nevertheless, as underlined by Brown and Robinson (2002), the magnitude of the di¤erences

in parameters and option prices is mainly an empirical question. The following section

reviews the di¤erent versions of Corrado-Su (1996) original model and investigate these

di¤erences.

3 The Di¤erent Versions of the Corrado-Su (1996) For-

mula

From the seminal approach of Jarrow and Rudd (1982), Corrado and Su (1996) propose a

new option pricing formula that is easily implemented. Using a Gram-Charlier type A series

expansion, they begin their option price expression with the Black-Scholes formula, and then

add two terms related to a skewed and leptokurtic risk-neutral density.

As shown by Brown and Robinson (2002), the original Corrado-Su (1996) formula con-

tains an error in the term corresponding to the sensitivity of the option price to the excess

skewness of the implied risk-neutral density. In addition, we provide a correction to the

martingale restriction implicitly assumed by these authors to yield a complete option price

expression. Finally, we note that di¤erences among previous formulae involve terms of a

“high” degree in volatility and time to maturity, which motivates us, following Backus et al.

(1997), to give the option price expression neglecting these terms.
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3.1 The Original Corrado-Su (1996) Formula

To allow for moments of higher order in the risk-neutral log-return distribution, Corrado

and Su (1996) …nd an approximate risk-neutral probability density function using a Gram-

Charlier expansion of the normal density function. The Black and Scholes (1973) model is

then adjusted in an intuitive way by introducing third and fourth moments as higher order

terms of the expansion. For practical reasons, the series is truncated after the fourth term,

noting that the …rst four moments of the underlying distribution should capture most of the

e¤ect on option prices (see Jarrow and Rudd, 1982).

Using previous notation and following Corrado and Su (1996), the price of the European

call option CCS can be written as (see Corrado and Su, 1996):

CCS = CBS + °1 (f) Q3 + °2 (f) Q4 (8)

with: 8><>: Q3 =
1
3!
St ¾

p
¿ [P3 (d)' (d)¡ ¾2¿ ©(d)]

Q4 =
1
4!
St ¾

p
¿
£
P4 (d) ' (d) + ¾

3¿3=2©(d)
¤

and: 8><>: P3 (y) = 2¾
p
¿ ¡ y

P4 (y) = y
2 ¡ 3y¾p¿ + 3 ¾2¿ ¡ 1

where ' (:) and ©(:) are respectively the standard normal density and the standard normal

distribution, P3 (:) and P4 (:) are two polynomial, °1 (f) and °2 (f) are the Fisher parame-

ters (de…ned previously), while CBS is the Black-Scholes (1973) price evaluated at d - the

“standardized moneyness” - that is:

d =
¡
¾
p
¿
¢¡1 £

log
¡
St=Ke

¡r¿¢+ ¾2¿=2¤
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Using S&P 500 index options traded on the Chicago Board Option Exchange (CBOE),

Corrado and Su (1996) show that expression (8) improves signi…cantly the in-sample option

pricing accuracy of the Black-Scholes (1973) model. Corrado and Su (1997) also demonstrate

improvements using their formula on an out-of-sample basis, from actively traded individual

equity options on the Chicago Board Option Exchange (CBOE).

3.2 The Corrected Corrado-Su (1996) Formula

Noting that the de…nition of an Hermite Polynomial was incomplete in Corrado-Su (1996)2,

Brown and Robinson (1999 and 2002) correct the previous formula that then becomes (using

previous notation):

C
0
CS = CBS + °1 (f) Q

0
3 + °2 (f) Q4 (9)

with:

Q
0
3 =

1

3!
St ¾

p
¿
£
P3 (d)' (d) + ¾

2¿ ©(d)
¤

The correction to be done is proportional to ¾3¿3=2 (see below) and should be very small

on real data as underlined by Backus et al. (1997). Nevertheless, some speci…c option prices

can be truly biased as shown by Brown and Robinson (2002) when calculated using the

original Corrado-Su (1996) formula.

2Hermite Polynomials should read:

Hi (x) = (¡1)n ' (x)¡1 di' (x) =dxi

instead of:

Hi (x) = ' (x)
¡1
di' (x) =dxi

in the original Corrado-Su (1996) model.
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Using SPI index future options traded on the Sydney Futures Exchange (SFE) and the

Black-Scholes (1973) model as a benchmark, Brown and Robinson (1999) show that ex-

pression (9) seems to improve in-sample option pricing accuracy signi…cantly. Moreover,

Brown and Robinson (2002) show the correction to the Corrado and Su (1996) formula is

economically signi…cant for some options.

3.3 The Modi…ed Corrado-Su (1996) Formula

When using the “true” martingale restriction recalled in Section 2, the European Call price

…nally is (see for instance Kochard, 1999, Jurczenko et al., 2002 and Appendix 1 at the

referee’s attention):

C
¤
CS = C

¤
BS + °1 (f) Q

¤
3 + °2 (f) Q

¤
4 (10)

with (using previous notation):8><>: Q
¤
3 = [3! (1 + !)]

¡1
St ¾

p
¿P3 (d

¤)' (d¤)

Q
¤
4 = [4! (1 + !)]

¡1
St ¾

p
¿P4 (d

¤)' (d¤)

and: 8><>: d¤ = (¾
p
¿ )
¡1 £

log (St=Ke
¡r¿ ) + 1

2
¾2¿ ¡ ln [1 + !]¤

! = °1(f)
3!
¾3¿3=2 + °2(f)

4!
¾4¿ 2

where C¤BS is the Black and Scholes (1973) call price evaluated at a “corrected” standardized

moneyness level denoted d¤, and ! a constant. Note that parameters Q
¤
3 and Q

¤
4, no longer

represent the true marginal e¤ects of the non normal log-return skewness and kurtosis on the

option price, since terms depending on kurtosis (skewness) appear in Q
¤
3 (Q

¤
4). Nevertheless,

when realistic values are considered, the modi…ed parameters are close - even if di¤erent -

from the corrected Q
0
3 and Q4 sensitivities.
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Using S&P 500 index futures options traded on the Chicago Mercantile Exchange (CME)

and the Black-Scholes (1973) model as a benchmark, Kochard (1999) also obtains a better

…t from formula3 (10) on an in- and out-of-sample basis.

3.4 The Simpli…ed Corrado-Su (1996) Formula

Arguing that some terms are numerically small in real markets, Backus et al. (1997) suggest

that they can be dropped from the pricing formula. Simplifying formula (10) by deleting

terms involving ¾3¿ 3=2 and ¾4¿ 2 leads to the following simpli…ed expression (using previous

notation):

C
¤¤
CS = CBS + °1 (f) Q

¤¤

3 + °2 (f) Q
¤¤

4 (11)

with: 8><>: Q
¤¤
3 =

1
3!
St ¾

p
¿ P3 (d) ' (d)

Q
¤¤
4 =

1
4!
St ¾

p
¿ P5 (d) ' (d)

and:

P5 (y) = y
2 ¡ 3y¾p¿ ¡ 1

Note that when neglecting these terms in the …nal price expression, the error of Corrado-

Su (1996) corrected by Brown and Robinson (2002) has no importance at all. Further

simulations done by Backus et al. (1997) show that the simpli…ed Corrado-Su (1997) formula

constitutes a good approximation of the option price when the underlying asset follows a

jump-di¤usion process.

3Adopting a very similar approach, Kochard (1999) indeed obtains an equivalent formula to equation

(10).
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4 Corrado-Su (1996) Model Sensitivity Analysis

Extending the Brown and Robinson (2002) static analysis, the next sub-section gives ex-

pressions of sensitivity and option price di¤erences related to the original Corrado-Su (1996)

model, followed by an illustration and an estimation of such biases.

4.1 Skewness and Kurtosis Sensitivities, Related Option Price and

Hedging Di¤erences

The various di¤erences in skewness and kurtosis sensitivities (denoted
:

Q) thus read (using

previous notation):

8>>>>>>>>>>><>>>>>>>>>>>:

:

Q
0

3 =
¯̄
Q3 ¡Q0

3

¯̄
= 2®

:

Q
¤

3 =
¯̄
Q

¤
3 ¡Q0

3

¯̄
=
¯̄
St¾
p
¿
£
k
¤
P3
¡
d
¤¢
'
¡
d
¤¢¡ kP3 (d)' (d)¤¡ ®¯̄

:

Q
¤¤

3 =
¯̄
Q

¤¤
3 ¡Q0

3

¯̄
= ®

:

Q
¤

4 =
¯̄
Q

¤
4 ¡Q4

¯̄
=
¯̄
St¾
p
¿
£
l
¤
P4
¡
d
¤¢
'
¡
d
¤¢¡ lP4 (d)' (d)¤¡ ¯ ¯̄

:

Q
¤¤

4 =
¯̄
Q

¤¤
4 ¡Q4

¯̄
= jSt ¾

p
¿ l (1¡ 3 ¾2¿ )' (d)¡ ¯j

(12)

with [®; ¯] 2 (IR+)2 and: 8>>>>>>>>>>><>>>>>>>>>>>:

® = 1
3!
¾3¿ 3=2St©(d)

¯ = 1
4!
¾4¿ 2St ©(d)

k = 1
3!
and k

¤
= 1

3!(1+!)

l = 1
4!
and l

¤
= 1

4!(1+!)

! = °1(f)
3!
¾3¿ 3=2 + °2(f)

4!
¾4¿2

Following Brown and Robinson (2002), one can say that variables of interest ® and ¯ can
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be roughly bounded for short-term options4 by:8><>: 0 · ® · :06£ ¾3St
0 · ¯ · :01£ ¾4St

(13)

If we now evaluate induced di¤erences in option prices (denoted by
:

C), one can write

that (using previous notation):8>>>>>>>>>>>><>>>>>>>>>>>>:

:

C
0

CS =
¯̄
CCS ¡ C 0

CS

¯̄
= j°1 (f) 2®j

:

C
¤

CS =
¯̄̄
C

¤
CS ¡ C

0
CS

¯̄̄
=
¯̄
C¤BS ¡ CBS + °1 (f)

©
St¾
p
¿
£
k
¤
P3
¡
d
¤¢
'
¡
d
¤¢¡ kP3 (d)' (d)¤¡ ®ª

+°2 (f)
©
St¾
p
¿
£
l
¤
P4
¡
d
¤¢
'
¡
d
¤¢¡ lP4 (d)' (d)¤¡ ¯ª¯̄

:

C
¤¤

CS =
¯̄̄
C

¤¤
CS ¡ C

0
CS

¯̄̄
= j°1 (f) ®+ °2 (f) [St ¾

p
¿ l (1¡ 3¾2¿)' (d)¡ ¯]j

(14)

For hedging purposes, one might also highlight di¤erences in delta. Using the previous

formulae to derive the sensitivity of option prices to changes in underlying prices - for,

respectively, the original, corrected, modi…ed and simpli…ed models - leads to (with previous

notation):8>>>>>>>><>>>>>>>>:

¢C
CS = ©(d) + ' (d)

n
°1 (f) k

h
P5 (d)¡ ¾2¿

St

i
+ °2 (f) l

h
P6 (d) +

¾3¿3=2

St

io
¢C
CS0 = ©(d) + ' (d)

n
°1 (f) k

h
P5 (d) +

¾2¿
St

i
+ °2 (f) l

h
P6 (d) +

¾3¿3=2

St

io
¢C
CS¤ = ©(d

¤) + ' (d¤)
n

1
¾
p
¿

h
1¡ 1

(1+!)

i
+ °1 (f) k

¤P6 (d¤) + °2 (f) l
¤P7 (d¤)

o
¢C
CS¤¤ = ©(d) + ' (d) [°1 (f) kP6 (d) + °2 (f) lP8 (d)]

(15)

with the following polynomials:8>>>><>>>>:
P6 (y) = y

2 ¡ 3y¾p¿ + 2 ¾2¿ ¡ 1
P7 (y) = ¡y3 + 4y2¾p¿ + 3y (1¡ 2¾2¿) + 3¾3¿3=2 ¡ 4¾p¿
P8 (y) = ¡y3 + 4y2¾

p
¿ + 3y (1¡ ¾2¿ )¡ 4¾p¿

4Less than 6 month maturity options.
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Absolute di¤erences in delta, denoted by
:

¢, then read:

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

:

¢
C

CS0 =
¯̄
¢C
CS ¡¢C

CS0
¯̄
= 2°1 (f) k' (d)

¾2¿
St

:

¢
C

CS¤ =
¯̄
¢CCS¤ ¡¢CCS0

¯̄
= j©(d¤)¡©(d)
+ ' (d¤)

n
1

¾
p
¿

h
1¡ 1

(1+!)

i
+ °1 (f) k

¤P6 (d¤) + °2 (f) l
¤P7 (d¤)

o
¡' (d)

n
°1 (f) k

h
P5 (d) +

¾2¿
St

i
+ °2 (f) l

h
P6 (d) +

¾3¿3=2

St

io¯̄̄
:

¢
C

CS¤¤ =
¯̄
¢CCS¤¤ ¡¢C

CS0
¯̄

=
¯̄̄
' (d)

n
°1 (f) k

³
2¾2¿ ¡ ¾2¿

St

´
+ °2 (f) l

h
P9 (d)¡ ¾3¿3=2

St

io¯̄̄

(16)

with:

P9 (y) = ¡y3 + y2
¡
4¾
p
¿ ¡ 1¢+ 3y(1 + ¾p¿ ¡ ¾2¿)¡ 4¾p¿ ¡ 2¾2¿ + 1

Di¤erences in term of sensitivities to departures from Gaussianity, in terms of pricing

and hedging are clearly an empirical question. We now investigate the magnitude of these

di¤erences.

4.2 The Study Cases of Corrado and Su (1996 and 1997)

In Figure 1, using the same parameter values as Corrado and Su (1996) and Brown and

Robinson (2002), we reproduce the adjustment for skewness plotted in Figure I of Corrado

and Su (1996)5. We compute the various expressions of sensitivities of option price to excess

skewness - related to the original, corrected and our modi…ed Corrado-Su (1996) models -

for S0 = 100; ¾ = 15%; ¿ = 0:25, r = 4% and with K varying from 65 to 135.

The vertical axis measures the adjustments for options that are - on the horizontal axis -

from 35% in-the-money to 35% out-the-money, where moneyness is de…ned asM = (Ke¡r¿¡
5See Corrado and Su (1996), p.180 and Brown and Robinson (2002), p.9.

12



S0)= (Ke
¡r¿ ). In-the-money call options therefore have negative moneyness in this …gure.

Clearly, di¤erences in parameters are relatively low - as shown on Figure 2, where absolute

di¤erences in option price sensitivity to skewness are reproduced, and magnitudes of the

absolute di¤erences in sensitivity vary with the moneyness of the option.

- Please insert Figures 1 and 2 somewhere here -

For example, when skewness is equal to -.7 (and kurtosis is 3.53)6, the absolute size

of di¤erences for the coe¢cient of skewness are 3:68 10¡4, 1:84 10¡4 and 1:56 10¡4 when

comparing the corrected, the simpli…ed and the modi…ed Corrado-Su (1996) model to the

original one. Relative di¤erences between the corrected and modi…ed sensitivities are sig-

ni…cant while those between the simpli…ed and modi…ed skewness parameters are clearly

negligible.

Figure 3 represents di¤erences in option price sensitivity to kurtosis as a function of

moneyness. Results exhibited in this …gure show that while the correction of Brown and

Robinson (2002) is irrelevant for these parameters, the correction for martingale restriction

has a very small impact on the option price sensitivity to kurtosis, especially for at-the-money

options. For example, when kurtosis is equal to 3.53 (and skewness is -.7), the absolute size

of di¤erences for the coe¢cient of kurtosis are 5:29 10¡6 and 5:19 10¡4 when comparing the

simpli…ed and the modi…ed Corrado-Su (1996) model to the original one.

- Please insert Figures 3 somewhere here -

6These values are realistic in the sense that they correspond to mean parameter values when backing-out

implied moments corresponding to the Jarrow-Rudd (1982) model on the CAC 40 options on the French

market on the period 1997-1999 (see Capelle-Blancard et al., 2001-a and 2001-b, for details).
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When considering, now, both skewness and kurtosis e¤ects on price changes, displayed in

Figure 4, we see that the modi…cation corresponding to the martingale restriction diminishes

the impact of the correction by Brown and Robinson (2002) on option prices and that

simpli…cations of the modi…ed version cannot be judged as totally pertinent in this context.

When taking the numerical values corresponding to the Corrado-Su (1996) study case -

adding M = ¡0:25, a skewness equal to ¡:7 and a kurtosis equal to 3:53, the absolute size
of di¤erences for the related option prices are (USD) 7:17 10¡7, 3:53 10¡7 and 2:93 10¡7

when comparing the corrected, the simpli…ed and the modi…ed Corrado-Su (1996) model

to the original one. We see here that the correction, modi…cation and simpli…cation have

a very limited e¤ect on option prices in this study case. If now we take the numerical

example by Brown and Robinson (2002) - with S0 = 100; ¾ = 50%; ¿ = 0:25, r = 4%

and with M = ¡0:25, a skewness equal to -.1 and a kurtosis equal to 3 - the absolute size
of di¤erences for the related option price are (USD) 0:44, 0:22 and 0:22 when comparing

the corrected, the simpli…ed and the modi…ed Corrado-Su (1996) model to the original one.

In other words, the correction by Brown and Robinson (2002) overestimates the necessary

correction with the martingale restriction. We also remark that the simpli…cation leads to

results that are very close to those corresponding to the true martingale correction.

- Please insert Figure 4 somewhere here -

In Table 1, using the same parameter values as Corrado and Su (1997), we reproduce

the di¤erences in the number of option contracts needed to delta-hedge a USD 10 million

stock portfolio with beta of one. This illustrates how a hedging strategy based on the

various models may di¤er. We compute the di¤erent expressions of sensitivities of option

price to the excess skewness - related to Black-Scholes (1973) and to the original, corrected,
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simpli…ed and our modi…ed Corrado-Su (1996) models - for7 S0 = USD 700; ¾ = 11:62%;

°1 (f) = ¡1:68; °2 (f) = 5:39; ¿ = 0:25, r = 5%; q = 2% and with K varying from 660 to

750 with increments of 10. Columns 1 and 7 in Table 1 list strike prices from 660 to 750 in

increments of 10. For each of these strike prices, columns 2 to 6 (and 8 to 12) list the number

of S&P 500 index option contracts needed to delta-hedge the assumed USD 10 million stock

portfolio. Columns 2 and 8 report the number of option contracts needed to delta-hedge this

portfolio based on the Black-Scholes model, while columns 3 and 9, 4 and 10, 5 and 11, and 6

and 12 report the number of option contracts needed to delta-hedge this portfolio based on,

respectively, the original, corrected, simpli…ed and our modi…ed Corrado-Su (1996) models.

In all cases, numbers of contracts required are computed as follows:

N =
1

¢

P

s
(17)

where N is the number of contracts, P is the portfolio value, s is the contract size and ¢ is

the delta of the option computed from the various option fair price expressions (see Corrado

and Su, 1997).

Table 1 reveals that for in-the money options, a delta-hegded strategy based on Black-

Scholes model speci…es a greater number of contracts than a delta-hedge based on other

competitive models8.

- Please insert Table 1 somewhere here -

But, for out-of-the-money options, the opposite is also true since the various Corrado-Su

models require a greater number of contracts. Di¤erences in the number of contracts speci…ed

7We use here the realistic values reported by Corrado and Su (1997).
8Note that the Corrado-Su original model results reported in columns 3 and 9 in Table 1 are very similar

to those of columns 3 and 6 in Exhibit 6 of Corrado and Su (1997) corresponding to the Jarrow-Rudd model.
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by each model are also greatest for out-of-the-money options (1=¢ has a multiplication e¤ect,

values of delta being closed to zero for out-of-the-money options), while negligible for at-

and in-the-money options (1=¢ has a division e¤ect, values of delta being close to one for

in-the-money options). Moreover, there is no di¤erence between the original and corrected

versions, and the di¤erences between the modi…ed and its simpli…ed version are very small

(4 contracts is the maximum discrepancy). signi…cant di¤erences however appear between

the original and our modi…ed version in terms of the numbers of hedging contracts for out-

of-the-money options. For deep out-of-money options, approximately double the number

of contracts are needed if we compare our modi…ed model to the Black-Scholes one (1602

versus 802) and approximately 60% more contracts have to be added to the portfolio if the

reference is the original or the corrected model (1602 versus 1008).

Based on simulations, we have seen that di¤erences between model-induced prices are

generally low but can be important in some speci…c situations. In the following section, we

compare results obtained using the di¤erent versions of the Corrado-Su (1996) model with

market data in order to investigate the magnitude of di¤erences in terms of pricing accuracy.

4.3 An Estimation of Induced Approximation Biases

Using French Long Term CAC 40 option prices9 from 01/97 through 12/98, we compute

di¤erences in option pricing relative to the four versions of the original Corrado-Su (1996)

model. Figure 5 represents the absolute pricing error probability densities on the whole

sample (12,705 data point estimations) relative to Black-Scholes (1973) and the modi…ed

Corrado-Su (1996) inspired models, while Figure 6 shows the absolute di¤erence of probabil-

ity associated with the absolute error terms of the three related versions of the Corrado-Su

(1996) model relative to the original model. As indicated in this last …gure, the di¤erences

9See Capelle-Blancard et al., 2001, for details on the database, …lters, optimization criterion and routines.
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between models are very small in terms of pricing error density (and not signi…cant).

This general conclusion must be interpreted since di¤erences in the skewness and kurtosis

parameters can be important for the sample considered as illustrated on Figures 7 and 8.

Nevertheless, when comparing the original and modi…ed versions, relative di¤erences in

skewness parameters vary from ¡:86 to :06 with a mean of ¡:01 and a median equal to :000,
whilst di¤erences in kurtosis parameters range between ¡:03 to :02 with a mean value of
¡:002 and a median of :000. In other words, the modi…ed version of the model yields very
close estimations of sensitivity parameters to those related to the original model, while this

is not the case for the corrected and simpli…ed models as illustrated on Figures 7 and 8.

- Please insert Figures 7 to 8 somewhere here -

Finally, when comparing option prices obtained using the various models, one can say that

Corrado-Su (1996) prices are relatively closer to the market prices (as illustrated on Figure

9) whatever the model and that model-dependant relative price di¤erences are generally low,

but sometimes economically signi…cant as shown on Figure 10.

- Please insert Figures 9 to 10 somewhere here -

5 Conclusion

Following Brown and Robinson (2002), we focus on the Corrado and Su (1996) model dealing

with excess skewness and kurtosis of the “true” implied risk-neutral density. We …rst present

the link between multi-moment approximate models and the martingale restriction, and

second provide di¤erent versions of the original Corrado-Su (1996) model. We …nally give
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an empirical illustration of these di¤erent versions, both with the Corrado-Su study case and

with market data.

As highlighted by Brown and Robinson (2002), the correction of the Corrado-Su (1996)

model can be numerically important for a range of speci…c option (namely deep in-the-

money and long maturity options when markets are turbulent) even if, on the whole, it can

be judged as minor on our sample.

The martingale restriction highlighted by Kochard (1999) - and directly related to the

Corrado-Su (1996) model hypotheses - yields a modi…ed Corrado-Su (1996) formula, which

is both analytically and numerically signi…cantly di¤erent (for some options at least) from

the original lead to by the appropriate martingale restriction. The resulting di¤erences in

option price estimates are sometimes economically signi…cant. Nevertheless, investigations

of the French market of empirical errors induced by the misprint in Corrado-Su (1996) seem

to indicate that the general results concerning the better accuracy of this model - claimed

in particular in Corrado-Su (1996) and (1997) - are out of question.

Finally, the simpli…cations of the Corrado-Su (1996) formula advocated in some papers

(see Backus et al., 1997, for instance), if they truly yield to more tractable and intuitive

formulae very accurate in general, are not always negligible in-sample; they thus should be

avoided when pricing and hedging options in a skewed and leptokurtic world.

However, from a theoretical point of view, we have to highlight the point that further

restrictions should be imposed when applied to real markets. In particular, for the expanded

distribution to correspond to an economically meaningful density of agents’ expectations,

some constraints should be added to ensure that implied moments backed-out from market

prices correspond to a well-de…ned return density that is uniformly positive and unimodal

(see for instance Jondeau and Rockinger, 2001). In the same vein, recovered implied moments

should lead to pricing relations that respect the no-arbitrage condition (especially the call-
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put parity10).

We lastly note that if the correct use of the martingale restriction has a proven impact

on the option pricing formula in the Corrado-Su (1996) model, it might also have more

generally a signi…cant economic e¤ect on estimated implied risk-neutral densities, implicit

smile functions and related Greek parameters induced by multi-moment approximate option

pricing models (see Jurczenko et al., 2002).
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Appendix 1

(at the referee’s attention)

Under the hypotheses of existence of the …rst non-central moments of the underlying

asset log-return density, the choice of a normal as the approximate density of the continuous

compound return density, and perfection and completeness of …nancial markets, the modi…ed

Corrado-Su formula European call CCS can be expressed as:

C
¤
CS = C

¤
BS + °1 (f) Q

¤
3 + °2 (f) Q

¤
4 (10)

with: 8>><>>:
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Proof. Under a Gram-Charlier Type A series expansion, the risk-neutral price of an

European call written on a stock St with strike price K is:

CCS = e¡r¿
Z +1

ln(K=ST )¡¹¿
¾
p
¿

³
St e

¹¿+¾
p
tz ¡K

´
f (z) dz (A.1.1.)
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where the change of variable z = [ln (ST=St)¡ ¹¿ ] =¾p¿ have been performed on ST and
the Gram-Charlier expansion residual have been dropped.

In order to evaluate expression (A:1:1:), we need to compute the following integral:

Ij =

Z +1

¡d+¾p¿

³
St e

¹¿+¾
p
¿z ¡K

´
Hj (z) ' (z) dz (A.1.2.)
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for j = [3; 4] :

Using the de…nition of Hermite polynomials, we get:
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It is readily veri…ed that the …rst term in the above expression equals zero. Noting also

that lim
z!1

' (z) = 0, this then leaves the expression:
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Then, by induction, we obtain:
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Using the following equality (Stoll and Whaley, 1993, p.245):

K '
¡
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Under the Gram-Charlier series expansion, the martingale restriction also implies that:
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where the remainder term of the series expansion have been neglected.

In order to evaluate expression (A.1.11.), we need to compute the following integral:
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for j = [3; 4].

Note that when the current underlying asset price is unitary, the exercise price is equal

to zero and the limit of integration are taken between minus and plus in…nity, the integral

I¤j is equivalent to the integral Ij. Thus, integrating expression (A:1:12:) by parts yields for

j = [3; 4]:
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p
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Equation (A:1:13:) then becomes:
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Substituting this expression into equation (A:1:11:), using Hermite polynomial de…nitions

such as H0 (z) = 1; H1 (z) = z; H2 (z) = z2 ¡ 1, the value of an European call becomes:
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that yields the …nal call price proposed expression:
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Rearranging terms, and posing polynomials P3 and P4 and a constant !, lead …nally to

the desired results (equation 10)
J
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Appendix 2
In the figures below (1 to 4), Skewness and Kurtosis have been fixed at -.7 and 3.53 for the modified
Corrado-Su (1996) model parameter representations (which are mean parameter values of implied moments
when backed out them from French market data using the Jarrow-Rudd (1982) model - see Capelle-
Blancard et al., 2001-a and 2001-b, for details). Other parameters are those of the Corrado-Su (1996) case
study, also reported in Brown and Robinson (2002) - see text.

Figure 1: Option Price Adjustment
for Skewness of the Underlying Return Risk-neutral Density
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No difference between the simplified and modified parameters can be highlighted on this Figure.

Figure 2: Absolute Differences in Option Price Skewness “Sensitivities”
Compared to the Original Corrado-Su (1996) Model
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Figure 3: Absolute Differences in Option Price Kurtosis “Sensitivities”
Compared to the Original Corrado-Su (1996) Model
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The correction of Brown and Robinson (2002) do not apply (directly) to the kurtosis parameter.

Figure 4: Absolute Induced Option Price Absolute Differences
for the Corrected, Modified and Simplified Models
Compared to the Original Corrado-Su (1996) Model
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In the figures below (5 and 6), French CAC 40 Long Term options on the period 01/97 through 12/98 have
been used to estimate the error terms and related density probabilities (see Capelle-Blancard et al., 2001-a
and 2001-b, for details on the database, filters, optimization criterion and routines). For easy
representations, Figures 7 to 11 illustrate estimations on sub-samples.

Figure 5: Estimated Probability Densities of Relative Pricing Errors
for the Black-Scholes (1973) and the Modified Corrado-Su (1996) Models
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A non-parametric kernel density estimator was used with the Silverman (1986) rule of thumb.

Figure 6: Estimated Probability Density Differences of Relative Pricing Errors
for the Corrected, Modified and Simplified Models
Compared to the Original Corrado-Su (1996) Model
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Figure 7: An illustration of Time-variations of Skewness Parameters
for the Corrected, Modified and Simplified Models
Compared to the Original Corrado-Su (1996) Model
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Figure 8: An illustration of Time-variations of Kurtosis Parameters
for the Corrected11, Simplified and Modified Models
Compared to the Original Corrado-Su (1996) Model
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11 The absolute difference between the corrected and original kurtosis parameter is empirically non null

since the modification of the definition of the skewness parameter in the corrected model has an impact on

the in-sample estimation of the kurtosis parameter.
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Figure 9: An illustration of Time-variations of Implied Index Prices12

for the Black-Scholes and the Modified Corrado-Su Models
Compared to the "True" Index Prices
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Figure 10: An illustration of Time-variations of Differences in Implied Index Prices12

for the Modified Corrado-Su and Black-Scholes (1973) Models
Compared to the True Index Price
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12 Differences in this figure correspond to in-the-money options with a moneyness higher than 5%.
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Figure 11: An illustration of Time-variations of Implied Index Prices13

for the Corrected, Simplified and Modified Models
Compared to the Original Corrado-Su (1996) Model
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Table 1: Number of Option Contracts Needed to Delta-hedge
a USD 10 Million Stock Portfolio

Number of S&P option contracts needed to delta-hedge a USD 10 million stock portfolio with a beta of one using
contracts of varying strike prices. This example assumes an index level of  S0 = (USD) 700, an interest rate r = 5%,
a dividend yield q = 2%, a time until option expiration τ = .25. Black-Scholes (BS) model assumes a volatility of σ
= 12.88% corresponding to findings of Corrado and Su (1997). The original (CS), the corrected (CS’), the modified
(CS*) and the simplified Corrado-Su (CS**) models assume σ = 11.62%, and skewness and kurtosis parameters of
γ1 = -1.68 and γ2 = 5.39 (see Corrado and Su, 1997, Exhibit 6, p.18).

In-the-money Options Out-of-the-money Options

Strike (BS) (CS) (CS’) (CS*) (CS**) Strike (BS) (CS) (CS’) (CS*) (CS**)
660 167 163 163 157 157 710 303 266 266 257 257
670 179 171 171 160 159 720 370 332 332 343 342
680 197 182 182 167 167 730 465 443 443 502 501
690 221 198 198 182 181 740 601 637 637 825 824
700 256 225 225 209 209 750 802 1008 1008 1602 1598

                                                
13 Differences in this figure correspond to in-the-money options with a moneyness higher than 5%.


