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Abstract

We study a very simple rational expectations (RE) model whose
asset pricing implications address some of the short-run mispricings,
informational inefficiencies and overreactions observed in real markets,
without a need to resort to behavioural assumptions. We accomplish
this by relying on the plausible joint frictions of immediacy risk (execu-
tion risk) and of asset-specific orders (the demand function for asset
a cannot be made contingent on the price of any asset other than
a). These frictions induce allocational and informational inefficiencies
akin to the ones observed in reality. At the closed-form RE Equilib-
rium it is shown that arbitrage opportunities occur which could not
have occurred in a standard model. A certain and precise degree of
informativeness of prices to the traders is lost because the decision
making process becomes endogenously segmented and decentralized
within the same decision making entity (distinct “trading desks”). It
is shown that, compared to the frictionless benchmark case, volatil-
ity is affected at a RE Equilibrium, and that asset prices are likely
to overreact to news. Interestingly, the coordination problem aris-
ing from limited communication, even though dramatically changing
demand functions, does not lead to welfare losses.

JEL Classification: G11, G12, G14



1 Introduction

Until recently most theoretical research in financial economics has been based
on perfect, efficient and frictionless markets. But the pricing predictions thus
derived are at best approximations to real world prices. Prices occasion-
ally stray from their fundamental values (or from the values of a replicating
portfolio), they may momentarily allow for arbitrage opportunities, some-
times they overreact to contemporaneous news, they may be either overly
or insufficiently volatile, they fail to be informationally efficient, and the
list goes on. The recent literature on behavioral finance provides some an-
swers to these pricing patterns, as does the literature incorporating frictions
such as transaction costs, short-sale constraints and tax considerations into
rational general equilibrium models. This paper belongs to the frictional eco-
nomics literature. Focusing on contemporaneous valuation errors, we propose
a simple two-period model that generates rational competitive equilibrium
asset prices which nevertheless exhibit many of the puzzling properties listed
above. Prices of different assets are shown to allow for arbitrage opportu-
nities with positive probability, information is not properly aggregated into
prices, agents behaviour appears at odds with Bayesian updating, and we
argue that overreactions are a natural outcome.

The framework we propose drops two simplifying (but arguably coun-
terfactual) assumptions about the securities trading environment regularly
made in financial economics. The first common assumption is that investors
or traders know the price at which their orders will be executed. This is at
best an approximation, valid possibly for orders of small sizes. Typically,
traders face immediacy risk or trading lags (and if using strict limit orders
the size of the execution remains random). The second assumption we drop
in this paper concerns the kind of orders that can be submitted. Typically,
investors are assumed to submit their Marshallian demand schedules to the
market, either to an auction or to a market maker. Real world trading sys-
tems, however, do not allow orders for asset a to be contingent upon the
prices of any other assets b # a. In other words, schedules need to be asset
specific. These two realistic trading frictions are shown to be sufficient to
introduce mispricings in the form of allocational inefficiencies and arbitrage
opportunities. In this paper it is also shown that informational inefficiencies
arise at equilibrium, as the joint information of an investor effectively be-
comes compartmented into distinct information sets that can be thought of
as belonging to partially informed “trading desks.” Information processing



and trading becomes decentralized and uncoordinated, albeit synergetic.

We have two interpretations of the microstructure described above in
mind. The literal interpretation focuses on the very short-term. In real-
time, the proposed trading environment does indeed resemble very much the
real-world environment. An investor who wants to rebalance his portfolio
does typically not know for sure the execution prices of his trades before-
hand because of new information that gets impounded into prices between
the moment the orders are submitted and the moment the price is confirmed.
This is reminiscent of the timing in Kyle(1985)), but there investors may only
submit market orders for the one asset that is traded. One way to internal-
ize that execution uncertainty is to submit Marshallian demand schedules
that have all contingencies across all assets incorporated. But that is exactly
what is not feasible in the real world. It is shown that the resulting equilib-
rium asset prices may look irrational, or admit slight mispricings or fail to
aggregate all the information that they would if markets were perfect. We
are thus contributing both to the literature on market frictions that generate
mispricings, and to the literature on the limits of arbitrage that studies why
maximizing agents do not eliminate such mispricings. For papers on the lat-
ter, with an emphasis on its intertemporal long term aspects, see for instance
De Long, Shleifer, Summers and Waldmann(1990)), Dow and Gorton(1994))
or Shleifer and Vishny(1997)). In contrast, given the assumption of two pe-
riods only, the model we propose may best describe short term mispricings,
rather than long term valuation errors such as the closed-end funds puz-
zle, and its predictions may be complementary to alternative explanations of
long-term inefficiencies.

A less literal interpretation may be to view immediacy risk not so much
as execution risk, but more as arising from limited communication and de-
centralized decision making within the same decision-making firm. It is an
uncontentious fact that not all decision makers within the same financial
institution share all information, so that in effect their individual informa-
tion sets do not coincide with the join, the coarsest common refinement.
Either due to regulatory restrictions (e.g. “Chinese Wall”) or due to prac-
tical and technical difficulties, various trading desks operate more or less
independently in real time (with the possible exception of a firm-wide risk-
management team). That does not, however, imply that the various traders
disregard the actions of the other traders within the same firm. This is par-
ticularly true when the compensation of the traders is not only a function of
individual or desk P&L but of the P&L of a division or a firm, as assumed
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here. More realistically, different traders roughly know the trades and strate-
gies that need to be executed by the other traders, but are reduced to rely on
second-guesses as to what their exact trades are at each moment. Assuming
that each trader exactly knows all trades and that they all share the same
information set is clearly unrealistic, and it is the role of this perfect infor-
mation assumption that we try to address in this paper. In that spirit, we
may extend the literal interpretation of our model and consider it applicable
to mispricing patterns that may endure for some time in the markets since
an active communication effort on the part of the various trading desks is
required in order to sit together, to discover profitable trading opportunities
and to jointly act upon them in a coordinated fashion.

More formally then, the desire to derive a closed-form solution necessi-
tates strong, and possibly irrealistic, assumptions. In particular, we resort to
quadratic utility functions. The model assumes price-taking investors who
submit their asset demand schedules to an auction that computes aggre-
gate demand schedules and clears markets. But due to the trading frictions,
the decision problem of the investor is slightly more elaborate than usually.
If the investor has rational expectations, then he tries to partially overcome
the frictions by refining his information by the information revealed by prices
as follows: even though the orders cannot be revised instantaneously after
they’re submitted, at the outset the investor built in as many contingencies as
possible into the demand schedules (one for each asset by market specificity).

This means that we can view investor h’s optimization program as a de-
centralized team maximization problem with as many team members (traders)
as there are different assets, {(h,a),a = 1,..., A}. This is reminiscent of
the structure imposed upon agents by the cash-in-advance constraint in Lu-
cas(1990)). Each team member is in charge of a single asset. We refer to the
traders as team members since the ex-ante objective function is shared by
all of them. In particular we abstract from strategic behaviour. Member a
of investor h’s team (denoted by (h,a)) submits the schedule for asset a to
the auctioneer, incorporating the following line of reasoning:

”] am rational in the sense that I know the equilibrium price
function mapping shocks to prices. Unfortunately, I can only
observe the price of asset a, and I cannot communicate with any
of the other members (h,b) who observe g, and trade 6%, b # a.
ut, given the structure of the economy, I can update my beliefs as
to the market environment faced by my team members from any



one price. The resulting price of asset a at which my order will
be executed contains that information, allowing me to refine my
information as to the prices of all the other assets and the trades
of my team members.

The investors’ optimization problem has the same team flavour that
was analyzed, albeit in a somewhat simpler setting, in Marschak and Rad-
ner(1971)), Radner(1986)) and Radner(1986)). Vayanos(1999)) studies an
economy where various agents in a hierarchical company allocate the com-
pany wealth to different assets when different team members have different
private information about the final payoff of assets. In contrast, our model
assumes for simplicity that information about the final payoff distribution
of assets is homogeneous within a company h, but that different members
have different information as to the current trading environment, and there-
fore about the traded values of those assets. The abstract properties of the
trading environment defined by the dual frictions has been analyzed in Zi-
grand(2001)). In this paper we specialize the economy in order to compute
a closed form solution and to study its asset pricing implications.

The structure of the economy is presented in Section 2. Section 3 in-
troduces the investor’s optimization problem, and Section 4 deals with the
rational expectations equilibrium. Section 5 studies the asset pricing implica-
tions of our twin market microstructure assumptions. Subsection 5.1 shows
that markets may exhibit arbitrage opportunities at the rational expectations
equilibrium and Subsection 5.2 investigates the degree of informational effi-
ciency at the equilibrium. In Subsection 5.3 the asset prices are contrasted to
the Arrow-Debreu asset prices. Welfare is analyzed in Section 6 and Section
7 concludes.

2 The Economy

As mentioned in the introduction, individuals face two layers of risk in this
economy, first about the trading environment (“state of information”) and
then about the realization of endowments and asset payoffs (“state of na-
ture”). At time zero they face uncertainty about the market participants’
endowments and preferences, which translates into uncertainty about prices.
The asset demand functions they submit are not required to be either market
or limit orders, but they are required to only depend on their own price, i.e.



they need to be asset-specific. For instance, the demand schedule for asset a
is a function of the price of asset a, g,, only, as opposed to the whole price
vector g. At time one this uncertainty is resolved, asset orders get executed
and the households consume. They are, by the very nature of immediacy risk,
unable to retrade at the equilibrium price. The state of nature is realized
at time two and final consumption occurs. Investor hA’s utility maximization
program can then naturally be restated in the following fashion. Given that
asset specific demand functions have to be handed over to the auctioneer
before the state of information is realized, every investor’s demand function
for some asset a can be thought of as being represented by a team member
(h,a) (we use the terms “trader” and “desk” interchangeably) as having the
same preferences as the investor, and with the restriction that the A mem-
bers cannot communicate, so that (h, a)’s private information corresponds to
the observation of the price of asset a, q,.

Preferences and endowments of all agents h = 1,... H are assumed to
be common knowledge, and the uncertainty as to the trading environment
(i.e. the “state of information”) comes for simplicity from liquidity, or noise,
traders, aggregated as investor H+1. ¢, represents the aggregate noise trader
demand, and can be viewed as a market order. It is important for the sequel
to recognize, though, that nothing in this model hinges on noise traders,
they are solely chosen for simplicity. All that is really needed is that there
be some uncertainty about the trading environment, for instance as to the
preferences and endowments of all other traders, which is hardly a strong
assumption. This is shown in Zigrand(2001)). In particular, we do not need
noise trades in order to insure an imperfectly revealing rational expectations
equilibrium, and noise trading is not driving our asset pricing results, such
as the existence of arbitrage, informational inefficiencies or overreactions.

3 The Investors’ Decision Problem

The simplifying assumptions which will guarantee a tractable problem are
the following, denoted by H.

H1 There is uncertainty at time zero as to the noise trades e € £ = R4, We
assume that the probability distribution p of € is multivariate normal
with mean 0 and positive definite covariance matrix X, the (a,b)th
element of which is denoted by o.



There is also uncertainty at time two as to the state of nature which
represents the realization of the endowment and payoff random vari-
ables. We assume that the probability space of states of nature, (.5, p),
is finite. py > 0 represents the probability of state of nature s occurring,
and is common knowledge. Expectations with respect to p are denoted
by a superscript p in order to distinguish them from the expectations
with respect to p which we write without a superscript.

H2 Asset payoffs are summarized by the S x A payoff matrix R, assumed to
be of full rank (no redundant assets) and assumed to allow the existence
of some asset with positive payoffs: 3y € R* : Ry > 0. The payoff of
asset a in state s > 1, equivalently the (s, a)th element of R, is denoted
by dg.s-

Also, assume that ), E?[d.dy|oq # 0, all @ € A. This is a regularity
condition imposed upon parameters and is generically satisfied.

H3 Utility functions are quadratic quasi-linear: u?'(z) = 1 and u?'(z) =
ch—dhz, s=1,...8.

Investor h owns initial endowments in each date and state w
0,...S5. All endowments are common knowledge.

h

sy 5 =

Assumption H3 satisfies a purpose similar to the constant absolute risk-
aversion assumption in standard rational expectations (REE) models in that
it insulates asset demands from income effects. Also notice that the quasi-
linear utility functions have the additional characteristic that investors are
risk-neutral with respect to time one consumption. Denote the equilibrium
price function by ¢ : £ — R4, so that ¢ = ¢(e) is the equilibrium price vector
when the noise traders supply e. By rational expectations, this function
coincides with the investors’ forecast function, as defined for instance in
Lucas(1972)) or Radner(1979)).

The team member (h,b)’s task consists in choosing an optimal trade in
asset b, 0, given that he can infer some information about g_, and about
the quantity traded by all other team members, 0", = f" (q_), from his
observation of gj:



max E[Uh||qb]
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Then the first order condition with respect to 67 for an interior solution
is

G = dbs

S
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The term in the outer brackets, call it \?, is a state-price that is specific
to asset b, or maybe to a specific market-maker or exchange. A\*? cannot play
the role of a stochastic pricing kernel since the A\*? used in the pricing of asset
b does not typically price any othel: asset. And neither can the intertemporal
marginal rate of substitution pzz;(iié;),
again because it is not measurable with respect to the traders’ information
sets. This is the crucial asset-pricing implication of this model that will allow
us to generate inefficient and mispriced equilibrium prices without recourse
to ad-hoc assumptions. Informational innovations in one part of the markets
are not immediately and simultaneously incorporated into all other prices, as
standard REE models assume, because the decentralized trading structure
prevents the various trading desks from instantaneously sharing the infor-
mation extracted from prices. The trading orders of desk b € A incorporate
desk b’s estimates of the value of all open positions of assets other than b, as

can be seen from the Euler equation above.

whereas it can in standard models,



Now using the fact that preferences are quasi-linear quadratic, the FOC
of the household’s optimization problem becomes:

0= B[ = (0 + Y )]

=3 b | = st~ @ Y da L) ]
=Gy — d" > EP[da,sdss] B[ (40) |05

where

G = "EP[dy ] — d"EP[dy sw"]

The expression " basically represents investor h’s private valuation of
the assets in an economy without noise. Notice that the demand function for
asset b depends on the demand functions of all other assets. Indeed, demand
functions are the solution to a fixed-point problem, where each trader is
forecasting the forecasts of the remaining team members.

In order to solve the problem, we need to compute the conditional ex-
pectation on the right-hand-side. Each team member knows that noise is
normally distributed. Assume also that each investor has a linear forecast
function ¢: ¢(€) = F + Ge, where F is an A x 1 vector of constants and G is
an A X A matrix of constants. Given that e ~ N(0, %), this induces a distri-
bution of prices of N (fig, %), with i, = F and 3, = GX.G". The conditional
expectations functions FE[q ,||g,] are linear as well. Using these expressions,
team member (h,a) can easily deduce that Elq.||gs] = Vap + Vab - @b, With

oA ~  Oqq4,q _ Oga,q . . . ..
Vap = flg, — [g, &“gb and ve = —55*¢. The conjectured linearity is indeed

b

preserved:

Proposition 1 (Demand Functions) For a linear forecast function, there
are constants B" € R4 and o € RA such that demand functions are of the
form

ff(qa) = a/Z - ﬁQQa
for alla € A and all h € H.

The array of parameters 3" summarizes three effects of prices on investor
h’s problem. Besides the traditional income (due to H3 there are actually
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none in this case) and substitution effects, it also comprises the information
refinement effect via {vg}ap. As usual, H3 implies that in the absence of
informational effects (i.e. 3, diagonal), demand is downward sloping, 8 > 0,
all a.

4 Rational Expectations Equilibria

We now solve for the linear REE of such an economy. For each given e, asset
markets have to clear (commodity markets then clear by Walras’ Law').
Denoting a, = Y, ol all a € A, and similarly 8, = Y, 8" all a € A4,

ng(%):@a—ﬂaq(l:—ﬁa calla e A
h

The solution is given by

¢(e) = | 5= | +diag(---,8, ", )e

N

We now have to verify that indeed F' = (. ,%—Z,) and that G =
1

diag(---, B;',--+), so that expectations are fulfilled. Define § = S @

o = % and ¢ = Y, 6"¢". Also define the operator diag as follows: if
diag is applied to the vector v € R", it places the elements of v on the diag-
onal of an n x n matrix of zeros, while if diag is applied to a square matrix,
it generates the vector containing the diagonal elements. Finally denote the
noncentral second moment matrix of asset payoffs, R'diag(p)R by My, the
A x A identity matrix by I4 and the Hadamard (component-by-component)

matrix product by o.

Proposition 2 (Existence) There always exists a unique (within the class
of linear pricing functions) linear REE of the form

#(e) = F + Ge (1)
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F and G are given by

F=g=) o
h
G = 5IA o} [MdEﬁ(IA e} 26)71]

By H2, G is non-singular, i.e. G s diagonal with typical element G, =
0y EP[duds] %% # 0

The intercept F', the price vector in the absence of any noise, is the
weighted average of the investors’ private valuations, § = Y., 6"¢". Tt is
also equal to the average price, F' = E[@] as well as to the standard CAPM
valuation for an economy with assets that are in zero net supply.

We can in turn use this result to characterize the demand functions
™"(q) = o — diag(8")q in more detail. Whether demand (whose slope is
the inverse of the negative of ) is upward or downward sloping depends
entirely on the exogenous parameters composing the matrices My and ..
From there it is clear that a negative slope is the norm, but not a necessity.

Investors trade among themselves and with noise traders. Since we can
show from the proof of Proposition 1 that 5* = 6" - 3, each additional unit
of liquidity supply induces a change of prices such that investor A absorbs a
fraction 6" of that supply:

Lemma 1 At a REFE, investor h’s asset holdings can be split into a portfolio
of assets that he trades with other investors and a portfolio holding a fraction
8" of the noisy supply e€:

O" = 671" MG — g] — 0"

In what follows, it is useful to contrast our findings to the outcomes of
the Radner equilibrium, by which we mean the competitive Arrow-Debreu
equilibrium under uncertainty, but allowing for incomplete markets. In such
a setting, investors maximize

1 2
(wo — ; 00 q.) + ;ps (W + ; 0rd,s) — 5dh (wh + ; 0"d,,)
Asset demands are given by
eh — 5—15th—1(th _ q)
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Since the only active effect is the substitution effect, demands are downward
sloping.? Markets clear at an equilibrium, Zle 0" + ¢ = 0, which occurs if
prices satisfy

¢ =0%(e) =G+ My e (2)

5 Asset Pricing

In this section we analyze to what degree the microstructure generates asset
prices that satisfy the list of pricing properties outlined in the introduction.

5.1 Arbitrage

The first effect that one may expect is that assets could be mispriced if
investors faced the twin marketstructure assumptions. It is well-known that
in standard economies the image of ¢ is a subset of Q, the set of no-arbitrage
prices defined, for our purposes, as follows:

Definition 1 A price vector g admits No Arbitrage (NA) if the following
holds:
Ry>0=q¢y>0

The set of such vectors is denoted by Q, an open cone.

The realization ¢ admits no arbitrage if at that price any portfolio with a
positive non-zero payoff has a positive cost. We show that the assumptions
of immediacy risk and of asset-specificity (in conjunction with H) indeed
generate arbitrage opportunities with positive probability:

Proposition 3 FEquilibria exhibit arbitrage opportunities with strictly posi-
tive probability.

This can be shown easily. Since ¢ = ¢(¢) = F + Ge, with normal noise
trades the range of possible prices is ¢(£) = R*, and unless all possible
prices are no-arbitrage prices (which is ruled out by assumption H2 that
guarantees that there be some asset y paying off in at least one state, Ry > 0),
the following inclusion is strict: Q C ¢(£). But then the event of price
realizations ¢(€) \ Q has strictly positive probability (both ¢(€) and Q are
open in R?, and p is absolutely continuous with respect to A-dimensional
Lebesgue measure) and consists entirely of arbitrages.?
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Unfortunately, the assumptions required to derive a closed-form solution,
in particular normality and quadratic quasi-linear preferences, make Propo-
sition 3 look weaker than it actually is. The problem lies, of course, in the
satiation and no-free disposal assumptions implicit in quadratic preferences.
Whereas with standard non-satiated preferences, the Radner equilibrium
does not allow for arbitrage, the same is not true for quadratic preferences if
the support of € is large enough. It can indeed be shown (see Zigrand(2001)))
in a general model with non-satiated preferences that arbitrage is possible
in our framework whereas it is impossible in the Radner economy. Here we
will only be able to show that there are arbitrage opportunities that arise
due to the information asymmetries that the microstructure imposes upon
investors, which do not arise in the Radner economy.

As an example, consider the economy with the payoff matrix [§ 1]. The set
of no-arbitrage prices is the set of prices for which g» > ¢; > 0. Graphically:

Insert figure 1 here

Over and above the arbitrage opportunities that can survive at an equi-
librium due to satiation and no-free disposal, there are more subtle arbitrage
opportunities that arise in our framework that do not occur in the Radner
economy. Since members cannot perfectly coordinate their asset purchases,
the trading structure does not allow for complete risk-sharing. This is re-
flected in the fact that the marginal rates of substitution (MRS) of the differ-
ent team members of the same investing entity h differ, as A need not coin-
cide with AM*®, a # b, because they are chosen based on different information.
This is over and above the fact that the MRS between different investors may
differ in general, even in the absence of the twin microstructure assumptions,
if markets are incomplete (A < S). The dislocation of the marginal rates
of substitution is preserved at the equilibrium because the plausible trading
structure introduced in this paper prevents perfect arbitraging, even if mar-
kets are complete. Consider for instance the arbitrage realization ¢ = (2, 1).
The reason investor h is unable to make a riskless gain is that such an op-
eration requires selling asset 1 and buying asset 2. But neither trader 1 nor
trader 2 knows whether g» < ¢;. But investors still try to benefit from what
in effect amounts to a very good ex-ante deal, thereby bringing the MRS as
close as possible given the segregated information structure. In the exam-
ple above, trader 1 may for instance know that, for the given equilibrium
probability distribution of prices, g2 < ¢ may be quite likely, prompting a
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short position in asset 1. Trader 2 may or may not, again depending on the
equilibrium distribution, go long in asset 2. But even if indeed 1 goes short
and 2 goes long, they do not know that they are engaging in an arbitrage
scheme, and their portfolio is bounded, even when consumptions are below
their satiation levels, or with nonsatiated preferences.

5.2 Informational Efficiency

Having shown that equilibria exist in the economy with immediacy risk, and
having studied their allocational inefficiency, we shall analyze the information
transmission across exchanges or across pits at these equilibria. If each pit is
hit by an independent demand or supply shock and if no investors can trade
on more than one pit, no information can be transmitted. In our setup,
however, noises, and therefore equilibrium prices, are correlated so that each
observed asset price reveals information about all the sources of noise. Still,
markets generically remain informationally inefficient for any investor (in
addition to being allocationally inefficient), in the sense that the investors,
after having updated their information, possess less information than in the
Radner economy:

Proposition 4 (Degree of Information Revelation to Traders) The di-
mension of residual uncertainty facing team member (h,b) is A — 1 with
probability one.

A proof of a more general version of this proposition can be found in
Zigrand(2001)), but this present case is particularly intuitive: since team
member (h,b) observes g, and knows that g, = ¢y(€) = F, — Gppés, he effec-
tively knows €, (since Gy, # 0), and he can update his prior probabilities of
q—p and e_; accordingly. But because ¥, is of full rank, all A noise trades are
only imperfectly correlated and (h, b) is left with a finer posterior information
set, but still with uncertainty about A — 1 variables whose posterior support
equals RA~L.

Of course, the information an econometrician (or an outside observer)
can extract from ¢ is the same as the one extracted from ¢%, since the whole
price vector is fully revealing in both cases, as can be seen from Equations (1)
and (2). The point is that the information the market participants possess
is only partial. This would have to be taken into consideration when testing
an asset-pricing model with informational processing frictions such as ours.
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In particular, the equilibrium is incompatible with an unrestricted (or even
representative agent) economy since the information of the team as a whole
is not compatible with Bayesian updating. An empirical analysis indicating
a violation of Bayesian updating may therefore suggest irrational behaviour,
even though agents are in fact very rational in trying to overcome the existing
microstructure frictions. Relatedly, unlike in standard asset-pricing theory,
the posterior probability assessments of the traders of the different assets,
within the same team and across teams, are not equivalent, in the sense that
the traders disagree on events of probability zero.

5.3 Comparison to Radner Equilibria

It seems natural to contrast the equilibrium just derived to the Radner equi-
librium. For asset a, contrast the equilibrium price in the Radner model [R]
(from Equation (2)) and in the immediacy-risk model [IR] (from Equation

(1)):

qf = qAa —+ 5 Z Ep[dadb]eb [R]
b
~ Oab
Qo = 4o+ Y zb: Ep[dadb]o__gea [IR]

We notice that in the expression for the equilibrium price for asset a in the
presence of immediacy risk, the conditional expectations function El[epl|€,]
:(;_?ea replaces €,. This is reminiscent of the certainty-equivalence results in
quadratic decision problems, such as in Simon(1956)), but here it also applies
to equilibrium variables.

Both equilibrium pricing functions coincide if €, = £,(¢;), all a, where
each /, is a Borel-measurable bijection, because the price of any single asset is
fully revealing in that case. Assumption H1, by requiring that 3. be positive
definite, eliminates this possibility however. Alternatively, they coincide if
M, is diagonal. Besides these two cases, assets may be under— or overpriced
compared to ¢, their “fundamental value.” But there is no regularity in the
mispricing vis-a-vis the Radner value: E[g, — ¢%] = Elg, — ¢||¢] = 0, all a.
The next proposition compares the volatilities:

Proposition 5 Assume that M, is not diagonal, and that assumption H
holds. Then asset prices are less volatile than in the Radner equilibrium.
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There are two explanations for this. First, and by way of proof, condi-
tional expectation functions are contractions, meaning they act as smoothers:
since g, = E[gF||e,] it follows that var(¢gF) > var(g,). Second, the peculiar-
ity of quasi-linear utility functions, whose indifference curves are not strictly
contained in the positive orthant, contributes towards less volatility.

Our static model is clearly too stylized to capture many facets of real-
world asset pricing. Nevertheless Proposition 4 and equations [R] and [IR]
raise a very simple but important further point, namely as to where the often
imperfect and noisy movements and comovements of the various assets come
from. It has been repeatedly pointed out in the literature that there is con-
siderable evidence that asset prices do not coincide with their “fundamental
values.” In particular refer for instance to the, mostly behavioural, literature
on overreaction (for instance De Bondt and Thaler(1986)), Chopra, Lakon-
ishok and Ritter(1992)) and Hong and Stein(1999))). Some empirical papers
(see Summers(1986)) ) also argue that there are limits to arbitrage which
prevent the wedge between prices and fundamental values (however defined)
from closing. De Long, Shleifer, Summers and Waldmann(1990)), Dow and
Gorton(1994)) and Shleifer and Vishny(1997)) propose various models to
address that point.

In a Walrasian world the global and omniscient auctioneer impounds all
relevant information into all prices when forcing a global market clearing, and
(refer to equation [R]) all the various factors, no matter how unrelated, are
impounded immediately and correctly into prices. But given that in reality
there is no such auctioneer, that investors do not submit global Marshallian
demand schedules, and that markets tend to be segmented, if only according
to the two frictions introduced in this present paper, the Walrasian answer
can at best be an approximation. The failure of markets to follow such per-
fect pricing, however, should not be taken as proof that investors necessarily
behave in an irrational fashion, such as succumbing to over— or underreac-
tions. In conjunction with other, possibly behavioural factors, one of the
contributing determinants to the aforementioned empirical regularities and
stylized facts may be the twin microstructure assumption in our framework:

Proposition 6 Compared to the standard model, asset prices may appear to
over— or underreact to contemporaneous news when compared to the Radner
benchmark:

0qa _ Ogl 0qa _ Oqg
a 0 a
oe, > oe, > or Oe, < oe,
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Overreaction is more likely than underreaction.

Overreaction occurs when g%z > %, ie. when 6), E? [dadb]‘;—‘zj’ >
OEP[dz], i.e. when 37, EP[duds]oe > 0. Upon inspection, it is intuitive
that a positive sign is more likely. Assume for simplicity that A = 2. All
that is needed for overreaction is that E?[d;ds] and o1, have the same sign.
It is plausible that when the payoffs of assets a and b are positively related,
so are the liquidity trades. Since in our model liquidity traders represent, the
initial uncertainty about the traders’ preferences and wealth, when actually
modelled they would hold a diversified portfolio. So if a need for liquidation
arises, the liquidity traders will liquidate similar assets concurrently, and con-
versely if they go long a diversified portfolio. If that is the case, trader (h, a)
compensates his lack of contemporaneous information about all other assets
by overly relying on the information contained in his own piece of informa-
tion. To conclude, overreactions seem more plausible than underreactions.

Furthermore, it is apparent that the size of any overreaction is propor-
tional to 6 which, together with consumption, determines aggregate absolute
risk-aversion. Ceteris paribus, this leads us to the intuitive idea that serious
over— or underreactions are more likely to occur in environments charac-
terized by high effective risk-aversion, such as in periods of crises. Recent
stock market evidence seems to unambiguously support the idea that effec-
tive risk-aversion goes up in periods of crisis (refer for instance to the model
in Danielsson and Zigrand(2001)) where the current regulatory environment
is responsible for this pattern). This effect is even reinforced in recent stock
market history where effectively the correlation between returns of differ-
ent assets has risen in periods of uncertainty and crises (refer for instance
to Danielsson, Shin and Zigrand(2001)) for a model), creating even more
pronounced overreactions, as predicted by Proposition 6.

6 Welfare

In order to compare the ex-ante utility of investor A across the two trading
arrangements, we first compute the equilibrium asset demands in both cases.
In the frictional economy, we know from Lemma 1 that:

eh — 6—15th—1[th _qf\] —6h€
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which turns out to be exactly equivalent to the Radner equilibrium asset
allocation. Intuitively, quadratic quasi-linear preferences aggregate in such a
way that each investor A holds a fraction 6" of the noisy supply, the effective
market portfolio. It follows that at a Radner equilibrium each investor’s
demand for asset a only depends on the noise trades of asset a, ¢,, exactly as
in the frictional economy where such a dependence is imposed by the nature
of trades. In particular, if the Radner economy displayed mean-variance
efficient portfolio allocations, the same would be true in the immediacy-
risk economy, despite the serious information processing constraints imposed
upon traders by the environment. We can extend these findings:

Proposition 7 FEz-ante welfare and equilibrium asset allocations are identi-
cal to the ones in the Radner economy. If furthermore My is diagonal, then
consumption allocations are identical as well, in all states and dates, € a.s.

This proposition cautions against inferring welfare conclusions from asset
prices. Here the behaviour of asset prices is quite distinct from the behaviour
they would have in a first-best world, but welfare is nevertheless the same.
It is the rationality of agents together with market clearing that are able, in
some sense, to indirectly overcome some of the impediments to trade. This is
reminiscent of the results found by Constantinides(1986)), albeit in a different
context: demand functions may be vastly different from the frictionless ones,
but they allow the agents to reach a level of satisfaction remarkably close to
the level they enjoyed in the perfect benchmark economy.

7 Conclusion

We show how a plausible market microstructure could display realistic pat-
terns usually attributed to irrational valuation, such as existence of arbitrage,
informational inefficiencies, overreactions and so forth.

The model we construct is very simple, though, for we want to com-
pute the REE in closed-form. In that respect we believe that a dynamic
continuous-time extension may be useful to capture explicitly how rational
market prices may stray from their fundamental values, as well as from the
prices of their replicating portfolios, for a period time.

If reasonably profitable arbitrage opportunities could be sustained, a fur-
ther extension may be to allow agents, upon investing an amount ¢ > 0
in the necessary technology, to have instantaneous access to the floors and
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perfect communication, and therefore to trade without immediacy risk, as
in Zigrand(1999)). The number of such (strategic) arbitrageurs is endoge-
nous. The interesting questions concern the degree of information revealed
via the arbitrageurs’ cross-pit trades, especially as ¢ — 0, for now team
member (h,a) can also take into consideration when updating that ¢, re-
veals something about the arbitrageurs’ trades, including about their trades
in assets other than a. This would illustrate the belief by practitioners that
arbitrageurs improve upon the allocational and informational efficiency of
prices.
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A Proofs

Proof of Proposition 1. To compute the demands of a rational agent, we
conjecture that f"(q,) is an affine function for all a: f(g,) = o — glq,.
Rewriting the asset demand function accordingly and using F|q,||¢] = va» +
Vapqp yields

b = (%L - dh Z Ep[da,sdb,s] [Q’Z - BZL {Vab + Uaqu}:| (qu)

a

which generates the system of 24 equations in 2A unknowns

d Z EP[dydy )0y =1 (Vb € A)

dh Z EP[dysdyslof = g + d" " EP[dgsdys]Bive (Vb € A)

a

We define the matrices

Bh

d" M,

0| .
h — . h
L[f = Ul]a2 EqOB
0 .

The block diagonal system can be written as

Whph =1
Bhal = ¢" + (B"(diag(B")) — I) F

Only the second equality warrants elaboration:

B"" = §" + {(14}) o B" — (diag ,)W"} B"
= q"+ ((1jig) o B") B" — (diag fi)1
= ¢" + {((11")(diag f15)) o B"} " — (diag 1)1
=¢"+{B"o 11’)(d1ag fig))} B* — (diag fi,)1
="+ {(B" 0 (11)) (diag fi,)} 8" — (diag f1)1
=q"+ Bh(diag fig) B" — (diag ji,)1
= ¢" + B"(diag 8")j1q — fiq
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We used the fact that A o(BC) = (AoB)C if C is diagonal. This completes
the proof of the second equality.

Finally, we show that within the class of linear demands, the vectors of
constants a” and A" are defined uniquely, namely that the matrices B” and
Wh are nonsingular. Recall that if A is a diagonal matrix, then (AB)o C =
A(B o C). By Schur’s product theorem we know that 3, o B" is positive
definite. W is therefore invertible as the product of two invertible matrices.
This completes the proof of invertibility, and the proof of the proposition.

Finally, we prove the statement in the text that in the absence of infor-
mational effects, demands are downward sloping. Indeed, it is obvious that
if A and B are both diagonal, then AB = A o B. Hence W2 =0, a # b,

Bt = Wh = 02 d"EP[(d, )?] > 0. -

Proof of Proposition 2 (Existence). We can solve recursively for G and
F. As far as G is concerned, we saw that G = diag(---,8;',---). Hence at
a REE

-1
.

G ! =4 'diag 532 (GE.G) o My 1
0 -

which is true iff
1

o,
diag (G™') = 67" oo (GSG)oMyp 1

0

& { o2 } (GS.G) o My b diag (G~1) = 6711

- {Uabib

2
02 gq

E[dadb]} et | =611
(a,b) :

from which the expression for G, follows uniquely. The last derivation used

.
the fact that the (a, b)th element of the matrix 6.2 GG is Zalu

02Gaa’

0
where o, is the (a, b)th element of X..

22



We now derive the intercept F. Recall that F' = diag(8) 'a. Now
a= Z o’
h
= (BM'¢"+) (B") ! (B"diag(p") - I) F
h h
=D (BY)7'¢" + ) (diag(5") — (B") ) F
h h

=) (B") '¢" + (diag(ﬁ) — Z(Bh)l) F
It follows that
F = diag(8) ‘o
= diag(8)"' ) (B")7'¢" + (I — diag(8)™" Z(Bh)—l) F

& 0 = diag(8) 1M (Z(dh)lqh>
h
— diag(B)~'6'M'F

Proof of Lemma 1. We know that 6" = o — diag(")q. From the proof of

0| -~
Proposition 1, 1 = W"sh = d" ({ bag } Yq0 Md) B". Solving for g"
. .

-1
B =5-1s" ([ "&q—g ’ } iqon) 1
0

Summing across h = 1,... H, we find that g = 36".
Also from Proposition 1,

we get

ol = (d") 7 My [ + d"6" My(diag(B))d — 4]
=0710" My (¢" — §) + 8" (diag(8))g
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from which it follows that a = Y, o/ = (diag(8))q.
Now since individual demand is 0" = o — diag(3")q, summing over h we

find that diag(5)q = a+ €. Inserting this expression back into the individual
demands, we get 0" = 515" M ;' (§" — §) — d"e. n

Proof of Proposition 7. We saw that asset allocations agree in both
economies, so that in particular consumptions z”, s > 1 agree as well, for
almost all e. Of course, we showed that period zero prices do not agree, and
thus that period zero consumption possibly doesn’t either. Still, we shall now
argue that, due to the assumed quasi-linearity of preferences, the expected
consumption, and thus the expected utility, is the same in both economies.

First have a look at the Radner economy, and recall again that §" =
(d")~'M;g" — §) — 6" and ¢® = ¢ + §Mge. It follows that

xgi,h — w(f)z — . qR

= ‘*’g —h [(5_1((fh - Q)'Md_l(] + ((jh —§)e—q'e— (SGIMdE}
In the IR economy, on the other hand, investor A consumes
zh = wh — " [7NG" — 'MT G+ 07 (G — ' M7 Ge — ge — €Ge|

Unless G = My, consumptions do not typically coincide. It is apparent
that the consumptions do coincide € a.s. if M, is diagonal, since then
Md_lG = Md_l ([MdEE(IA o Ee)fl] o 5IA) ZMd_lMd ([Eé(IA o Ee)fl] ¢} 5IA):
[EC(IA o Ee)_l ] o 5IA:5[A

But as far as ex-ante welfare is concerned, all we need to show is that
expected consumptions agree. Using the fact that F[e] = 0, we need to
establish that JF[¢ Mye] = FE[eGe]. Now E[e'Mye] = 1'[My o 3]1, and
EleGe]l = Y, GaaOaa = D g Taad Yy, EP[dedp] 2 which indeed simplifies to
the required expression. “ [
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Endnotes

'Equilibrium requires that at all s = 0,...,5, >, 2" + 2¢ = 3, Wl + w¢
(where w¢ is the noise traders’ endowment in state s). At s = 0, the budget
constraints imply that zh = wl — ¢ - f" and 2§ = w§ — € - ¢. It is then easy
to verify that these demands do indeed sum up to the aggregate endowment
when asset markets clear. The same is true for s > 1.

2A (differentiable) demand function f is said to be downward sloping at q
if its Jacobian is negative quasidefinite. Intuitively, this follows from the
observation that by definition of negative quasidefiniteness (dq)'0f(¢)(dq) <
0 for dg # 0, i.e. (dg)'df < 0: prices and quantities of portfolios move in
opposite directions.

3Even though events in ¢(£)\ Q look like an arbitrage to an econometrician or
outside observer, they are not, however, arbitrages that the different traders
in team h could profit from since the arbitrage opportunity is not common
knowledge to them. Section 5.2 elaborates upon this. In Zigrand(2001)) we
show in a general framework that Q@ C ¢(€) C Q°X, where Q°X is the set of
price vectors for which it is not common knowledge to any subset of members
of the same team that there is an arbitrage. The simplifying assumptions in
this paper guarantee that QCK = R4, allowing the existence of a closed-form
solution.
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Figure 1: THE SET OF NO-ARBITRAGE PRICES, Q, IS AN OPEN CONVEX
CONE AND A STRICT SUBSET OF ¢(£) = R?>. THE PRICE REALIZATIONS
IN THE UNSHADED AREA REPRESENT ARBITRAGE OPPORTUNITIES IN THE
SUPPORT OF THE PRICE DISTRIBUTION.
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