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Abstract

This paper develops a new estimation procedure for characteristic-based factor models of

stock returns. It describes a factor model in which the factor betas are smooth nonlinear

functions of observed security characteristics. It develops an estimation procedure that combines

nonparametric kernel methods for constructing mimicking portfolios with parametric nonlinear

regression to estimate factor returns and factor betas. Factor models are estimated for UK and

US common stocks using book-to-price ratio, market capitalization, and dividend yield.
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1 Introduction

In a series of important papers, Fama and French (hereafter denoted FF), building on earlier work

by Banz (1981), Basu (1977), Rosenberg, Reid and Lanstein (1985) and others, demonstrate that

there are large return premia associated with size and value. Size is de…ned as the log of market

capitalization; value is de…ned as the book-to-price ratio or a related valuation ratio such as the

earnings-to-price ratio. These size and value return premia are evident in US data for the period

covered by the CRSP/Compustat database (FF (1992)), in earlier US data (Davis (1994), and in

non-US equity markets (FF (1998), Hodrick, Ng and Sangmueller (1999)).

FF (1993,1995,1996,1998) contend that these return premia can be ascribed to a rational asset

pricing paradigm in which the size and value characteristics proxy for assets’ sensitivities to pervasive

sources of risk in the economy. Haugen (1995) and Lakonoshik, Shleifer and Vishny (1994) argue that

the observed value and size return premia arise from market ine¢ciencies rather than from rational

risk premia associated with pervasive sources of risk. They argue that these characteristics do not

generate enough nondiversi…able risk to justify the observed premia. Similarly, MacKinlay (1995)

argues that the return premia are too large relative to the return volatility associated with hedge

portfolios designed to capture these characteristics, and this creates a near-arbitrage opportunity

in the FF model. Daniel and Titman (1997) argue that the factor returns associated with the

characteristics are partly an artifact of the FF estimation methodology. A key issue in this debate is

the magnitude and signi…cance of the pervasive factors associated with these corporate characteristics.

To address this issue properly requires estimating a factor model of returns in which the factors are

linked to these characteristics. This paper develops a new methodology for estimating this type of

factor model.

Rosenberg (1974) proposes a simple and direct approach to estimating a characteristic-based

factor model. He assumes that the factor betas in the model are equal to observed security char-

acteristics or to known functions of observed security characteristics. So, for example, the factor

beta associated with the value factor could be assumed to be equal to the …rms’ book-to-price ratio

(suitably scaled). Given that the factor betas are directly observed in this way, the factor returns

can be estimated by cross-sectional linear regression of equity returns on these characteristic-based

factor betas.

A weakness of Rosenberg’s approach is the need to assume that the observed characteristics are

reasonable proxies for the factor betas. Consider, for example, FF’s (1995,1996) contention that the

book-to-price ratio is related to the security’s sensitivity to an economy-wide “distress” factor. Using

the book-to-price ratio as a proxy for the factor beta in a characteristic-based factor model requires

more this. It requires that returns respond linearly to this “distress” factor in direct proportion to
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their book-to-price ratios.

FF (1993) develop an alternative approach to estimate the factor returns associated with char-

acteristics. They sort securities according to their size and value characteristics and construct two-

dimensional fractile portfolios. They use di¤erences between the returns on large-size and small-size

fractile portfolios (adjusted for the value characteristic) as an estimate of the size factor. Analogously,

the di¤erence between high-value and low-value fractile portfolios, adjusted for the size character-

istic, serves as an estimate of the value factor. These factor return estimates do not require any

strong assumptions on the relationship between factor betas and characteristics, only monotonicity

and smoothness. However, there is no obvious way to generate standard errors for the estimates.

Also, in order to estimate the factor betas, a set of time-series regressions must be run with the

estimated factor returns as explanatory variables. This gives rise to an errors-in-variables problem

in the estimated factor betas.

This paper develops an estimation methodology that combines elements of Rosenberg’s and FF’s

procedures. It uses a characteristic-based factor model like Rosenberg’s, except that the factor betas

are unknown, nonlinear functions of observed characteristics, in the spirit of FF. The estimation

methodology has two steps. The …rst step uses nonparametric kernel methods to construct factor-

mimicking portfolios associated with a set of chosen values of the characteristics. The second step uses

parametric nonlinear regression, with the collection of …rst step portfolio returns as the independent

variable, to estimate the factor returns and factor beta functions. This new methodology allows for a

more general functional form than Rosenberg’s, and facilitates a range of approximate (asymptotic)

statistical results not available with FF’s procedure. It gives simultaneously estimated, consistent and

asymptotically normal estimates of the factor returns and the factor beta functions, and approximate

standard errors for all estimated parameters.

The model is applied to UK and US equities using three security characteristics: the book-to-price

ratio, the log of market value, and dividend yield. First we estimate a two-characteristic model using

the book-to-price ratio and log of market value and compare our estimates to FF-type estimates for

the same data sets. Then we add dividend yield, and …nd that it is an additional source of pervasive

factor risk in both the US and UK.

Section 2 presents the new estimation methodology. Section 3 applies it to the data. Section 4

summarizes the paper and suggests some further extensions and applications of the approach.
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2 Methodology

2.1 Description of the Factor Model

We assume that there is an asymptotically large number of securities, indexed by i = 1; : : : ; n; and

asset returns are observed for a …xed number of time periods t = 1; : : : ; T . We assume that the

following characteristic-based factor model generates returns:

rit = fzt +
kX

j=1

gj(cij)fjt + "it; (1)

where rit is the return to security i at time t; fzt; fjt are the factor returns; gj(cij) the factor betas,

cij the security characteristics, and "it the mean zero asset-speci…c returns. The factor returns fjt
are linked to the security characteristics by the factor beta functions gj(¢). We assume that gj(¢) is a

smooth time-invariant function of the characteristics, but we do not assume a particular functional

form. The zero-characteristic factor fzt captures that part of common return not related to the

characteristics; all assets have unit exposure to this factor. The observed security characteristics and

asset returns are used to estimate the factor returns and factor beta functions.

There are two indeterminancies in the functions gj(¢). The …rst is additive. One can add an

arbitrary constant a to any of the functions gj(¢) and subtract afjt from fzt, and the predictions

of the returns model 1 are unchanged. To eliminate this indeterminacy, we impose the condition

gj(0) = 0 for all j, without loss of generality.

The second indeterminacy is multiplicative. One can multiply any gj(¢) by any non-zero constant

and fj by the reciprocal of the same constant and the predictions of the returns model (1) are

unchanged. We assume that gj(1) 6= 0 for each j. Without loss of generality we set gj(1) = 1.

The identi…cation constraints gj(0) = 0 and gj(1) = 1 are given intuitive content by the choice

of units of cij. Let c¤ij denote the raw characteristic j for asset i. We rescale the raw characteristics

linearly so that the cross-sectional average of cij equals zero and the cross-sectional standard deviation

equals one. The constraint gj(0) = 0 means that the factor return fzt is the common-factor-related

return of an asset with “average” characteristics. The constraint gj(1) = 1 means that over the

interval [0; 1] measured in units of standard deviation the increase in factor beta equals one.

2.2 Kernel-based Portfolio Weights for Factor-Mimicking Portfolios

In this subsection we present a new method for creating factor-mimicking portfolios, based on non-

parametric kernel methods. Our purpose in developing this new technique is the estimation of

characteristic-based factor models, but there are other potential applications. For example, the tech-

4



nique could be used for the construction of benchmark portfolios in event studies or in performance

measurement of managed portfolios.

Our methodology is partly founded on the earlier work of FF (1993) and we very brie‡y summarize

their approach. FF rank securities by two characteristics, size and book-to-price (BTP), and perform

a bivariate sort of the securities into fractiles. They use three fractiles for BTP and two for size, so the

bivariate sort gives a total of six fractiles: large size/high BTP, large size/medium BTP, large size/low

BTP, small size/high BTP, small size/medium BTP, small size/low BTP. They group the assets into

capitalization-weighted portfolios of the securities within each fractile. For each characteristic, the

average di¤erence between the returns on a collection of high and low fractile portfolios, screened to

preserve a common exposure to the other characteristic, serves as the estimates of the factor returns

associated with that characteristic. Speci…cally they de…ne:

Size factor return = 1/3[(large size/high BTP portfolio return

-small size/high BTP portfolio return)

+(large size/medium BTP portfolio return

-small size/medium BTP portfolio return)

+(large size/low BTP portfolio return

-small size/low BTP portfolio return)] (2)

Book-to-price factor return = 1/2[(large size/high BTP portfolio return

-large size/low BTP portfolio return)

+(small size/high BTP portfolio return

-small size/low BTP portfolio return )] (3)

The …rst step in our new methodology is a kernel-based variant of FF’s portfolio construction

technique. Instead of target ranges for the characteristics (such as high, medium and low), we create a

set of portfolios, each one designed to capture one from a grid of target characteristic vectors. Instead

of capitalization-weighting for the portfolios, we use kernel-weighting, where the kernel weights are

constructed to trade-o¤ portfolio diversi…cation against the distance of each asset’s characteristic

vector from the target vector.

We choosem distinct target values for each of the k characteristics, where the values must include

the two values used to set the scale of the factors, zero and one, and these are listed …rst and second.

The other m¡2 values need not be the same for the k di¤erent characteristics. Let cej ; e = 1; : : : ;m;

j = 1; : : : ; k denote the chosen values. The grid of target characteristic vectors consists of all mk
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combinations of the m chosen target values over the k characteristics. De…ne m¤ = mk. In our

empirical implementation, m is not the same across all characteristics and we do not utilize all grid

points; hence we use the more general notation m¤ rather than mk. For simplicity of notation, we

continue to assume m¤ = mk in the statistical derivation. Let ch; h = 1; : : : ;m¤; denote the k-vectors

of target characteristics. De…ne the Gaussian product kernel associated with the hth target vector

as Khi = (2¼b
2)¡1=2 exp(¡ Pk

j=1(cij ¡ chj)2=2b2); where b is the bandwidth. For bandwidth b de…ne

the kernel-based portfolio weights for the hth combination as !hi = Khi=
Pn

i=1Khi and the kernel-

based portfolio return as byht =
Pn

i=1 !hirit. From the perspective of statistical theory, byht can be

interpreted as a nonparametric kernel estimator of the conditional expectation of rit given ci = ch:

From the perspective of …nancial econometrics, it can be viewed as the return on a well-diversi…ed

portfolio designed to have (approximately) the target characteristics ch. The approach in this paper

combines these two perspectives.

Now we show that the kernel-based portfolio returns converge to linear combination of factor

returns, with asymptotically normal and independent residuals. To do this, we apply a result from

kernel regression theory. For each t de…ne the functions g¤t (c) = fzt +
Pk

j=1 gj(c)fjt. Using (1) it

follows immediately that

rit = g
¤
t (ci) + "it: (4)

For a given t, equation (4) can be viewed as a multivariate nonparametric regression problem. Our

kernel-based portfolio return for characteristic combination h is the Watson-Nadaraya estimate of

g¤t (ch) using a multivariate Gaussian kernel. We use a result from Bierens (1994) to guarantee the

consistency and asymptotic normality of the estimates. We assume that the observed characteristic

vectors of the assets ci; i = 1; : : : ; n are an n-sample realization of a k-vector random variable. Let

p(ci) denote the marginal density function of this k-vector random variable evaluated at the point

ci. Let ¾2th(c) = E["
2
itjci = c] and ¾3th(c) = E[j"itj3jci = c]. We impose the following conditions:

Assumption A. The vector "i = ("i1; : : : ; "iT )0 is independently distributed across i = 1; : : : ; n;

and satis…es E("it"isjci) = 0 with probability one for all t 6= s and for all i: The functions g¤t (ci) and

p(ci)g
¤
t (ci) and their …rst and second partial derivatives are continuous and uniformly bounded. The

density p(ch) > 0 for each h:The moments ¾2th(c) and ¾3th(c) are uniformly bounded. The bandwidth

satis…es bn = o(n¡1=(k+5)):

Theorem 1 Given Assumption A and the other conditions mentioned in the text, then as n ! 1;

(nbkn)
1=2(byht ¡ g¤t (ch)) =) N(0; ¾2th);

where

¾2th = (¾
2
t (ch)=(p(ch)

p
2)): (5)

6



Furthermore, (nbkn)
1=2(byht ¡ g¤t (ch)) are asymptotically independent across h and t.

Proof. See the Appendix.

In order to apply Lemma 1 we need to approximate the asymptotic variance in (5). We use a stan-

dard procedure from nonparametric estimation of residual variances (see Pagan and Ullah (1999, p

95) for discussion). Each marginal density p(ch) is consistently estimated by p̂(ch) = 1
n

Pn
i=1Khi and,

given observation of the asset-speci…c returns in (1), each variance ¾2t (ch) is consistently estimated

by ¾̂2t (ch) =
1
n

Pn
i=1Khir

2
it ¡

¡
1
n

Pn
i=1Khirit

¢2
:

Using Lemma 1, it is easy to create a parallel to FF’s factor return estimates shown in equations

(2) and (3). Consider two target characteristic vectors ch and ch0 which are equal in all components

except that ch has characteristic j value 1 whereas ch0 has characteristic j value 0. Using the scaling

assumptions gj(1) = 1 and gj(0) = 0, it is easy to see that the di¤erence in the target factor

betas of the two associated kernel-based portfolios equals one for factor j and zero for all other

factors. Applying Lemma 1, the return di¤erence between these two portfolios provides a consistent,

asymptotically normal estimate of factor return j. From among the m¤ = mk combinations of

characteristics, there are mk¡1 pairs that di¤er only in characteristic j and have values 0 and 1

respectively for this characteristic. Hence, for each factor j, we havemk¡1 asymptotically independent

estimates of the time t factor return. In parallel with FF, we could use the average across these pairs

of matched portfolio returns as the factor return estimate, that is,

f̂jt =
1

mk¡1

m¤X

h=1

(±h1 ¡ ±h0)yht; (6)

where the dummy variable ±h1(±h0) equals one if mimicking portfolio h has target characteristic one

(zero) for factor j and equals zero otherwise. Using this framework the factor return estimates have

a well-de…ned asymptotic distribution, as described in Lemma 2.

Lemma 2 As n ! 1;
(nbkn)

1=2(f̂jt ¡ fjt) =) N(0; ¾2j); (7)

where ¾2j =
1

mk¡1
Pm¤

h=1(±h1 ¡ ±h2)2(¾2t (ch)=(p(ch)
p
2)); j = 1; : : : ; k.

Proof. See the Appendix.

The FF-type estimates described in Lemma 2 are consistent and asymptotically normal, but have

two weaknesses. One, the estimate of each factor return uses information from only a subset of the

kernel-based portfolios. Two, the estimator only gives estimates of the factor returns, not the factor

betas. In the next section we present an alternative estimator which uses information from all the

kernel-based portfolios simultaneously and produces joint estimates of all the factor returns and of

all the factor beta functions evaluated at the target characteristics.
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2.3 Joint Estimation of the Factor Beta Functions and Factor Returns

Using Nonlinear Regression

In this subsection we use the kernel-based portfolio returns described in the last subsection as inde-

pendent variables in a nonlinear regression system. The unknown parameters in this parameterized

system are the realized factor returns and the beta functions evaluated at the target characteristics.

The regression is nonlinear because it includes products of factor returns and factor betas.

Recall from the last subsection the de…nition of them¤ kernel portfolios, covering all combinations

of the m target characteristics for each of the k factors. The returns on all of these kernel-based

portfolios can be written as a pooled regression with m¤ ‘cross-sectional’ observations and T time

series observations:

byht = fzt +
kX

j=1

gj(chj)fjt + buht (8)

buht = [
kX

j=1

f
nX

i=1

!higj(cij)¡ gj(chj)gfjt] +
nX

i=1

!hi"it: (9)

Note that in (8) the nonparametric functions gj(¢) are evaluated atmk points, hence we de…ne themk-

vector gej = gj(cej); e = 1; : : : ;m; j = 1; : : : ; k . The factor model scaling assumptions gj(0) = 0 and

gj(1) = 1 imply that g1j = 0 and g2j = 1 for each j. We treat the remaining (m¡ 2)k components of

gej as parameters to estimate, along with the (k+1)T factor returns fzt; fjt; t = 1; : : : ; T ; j = 1; : : : ; k.

Let ¯ = fgej ; fzt; fjt; e = 1; : : : ;m; j = 1; : : : ; k; t = 1; : : : ; Tg denote the (m¡ 2)k + (k + 1)T vector

of parameters and let ¯0 be the true vector. We rewrite (8) as a nonlinear regression equation with

m¤T observations and p = (m¡ 2)k + (k + 1)T unknowns

byht = fzt +
kX

j=1

gej±ej;hfjt + buht;

where the parameters ¯ are subject to the zero/one restrictions described above. The dummy variable

±ej;h equals one if mimicking portfolio h has target value cej for factor j, and zero otherwise. Note

that there are a …xed …nite number of observations h = 1; : : : ;m¤ and t = 1; : : : ; T; but that the

error terms are asymptotically independent across h; and are individually of small order.

For a chosen parameter vector ¯, de…ne the …tted values in the usual way

yht(¯) = fzt +
kX

j=1

gej±ej;hfjt: (10)

The nonlinear weighted least squares estimator, ^̄, is any minimizer of the criterion function
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Qn(¯) =
m¤X

h=1

TX

t=1

bvt(ch)(byht ¡ yht(¯))2 (11)

over ¯ 2 B µ Rp, where the parameter set B re‡ects the restrictions on ¯: We introduce the

weighting function bvt(ch) to account for error heteroscedasticity, and it is allowed to be estimated

from the data. The criterion function Qn(¯) is a quartic polynomial in the parameters, and under

reasonable conditions will have a global minimum, which will be locally unique. We can also show

that any solution obeys the following …rst-order condition:

@

@¯
Qn(b̄) = 0: (12)

This enables to use an iterative weighted least squares procedure to …nd the minimum. The actual

algorithm we use to solve (12) exploits the bilinear structure of the regression function and is described

in the appendix.

Theorem 3 Suppose that m¤ > mk2 and that for each t and h; the weighting function bvt(ch) !p

vt(ch) as n ! 1; where vt(ch) > 0: Then, the least squares estimate de…ned by (11) exists with

probability tending to one and obeys the …rst-order condition (12). Furthermore, ^̄
p¡! ¯0.

Proof. See the Appendix.

Let ¡(¯) = @y=@¯ 0 be the m¤T £ p matrix of derivatives of yht(¯) with respect to each element

of the parameter vector ¯. De…ne the p£ p matrix

H(¯) = ¡(¯)V ¡(¯)0;

where V is the m¤T £m¤T diagonal matrix whose elements are vt(ch): We shall suppose that H(¯)

is a nonsingular matrix for ¯ = ¯0 and that ¯0 is an interior point of the parameter space B. Now we

show that the least squares estimate has an asymptotic normal distribution with known covariance

matrix. Let D be the m¤T £m¤T asymptotic covariance matrix of (nbkn)
1=2bu; where bu is the m¤T

vector with typical element buht: D is a diagonal matrix under our assumptions.

Theorem 4 As n ! 1;

(nbkn)
1=2(^̄ ¡ ¯0) =) N(0;§); where § = H¡1

0 ¡0V DV ¡
0
0H

¡1
0 ;

where H0 = H(¯0) and ¡0 = ¡(¯0): When V = D¡1; we have § = (¡0D¡1¡00)
¡1
:

Proof. See the Appendix.
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Note that the covariance matrix § described in Theorem 4 covers both the factor return estimates

and the estimates of the factor betas since we are estimating both sets of parameters simultaneously.

The asymptotic variance matrix can be consistently estimated by

b§¯ = bH¡1b¡bV bDbV b¡0 bH¡1;

where bH = H(b̄) and b¡ = ¡(b̄) and bD = diag(b¾2th) is an estimate of D, while bV is the diagonal

matrix with elements bvt(ch):

3 Empirical Analysis

3.1 Data

The data set consists of monthly returns and beginning-of-month security characteristics for UK

and US equities over the 150-month period January 1986 – June 1998. All the data come from

the proprietary database of BARRA Inc. For the UK (US) sample, the number of securities in the

monthly samples varies from a low of 489 (1685) to a high of 811 (1998) with an average of 582

(1817) per month. The data set includes three security characteristics: book-to-price ratio, log of

market value, and dividend yield. The book-to-price ratio is the ratio of the current book value of

common equity to current market capitalization. If book value is negative, the book-to-price ratio

is set equal to zero. Market value is de…ned as the number of common shares outstanding times the

current share price. Dividend yield is de…ned as the most recent twelve months of dividend payments

divided by the current stock price.

The “current” …gures (share prices, shares outstanding) are from the last trading day of the

previous calendar month. The book value of common equity is from the most recent annual report

that is available on or before the last day of the previous month. There is no look-ahead bias in the

annual report data since it is stored using when-reported dating rather than …scal-period dating.

Table 1 shows some distribution statistics for the three security characteristics. Each month,

we truncate the three characteristics at -3 and +3 standard deviations from the mean. This seems

justi…ed since values beyond these extremes are unlikely to provide additional information about

factor betas. The standardized characteristics (hereafter the size, value and yield characteristics)

equal the truncated characteristics minus the cross-sectional mean at time t, divided by the cross-

sectional standard deviation at time t. After this transformation, the standard deviations and means

all equal respectively one and zero and are not shown (note that the means and standard deviations

are calculated after the truncation). All three characteristics are leptokurtic and positively skewed,

a feature of these characteristics pointed out earlier by Brennan, Chordia and Subrahmanyan (1997).
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Table 2 shows the correlation between the three standardized characteristics. Although these

correlations are based on the stacked sample with both cross-sectional and time-series components,

they only capture cross-sectional correlation due to the monthly cross-sectional standardization of the

characteristics. There is fairly strong positive correlation between the value and yield characteristics.

3.2 The Two-Characteristic Case

In this subsection we estimate the model with three factors, based on the size and value characteristics

(plus the zero-characteristic factor). This gives a concise model and allows for comparison to FF-type

factors. In a later subsection we extend the analysis to four factors based on three characteristics,

by adding the yield characteristic.

To begin estimation of the model we need to choose a set of target characteristics, and a band-

width, b. For both the size and value characteristics we use target values in the range –1.25 to

+1.75 spaced at intervals of 0.25, giving thirteen potential target values for each of the two charac-

teristics and therefore 169 (13x13) potential combinations of the two. Kernel-based estimates have

poor …nite-sample performance at the extremes of the multivariate distribution of the explanatory

variables. Therefore we limit the target vectors to those which fall within an ellipse of zero, with the

shape of the ellipse determined by the covariance matrix of the factors. In particular we use the tar-

get vectors ch such that c0h§
¡1
c ch < 4:10, which would correspond to an optimally chosen 95% range

under multivariate normality of the characteristics. We know from Table 2 that the distribution is

not normal, but still this seems a reasonable metric for restricting the set of values. After deleting

the values outside the ellipse, we have a total of 159 target characteristic vectors in both countries.

The bandwidth choice involves a trade-o¤ between having kernel portfolios whose constituent

asset characteristics more closely match the target values (smaller bandwidth) versus having port-

folios with lower asset-speci…c variance (larger bandwidth). We use the rule-of-thumb methodology

explained in Silverman (1986) to select bandwidth. This involves specifying a parametric model for

the data generating process, computing the (integrated) mean squared error of the estimator under

this hypothesis, and then …nding the bandwidth that would minimize that mean squared error. For

the speci…cation of gj(cij) we take a fourth order polynomial in cij; while the marginal distributions

of ci is taken as normal, and the error term is assumed homoskedastic. The parameters of this spec-

i…cation are estimated by least squares and sample moments, and these are then plugged into the

formula for the optimal bandwidth. In the UK (US), the optimal bandwidths vary from a minimum

of .267 (.263) to a maximum of .449 (.441) with an average of .333 (.344) across the 159 target

characteristic vectors.

Figures 1-4 examine a representative kernel portfolio to illustrate the nature of the portfolio
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weights. We use the “middle” month of the sample (month 75, which is March 1995) and pick, for

illustrative purposes, target characteristics of .5 for value and .5 for size. The portfolio weights are

shown in relationship to the value and size characteristics of the assets. One can think of the graphs

as two-dimensional projections of a three-dimensional graph relating the portfolio weights to both

characteristics simultaneously. The kernel portfolio puts highest weights on assets which are close to

the target values in both characteristic. For this particular case the UK portfolio has a maximum

weight of .02841 which applies to an asset with value characteristic .40858 and size characteristic

.43864; note that both values are near the target value of .5. The largest US portfolio weight in this

particular case is .00603 for an asset with value characteristic .45292 and size characteristic .48551.

In both the US and UK case, there are assets which have characteristics closer to .5 for either size

or value, but not for both.

Note that these portfolio weights come from one of the 159 kernel portfolios used in the estimation

of the factor returns in this month. As we discuss later, our factor return estimate for a given month

is basically the return on a “portfolio of portfolios”, consisting of a particular linear combination of

all 159 kernel portfolios. Graphs of the resulting factor return portfolios are described in the next

subsection.

Table 3 shows equally-weighted R-squared statistics and regression-weighted residual variances.

For each factor, we also re-estimate the model and calculate R-squared and residual variance after

dropping the factor. The di¤erence between the R-squared statistics with and without a given factor is

a simple descriptive measure of the marginal explanatory power of the factor. The di¤erence between

the regression-weighted error variance with and without a factor times the number of regression

observations m¤T is a likelihood ratio test of the null hypothesis that the factor return equals zero

for all t: This statistic has an approximate Â2(T ) distribution under the null hypothesis. The p-values

from this test are shown in the table. For all three factors we can strongly reject this null hypothesis.

The last three columns of Table 3 are descriptive statistics: the time-series means, variances and

Sharpe ratios (annualized mean divided by annualized standard deviation) of the estimated factor

returns. The time-series mean can be viewed as a measure of the risk premium associated with

each factor. The Sharpe ratio provides a natural metric for comparing the reward/risk ratios of the

factors. The 150-month sample period is not long enough to draw reliable conclusions about expected

returns. This paper concentrates on the estimation of the factor model, not on the implications for

tests of expected return models.

Table 4 shows the estimates of the factor beta functions at the speci…ed target characteristic

values. Recall that both beta functions are set to zero at zero and to one at one, as identi…cation

conditions. The pointwise functions from target characteristics to factor betas are monotonically

increasing at all points in both markets. It is interesting that the beta functions look reasonably
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close to linear, which lends some empirical support for Rosenberg’s (1974) simplifying assumption of

linearity. The uniformly positive slope of the functions has implications for analysis of both of the size

e¤ect and the value e¤ect in equity markets. If the return premia associated with these characteristics

are due to factor-based risk premia, then a marginal return premia should apply across the whole

spectrum of …rms, not just to low-capitalization …rms or to …rms with very low book-to-price ratios.

This is because, under a standard factor beta pricing model, the di¤erence in return premia between

two …rms is proportional to the di¤erence in factor beta.

Note that in the US case the value factor beta function has a steeper slope below zero (“low-value”

…rms) than above zero (“high-value” …rms). This seems to imply that the value factor betas capture

something other than just sensitivity to …nancial distress. The marginal increase in sensitivity to

…nancial distress for a marginal change in the book-to-price ratio should be fairly small for “low-

value” …rms.

3.3 Comparison with Fama and French Factors

An obvious comparison for our three estimated factors are market, size and value factors estimated by

the method of FF. We modify their procedures slightly to suit our data set and our standardization of

the characteristics. We de…ne a “big” stock as one with size characteristic greater than or equal to one

and a “small” stock as any stock with size characteristic less than that. We de…ne a “medium” value

stock as one with a value characteristic between -.5 and +.5 and a “high” (“low”) value stock as any

falling on the positive (negative) side of this closed interval. We calculate capitalization-weighted

portfolios and estimate value and size factors using the portfolio return di¤erences described in

equations (2) and (3). We de…ne the market factor as the return on a capitalization-weighted portfolio

of all stocks. FF use the market factor in parallel to our use of the zero-characteristic factor.

Table 5 shows the correlation matrix for all the factors. There is obviously a positive correlation

between the pairs of equivalent factors estimated by the two methods; these are highlighted using

bold italic font. These correlations are only modestly high given that the two estimation procedures

are applied to identically the same underlying dataset, and rely on nearly the same factor de…nition.

The lowest of these correlations is between the two estimated size factors in the UK, with a correlation

of 0.6265.

The cross-national correlations of particular factors are shown in bold. There is a very strong

correlation between the two “market” factors and between the two “zero-characteristic” factors across

the two countries. Previous research (Capaul, Rowley and Sharpe (1993), FF (1998)) has found that

value and size factors are only weakly correlated across national markets and we …nd the same. We

attribute the somewhat higher cross-market correlation for the FF-type factors than for the kernel-
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based factors to the use of capitalization-weighting in the FF procedure. The FF approach puts

most of the weight on the larger stocks in each market. The larger-capitalization stocks tend to be

more internationally visible and have stronger cross-border links, raising the cross-border correlations

between the factor estimates.

Recall that Figures 1 - 4 showed the portfolio weights for a particular kernel portfolio in a

particular month. Figures 5-20 take the analysis of portfolio weights a step further. As noted

originally by Fama and MacBeth (1973), factor return estimates can be represented as the returns

on portfolios of assets. For month 75, we calculate the portfolio of assets (where the assets are kernel

portfolios) implicit in our nonlinear regression estimate of each of the three factors. The portfolio

implicit in the zero-characteristic factor return estimate has weights summing to one, but the other

two implicit portfolios have weights summing to zero. We rescale these weights so that the positive

weights sum to one (and obviously the negative weights sum to minus one). This is a natural scaling

for zero-cost portfolios for the purpose of measuring their diversi…cation. Next, we decompose each

kernel portfolio into its constituent asset weights, and so derive the implicit portfolio in terms of

the primitive assets. It is also easy to calculate the portfolio weights implicit in the FF-type factor

returns in the same way.

To save space, we show these portfolio weights only for the value and size factors (those for the

zero-characteristic and market factors are available from the authors). As in Figures 1 - 4 above,

the portfolio weights are graphed against both the value and size characteristics of the constituent

assets. Consider Figures 5 - 12, which give the portfolio weights for our factor return estimates.

To understand the graphs intuitively, suppose that the estimation routine has found factor betas

which are exactly linear in each characteristic. Then the estimation routine will try to construct a

portfolio which is well-diversi…ed, has near-unit average slope in terms of the relevant characteristic,

and near-zero average slope in the other characteristic. This is only an approximate guide, of course,

since the estimated factor betas shown in Table 4 are not exactly linear. However one can discern the

tendency toward a roughly linear average slope in the size factor/size characteristic graphs (Figures

5 and 9) and value factor/value characteristic graphs (Figure 7 and 11). Figures 6, 8, 10 and 12,

which graph each factor portfolio against the other characteristic, have average slopes near zero. All

the portfolios are very well-diversi…ed: in the UK (US) the largest magnitude weight for the value

factor portfolio is .0201 (.00649 ) and for the size it is .0160 (.0056).

Figures 13-20 show the portfolio weights for the FF-type factor return estimates in the same

month. The portfolios are fairly well-diversi…ed: in the UK (US) the largest magnitude weight in

the HML portfolio is .071 (.081) and in the BMS portfolio it is .106 (.054). Comparison of the factor

weights shows that our approach and the FF approach rely on quite di¤erent portfolio weighting

schemes. It is notable that the UK HML portfolio has 27% of its positive weights in four high-
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capitalization assets. These same four assets have extremely small weights (e¤ectively, zero weights)

in the corresponding UK value factor portfolio. The FF approach has the advantage that the factor

return estimates are based on investable portfolios, whereas our implicit portfolios are too diverse

to be investable. Also, their use of capitalization-weighting means that their portfolio weights are

related to the economic importance of the constituent assets. Our weighting scheme is driven solely

by statistical error minimization criteria.

FF (1993, Table 6) …nd that the estimated betas for the market factor are very close to unity

for a wide variety of portfolios, in a factor model including the value and size factors. Our model

has this unit-market-beta feature imposed as an assumption, since the betas of all assets against the

zero-characteristic factor are set equal to one in the de…nition of the factor model. Having estimated

the factors, we can test this assumption by re-estimating the factor betas without imposing the prior

restriction on them. We do this by unconstrained time-series regression of each kernel portfolio’s

returns on the factor returns. We also regress each kernel portfolio’ss returns on the FF-type factor

returns. The results are shown in Table 6. We …nd in both cases that the betas to the “…rst factor”

(market factor or zero-characteristic factor) are very close to a unit vector across the kernel portfolios.

This …nding is important for three reasons. First, as noted previously by FF, it means that the

risk premium associated with the “…rst factor” is poorly identi…ed if the betas are all close to one, or

unidenti…ed if they all equal one, using cross-sectional regression methods. A Fama-MacBeth cross-

sectional regression of sample means on a cross-sectional intercept and factor betas has weak power

if all the market factor betas are all near unity; it is not identi…ed if they all equal unity. Similarly,

the Hansen and Jagannathan (1997) test comparing beta pricing to risk-neutral pricing will not be

able to reject risk-neutral pricing if all the betas equal one. This is because “risk-equivalent” pricing

holds – the assets have the same level of market factor risk and so the associated risk premium cannot

be identi…ed cross-sectionally. Other types of tests such as Gibbons, Ross and Shanken (1989) that

do not depend on cross-sectional variation in the factor betas are still valid.

Second, this …nding has implications for the best factor estimation strategy. It is ine¢cient to

use estimated betas when estimating this “…rst factor” if the betas can be proxied by a constant

term with little or no loss of accuracy. Third, it means that the zero-beta return is poorly or not

identi…ed. With all unit betas for a factor, there does not exist a unit-cost portfolio of equities with

zero exposure to the factors.

3.4 Adding a Dividend Yield Factor

Next we add yield as a third characteristic in the model. Yield is an obvious candidate for a

pervasive-risk-related characteristic since it captures the part of each asset’s return due to cash ‡ow
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directly received by the investor. If investors’ preferences for yield versus capital gains vary through

time, or the relative performance of high-payout versus low-payout …rms varies, then these pervasive

in‡uences on returns will be related to yield.

For dividend yield we use a range from -1 to +1.75 with 0.25 intervals between target values.

Combined with the ranges for size and value this gives a total of 13x13x12 = 2028 potential target

combinations for the three characteristics. As in the two-characteristic model, we limit the target

vectors to those which fall within an ellipse of zero, with the shape of the ellipse determined by the

covariance matrix of the factors. In particular we use the target vectors ch such that c0h§
¡1
c ch <

6:25; which would correspond to an optimally chosen 95% range under multivariate normality of

the characteristics. This gives a number of target vectors of 1829 in the US and 1926 in the UK

(the numbers di¤er due to the di¤erences between the characteristic covariance matrices in the

two countries). We choose an optimal bandwidth by identically the same procedure as in the two-

characteristic case. In the UK (US), the optimal bandwidths vary from a minimum of .264 (.252) to a

maximum of .517 (.537) with an average of .3647 (.3651) across the 1926 (1829) target characteristic

vectors.

Tables 7 is analogous to Table 3 for the three-characteristic case. Adding dividend yield increases

the R-square in the UK (US) from .8873 to .9083 (from .9030 to .9418). In both countries the decrease

in residual variance is highly signi…cant for each factor, based on the likelihood ratio test described

earlier. The R-squares in Tables 3 and 7 are not directly comparable since the model estimation

described in the two tables uses a di¤erent set of underlying kernel portfolios.

Table 8 shows the estimated beta functions and their t-statistics. As in the two-characteristic

estimates, the beta functions are monotonically increasing between all pairs of points. In the US,

adding the dividend yield factor noticeably changes the shape of the value factor beta function. In

particular, the value factor betas of “low-value” …rms are diminished in magnitude. The same e¤ect

is discernible (although more muted) in the UK. Note from Table 2 that value and yield are quite

strongly correlated. One might think of the value factor in the two-characteristic model as capturing

both value and yield-related factor shocks. When the yield factor is added explicitly, the shape of

the value factor beta function changes.

4 Summary

This paper describes a new estimation methodology for characteristic-based factor models. The

methodology combines elements of Rosenberg’s (1974) linear speci…cation and the unrestricted port-

folio grouping procedure of Fama and French (1993). This new methodology allows for a more general

speci…cation than Rosenberg’s, and facilitates a range of approximate (asymptotic) statistical results
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not available with Fama and French’s procedure. The methodology has two steps. The …rst step

uses nonparametric kernel methods to construct mimicking portfolios for a chosen grid of values of

the characteristics. The second step uses parametric nonlinear regression to estimate factor betas

and factor returns simultaneously, using the collection of …rst-step mimicking portfolio returns as the

independent variable.

The model is applied to UK and US equities using three security characteristics: book-to-price

ratio, log of market capitalization, and dividend yield. We con…rm some of Fama and French’s

…ndings using a factor model based on the book-to-price ratio and log of market capitalization. We

…nd an independent role for dividend yield as a source of factor risk.

There are a number of possible extensions and applications of our …ndings. Daniel, Grinblatt

and Titman (1997) provide a framework for using characteristic-based benchmarks in performance

measurement. Our new methodology for the construction of characteristic-based mimicking portfolios

has obvious applications there. Constructing normal performance benchmarks in event studies is a

closely related problem, and our new methodology might prove useful. Fama and French (1993,1995)

stress that an important research problem is explaining why these security characteristics provide

so much information about return co-movements and about sample mean returns. Our …ndings do

not answer this directly, but may provide useful input. In particular, one might attempt to explain

our estimated factor model in terms of more primitive variables such as business cycles and interest

rates and their relative e¤ects on stock price for securities with particular characteristics.

A Appendix

Proof of Lemma 1. Using assumption A it follows immediately from Bierens (1994, Theorem

10.2.4) that for each ch,

(nbkn)
1=2(byht ¡ g¤t (ch)) =) N(0; ¾2t (ch)=p(ch)

p
2);

and the estimates are asymptotically independent across h by Bierens ibid, Theorem 10.2.7. The

independence across time is a consequence of our assumption that the error terms are uncorrelated.

Proof of Lemma 2. Consider two combinations ch and ch0 with j values 1 and 0 respectively and

chj0 = ch0j0 for all j0 6= j. Using the de…nition of g¤t (¢) gives g¤t (ch)¡g¤t (ch0) = fjt. The …nal estimate of

fjt is the average of these di¤erences across all mk¡1 such h, h’ pairs. The distribution limit of a …xed

…nite linear combination of sequences of random variables is the linear combination of the distribution

limits. By Lemma 1 each sequence has a normal distribution limit and they are asymptotically

independent. Using the formula for the variance of a linear combination of independent random

variables gives (7).
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Proof of Theorem 1. Let Qn(¯) denote the sum of squared residual function which is to be

minimized for least squares estimation:

Qn(¯) =
m¤X

h=1

TX

t=1

bvt(ch)(byht ¡ yht(¯))2:

Note that given byht and using the de…nition of yht(¯), Qn(¯) is a multivariate polynomial in ¯. Also

note that Qn(¯) is a sum of squared terms times some positive weights and therefore is nonnegative

everywhere. Hence it has a well-de…ned minimum (which need not be unique). Since Qn(¯) is a

multivariate polynomial it has derivatives to every order, and so when evaluated at any minimum

the …rst-order condition must hold. The local uniqueness of the minimizers follows from the fact,

discussed below, that the variables ± are not collinear, and are of dimensions less than or equal to

the number of observations.

Now we show that b̄ !p ¯0. For any n let cn denote Qn(¯0), that is, the sum of squared

residual function evaluated at the true parameter vector ¯. Since Qn(¯) is nonnegative and has

a minimum at b̄ we have 0 · Qn(b̄) · cn: Note that cn !p 0 as n ! 1; by virtue of the

consistency of the kernel estimator at each point, and therefore Qn(b̄) !p 0. We must show that

this implies b̄ !p ¯. Recall the de…nition of the target characteristic vectors ch and consider the

h0 such that ch = 0k. For each t consider the term in Qn(b̄) associated with h0, and note that

0 · bvt(ch0)(yh0t ¡ byh0t)2 · Qn(b̄) with probability tending to one, because bvt(ch0) has a positive

probability limit, and therefore (yh0t ¡ byh0t)2 !p 0. Using the de…nitions of byh0t and yh0t gives

( bfzt ¡ fzt ¡ buh0t)2 !p 0, and since buh0t !p 0 this implies bfzt !p fzt. Next consider h0 associated

with the target characteristic vector such that ch0j = 1 and ch0j0 = 0 for all j0 6= j. By the same

argument as in the last paragraph we have (byh0t ¡ yh0t)2 !p 0. Using the de…nitions of byh0t and yh0t
gives ( bfzt + bfjt ¡ fzt ¡ fjt ¡ buh0t)2 !p 0, and since buh0t !p 0 and bfzt !p fzt this implies bfjt !p fjt.

Last, we show that bgej !p gej for e = 3; : : : ;m; j = 1; : : : ; k. Consider h0 associated with the target

characteristic vector such that ch0j = gej and ch0j0 = 0 for all j0 6= j. By the same argument as in the

last paragraph we have ( bfzt+bgej bfjt¡ fzt¡ gejfjt¡ buh0t)2 !p 0. By assumption there is at least one t

such that fjt 6= 0 and using this t we have ( bfzt+ bgej bfjt ¡ fzt ¡ gejfjt ¡ buh0t)2 !p 0 implies bgej !p gej.

Proof of Theorem 2. Let by and y(¯) denote the m¤T -vectors de…ned by yht and yht(¯) over

all h and t. Rewriting Qn(¯) in matrix form and taking the derivative with respect to ¯¤, evaluated

at b̄

@

@¯
Qn(b̄) =

@

@¯

³
by ¡ y(b̄)

´0 bV
³
by ¡ y(b̄)

´
(13)

= ¡2
³
by ¡ y(b̄)

´0 bV ¡(b̄):
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Note that this vector of derivatives equals the zero vector by (12) as proven in Theorem 1. Consider

a …rst-order Mean Value expansion of y(b̄) around ¯0

y(b̄) = y(¯0) + ¡(ē)(b̄ ¡ ¯0); (14)

where ē lies between b̄ and ¯0. The appropriate value of ē may di¤er for each element of b̄ (see

Davidson and Mackinnon (1993) p. 154). Note that by¡y(¯0) = bu; where bu is the vector with typical

element buht. Inserting (14) into (13), setting it equal to zero, then cancelling and rearranging terms,

gives

(b̄ ¡ ¯0)0¡(ē)0bV ¡(b̄)¡ bu0V ¡(b̄) = 0:

Because ¡(¯) is a …xed continuous function and ē !p ¯0 and bV !p V; we obtain

(nbkn)
1=2(b̄ ¡ ¯0)H ¡ (nbkn)1=2bu0V ¡(¯0) = op(1):

By Lemma 1, (nbkn)
1=2bu is asymptotically normal with a zero mean vector and covariance matrix D.

If the di¤erence in the plim of two random variables is zero then their dlims are the same (White

(1984), Lemma 4.7, p. 63). Using that V;H are invertible completes the proof.

Bilinear Regression

We can rewrite the model as

y` = d
0
`®+ °

0x`± + "`;

where the observations ` run from ` = 1; : : : ;m¤T; and the matrix x` is of dimensions mk£kT; while

d` is T £ 1 vector of time dummies. The parameters ° satisfy the zero/one restrictions, which can be

represented by ° = A´+s; where A; s are matrices consisting of zeros and ones. The free parameters

´ are of dimension (m¡ 2)k £ 1: We now have a linear model

y` = c
0
`µ + "` (15)

where c0` = (d
0
`; a

0
`; b

0
`); and µ = (®0; ±0; Á0)0; where a0` = s

0x` and b` = vec(A0x`); while Á = ´ ­ ±: A

su¢cient condition for the parameters µ to be uniquely determined is that the matrix
Pm¤T

`=1 c`c
0
` be

of full rank. The regressors are all zeros and one, so the only question is about the dimensionality of

the parameter vector relative to the number of observations, that is, we requires m¤T > T +mk2T or

m¤ > mk2 + 1: This is likely to be satis…ed in practice. In any case, this condition is not necessary,

it refers to the overparameterized model that does not impose the restrictions on µ:

We now discuss our estimation algorithm, which exploits the bilinear structure of the problem.

Estimation of the linear regression (15) is not practical, because of the very large dimensions involved.

Instead we work with the bilinear regression where the restrictions have been imposed

y` = d
0
`®+ s

0x`± + ´
0A0x`± + "`:
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If we linearize this regression about the true values, we get that the regression function is approxi-

mately

y` = d
0
`®+ s

0x`± + ´
0
0A

0x`± + ´
0A0x`±0 + "`;

which suggests the following algorithm. We begin with starting values for the parameters ®; ±; ´;

which we denote by ®[0]; ±[0]; ´[0]:We then regress y` on d`; s0x` + ´[0]0A0x`; and A0x`±
[0] to give us

®[1]; ±[1]; ´[1] respectively. This process is to be repeated until convergence. It can be seen that this

is the so-called Gauss-Newton regression discussed in Davidson and MacKinnon (1993), and should

converge to a zero of the …rst order condition. The weighting can easily be accomodated.
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