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Abstract

We study the dynamics of the spread between U.S. corporate and Treasury bonds.

We foloped for interest rate processes we try to infer from the data what ac-

ceptable process can be used to model aggregate credit spreads for option pricing or risk

management purposes. We ¯nd that there is signi¯cant evidence of mean reversion espe-

cially for higher rated spreads and that the volatility of Aaa spreads exhibit a U-shape

while the volatility of Baa spreads is monotonically increasing in the level of spreads.

Based on these observations and on the evidence of jumps in the series, we propose a new

model for credit spread indices (an Ornstein-Uhlenbeck with jumps) and estimate it by

maximum likelihood.

1We thank R. Anderson, P. Jakubenas, W. Perraudin, the editor P. Jorion and an anonymous referee for

helpful comments. The third author gratefully acknowledges ¯nancial support from the Belgian Program

on Interuniversity Poles of Attraction (PAI nb. P4/01).
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1 Introduction

Credit risk has been a very active area of research over the past few years. Much progress

has been made in improving the classic ¯rm-value based model of Merton (1974) where

default is modelled as the ¯rst time the value of the ¯rm crosses some lower boundary (see

e.g. Anderson and Sundaresan (1996) or Ericsson and Reneby (1998) for recent

advances in structural models). Several new approaches including hazard rate models and

Markov chain models have also been proposed to circumvent the empirical and practical

di±culties encountered in structural models2.

Hazard rate models (see for example Jarrow and Turnbull (1995) or Duffie and

Singleton (1999)) do not model the value of the issuing ¯rm explicitly but assume that

default occurs by surprise, as the ¯rst jump of a Cox process. Although somehow less

intuitive than ¯rm-value based models, these models enable to calibrate the spreads more

easily and are useful tools to price credit derivatives3.

Markov chain models (see Jarrow, Lando and Turnbull (1997)) model credit risk

in a credit class framework. They use transition matrices either internal to banks or

published by rating agencies to infer the probability that, given that the bond is in class i

at date t, it will end up in class j at date t +1. One of the classes is default and it is thus

possible to calculate the probability of drifting down to default over a given time period.

Some versions of these three approaches are implemented by many banks under the

joint pressure of regulators and shareholders. The three leading providers of credit risk

packages propose models which each ¯t into one of the above three approaches : the KMV

corporation sells a model closely inspired by Merton (1974), while the Credit Risk+

product of Credit Suisse Financial Products is a hazard rate model and JP Morgan's

CreditMetrics is a rating's based model. A survey of credit risk approaches currently used

by practitioners can be found in Crouhy, Galai and Mark (2000) and connections

2We will not review the credit risk literature in details here. We refer the interested reader to Lando

(1998) and the survey by Jeanblanc and Rutkowski (1999) for an overview of the literature.
3Duffie and Lando (1997) andMadan and Unal (2000) propose models where the value of the r̄m

enters the hazard rate process, thus bridging the gap between the two streams of literature.
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between the three approaches are reported in Gordy (2000).

The empirical literature has lagged theoretical papers by a few years. Anderson and

Sundaresan (2000) test to what extent aggregate spreads can be explained by structural

credit risk models. They ¯nd that these models track historical spreads very well during

some periods but fail to do so during others. Duffee (1999) estimates a one-parameter

intensity model of credit risk on US corporate bonds. The author claims to be \reasonably

successful at ¯tting corporate bond yields". Unfortunately, as noted in Duffie and Sin-

gleton (1999), the retained process (square root di®usion), does not allow to generate

the observed negative correlation of spreads and riskfree rates (see Duffee (1998)) while

maintaining non negative hazard rates. Little empirical research has been carried out

on rating's based models but some articles including Kiesel, Perraudin and Taylor

(1999) have shown that most risk stems from spreads changes within a credit risk class

rather than from class changes, especially for highly rated bonds. This casts some doubts

on the ability of Markov chain models to replicate individual prices accurately.

Two empirical articles are directly related to this paper. Pedrosa and Roll (1998)

study a variety of corporate credit spread indices (pooled by ratings and sectors) over an

18 month period. Some of their series are similar to those we analyze in this paper. They

propose to use a Gaussian mixture to model credit spread changes. Duellmann and

Windfuhr (2000) focus on sovereign spreads (the di®erence between Italian and German

bond yields) and test whether Ornstein-Uhlenbeck and square-root di®usion models are

appropriate to capture the dynamics of these series. Their results indicate that the two

speci¯cations are not able to capture all the shapes of the term structure of spreads but that

no single model outperforms the other although pricing errors in the Ornstein-Uhlenbeck

model are more stable.

Our paper is in the same spirit as the above and aims at investigating the empirical

properties of some credit spread indices. We do not attempt to describe the deformations

of the whole credit spread curve, which would require the joint modelling of the risky and

riskless term structures as in some papers mentioned below. We focus here on the dynamics

of corporate bond spread indices. These are average spreads calculated by Moody's for
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bonds in a given rating class. There are two main reasons for studying these series. First,

they serve as an indicator of the level of credit spreads for many investors : they re°ect

the average yield spread on a well diversi¯ed corporate bond portfolio with long maturity.

Investors holding such a portfolio may ¯nd it convenient to protect themselves against

moves in the general level of corporate spreads in a given class rather than hedge each

individual issue.

Second, they can be used as underlying for credit spread options. These instruments

are now traded by many banks: a recent survey carried out by a consulting ¯rm (Kates

(1999)), showed that a quarter of U.S. large banks traded these instruments and the credit

derivatives markets is growing rapidly. Another study (Risk, April 1999) estimated that

the nominal amount of credit spread options would reach $100bn by the end of 2000.

These options are over-the-counter contracts whose payo® depends on the terminal value

and/or the path taken by the yield spread of an instrument over the yield on a riskfree

bond.

In theory, these contracts can be written on any traded bond whose yield is observable

on the market. In practice however, illiquid bonds and small issues should be excluded

as market manipulations could distort option payo®s. This is why most trading of credit

spread options takes place on a few large liquid issues.

The literature is still fairly thin on the pricing of these options and has been mainly

published in practitioners' journals. An early example is Flesaker et al. (1994) who pro-

vide an introduction to their use and basic pricing equations. Longstaff and Schwartz

(1995b) deal with options on spread when the logarithm of the spread follows an Ornstein-

Uhlenbeck process. Interestingly they show that because of the mean reverting dynamics,

European option prices on spreads can be below their intrinsic value : if the spread is

far above its long term mean, the intrinsic value of a call on spread will be high but

mean reversion will tend to push spreads down in the future. Therefore prices may be

lower than the payo® the investor would obtain should the option be exercised immedi-

ately. Mougeot (1999) provides further results on spread options in a three-factor model

(one for the riskless rate and one for each yield) where all factors are assumed to follow
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Ornstein-Uhlenbeck dynamics. Duffie and Singleton (1999) show how these options

can be priced within a hazard rate framework of credit risk.

The vast majority of credit spread options are currently written on sovereign issues

rather than corporate bond yield spreads. In a survey published in mid 1996 CIBC Wood

Gundy estimated that over 95% of the market for credit spread options consisted of options

on sovereign spreads. One of the main reasons for this is that clearly identi¯ed benchmarks

exist in sovereign bonds but not in the corporate debt market.

Yield spread indices would be natural candidates to ¯ll this gap. First, they are

released by a \neutral entity", the rating agency, on a daily basis : data reliability and

availability is thus ensured. Then, as aggregate measures of credit risk, they are not as

easy to manipulate because it would require large positions in many corporate bonds to

push the index in one direction. Furthermore they have a constant maturity enabling to

write long term options free of pull-to-par or other maturity-related phenomenons.

An alternative solution may be preferred to the direct modelling of spreads we retain

in this paper. One could construct a model of riskfree rates and a model of yields on

defaultable securities and derive spreads as the di®erence between the two rates. However

errors in both models could add up (depending on the correlation between the residuals)

and may lead to an imprecise description of the spread process. Furthermore spreads

observed in the markets are not only due to credit risk but also re°ect the relative liquidity

of corporate and Treasury bonds. Modelling spreads directly thus enables us to capture

both components while most models of credit risk would only capture the credit component

of spreads. We will see later that liquidity has indeed a very large impact on spreads.

Throughout this paper, we will assume that the dynamics for the spreads are given by

the stochastic di®erential equation

dSit = ¹i
³
Sit

´
dt +¾i

³
Sit

´
dWi

t ; (1)

where i = Aaa;Baa and W i
t is a standard Brownian motion. Hazard rate models of credit

risk typically assume such a process for the instantaneous spread which has close ties with

the instantaneous probability of default.
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We restrict ourselves to the class of time-homogenous processes. Other one-factor

models used in interest rate modelling allow the parameters to be time-dependent (for

example the continuous version of Black, Derman and Toy (1990)). This is typically

to enable the model to calibrate exactly the term structure of interest rates and thus

allow to price options on bonds consistently with observed bond prices. Our purpose

is however di®erent. One major drawback with term structure-consistent models such as

those mentioned above is that they need to be constantly re-estimated and their parameters

tend to vary a lot within short time intervals. Here, we are not trying to calibrate the term

structure of credit spreads but indices with constant time to maturity. We will thus look

for a °exible and robust speci¯cation which describes the particular series appropriately

while allowing to ¯nd simple forms for pricing options.

This paper is structured as follows. In section 2 we describe the series and present some

statistics and graphs, while section 3 and 4 report results obtained using respectively a

nonparametric and a parametric approach to estimating ¹ and ¾: In section 5, we propose

to model the dynamics of (the logarithm of) spreads as an Ornstein-Uhlenbeck process:

the solution to the stochastic di®erential equation is provided and the parameters of the

process are estimated by maximum likelihood. Section 6 concludes.

2 The series

We focus on credit spread indices. The data were obtained from the Federal Reserve

Board and consist of 3561 daily observations from January 1986 to the end of March 2000.

We collected Moody's indices for seasoned corporate bond yields with a Aaa rating or

Baa rating and the 10 year (constant maturity) Treasury yield constructed by the Federal

Reserve. Spreads are calculated as the di®erence between corporate and Treasury yields.

The Aaa rating is the highest in Moody's rankings and corresponds to the class of

bonds with lowest estimated probability of default while the Baa rating is at the bound-

ary between investment grade and speculative grade issues. Historical average default

frequencies over a ten-year horizon have respectively been 0:64% and 4:41% for bonds
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rated initially Aaa and Baa (see Keenan, Shtogrin and Sobehart (1999) (KSS))

Let us now introduce some notation. We denote the spread series as SAaat and SBaat

respectively while YAaat ;Y Baa
t and Y Tt stand for the yield on corporate bonds and on the

Treasury index at date t. We thus have SAaat = Y Aaa
t ¡ Y T

t and SBaat = YBaat ¡ Y T
t :

Before turning to the modelling of spread dynamics, we will present some statistics

and graphs of the series. Table 1 reports the basic statistics for the two spread series.

Table 1 : Summary statistics

Statistic SAaat SBaat

Mean 1.04% 1.91%

Standard dev. 0.28% 0.38%

Minimum 0.31% 1.16%

Maximum 1.96% 3.16%

Skewness 0.363 0.751

Kurtosis 2.719 3.007

DF stat -4.392 -3.470

The mean of the Baa series is about double that of the Aaa index. The volatility is also

higher but less so in proportion. This indicates that relative changes (i.e. ln (St=St¡1)) in

Aaa spreads are on average larger than those of Baa spreads. Both SAaat and SBaat exhibit

positive skewness. The minima for both series were achieved in early 1989 after two years

of very low default statistics (KSS p. 25) while the maximum Aaa spread was reached at

the peek of the 1998 crisis which started with Russia's default and then spread to other

markets (swaps, Brady bonds etc.). Baa spreads reached their maximum in our sample

in 1986. This year had the highest default rate for Baa bonds for the period 1970-1998

(KSS, Exhibit 29) with 1.33%.

The last row of Table 1 reports the values of the Dickey-Fuller unit root test on

Sit = ® + ½Sit¡1 + uit: The hypothesis of a unit root is rejected at the 1% level for Aaa

spreads and at the 5% level for Baa spreads. This is important because the econometric

theory underlying the tests in the following sections require the stationarity of the series.
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Here, we cannot reject that these series are stationary when confronted to a unit root

hypothesis.

Figure 1 plots the two series. One can check that they are indeed very correlated and

that they never intersect. Although individual bonds may exhibit inconsistencies4 between

spreads and ratings (for liquidity reasons or because ratings adjust slowly to changes in

¯rm value), on average ratings tend to be good indicators of credit quality.
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Figure 1: Aaa and Baa spread indices
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Figure 2: Baa minus Aaa spreads

The spread between Baa and Aaa yields has followed a downward trend from the begin-

ning of our sample until about 1994 where it stabilized around 60 basis points (bp)(Figure

4For examples of inconsistencies, see Perraudin and Taylor (1999).
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2). This re°ected mainly the improvement in liquidity in the speculative bond market.

The trend has been broken on two major occasions. The latter is due to the Russian crisis

which started in August 1998 while the former coincides with the run-up to the Gulf war

and the war period itself.

These crises were however very di®erent in nature. The Gulf war crisis was a true

credit event which a®ected many US corporates. Uncertainty about oil prices and the

prospects for growth created volatility in the value of the ¯rms' assets. Risky bonds can

be seen as riskless securities minus a put option on the value of the ¯rm stricken at the

nominal value of the debt (see Merton (1974)). The put options in Aaa bonds are very

deep out-of-the-money and an increase in asset volatility thus has a smaller impact (lower

Vega) on these bonds than on more risky securities. This is clearly visible on Figure 1

where Aaa spreads only mildly increased while Baa spreads soared by over 80 bp.

We believe that, in 1998, the crisis was to a large extent a liquidity shock rather than

a real credit event, especially for highly rated ¯rms5. One way to validate this hypothesis

is to look at spreads within the Treasury bond market. After the Russian default, the US

long bond (30 year benchmark) was trading at a 35 bp premium versus the second longest

bond (with just a few months less to maturity). The average spread in the past was about

7 bp (see Poole (1998)). Clearly default is not an issue here and the spread is generated

by the extremely strong demand for liquidity. We compared spreads within the Treasury

market in the Gulf war period and no such widening is observable, thus con¯rming that

the 1991 crisis was a credit event.

Looking again at Figure 1, one can observe a surge in both Aaa and Baa spreads and

most of the increase occurred in August after Russia's default. The economic fundamentals

of US corporates were little a®ected as their exposure to Russia was very small and the

domestic growth prospects were sound. Liquidity crises tend to a®ect lower rated securities

5The increased likelihood of failure of some banks/funds would indeed have a®ected the credit risk part

in the spreads but cannot alone explain such a slump in industrial corporate bonds. Another possible

explanation for the widening of spreads which occured over that period is a change in risk aversion.

Investors having lost large amounts of money on one market were less willing to take any credit risky

position.
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more heavily (in bp, not in proportion of total spreads, see Ericsson and Renault

(2000)) as being able to sell a position quickly is more valuable when the position may be

subject to default. One should thus be careful when interpreting spreads as they are not

only due to default probability but also to changes in liquidity and risk aversion.

Turning to Figure 3 we see that heteroskedasticity is present in our series (a similar

picture, not reported here, is obtained for Aaa spreads). Relative changes in spreads were

markedly more volatile at the beginning of our observation period and although recent

crises have shaken the corporate bond market, the volatility has never reached the levels

attained during the 1980s. This may re°ect the greater maturity and liquidity of the

US corporate bond market. Finally, note the correlation of stock market volatility6 with

corporate bond spreads since the beginning of 2000. We will see another spectacular

example of such a correlation later.
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Figure 3: Daily relative changes in Baa spreads

3 Nonparametric estimation

Before imposing some structure on the spread dynamics it is useful to apply nonparametric

techniques to extract some information about the possible speci¯cations for the drift and

di®usion. Stanton (1997) proposes ¯rst-, second- and third-order approximations to ¹

and ¾ when the interest rate process follows a SDE as equation (1).

6In the ¯rst quarter of 2000, the S&P 500 volatility was 24.5%, compared to a ¯ve year average of 16%.
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3.1 Density Estimation

The ¯rst step is to estimate the densities of the spread processes. We use a Gaussian7

kernel estimator of the spread density for the bond class i :

bfi (x) =
1

nhi

nX

t=1

'

Ã
x ¡ Sit

hi

!
; (2)

where ' (:) is the standard normal density function, n is the number of observations and

the window width is given by :

hi = cb¾in¡
1
5 ;

where c is a constant, and b¾i is the empirical standard deviation of spreads in class i.

The choice of c depends mainly on the level of smoothness one is willing to achieve

for the density. In this paper we have chosen c = 3 which is close to the value used

in Stanton (1997). A discussion of the choice of kernel and bandwidth can be found

in Scott (1992) and Pagan and Ullah (1999). The estimated densities are shown on

Figures 4 and 5 with 95% pointwise con¯dence bands. The con¯dence intervals have

been calculated using asymptotic distributions (see e.g. Robinson (1983), Ait-Sahalia

(1996a)). There is evidence of positive skewness especially in the Baa series.
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7The Gaussian property applies to the smoothing function '(:) but does not imply that the underlying

variables are assumed to be normally distributed.
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3.2 Drift Estimation

The drift term at level x can be estimated using8:

b¹i1 (x) =

Pn¡1
t=1

¡
Sit+1 ¡Sit

¢
'

³
x¡Sit
hi

´

Pn¡1
t=1 '

³
x¡Sit
hi

´ : (3)

Similarly an estimator of the di®usion is given by:

b¾i1 (x) =

0
B@

Pn¡1
t=1

¡
Sit+1¡ Sit ¡ b¹i1 (x)

¢2
'

³
x¡Sit
hi

´

Pn¡1
t=1 '

³
x¡Sit
hi

´

1
CA

1
2

: (4)

These are estimators corresponding to a ¯rst order approximation. Higher order esti-

mators can also be derived (see Stanton (1997), estimators corresponding to second-order

approximation given in appendix A).

Figure 6 and 7 plot the estimated drift term as a function of the level of the spreads.

We only report results for ¯rst- and second-order approximations (The line Par will be

discussed in the next section). Third-order approximations were also analyzed and lead

to very similar results9.

8The second-order approximation formulae are given in Appendix A. The annualized drift and di®usion

are obtained by multiplying the daily estimates by 250 and
p
250 respectively.

9These results are available on request.
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The drift is clearly not constant in the level of spreads but tends to decrease with

spread levels. This is evidence of mean reversion : we can indeed check that the value of

the drift is close to zero for values of the spread around their mean. The drift is positive

for values of the spread below the mean and negative for values above the mean. Notice

also that although the drift is not strictly linear, it does not show the kind of negative

exponential shape found in Stanton (1997) for the short rate drift. This latter result

may not be robust as shown in Chapman and Pearson (2000) : the nonparametric

estimators used in Ait Sahalia (1996b), Stanton (1997) and in this paper may suggest

nonlinearities for the drift at high values of the spread although the true drift is linear.

The curved shape of the Baa drift for SBaat above 2.5% should therefore be interpreted

with care since distortions may appear at boundaries.
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Figure 6: Aaa spread drift as a function of spread level

Comparing the two ¯gures, one can notice that the curve is steeper for Aaa spreads

than for Baa spreads, indicating faster mean reversion in Aaa bonds yields than in lower

rated bonds. Longstaff and Schwartz (1995b) also report a similar ¯nding over a

di®erent observation period. Some practitioners have also acknowledged this fact and

recommended tactical asset allocation strategies based on it : for example when expecting

the end of a crisis where spreads are far above their long-term mean, it may be appropriate

to invest ¯rst in Aaa bonds (which recover faster) and then progressively move to more
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speculative securities (see Goldman (1998)).

Recall that spreads are not only due to credit risk but also to liquidity premia10.

Changes in credit risk °uctuate with real economic variables such as the business cycle

and are therefore rather longlasting. On the other hand changes in liquidity premia are

very volatile and depend a lot on market sentiment. Liquidity crises are usually a matter of

months. It is therefore reasonable to expect that mean reversion in the liquidity component

of spreads should be much higher than that of the credit component. Aaa spreads are

explained in a greater proportion by liquidity and should intuitively revert more quickly

to their long term average than Baa spreads.
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Figure 7: Baa spread drift as a function of spread level

3.3 Volatility Estimation

We now consider the di®usion component. Looking at Figures 8 and 9, which plot the

daily changes Sit ¡ Sit¡1 versus the level of spreads Sit¡1, there is no obvious sign of a link

between the level of spreads and the volatility. This contrasts with short term interest

rates for example where the volatility is clearly positively correlated with the levels (see

10Huang and Huang (2000) actually show that only a very small proportion of the yield spread for

investment grade bonds is due to credit risk and that this proportion is higher for lower rated bonds.
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e.g. Stanton (1997)) and with order greater than 1, i.e. ¾ (x) = f (x°) ; ° > 111. If this

observation is con¯rmed statistically in the parametric section, one may be able to choose

a simple form for the volatility term.

Choosing a simple model may be useful in the pricing of path dependent credit spread

options where not only the terminal distribution is required but also other laws such as

the ¯rst passage time of the process to a boundary. Closed-form expressions for ¯rst

passage time densities are rare : the law for the Brownian motion is well known (see

e.g. Harrison (1985)), that for the Ornstein-Uhlenbeck process is given in Leblanc,

Renault and Scaillet (2000). Leblanc and Scaillet (1998) and Goeing and Yor

(1999) provide an explicit expression of the Laplace transform of ¯rst hitting time by a

square root (CIR) process.
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Our kernel estimator shows two very distinct shapes for the di®usion terms (Figures 10

and 11). The Baa spread seems to have a monotonically increasing volatility as a function

of the level of spreads while the Aaa spread exhibits a U-shaped volatility curve. One may

again try to explain these ¯ndings in the light of the di®erent proportions of liquidity and

credit components in the spreads. As we argued earlier, Aaa spread changes are explained

to a large extent by changes in liquidity and risk aversion. During low risk periods, the

Aaa spread will oscillate around its mean of about 1.04%.
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Two types of abnormal periods can then occur. First, a °ight to quality (such as the

second semester of 1998) can quickly dry out the liquidity in the corporate bond market

thus pushing spreads very high and increasing their volatility dramatically. This explains

the right part of Figure 10.

Second, a long bull market (such as those of 1988 and 1993-94) may trigger massive

liquidity in°ows in credit risky markets (both corporate and sovereign). This pushes

spreads to levels as low as 35 basis points and implies an extremely low risk premium on

corporate bonds. Then an external event such as a crisis in an emerging market or the

collapse of a large corporate issuer would immediately lead investors to reassess their credit

risk exposure and to cut their share of funds invested in credit risky instruments. This

would bring back risk premia to more \normal" levels. Thus very low levels of spreads are

also associated with high instability and the left part of Figure 10 thus also makes sense.

Again the line Par will be discussed in the next section.
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to low volatility in the corporate bond market. Conversely, when the economy is in a

downturn and defaults become more and more frequent, spreads are high and tend to

react dramatically to every new default in the market. Thus high credit spread levels are

naturally associated with high volatility. Given that Baa spreads contain a substantial

part of credit risk component, it is not surprising to ¯nd an increasing curve for the

di®usion term.

We have now obtained nonparametric estimates for the drift and di®usion components

of Aaa and Baa spreads. We saw that both drifts are nearly linear (decreasing) in the level

of spreads and that a linear speci¯cation is also reasonable for the Baa spread di®usion.

The Aaa spread di®usion is however not at all linear but is higher for values of the spread

far away from its mean and lower for spread values close to the mean.

4 Parametric estimation

We now move on to parametric estimation of corporate credit spread indices. Although

nonparametric pricing is possible (see for example Ait-Sahalia (1996a)), it is typically

easier to use parametric speci¯cations to obtain closed-form solutions for options or to

carry out simulations.

We follow the approach of Chan et al. (1992) who propose to estimate the discrete

time model :

Sit+1¡ Sit = ®D + ¯DSit +¾D
¯̄
¯Sit

¯̄
¯
°D

²t+1; (5)

where ²t+1 are assumed to be i.i.d. normal variables. If ®D > 0 and ¯D < 0; we obtain

the usual mean-reverting term with ¡¯D as speed of mean reversion and ¡®D=¯D as long

term mean. °D measures the degree of nonlinearity of the relationship between the spread

level and its volatility.

Most one-factor models used for interest rate modelling are nested in this model.

Merton (1973) is obtained by setting ¯D = 0 and °D = 0; while °D = 0 yields the

Vasicek (1977) model: Dothan (1978) corresponds to ®D = ¯D = 0 and °D = 1, while
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Brennan and Schwartz (1980) and Courtadon (1982) have the restriction °D = 1

and Cox, Ingersoll and Ross (1985) set °D = 1
2:

The Markovian property of the process and the assumption of normality enable us to

easily ¯nd the transition density and the log-likelihood function:

L = ¡n ln
³p

2¼¾D
´

¡
nX

j=1

ln
³¯̄
¯Sij¡1

¯̄
¯
°D

´
¡ 1

2

nX

j=1

0
@Sij ¡ ®D ¡ (¯D + 1)Sij¡1

¾D
¯̄
¯Sij¡1

¯̄
¯
°D

1
A
2

Since maximum likelihood yields asymptotically unbiased estimates with minimum

variance, it is preferable to apply maximum likelihood rather than a method of moments

whenever possible (see Broze, Scaillet and Zakoian (1995) for a discussion).

Maximum likelihood estimates for Sit+1¡Sit = ®D +¯DSit+¾D
¯̄
Sit

¯̄°D ²t+1 for i = Aaa

and i = Baa are reported in Table 212. Standard errors are provided within brackets.

Table 2 : Maximum Likelihood Estimates

SAaat SBaat

b®D
0:0116

(0:00270)

0:0133

(0:00368)

b̄
D

¡0:0110

(0:00251)

¡0:0071

(0:00202)

b¾D
0:0416

(0:00049)

0:0232

(0:0098)

b°D
0:0000

(NA)

0:9395

(0:06418)

Recall that we are using daily data. So, the estimators for the parameters of the

continuous process are respectively given by b® = 250 £ b®D; b̄ = 250 £ b̄
D; b¾ = b¾D

p
250

and b° = b°D:

12Note that we estimated the model on spreads £100; so that a spread of 1% would enter the estimation

as 1 and not 0:01.

19



4.1 Aaa spread dynamics

For the Aaa series, one can notice that the maximum likelihood ¯t is obtained with a

constant variance. This corresponds to drawing a straight horizontal line through Figure

10 at the level b¾D
p

250 = 0:658%. Line Par in Figure 10 is set at the level b¾D
p

250.

There is evidence of mean reversion (¯ < 0) as could have been expected from the

nonparametric estimation (Line Par in Figure 6 is the parametric estimate for the drift

term). The estimated dynamics for the Aaa spread (mean reverting drift and constant

variance) are those of an Ornstein-Uhlenbeck (O-U) process dSAaat =
³
® +¯SAaat

´
dt +

¾dWt: This speci¯cation was for example assumed by Duellmann andWindfuhr (2000)

to model sovereign spreads between Italy and Germany.

It is well known (see BSZ or De Winne (1998) for example) that the Euler scheme

(equation 5) introduces a discretization bias and that one should rather use the exact

discretization for the Ornstein-Uhlenbeck process :

SAaa(t+1)¢ ¡SAaat¢ =
³
¡®=¯ ¡SAaat¢

´ ³
1 ¡ e¯¢

´
+ ¾e¯(t+1)¢

Z (t+1)¢

t¢
e¡¯sdWs; (6)

where ¢ is the length of time between two observations, here ¢ = 1=250 year.

This exact discretization can be estimated using a single regression. We performed

this estimation and obtained the results reported in Table 3. They are compared to the

estimates obtained with the Euler discretization (annualized parameters from Table 2).

Table 3 : Estimation of O-U process

Estimate Exact Euler

b® 2:916¤ 2:902¤

b̄ ¡2:768¤ ¡2:754¤

b¾ 0:662¤ 0:658¤
¤signī cant at 1% level.

The bias is very small both in the drift and the di®usion term, which is consistent with

the ¯ndings of Schaefer (1980).

One should acknowledge that the solution obtained by maximum likelihood is a corner

solution as the constraint ° ¸ 0 is binding (this explains why we cannot calculate a
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standard deviation for b°). This indicates that the class of processes tested is not rich

enough to ¯t the Aaa data optimally as one could have guessed from the nonparametric

estimation of volatility.

4.2 Baa spread dynamics

Results for Baa spreads (Table 2) also show evidence of mean reversion. We ¯nd than mean

reversion is slower for Baa spreads than for Aaa spreads
³¯̄
¯¯Aaa

¯̄
¯ >

¯̄
¯¯Baa

¯̄
¯
´

as expected

from the nonparametric section (see line Par in Figure 7). The di®usion is however not

constant. We ¯nd that b°D is close to 1 which implies that the volatility of the spread

increases almost linearly with its level. Line Par in Figure 11 is a plot of the parametric

estimate of the di®usion term.

Setting ° = 1 and estimating the model again, we get b®D = 0:0134; b̄
D = ¡0:0070 (the

drift term is una®ected) and b¾D = 0:0224: This model is the discrete version of Brennan

and Schwartz (1980), also used in Courtadon (1982). The di®usion term thus obtained

is indistinguishable from line Par which is reasonably satisfactory at capturing the general

shape of volatility.

4.3 Joint behaviour of spreads

We noted above that Baa and Aaa series never cross. The proposed speci¯cation of the

Aaa spread as an Ornstein-Uhlenbeck process and of the Baa spread as a \Brennan and

Schwartz" process may lead to inconsistencies of the kind SAaat > SBaat : The following

Monte-Carlo experiment shows that although we cannot rule out this possibility, it is

extremely unlikely even over a very long horizon.

We perform 50,000 simulations of the daily spreads over a 10 year (2500 days) period,

using equation (5) and parameter values given in Table 2. As starting values for the

spreads, we choose their sample means (see Table 1). Standard Gaussian random variables

are drawn and transformed through the Choleski decomposition of the covariance matrix

in order to match the sample correlation of Aaa and Baa spread increments. Finally,

for each simulation, an indicator function records if the Aaa spread is greater than the
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Baa spread at any time between t = 0 and t = 10 years. This enables us to calculate

the probability that the two spreads cross. We ¯nd that this probability is 0:004% and is

therefore almost negligible.

By the same token, we used the simulation runs to calculate the probability of the Aaa

spreads reaching 0 (using the discretized model). Over 10 years the probability is 0:02%13.

5 A new process for credit spreads

Following the empirical observations for both spreads made in the two previous sections,

we now propose a new model for credit spread indices, guarantying positive spreads while

capturing jumps and mean reversion. We start with its description before discussing its

properties and carrying out its estimation on the data14.

5.1 The process

Let Yt denote the logarithm of the credit spread index (either Aaa or Baa). We assume

that Yt follows the dynamics:

dYt = ® (µ ¡Yt)dt +¾dWt + dNt; (7)

where Wt is a standard Brownian motion and Nt is a compound Poisson process.

Tn denotes the nth jump time of the compound Poisson process and Xn its associated

mark (jump size). Throughout, we will assume that the distribution of marks is time

independent and uncorrelated with the Brownian part of the process.

Let us denote

m1 = E [Xn] =
Z

<
xK(dx);

and

m2 = E
h
X2
n

i
=

Z

<
x2K(dx);

13The choice of a Gaussian process for the credit spread is admittedly debatable because of the possibility

of negative values. The probability of such an event is however very low as this experiment demonstrates.
14Note that estimation results obtained in this section are not directly compared to those of the previous

section since the models are non nested. Standard comparison in terms of mean squared errors, likelihood

ratios, Wald or Lagrange Multiplier tests are only valid for nested models.
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where K(dx) is the probability (kernel) that the mark falls in the interval dx 2 <: Nt

is such that (N ¡¸tm1)t is a martingale.

In the sequel, we will assume that jump times follow an exponential distribution with

parameter ¸ and that marks follow a binomial distribution with probability 1
2 and jump

size a. We thus have dx 2 [¡a;+a] ; K(+a) = K(¡a) = 1
2, m1 = 0;m2 = a2:

De¯ning the martingale Mt = ¾Wt + (N ¡¸tm1)t ; the solution to the stochastic

di®erential equation (7) takes an explicit form:

Yt = Y0 exp(¡®t) +

µ
µ +

¸m1

®

¶
(1 ¡ exp (¡®t)) +

Z t

0
exp(¡® (t ¡ s))dMs; (8)

and the conditional expectation and variance are respectively:

E0 [Yt] = Y0 exp (¡®t) +

µ
µ +

¸m1

®

¶
(1 ¡ exp (¡®t)) ;

V ar0 [Yt] = (1 ¡ exp(¡2®t))

¡
¸m2+ ¾2

¢

2®
:

The proofs are detailed in Appendix B.

5.2 Properties of the process

We can now discuss the properties of our process. ® (we assume ® > 0) is the tradi-

tional speed of mean reversion as in the Ornstein-Uhlenbeck speci¯cation. Our process is

therefore able to capture this feature of the data.

µ is however not the long term mean of the process in the general case. We can

indeed calculate the expectation of the stationary distribution by taking the limit of the

conditional expectation as time increases to in¯nity :

m = lim
t!1

E0 [Yt] =

µ
µ +

¸m1

®

¶
:

In the speci¯c case we retain in this paper, m1 = 0 and we therefore fall back on the

intuitive case where µ takes the interpretation of the long run mean. The formula for half

life (the expected time the process will take to reach the middle level between its current

value and its long term mean) is also una®ected when m1 = 0.

23



Similarly, taking the limit, we ¯nd that the stationary variance is:

V = lim
t!1

V ar0 [Yt] =

¡
¸m2+ ¾2

¢

2®
:

Notice that the stationary variance is bounded15.

This process enables us to capture jumps which are obviously present in the data (see

¯gure 1). Similar speci¯cations have been proposed by Das (1996) for modelling interest

rates. However, using logarithms precludes negative values for spread indices without the

need for truncation used by Das (1996).

5.3 Estimation

The process described above is conditionally normal, i.e. given that there is an up-jump, a

down-jump, or no jump, the distribution is normal with a corresponding mean. It is thus

straightforward to decompose the likelihood function in a product of normal distributions

weighted by the probability of having a given jump or no jump at all.

We want to estimate the parameters of the process using discrete data spaced by the

short time interval ¢; chosen to be 1=250 year (one day) in our estimations. The dataset

has been described in section 2. Let xi denote changes in log spreads over the period

(i ¡ 1)¢ to i¢: We have:

¹i = E(i¡1)¢ [xi] =

µ
µ +

¸m1

®
¡ Y(i¡1)¢

¶
(1 ¡ exp (¡®¢)) ;

¾2i = Var(i¡1)¢ [xi] = (1 ¡ exp (¡2®¢))

¡
¸m2 +¾2

¢

2®
;

and the log-likelihood function16 is, save on a constant:

L (xj ¡) =
nX

i=1

ln

8
<
:e¡¸¢Á

³
xi;¹i;¾

2
i

´
+

1X

j=1

1

2
e¡¸¢

(¸¢)j

j!

h
Á

³
xi; ¹i ¡ ja; ¾2i

´
+ Á

³
xi; ¹i+ ja; ¾2i

´i
9
=
; ;

where Á
¡
h;k; §2

¢
is the normal density at point h with mean k and variance §2;¡ =

(®; µ; ¾;¸;a) ; x is the vector of n log spread changes. For practical estimations, we have

15The characteristic function of the distribution and its derivation are available upon request.
16The estimation of jump di®usion models using Maximum Likelihood can sometimes lead to inconsistent

estimates due to the unboundedness of the likelihood function (see Honor¶e (1998)). This does not apply

here because the distribution of jumps is bounded.
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truncated the in¯nite sum at j = 15.17 The maximization program used a Newton-

Raphson technique and we have checked that the algorithm converges to the same set of

optimal parameters when starting from di®erent initial values.

Results for our estimations are reported in table 4. They all are signi¯cant at the 1%

level. Our results are in line with some observations made in section 2, 3 and 4. First, both

series exhibit mean reversion and the Aaa spreads revert much faster to their long term

average. Second, the lower volatility for the Baa series is consistent with our previous

observation that relative changes (remember we are working with logs) in Aaa spreads are

on average larger than those of Baa spreads.

Jumps are found to be signi¯cant in both series and a likelihood ratio test of the jump

Ornstein-Uhlenbeck versus its di®usion counterpart strongly rejects the assumption of no

jumps at the 5% level. Note that the size of (relative) jumps in Baa spreads is about

half that of jumps in Aaa spreads. This indicates that average jumps in both series are

approximately the same size because the level of Aaa spreads oscillated around 1% and

Baa spreads around 2%.

Table 4 : Parameter estimates

Estimates Aaa Baa

b®
2:828

(0:5219)

1:048

(0:3365)

bµ
¡4:489

(0:0496)

¡3:975

(0:0709)

b¾
0:397

(0:0098)

0:224

(0:0060)

b̧ 44:879

(3:4026)

34:337

(3:8850)

ba
0:0801

(0:0026)

0:0405

(0:0018)

17This is a very conservative choice. Truncating at j = 5 would have yielded a percentage di®erence in

parameters of less than 10¡4 .
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We have also considered lifting the assumption of symmetric jumps [¡a;+a]. We

estimated the model without the restriction and found an up-jump size of 0:0806 and

down-jump size ¡0:0751 for the Aaa series while corresponding ¯gures for Baa indices are

0:0418 and ¡0:0401: In both cases, likelihood ratio tests at the 5% level cannot reject the

hypothesis of equal jump sizes.

6 Conclusion

In this paper, we have used nonparametric and parametric techniques to model Aaa and

Baa corporate bond spread indices. Both series are found to be mean reverting with speed

of mean reversion much higher for higher rated bonds. Nonparametric estimates of the

drift show an almost linear negative relationship between the level of spreads and the drift

terms. On the contrary, the di®usion function is increasing in the level of spreads in the

Baa series, while it exhibits a U-shape for Aaa spreads.

Parametric estimates show that the \best" speci¯cation for Aaa spreads within a

broad class of processes is as an Ornstein-Uhlenbeck process (mean reverting with constant

volatility). This is partly due to the inability of the class of process to capture a U-shaped

volatility. Baa spreads are best described as a Brennan and Schwartz (1980) process.

Based on these empirical ¯ndings, we propose a new simple and °exible model for

credit spread indices which incorporates both mean reversion and jumps. Parameters of

the process are estimated and tests on the restrictions imposed by our model are found to

support the assumption of symmetric jumps.
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APPENDIX A

Second-order approximation of the drift and variance terms :
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where the constants 4 and ¡1 come from Taylor's expansion and b¹i1 (x) is given in (3).

Annualised values for the drift and di®usion are obtained bymultiplying the daily estimates

by 250 and
p

250 respectively.

APPENDIX B

In this appendix, we show that the solution to the SDE (7) is given by (8).

We guess a solution of the type Yt = exp (¡®t)Zt:

Deriving the above expression, we get :

dYt = exp(¡®t) (¡®Ztdt + dZt) ;

and thus:

dZt = exp (®t) (dYt +®Ytdt)

= exp (®t) (® (µ ¡Yt) dt +¾dWt + dNt + ®Ytdt)

= exp (®t) (®µdt + ¾dWt + dNt)

= exp (®t) ((®µ + ¸m1)dt +dMt) :
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Finally, by integration the expression for dZt :

Zt = Z0 +
Z t

0
dZs;

Yt exp (®t) = Y0 +

Z t

0
exp(®s) ((®µ + ¸m1)ds + dMs) ;

Yt = Y0 exp(¡®t) + (®µ +¸m1)

Z t

0
exp(¡® (t ¡ s))ds +

Z t

0
exp(¡® (t ¡ s))dMs;

Yt = Y0 exp(¡®t) +

µ
µ +

¸m1

®

¶
(1 ¡ exp(¡®t)) +

Z t

0
exp(¡® (t ¡ s))dMs:

This completes the proof of equation (8).

By de¯nition of Ms; we know that the last term has zero mean and immediately obtain:

E0 [Yt] = Y0 exp(¡®t) +

µ
µ +

¸m1

®

¶
(1 ¡ exp(¡®t)) :

We now proceed to derive the formula for the conditional variance of the process :

Var0 [Yt] = Var

�Z t

0
exp(¡® (t ¡ s))dMs

¸

= exp(¡2®t)V ar

�Z t

0
exp(®s)dMs

¸

= exp(¡2®t)
Z t

0
exp(2®s)d hM;Mis ;

where hM; Mi denotes the predictable quadratic variation (angle bracket).

Given that we have assumed that the Brownian motion and the MPP are independent,

we have :

hM; Mit = hN ¡¸m1t; N ¡ ¸m1tit + ¾2 hW; Wit
= ¸m2t +¾2t:

Thus:

Var0 [Yt] = exp (¡2®t)
Z t

0
exp(2®s)

³
¸m2 +¾2

´
ds

= (1 ¡ exp (¡2®t))

¡
¸m2 +¾2

¢

2®
:
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APPENDIX C

This appendix gathers graphs of ¯rst order nonparametric estimates for the drift and

volatility of Aaa and Baa spreads with con¯dence intervals. 95% pointwise con¯dence

bands were calculated using asymptotic distributions (see e.g. Robinson (1983), Ait-

Sahalia (1996a)).
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Figure 12: Aaa spread drift with 95% con¯dence band
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Figure 13: Baa spread drift with 95% con¯dence band
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Figure 14: Aaa spread volatility with 95% con¯dence band
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Figure 15: Baa spread volatility with 95% con¯dence band
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