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The Impact of Green Investors on Stock Prices

May 15, 2025

Abstract

We study how green investors impact firms’ stock prices and cost of capital in a model

where they track an index that progressively excludes the brownest firms and trade

with passive investors tracking a broad index and with active investors. Because stock

demand elasticity is low with passive investors, the impact of green investors is signifi-

cantly larger than in previous calibrations. That impact is further amplified when the

brownest firms load heavily on climate transition risk. Although an announcement of

future exclusion is reflected into brown firms’ current prices, the future price decline

until exclusion is significant.

JEL: G12, G23, Q54

Keywords: Green investment, Asset pricing, Institutional investors, Climate change
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1 Introduction

In the fight against climate change, the role of large institutional investors is widely debated.

As these investors hold diversified portfolios, they own shares of firms with high greenhouse

gas (GHG) emissions and thus contribute to global warming by financing polluting activities.

A number of private-sector initiatives have sought to promote net zero investment in recent

years.1 Central banks, through the Network for Greening the Financial System (NGFS),

have also been reflecting on greening their investment portfolios. Two broad approaches

promoting green investment prevail. Investors can divest from brown firms, or can influence

the transition of brown firms to greener operations by using their financial stakes to engage

with firms’ management.

A key question that drives investors’ consideration of divestment versus engagement is

whether divestment raises the cost of capital of brown firms and thereby influences their

future business development. The impact of divestment on firms’ cost of capital is the

subject of a growing theoretical literature, starting with Heinkel, Kraus, and Zechner (2001).

Papers in that literature assume that green investors underweight brown firms, or exclude

them from their portfolios altogether, and overweight green firms. Taking the other side

of green investors’ positions are investors with purely financial objectives. The impact of

divestment on stock prices depends on the relative size of the two types of investors and

on the aggregate size and return characteristics of brown firms. A calibration by Berk and

Van Binsbergen (2025) suggests that the effects of divestment on the cost of capital are tiny,

less than one basis point.

In this paper we study the impact of divestment on firms’ cost of capital in a model

that departs from previous literature in three important respects. First, we assume that not

all non-green investors trade actively against green investors. This is because a significant

1These initiatives include the Net Zero Asset Managers (NZAM) Initiative, the Net Zero Asset Owner
(NZAO) Alliance, the Glasgow Financial Alliance for Net Zero (GFANZ), the Climate Action 100+, the
Paris Aligned Asset Owners (PAAO), the Institutional Investors Group on Climate Change (IIGCC).
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fraction of non-green investors are passive funds, who track broad market indexes and hence

do not buy the brown stocks that green investors sell. Because of the passive investors, stock

demand is significantly less price-elastic than when all non-green investors are active, and the

impact of green investors on firms’ cost of capital is larger than in Berk and Van Binsbergen

(2025) by an order of magnitude. Second, we assume that exclusion is not one-off but occurs

dynamically over time. This is because green investors in our model follow net zero strategies

whereby they exclude the firms with the highest GHG emissions (or other decarbonization

metric) first, the firms with the second-highest emissions next, and so on, until a fixed

fraction of the the market is excluded. Exclusion is dynamic also because the fraction of

green investors can grow over time. We show that while more than half of the price decline

due to future exclusion is reflected into the current price of brown firms, the future price

decline until exclusion is significant. Third, we allow for a heavy right tail in firms’ emissions,

which we identify with firms’ loadings on a climate transition risk factor. Because of that

right tail, the impact of divestment on the cost of capital differs across brown firms and is

particularly large for the brownest ones.

Our model, presented in Section 2, assumes continuous time, infinite horizon, a constant

riskless rate and multiple stocks. Stocks’ dividends load on a business-cycle and a climate

transition risk factor, and have additional variation that is idiosyncratic. Stocks are symmet-

ric except possibly on their dividends’ loadings on the climate factor. We model the random

components of dividends as square-root processes. As in Buffa, Vayanos, and Woolley (2022)

and Jiang, Vayanos, and Zheng (2025), the square-root specification allows for a tractable

equilibrium where prices are affine functions of dividends while also ensuring that prices and

dividends are always positive. There are three types of investors. Active investors can invest

in the riskless asset and in the stocks without constraints. Passive investors can invest in the

riskless asset and in a capitalization-weighted index that includes all firms. Green investors

can invest in the riskless asset and in a capitalization-weighted index that progressively ex-
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cludes brown firms. The green index replicates the strategy of a portfolio with a decreasing

carbon footprint. Indexes excluding brown stocks progressively are referred to as “net zero”

or “Paris aligned”, and have been growing in popularity over time.2 All investors maximize

a mean-variance objective over infinitesimal changes in wealth.

The equilibrium, derived in Section 3, consists of a transition phase, during which brown

stocks are gradually excluded from the green index, and of a stochastic steady state that

follows. During the transition phase, the brown stocks sold by green investors are bought

by active investors. Passive investors keep holding the market portfolio throughout and do

not add to their holdings of brown stocks.

In Section 4 we calibrate the model without a climate risk factor. We assume that there

are 500 stocks and that five stocks are excluded from the green index at the end of each

year for the first ten years, resulting in a cumulative exclusion of 50 stocks. This exclusion

strategy can yield a large reduction in portfolio emissions because a small fraction of firms

generate a large fraction of total emissions (Jondeau, Mojon, and Pereira Da Silva (2021)).

We calibrate stocks’ supply and the parameters of the dividend processes based on moments

of stock returns. We allow the fraction of green investors to range from 5% to 15%, reflecting

different estimates of the size of the sustainable fund sector. We allow the fraction of passive

investors to range from 50% to 90% of combined active and passive. The lower end of

our assumed range, 50%, reflects the current size of passive and active. The upper end,

90%, reflects that many active investors track indexes closely because of explicit or implicit

constraints, or trade infrequently even in the absence of such constraints. Estimates of

demand elasticity for stocks suggest that the fraction of truly active investors could be even

2The rationale for excluding brown firms progressively is operational. Institutional investors aiming to
decrease the GHG footprint of their portfolios might be hesitant to implement rapid changes given their
obligation to maintain a tracking error relative to a benchmark. A gradual approach spreads the impact on
tracking error over multiple years while facilitating a swift reduction in GHG emissions for the overall portfolio
through the early exclusion of the brownest firms. MSCI and S&P have launched the MSCI Climate Paris
Aligned Indexes family and the Paris Aligned & Climate Transition Indexes family, respectively. Amundi,
Lyxor, and iShares, among others, have launched ETFs or funds based on Paris aligned indexes.
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less than 10% of combined active and passive, as we point out in Section 6.

When the ratio of green to active investors takes the lowest value implied by the ranges

that we assume in our calibration, exclusion from the green index raises the cost of capital of

the brownest firms by 1-2 basis points (bps), in line with Berk and Van Binsbergen (2025).

When the ratio takes its highest value, the effect rises to 18-24 bps, which is modest but

larger than Berk and Van Binsbergen (2025) by an order of magnitude. In the former case,

the stock prices of the brownest firms drop by 0.2-0.5%, and in the latter case they drop

by 2.8-6.3%. If the fraction of green investors rises to 30%, then their effect on the cost of

capital rises to 41-49 bps and stock prices drop by 6.0-12.5%.

Future exclusion is anticipated in prices to a significant extent. The immediate price

effect from the anticipation of exclusion in ten years is approximately 70% of the effect in

ten years. The remaining 30% reflects a gradual price drop until the tenth year. Excluded

stocks’ expected returns rise gradually before exclusion and discontinuously upon exclusion.

When the measure of green investors rises over time, the gradual drop in prices becomes

larger relative to the immediate drop.

In Section 5 we calibrate the model with a climate risk factor. When climate shocks to

dividends are assumed to be small relative to business-cycle shocks—approximately 7% for

the brownest firms and 0.45% for the average firm—the effects of divestment are somewhat

larger than without climate risk: the cost of capital of the brownest firms rises by 22-30 bps

and their stock prices drop by 4.5-9.1% in the case where the ratio of green to active investors

takes its highest value in our calibration. When climate shocks to dividends are assumed four

times larger, the effects of divestment become significantly larger than without climate risk:

the cost of capital rises by 93-136 bps and prices drop by 10.8-13.6%. Intuitively, climate

risk introduces additional comovement between brown stocks. This raises the variance of

the brown portfolio that active investors buy from green investors, and hence the expected

returns that they require to hold brown stocks.
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In the presence of climate risk, expected returns differ across brown and green stocks

not only because of the price impact of green investors but also because brown stocks load

more heavily on the climate risk factor. The effect of climate risk on expected returns is

comparable in size to the effect of divestment when climate shocks to dividends are small

relative to business-cycle shocks. It becomes dominant when climate shocks are larger.

A growing theoretical literature studies how divestment affects firms’ stock prices and cost

of capital. In Merton (1987), each investor holds only a subset of stocks, and stocks held by

few investors earn high expected returns. Investors’ incomplete diversification is interpreted

as arising from lack of information but could alternatively arise from ethical preferences.

In Heinkel, Kraus, and Zechner (2001), green investors do not hold brown stocks, and the

ensuing price impact can incentivize brown firms to become greener. In Luo and Balvers

(2017), exclusion of brown stocks by green investors depresses the prices of other correlated

stocks. In Pastor, Stambaugh, and Taylor (2021), green stocks earn lower expected returns

than brown stocks both because green investors derive utility from holding them and because

they outperform brown stocks following negative climate news. Moreover, the cross-section

of expected returns is described by a market and an ESG factor. In Pedersen, Fitzgibbons,

and Pomorski (2021), the cross-section of expected returns is described by a similar two-

factor model. Moreover, portfolio optimization by green investors who care about the ESG

score of their portfolio in addition to financial returns is described by a generalized portfolio

frontier. In Zerbib (2022), the cross-section of expected returns includes separate taste and

exclusion premia arising from green investors’ taste for green stocks and exclusion of brown

stocks. A common theme across all these papers is that divestment drives up the cost of

capital. Some of these papers perform a calibration exercise, which is further developed in

Berk and Van Binsbergen (2025).

A large empirical literature provides estimates for the effects of divestment. Teoh, Welch,

andWazzan (1999) find that divestment from firms doing business in South Africa, in the con-
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text of the apartheid boycott, had weak effects on their stock prices. Hong and Kacperczyk

(2009) find instead large effects of exclusion: they estimate an expected return premium from

holding sin stocks (alcohol, tobacco and gaming) of 250 bps per year. Bolton and Kacperczyk

(2021, 2023) find a similarly large expected return premium from holding brown stocks using

the level and growth rate of firms’ carbon emissions to measure brownness. Hsu, Li, and

Tsou (2023) report similar findings measuring brownness by firms’ toxic emissions intensity.

Eskildsen, Ibert, Jensen, and Pedersen (2024) estimate instead modest effects by combining

information on a large number of ESG measures and countries: annualized expected returns

decrease by 30 bps per one standard deviation increase in greenness. Pastor, Stambaugh,

and Taylor (2022) find that green stocks outperformed brown stocks by 174% cumulatively

from 2012 to 2020 because of inflows into green strategies. In a similar spirit, Van Der Beck

(2023) finds that a $1 flow into ESG stocks raises their aggregate market value by $0.7,

implying a low demand elasticity, and Ardia, Bluteau, Boudt, and Inghelbrecht (2023) find

that green stocks outperform brown stocks on days with negative climate news. We map

our results to some of these estimates in Section 6.

The closest empirical counterpart to our model is Cenedese, Han, and Kacperczyk (2024),

who measure the expected time until a firm’s exclusion from a net zero portfolio. They find

that annualized expected returns decrease by 150 bps per one standard deviation increase in

that measure, which they term Distance-to-Exit. Moreover, exclusion renders net zero port-

folios only mildly under-diversified. Jondeau, Mojon, and Pereira Da Silva (2021), Bolton,

Kacperczyk, and Samama (2022) and Cheng, Jondeau, and Mojon (2022) develop method-

ologies to construct net zero portfolios and benchmarks.

2 Model

Time t is continuous and goes from zero to infinity. The riskless rate is exogenous and

equal to r > 0. There are K groups of N firms each. All firms in the same group have
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the same (unmodelled) level of GHG emissions. Firms in group K, with the highest indices

n = (K − 1)N +1, .., KN , have the highest emissions and are excluded from the index first.

Firms in group K − 1, with the second highest indices n = (K − 2)N +1, .., (K − 1)N , have

the second highest emissions and are excluded second, and so on.

The stock of firm n = 1, .., KN , referred to as stock n, pays dividend flow Dnt per share

and is in supply of ηn > 0 shares. The dividend flow of stock n is

Dnt = D̄n + bsnD
s
t + bcnD

c
t +Di

nt, (2.1)

where {D̄n, b
s
n, b

c
n}n=1,..,KN are constants and {Ds

t , D
c
t , D

i
nt}n=1,..,KN are stochastic processes.

We refer to D̄n as the constant component of the dividend flow, bsnD
s
t as the systematic

component, bcnD
c
t as the climate component and Di

nt as the idiosyncratic component. The

systematic component is the product of a factor Ds
t times a factor loading bsn ≥ 0. The factor

Ds
t follows the square-root process

dDs
t = κs

(
D̄s −Ds

t

)
dt+ σs

√
Ds

tdB
s
t , (2.2)

where {κs, D̄s, σs} are positive constants and Bs
t is a Brownian motion. The climate com-

ponent is the product of a factor Dc
t times a factor loading bcn ≥ 0. The factor Dc

t follows

the square-root process

dDc
t = κc

(
D̄c −Dc

t

)
dt+ σc

√
Dc

tdB
c
t , (2.3)

where {κc, D̄c, σc} are positive constants and Bc
t is a Brownian motion. We interpret the

factor Ds
t as a standard systematic risk factor corresponding to business-cycle risk. We

interpret the factor Dc
t , which is also systematic, as corresponding to climate transition

risk. Climate transition risk refers to the uncertainty associated with the transition towards
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a low-carbon economy. It can arise from policies to mitigate climate change and achieve

environmental sustainability goals, and the impact that these policies have on different firms.

In Section 5, we equate firms’ exposure to climate transition risk to their GHG emissions.

The idiosyncratic component follows the square-root process

dDi
nt = κi

n

(
D̄i

n −Di
nt

)
dt+ σi

n

√
Di

ntdB
i
nt, (2.4)

where {κi
n, D̄

i
n, σ

i
n}n=1,..,KN are positive constants and {Bi

nt}n=1,..,KN are Brownian motions.

All Brownian motions are independent. By possibly redefining factor loadings and the pa-

rameters of the square-root processes (2.2) and (2.3), we set the long-run means D̄s and D̄c

of the systematic factors to one. By possibly redefining the supply ηn and the parameters of

the square-root process (2.4), we set the long-run mean D̄n + bsn + bcn + D̄i
n of the dividend

flow of stock n to one for all n.

Our specification (2.1)-(2.4) for dividends differs from typical specifications in the asset-

pricing literature in two main respects. First, dividends are typically assumed to be non-

stationary, while our specification yields stationarity because the random components of

dividends mean-revert. Second, the volatility of dividends per share is typically assumed

proportional to their level, while under our specification volatility is proportional to the

square root of the level. Both assumptions are made for tractability and are not essential for

our results. The square-root specification ensures that two important properties of typical

specifications carry through to our model: dividends are always positive, and the volatility

of dividends increases with their level. Jiang, Vayanos, and Zheng (2025) provide further

motivation and evidence for the square-root specification.

Denoting by Snt the price of stock n, the stock’s return per share in excess of the riskless

rate is

dRsh
nt ≡ Dntdt+ dSnt − rSntdt, (2.5)
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and the stock’s return per dollar in excess of the riskless rate is

dRnt ≡
dRsh

nt

Snt

=
Dntdt+ dSnt

Snt

− rdt. (2.6)

We refer to dRsh
t as share return, omitting that it is in excess of the riskless rate. We refer

to dRt as return, omitting that it is per dollar and in excess of the riskless rate. All return

moments that we compute in our calibration in Sections 4 and 5 concern dRt.

Agents are competitive and form overlapping generations living over infinitesimal time

intervals. Each generation includes active investors, passive investors and green investors.

Active investors can invest in the riskless asset and in the stocks without constraints. Passive

investors and green investors can invest in the riskless asset and in a stock portfolio that

tracks an index. The index is a broad index for passive investors and a narrower one for

green investors.

The broad index includes all firms. The green index includes a set Gt of firms that

decreases with time t. At t = 0, all firms are included. At t = T , firms n = (K − 1)N +

1, .., KN , i.e., in group K, are dropped. At t = 2T , firms n = (K−2)N+1, .., (K−1)N , i.e.,

in group K − 1, are also dropped. The process continues until t = K ′T for K ′ < K, when

firms n = (K −K ′)N + 1, .., (K −K ′ + 1)N , i.e., in group K ′, are the last to be dropped.

Times T , 2T , · · · , K ′T correspond to rebalancing times for green investors.

The broad and the green indexes are capitalization-weighted, i.e., weigh firms according

to their market capitalization. Therefore, the number of shares ηInt that the broad index

includes of any firm n is proportional to the number of shares ηn issued by the firm. By

possibly rescaling the broad index, we set ηInt = ηn. Likewise, the number of shares ηGnt

that the green index includes of any firm n ∈ Gt is proportional to ηn. By possibly rescaling

the green index, we set ηGnt = ηn for n ∈ Gt. Since ηGnt = 0 for n /∈ Gt, we can write ηGnt

for all n as 1n∈Gtηn.

We denote by WAt, WIt and WGt the wealth of an active investor, a passive investor
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and a green investor, respectively, at time t, by zAnt, zInt and zGnt the number of shares

of firm n that these agents hold, and by µAt, µIt and µGt the measure of these agents.

A passive investor holds zInt = λItηn shares of firm n, and a green investor holds zGnt =

λGtηGnt shares of the firm, where λIt and λGt are proportionality coefficients that the agents

choose optimally. We assume for tractability that the coefficients (λIt, λGt) are independent

of the dividend flows and are constant in each of the intervals between rebalancing times

[kT, (k + 1)T ) for k = 0, .., K ′ − 1 and [K ′T,∞). This assumption can reflect that passive

and green investors adjust their portfolios infrequently because they observe less information

or face higher transaction costs than active investors. We likewise assume that the measures

(µAt, µIt, µGt) are constant in each of the intervals [kT, (k + 1)T ) for k = 0, .., K ′ − 1 and

[K ′T,∞). Abusing notation, we denote the constant values of (λIt, λGt, µAt, µIt, µGt,Gt) in

the intervals [kT, (k + 1)T ) for k = 0, .., K ′ − 1 and [K ′T,∞) by (λIk, λGk, µAk, µIk, µGk,Gk)

for k = 0, .., K ′.

The budget constraint of agent type i = A, I,G is

dWit =

(
Wit −

KN∑
n=1

zintSnt

)
rdt+

KN∑
n=1

zint(Dntdt+ dSnt) = Witrdt+
KN∑
n=1

zintdR
sh
nt , (2.7)

where dWit is the infinitesimal change in wealth and dRsh
nt ≡ Dntdt + dSnt − rSntdt is the

share return of stock n in excess of the riskless rate. Agents have mean-variance preferences

over dWit. Active investors maximise the objective function

Et(dWAt)−
ρ

2
Vart(dWAt) (2.8)

over conditional mean and variance at time t. Passive and green investors maximise the

objective function

Eu
k(dWit)−

ρ

2
Varuk(dWit), (2.9)
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for i = I,G, over unconditional mean and variance across dividend flows and times t in the

interval [kT, (k + 1)T ) for k = 0, .., K ′ − 1 and [K ′T,∞) for k = K ′.

Figure 1 illustrates the portfolio flows between green and active investors. We assume four

groups of firms for this figure, which are shown in green, yellow, beige and brown, ranging

from the least to the most polluting. The green index progessively excludes the brown and

beige firms, from year 0 to year K ′. In year 0, active and green investors hold one quarter of

their portfolio in each of the four groups of firms. In year 1, green investors sell a fraction of

their holdings of brown firms to active investors, and rebalance their portfolio proportionally

towards the other three groups. In year 2, green investors sell a further fraction of their

brown holdings to active investors. This process continues until green investors hold no

brown firms. They then start selling their beige holdings. This process continues until year

K ′ when green investors hold no beige firms either, and their portfolio thus consists only of

green and yellow firms.

Alternative exclusion strategies to those assumed in our model and shown in Figure 1

could be envisioned. For example, green investors could direct the proceeds from selling

brown firms toward the green firms only instead of rebalancing their portfolio proportionally

towards all non-brown groups. Such strategies would strengthen the price impact that we

find.

3 Equilibrium

We look for an equilibrium where the price Snt of stock n is

Snt = S̄nt + bsnS
s
t (D

s
t ) + bcnS

c
t (D

c
t ) + Si

nt(D
i
nt), (3.1)

the sum of the present value S̄nt of dividends from the constant component, the present

value bsnS
s
t (D

s
t ) of dividends from the systematic component, the present value bcnS

c
t (D

c
t ) of
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Figure 1: Asset exclusion and exchange between green investors and active investors

dividends from the climate component, and the present value Si
nt(D

i
nt) of dividends from the

idiosyncratic component. Assuming that the functions (Ss
t (D

s
t ), S

c
t (D

c
t ), S

i
nt(D

i
nt)) are twice

continuously differentiable, we can write the share return dRsh
nt of stock n as

dRsh
nt = (D̄n + bsnD

s
t + bcD

c
t +Di

nt)dt+ (dS̄nt + bsndS
s
t (D

s
t ) + bcndS

c
t (D

c
t ) + dSi

nt(D
i
nt))

− r
(
S̄nt + bsnS

s
t (D

s
t ) + bcnS

c
t (D

c
t ) + Si

nt(D
i
nt)
)
dt
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= µntdt+
∑
j=s,c

bjnσ
j

√
Dj

t

∂Sj
t (D

j
t )

∂Dj
t

dBj
t + σi

n

√
Di

nt

∂Si
nt(D

i
nt)

∂Di
nt

dBi
nt, (3.2)

where

µnt ≡
Et(dR

sh
nt)

dt
= D̄n +

dS̄nt

dt
− rS̄nt

+
∑
j=s,c

bjn

[
Dj

t + κj(1−Dj
t )
∂Sj

t (D
j
t )

∂Dj
t

+
1

2
(σj)2Dj

t

∂2Sj
t (D

j
t )

∂(Dj
t )

2
+

∂Sj
t (D

j
t )

∂t
− rSj

t (D
j
t )

]

+Di
nt + κi

n(D̄
i
n −Di

nt)
∂Si

nt(D
i
nt)

∂Di
nt

+
1

2
(σi

n)
2Di

nt

∂2Si
nt(D

i
nt)

∂(Di
nt)

2
+

∂Si
nt(D

i
nt)

∂t
− rSi

nt(D
i
nt)

(3.3)

is the instantaneous expected share return of stock n, and the second step in (3.2) follows

from (2.2)–(2.4) and Ito’s lemma.

Using (2.7) and (3.2), we can write the objective function (2.8) of active investors as

KN∑
n=1

zAntµnt−
ρ

2

∑
j=s,c

(
KN∑
n=1

zAntb
j
n

)2

(σj)2Dj
t

[
∂Sj

t (D
j
t )

∂Dj
t

]2
+

KN∑
n=1

z2Ant(σ
i
n)

2Di
nt

[
∂Si

nt(D
i
nt)

∂Di
nt

]2 .

(3.4)

Using (2.7), (3.2), zInt = λIkηn and zGnt = λGkηn, we can likewise write the objective function

(2.9) of passive investors as

KN∑
n=1

λIkηnµ
u
nk −

ρ

2
λ2
Ik

∑
j=s,c

(
KN∑
n=1

ηnb
j
n

)2

(σj)2Eu
k

Dj
t

[
∂Sj

t (D
j
t )

∂Dj
t

]2
+

KN∑
n=1

η2n(σ
i
n)

2Eu
k

[
Di

nt

[
∂Si

nt(D
i
nt)

∂Di
nt

]2]]
, (3.5)
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and the objective function (2.9) of green investors as

KN∑
n=1

λGk1{n∈Gk}ηnµ
u
nk −

ρ

2
λ2
Gk

∑
j=s,c

(
KN∑
n=1

1{n∈Gk}ηnb
j
n

)2

(σj)2Eu
k

Dj
t

[
∂Sj

t (D
j
t )

∂Dj
t

]2
+

KN∑
n=1

1{n∈Gk}η
2
n(σ

i
n)

2Eu
k

[
Di

nt

[
∂Si

nt(D
i
nt)

∂Di
nt

]2]]
, (3.6)

where µu
nk ≡

Eu
k(dR

sh
nt)

dt
= Eu

k(µnt). Active investors maximise (3.4) over positions {zAnt}n=1,..,KN .

Passive investors maximize (3.5) over λIk and green investors maximize (3.6) over λGk. Tak-

ing the first-order condition in (3.4) and substituting {zAnt}n=1,..,KN from the market clearing

equation

µAtzAnt + µItλItηn + µGtλGt1n∈Gtηn = ηn, (3.7)

which requires that the demand of active investors, passive investors and green investors

equals the supply coming from the issuing firm, we find

µnt = ρ

∑
j=s,c

bjn

(
KN∑
m=1

1− µItλIt − µGtλGt1m∈Gt

µAt

ηmb
j
m

)
(σj)2Dj

t

[
∂Sj

t (D
j
t )

∂Dj
t

]2

+
1− µItλIt − µGtλGt1m∈Gt

µAt

ηn(σ
i
n)

2Di
nt

[
∂Si

nt(D
i
nt)

∂Di
nt

]2]
. (3.8)

We look for functions Ss
t (D

s
t ), S

c
t (D

c
t ) and Si

nt(D
i
nt) that are affine in their arguments

Ss
t (D

s
t ) = as0t + as1tD

s
t , (3.9)

Sc
t (D

c
t ) = ac0t + ac1tD

c
t , (3.10)

Si
nt(D

i
nt) = ain0t + ain1tD

i
nt, (3.11)

for (as0t, a
s
1t, a

c
0t, a

c
1t, {ain0t, ain1t}n=1,..,KN) positive functions of t. Substituting (3.3) and (3.9)-
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(3.11) into (3.8), we find

D̄n +
dS̄nt

dt
− rS̄nt +

∑
j=s,c

bjn

[
Dj

t + κjaj1t(1−Dj
t ) +

daj0t
dt

+
daj1t
dt

Dj
t − r(aj0t + aj1tD

j
t )

]

+Di
nt + κi

na
i
n1t(D̄

i
n −Di

nt) +
dain0t
dt

+
dain1t
dt

Di
nt − r(ain0t + ain1tD

i
nt)

= ρ

[∑
j=s,c

bjn

(
KN∑
m=1

1− µItλIt − µGtλGt1m∈Gt

µAt

ηmb
j
m

)
(σjaj1t)

2Dj
t

+
1− µItλIt − µGtλGt1n∈Gt

µAt

ηn(σ
i
na

i
n1t)

2Di
nt

]
. (3.12)

Equation (3.12) is affine in (Ds
t , D

c
t , D

i
nt). Identifying linear terms in Dj

t for j = s, c and

recalling that (λIt, λGt, µAt, µIt, µGt) are constant in each of the intervals [kT, (k + 1)T ) for

k = 0, .., K ′ − 1 and [K ′T,∞) yields a Ricatti ordinary differential equation (ODE) in aj1t

in each of these intervals. The solution in the interval [K ′T,∞) is constant. The solution

in each interval [kT, (k + 1)T ) for k = 0, .., K ′ − 1 is time-varying. Identifying linear terms

in Di
nt yields an ODE of the same type in ai1nt. Identifying constant terms yields a linear

ODE in each interval. Substituting (as1t, a
c
1t, {ain1t}n=1,..,N) into the first-order conditions of

passive investors and green investors yields equations for (λIk, λGk) for k = 0, .., K ′. We

solve the resulting system recursively, starting from the interval [K ′T,∞) and rolling back.

Proposition 3.1 characterizes the equilibrium. The proposition does not establish that the

equilibrium is unique, although our numerical analysis does not indicate existence of multiple

equilibria. The proposition’s proof is in Appendix A.

Proposition 3.1. The equilibrium price function has the form (3.1) with Ss
t (D

s
t ), S

c
t (D

c
t )

and Si
nt(D

i
nt) given by (3.9), (3.10) and (3.11), respectively. The function aj1t for j = s, c is
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given by aj1t = āj1K′ for t ∈ [K ′T,∞) and

aj1t =
āj1k

(
gjka

j
1,(k+1)T + 1

āj1k

)
e

(
gjkā

j
1k+

1

ā
j
1k

)
[(k+1)T−t]

− 1

āj1k

(
āj1k − aj1,(k+1)T

)
(
gjka

j
1,(k+1)T + 1

āj1k

)
e

(
gjkā

j
1k+

1

ā
j
1k

)
[(k+1)T−t]

+ gjk

(
āj1k − aj1,(k+1)T

) (3.13)

for t ∈ [kT, (k + 1)T ) and k = 0, .., K ′ − 1, where

āj1k ≡
2

r + κj +
√

(r + κj)2 + 4gjk

,

gjk ≡ ρ

(
KN∑
m=1

1− µIkλIk − µGkλGk1{m≤(K−k)N}

µAk

ηmb
j
m

)
(σj)2

for k = 0, .., K ′. The function ai1nt is given by ain1t = āin1K′ for t ∈ [K ′T,∞) and

ain1t =
āin1k

(
ginka

i
n1,(k+1)T + 1

āin1k

)
e

(
ginkā

i
n1k+

1

āi
n1k

)
[(k+1)T−t]

− 1
āin1k

(
āin1k − ain1,(k+1)T

)
(
ginka

i
n1,(k+1)T + 1

āin1k

)
e

(
ginkā

i
n1k+

1

āi
n1k

)
[(k+1)T−t]

+ gink

(
āin1k − ain1,(k+1)T

) (3.14)

t ∈ [kT, (k + 1)T ) and k = 0, .., K ′ − 1, where

āin1k ≡
2

r + κi
n +

√
(r + κi

n)
2 + 4gink

,

gink ≡ ρ
1− µIkλIk − µGkλGk1{n≤(K−k)N}

µAk

ηn(σ
i
n)

2

for k = 0, .., K ′. The function S̄nt +
∑

j=s,c b
j
na

j
0t + ain0t is given by

S̄nt+
∑
j=s,c

bjna
j
0t+ain0t =

D̄n

r
+
∑
j=s,c

bjnκ
j

∫ ∞

t

aj1t′e
−r(t′−t)dt′+κi

nD̄
i
n

∫ ∞

t

ain1t′e
−r(t′−t)dt′. (3.15)

The values of (λIk, λGk) for k = 0, .., K ′ are determined from the first-order conditions (A.4)-

(A.7) of passive and green investors in Appendix A.
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From time K ′T onward, the price Snt of stock n is an affine function of (Ds
t , D

c
t , D

i
nt) with

time-independent coefficients. The affine coefficients depend on investor demand through the

terms (gsK′ , gcK′ , ginK′). An increase in the measures (µIK′ , µGK′) of passive or green investors

or in their investment (λIK′ , λGK′) in their respective indices from time K ′T onward lowers

(gsK′ , gcK′ , ginK′), thus raising (ās1K′ , āc1K′ , āin1K′). Therefore, the price of stock n from time

K ′T onward increases. Likewise, if stock n is excluded from the green index at time K ′T ,

then ginK′ is higher than for a stock n′ with otherwise identical characteristics. Therefore,

stock n trades at a lower price than stock n′ from time K ′T onward. These effects are

anticipated in the price before time K ′T as well, through the recursive formulas (3.13) and

(3.14). Indeed, higher values of (ās1K′ , āc1K′ , āin1K′) imply higher values of (as1t, a
c
1t, a

i
n1t) for

t ∈ [(K ′ − 1)T,K ′T ), which imply higher values of (ās1,K′−1, ā
c
1,K′−1, ā

i
n1,K′−1), and so on.

The price Snt of stock n at a time t prior to K ′T is an affine function of (Ds
t , D

c
t , D

i
nt)

with time-dependent coefficients. The coefficients depend on current demand during the

interval corresponding to time t, and on anticipated demand during all subsequent intervals

(including from time K ′T onward). Higher demand during an interval [kT, (k+ 1)T ) lowers

(gsk, g
c
k, g

i
nk), thus raising (ās1k, ā

c
1k, ā

i
n1k) and (as1t, a

c
1t, a

i
n1t) for t ∈ [kT, (k + 1)T ). This raises

prices during the interval [kT, (k + 1)T ), as well as prices in all preceding intervals through

the recursion.

4 No Climate Risk

In this section we compute the equilibrium numerically when the loadings {bcn}n=1,..,KN on

the climate transition risk factor Dc
t are set to zero. This leaves Ds

t as the only systematic

factor.
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4.1 Parameter Values

The model parameters are the riskless rate r, the number K of groups of firms, the number

N of firms per group, the number K ′ of groups to be excluded, the time T between con-

secutive exclusions, the parameters {κs, σs} and {D̄n, b
s
n, κ

i
n, D̄

i
n, σ

i
n}n=1,..,KN of the dividend

processes, the numbers {ηn}n=1,..,KN of shares, the measures {µAk, µIk, µGk}k=0,..,K′ of active,

passive and green investors during each of the intervals [K ′T,∞) and [kT, (k + 1)T ) for

k = 0, .., K ′ − 1, and the investors’ risk-aversion coefficient ρ.

We assume that the total measure µAk + µIk + µGk of active, passive and green investors

remains constant over time. Changes to the measure of each investor group can thus only

occur because of investors switching groups. We set the total measure of investors to one.

This is a normalization because we can redefine the risk-aversion coefficient ρ. We set ρ to

one. This is also a normalization because we can redefine the numeraire in the units of which

wealth is expressed. Since the dividend flow is normalized by D̄n + bn + D̄i
n = 1, redefining

the numeraire amounts to rescaling the numbers of shares {ηn}n=1,..,KN . We set the riskless

rate r to 3%.

We set the number K of groups to 100 and the number N of firms per group to five. This

yields a total of KN = 500 firms, allowing us to interpret the broad index as the S&P500.

Group 1 of firms is the least polluting and Group 100 is the most polluting. We set the

number K ′ of groups to be excluded to ten and the time T between consecutive exclusions

to one. The horizon K ′T of the decarbonization strategy is thus ten years. Firms in Group

100 are excluded from the green index first, in year 1. Firms in Group 91 are excluded last,

in year 10. All in all, K ′N = 50 firms are excluded, which amount to 10% of all firms.

The calibration of the number of excluded firms aligns with recent empirical findings on

the cross-sectional characteristics of GHG emissions and net zero investment strategies. GHG

emissions exhibit a Pareto distribution with a heavy right tail. Jondeau, Mojon, and Pereira

Da Silva (2021) estimate that the most polluting firms representing 1% of world market
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capitalization account for 15% of total carbon emissions. Moreover, a policy that reduces

carbon emissions by 10% per year over ten years—a cumulative reduction of 65% (= 1 −

(1−10%)10)—requires excluding in total the most polluting firms representing approximately

10% of market capitalization. Therefore, our scheme of excluding 1% of the most polluting

firms every year for ten years can yield a cumulative 65% reduction of portfolio emissions.3

We assume that firms have identical characteristics {D̄n, b
s
n, κ

i
n, D̄

i
n, σ

i
n, ηn}n=1,..,KN , which

we denote by {D̄, bs, κi, D̄i, σi, η}. They only differ in their level of GHG emissions, which

are not modelled in this section and are identified with loadings on the climate transition

risk factor in Section 5.4

We set the mean-reversion parameters κi and κs to a common value κ, which we take to

be 0.04. Our analysis is not sensitive to the value of κ in the sense that the effects of changing

κ on our numerical results are similar to those of changing the other parameters. We set

σi
√
D̄i

= σs
√
D̄s

= σs. This assumption together with κs = κi ensure that the distributions of

Ds
t and {Di

nt}n=1,..,KN are the same when scaled by their long-run means:
Di

nt

D̄i has the same

distribution as
Ds

t

D̄s = Ds
t . We set D̄ to zero. Minimizing D̄ maximizes return variances,

bringing them closer to their empirical counterparts as we explain below. Our normalization

D̄n + bsn + bcn + D̄i
n = 1 implies D̄i = 1− bs.

We calibrate bs and η based on stocks’ expected returns and CAPM R-squareds. We

use the unconditional versions of these moments, taking expectations with respect to the

stationary distribution of the stochastic processes Ds
t and {Di

nt}n=1,..,KN . We use as calibra-

tion targets the values of the moments when there are no green investors. Without green

investors, the moments are the same for all stocks.

3According to a widely cited report by CDP (formerly, Climate Disclosure Project) published in 2017,
70.6% of global GHG emissions since 1988 are due to 100 companies. See https://www.cdp.net/en/

press-releases/new-report-shows-just-100-companies-are-source-of-over-70-of-emissions.
4By taking the parameters {D̄n, b

s
n, κ

i
n, D̄

i
n, σ

i
n, ηn}n=1,..,KN to be the same across firms, we are assuming

that firms have the same long-run average market capitalization. The results of Jiang, Vayanos, and Zheng
(2025) suggest that if firms differ in size, then the effects of green investors would be stronger for larger
firms: stronger positive for larger green firms and stronger negative for larger brown firms.
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The supply η affects mainly stocks’ expected return: with higher η, investors bear more

risk and require higher expected return. We target expected return (in excess of the riskless

rate) to be 6%. To assess the sensitivity of our results to that target, we also report results

for an alternative target of 4%.

The loading bs on the systematic factor (which is related to the long-run mean of the

idiosyncratic component of dividends through D̄i = 1 − bs) affects mainly stocks’ CAPM

R-squared: with higher bs, systematic dividends are more important relative to idiosyncratic

dividends, and CAPM R-squared is higher. We target CAPM R-squared to be 25%, which

approximates the average CAPM R-squared of the stocks in the S&P500. We also report

results for an alternative target of 20%.

We calibrate the volatility parameter σs of systematic dividends (which is related to

the volatility parameter σi of idiosyncratic dividends through σi
√
D̄i

= σs
√
D̄s

= σs) based on

stocks’ unconditional return volatility. Raising σs has two countervailing effects on return

volatility. For given values of Ds
t and {Di

nt}n=1,..,KN , return volatility rises. At the same

time, the stationary distributions of Ds
t and {Di

nt}n=1,..,KN shift weight towards very small

or very large values, for which return volatility is low under the square-root specification.5

The maximum return volatility that our model generates remains bounded when σs goes to

infinity because of the low volatility at the extremes. The bound is approximately 25%. One

approach is to set σs to a value that yields a return volatility of approximately 20%, typical

for S&P500 firms (Vuolteenaho (2002)). That value, however, yields prices that are overly

low relative to the calibrated unconditional expected return because of the time variation of

the conditional expected return.6 Another approach is to use a lower value for σs and obtain

5For small values of Ds
t and {Di

nt}n=1,..,KN , return volatility per share is small but share price does
not converge to zero because of the mean-reversion of Ds

t and {Di
nt}n=1,..,KN . (The price converges to

S̄nt + bsna
s
0t + ain0t, as shown in Proposition 3.1.) Therefore, return volatility converges to zero. For large

values of Ds
t and {Di

nt}n=1,..,KN , return volatility converges to zero because return volatility per share is
proportional to the square root of Ds

t and {Di
nt}n=1,..,KN but share price is affine in these variables.

6The expected return is close to zero for small values of Ds
t and {Di

nt}n=1,..,KN because return volatility
converges to zero. It increases significantly away from zero, and the unconditional average of the price is
primarily determined by the expected return away from zero. For σs = 1.5, target expected return 6%
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prices more in line with expected returns. We report results under both approaches, to assess

the sensitivity of our results to return volatility. Under the first approach, we set σs = 1.5.

The values of (bs, η) are (0.87, 0.00132) for a target expected return of 6% and R-squared

25%. They become (0.825, 0.000643) when the target expected return is changed to 4% (and

R-squared remains at 25%), and (0.8475, 0.00157) when the target R-squared is changed to

20% (and expected return remains at 6%). Return volatility ranges between 20.43% and

20.51% across these cases. Under the second approach, we set σs = 0.5. The values of (bs, η)

are (0.799, 0.0028) for a target expected return of 6% and R-squared 25%. They become

(0.74, 0.00144) when the target expected return is changed to 4%, and (0.78, 0.00339) when

the target R-squared is changed to 20%. Return volatility ranges between 12.63% and 12.77%

across these cases.

We consider multiple values for the measures (µAk, µIk, µGk) of active, passive and green

investors. A simplifying property of our calibration is that holding constant the ratio of

active to green investors, the measure of passive investors has a negligible effect on prices.

For example, prices are almost the same when one-half of investors are passive, one-quarter

are active and one-quarter are green, as they are when one-half of investors are active, one-

half are green and there are no passive. Intuitively, active investors are the ones absorbing the

flows that green investors generate, as illustrated in Figure 1. Therefore, the price impact

of green flows depends only on the relative measures of green and active investors. The

irrelevance of the measure of passive investors is not an exact result because when exclusion

from the green index takes place, the expected return on the broad index changes and passive

investors change their position λIk in that index. However, because exclusion is limited to a

small set of firms in our calibration (10% of firms), its effect on the expected return of the

broad index is small. Therefore, passive investors hold approximately the per-capita supply

and target R-squared 25%, the unconditional average of the price of each stock is 5.76. In comparison,
discounting average dividends of one at the sum of the riskless rate of 3% plus the unconditional expected
return (in excess of the riskless rate) of 6% yields 1

9% = 11.11. The discrepancy between expected return
and average price becomes smaller for σs = 0.5, as the average price rises to 9.82.
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of each stock before, during and after the exclusion phase.7

We calibrate the measure µGk of green investors based on the percentage of assets under

management (AUM) of sustainable funds relative to total AUM. Morgan Stanley (2025) esti-

mate that AUM of all sustainable funds were $3.56 trillion at the end of 2024 and constituted

6.8% of total global AUM. Morningstar estimate that at the end of 2024 there were 7510

sustainable funds with combined AUM of $3.19 trillion. US SIF (2024) estimate instead

AUM of sustainable funds at $6.5 trillion. Based on these estimates, we consider values of

µGk ranging from 5% to 15%. We also consider the value 30% for µGk, which is twice the

upper end of our assumed range, so that we evaluate a scenario in which µGk rises gradually

over time to that value.

A caveat to our calibration of µGk is that it is based on AUM of all sustainable funds

and not specifically of net-zero funds, which are the green investors in our model. AUM of

net-zero funds are significantly smaller than of all sustainable funds. Phenix Capital (2023)

estimate that in February 2023 there were 729 net-zero aligned funds with combined AUM

of $289 billion. A richer model could account for the distinction between net-zero funds and

other sustainable funds by allowing for two types of green investors: net-zero green investors

who exclude polluting firms gradually over time, from t = T to t = K ′T , and conventional

green investors who exclude all polluting firms at the same time t = T . Our calibration

results are informative about the price impact of green investing in the alternative model

as well. Indeed, the effects of green investors at the end of the exclusion phase would be

identical across the two models. Moreover, the anticipation of future exclusion would affect

current prices in the alternative model as well, especially if the measure of conventional green

investors is expected to grow over time.

Calibrating the measure µIk of passive investors (and deducing that of active investors

7Formally, the position λIk of passive investors remains close to one for all k. Moreover, when λIk ≈ 1,
the values of {gjk}j=s,c and gink for k = 0, ..,K ′, defined in Proposition 3.1, are approximately the same

for (µAk, µIk, µGk) and
(

µAk

1−µIk
, 0, µGk

1−µIk

)
, as can be seen by dividing the numerator and denominator by

1− µIk. Therefore, the price is approximately independent of µIk and equal to its value for µIk = 0.
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by µAk = 1−µIk−µGk) is challenging because of three reasons. First, many active investors

face explicit or implicit constraints limiting their deviations from indexes. These tracking

constraints make them closer to passive investors than to the unconstrained active investors

assumed in our model. Second, while some active investors can deviate significantly from

indexes, they may trade infrequently and act as buy-and-hold investors. Third, some passive

investors track green indexes so they should be classified as green.

According to the Investment Company Institute (2022), AUM of passive funds in the

US equity market at the end of 2021 were 53% of the combined AUM of active and passive

funds, and 16% of the US equity market. Assuming that the same ratio applies to active

and passive green funds, the ratio µIk

µAk+µIk
of the measure of passive investors to the total

measure of active and passive investors can be set to 53%. This should be viewed, however,

as a lower bound because of tracking constraints and buy-and-hold behavior. An estimate

of the effect of tracking constraints comes from Chinco and Sammon (2024), who examine

abnormal trading volumes around index additions and deletions. The implied share of passive

investors, derived as the fraction of investors who adjust their positions to track the index,

is approximately twice the share of passive funds: it is 33.5% of the US equity market at the

end of 2021. To account for the effects of tracking constraints and buy-and-hold behavior,

we consider values of µIk

µAk+µIk
ranging from 50% to 90%.

4.2 Price Impact of Green Investors

We first examine the impact of green investors when the measures of the three types of

investors are constant over time. Figure 2 plots price and expected return information for

the stocks in group 100, which are excluded from the green index in year 1, the stocks in

group 91, which are excluded in year 10, and the stocks in groups 1 to 90, which are never

excluded. The top panel shows the percentage change in the price in year 0, compared to

the case without green investors. The bottom panel shows the change in the expected return
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averaged across years 1 and 12 and expressed in percentage points (100 bps), compared

to the case without green investors. Both variables are plotted as a function of the ratio

µGk

µAk+µGk
of the measure of green investors to the total measure of active and green investors.

Since the measures of the three types of investors are assumed constant over time, the

ratio µGk

µAk+µGk
is independent of k. The percentage price change concerns the average price,

computed by setting Ds
t and {Di

nt}n=1,..,KN to their unconditional expectations. The brown

lines correspond to the stocks in group 100, the beige lines to the stocks in group 91, and

the green lines to the stocks in groups 1 to 90. In each case, the solid lines are drawn for

σs = 1.5, target expected return 6% and target R-squared 25%, and the dotted lines are

drawn for σs = 0.5 instead of σs = 1.5. We set the measure µIk of passive investors to

50%, but as noted in Section 4.1, the lines are almost independent of µIk. We consider other

values for µIk in our analysis below.

The impact (in absolute value) of green investors on stock prices and expected returns

is an increasing and convex function of µGk

µAk+µGk
. Thus, the impact is increasing the more

green investors there are relative to active investors, and the increase occurs at an increasing

rate. The impact is largest for the stocks in group 100, which are excluded from the green

index first. The price of these stocks drops the most, and their expected return rises the

most. The impact is lower for the stocks in group 91, which are excluded last, and is lowest

for the stocks in groups 1 to 90. The prices of the stocks in groups 1 to 90 rise and their

expected returns drop because green investors flow into these stocks. All of the above effects

are larger when return volatility is high (σs = 1.5) than when it is low (σs = 0.5).

To assess the effects quantitatively, we consider the lowest and highest values of µGk

µAk+µGk

implied by the ranges that we assume in our calibration. The lowest value of µGk

µAk+µGk
is 9.52%,

achieved for green investors being 5% of the market (µGk = 5%) and active investors being

50% of combined active and passive, which is 47.5% of the market (µAt = 50%× (1− 5%) =

47.5%). Under that value of µGk

µAk+µGk
, the price impact of green investors for the stocks
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Figure 2: Price and expected return change for the stocks in group 100, which are excluded
from the green index in year 1, the stocks in group 91, which are excluded in year 10, and
the stocks in groups 1 to 90, which are never excluded, as a function of ratio µGk

µAk+µGk
of the

measure of green investors to the total measure of active and green investors.
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in group 100 ranges from 0.18% when σs = 0.5 to 0.5% when σs = 1.5, and their impact

on expected return ranges from 1 to 2 basis points (bps). The highest value of µGk

µAk+µGk
is

63.83%, achieved for green investors being 15% of the market and active investors being 10%

of combined active and passive, which is 8.5% of the market. Under that value, the price

impact of green investors for the stocks in group 100 ranges from 2.75% when σs = 0.5 to

6.31% when σs = 1.5, and their effect on the expected return ranges from 18 to 24 bps. If

the measure of green investors rises further to 30% and the ratio of passive to active remains

9:1, so that the measure of active investors drops to 7%, then µGk

µAk+µGk
rises to 81.08%. The

price impact of green investors for the stocks in group 100 then rises to 6.01% when σs = 0.5

and to 12.49% when σs = 1.5, and their effect on the expected return rises to 41-49 bps.

The impact on price and expected return for the stocks in group 91 is approximately 70%

of that for the stocks in group 100. The same impact for the stocks in groups 1 to 90 is

approximately 10% of that for the stocks in group 100 for values of µGk

µAk+µGk
up to 80%, and

rises to up to 40% for higher values. Lowering the target expected return from 6% to 4%

lowers the above effects by approximately 30%. Lowering the R-squared from 25% to 20%

raises them by approximately 30%.

The main takeaways from the above analysis are as follows. When the ratio µGk

µAk+µGk
of

the measure of green investors to the total measure of active and green investors takes its

lowest value in our calibration, the impact of green investors on stock prices and expected

returns is negligible. This result is in line with Berk and Van Binsbergen (2025), who take

the fraction of green investors to be 2% and assume no passive investors. When µGk

µAk+µGk

takes its highest value in our calibration, the impact of green investors is modest, while

also larger than Berk and Van Binsbergen (2025) by an order of magnitude. The impact

becomes large when green investors become a significantly larger fraction of the market than

they currently are, e.g., twice the upper end of our assumed range.

We next assess the extent to which future exclusion is reflected in current prices. We
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do so for stocks in group 91, which are excluded from the green index last. The thick

lines in Figure 3 show the percentage change in the average price of those stocks in year 0,

compared to the case where there are no green investors. This reflects the anticipation of

future exclusion. The thin lines show the percentage change in the stocks’ average price in

year 10, compared to the case without green investors. This reflects the exclusion. In each

case, the solid lines are drawn for σs = 1.5, target expected return 6% and target R-squared

25%, and the dotted lines are drawn for σs = 0.5 instead of σs = 1.5. All variables are

plotted as a function of the ratio µGk

µAk+µGk
of the measure of green investors to the total

measure of active and green investors. That ratio is assumed independent of k. Figure 3

shows that the price effect arising in year 0 from the anticipation of exclusion in year 10 is

approximately 70% of the effect in year 10.

Figure 4 shows the full dynamic evolution of the prices and expected returns of the

stocks of all groups. The top panel shows the average price of the stocks in each group as a

function of time. The bottom panel shows the expected return of the stocks in each group

as a function of time. Each panel has eleven graphs arranged in three rows. The graph

in the top row is for groups 1 to 90, which are never excluded from the green index. The

five graphs in the middle row are for groups 100 to 96, which are excluded in years 1 to 5,

respectively. The five graphs in the bottom row are for groups 95 to 91, which are excluded

in years 6 to 10, respectively. The units in the x-axis are years. All graphs are drawn for

σs = 1.5, target expected return 6%, target R-squared 25% and measures µAk = 7% of

active investors, µIk = 63% of index investors and µGk = 30% of green investors. We use

µGk = 30%, which is twice the upper end of our assumed range, to facilitate the comparison

with the case where the measure of green investors grows gradually over time, studied below.

This is because the steady state from year 10 onward is the same across both cases. The

red dot in each graph shows the price and expected return in the absence of green investors.

These are the same for all stocks.
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Figure 3: Price change in years 0 and 10 for the stocks in group 91, which are excluded from
the green index in year 10, as a function of ratio µGk

µAk+µGk
of the measure of green investors

to the total measure of active and green investor.

Green investors cause the prices of stocks in groups 91 to 100 to drop and the prices of

stocks in groups 1 to 90 to rise. The price drop in year 0 is largest for the stocks in group

100, which are the first to be excluded, second largest for the stocks in group 99, and so

on. The prices of the stocks in each group from 91 to 100 drop discontinuously in year 0

because of the anticipated future exclusion, then drop gradually until the exclusion date,

and then stabilize. In year 10, prices are the same for all stocks in groups 91 to 100 because

all these stocks are excluded by that year. The prices of the stocks in groups 1 to 90 rise

discontinuously in year 0 because of the anticipation that green investors will be investing

in these stocks as they drop the stocks in groups 91 to 100. They continue rising gradually

until year 10, when the exclusion process is completed.
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Top panel: Prices

Bottom panel: Expected returns

Figure 4: Prices and expected returns for all stock groups, as a function of time, for measures
µAk = 7% of active investors, µIk = 63% of index investors and µGk = 30% of green investors.
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Expected returns move in the opposite direction to prices. They drop discontinuously in

year 0 for stocks in groups 1 to 90, as their prices rise, and keep dropping gradually until

year 10, as their prices rise further. They rise discontinuously in year 0 for stocks in each

group from 91 to 100, as their prices drop, rise further on the year of exclusion, and then

stabilize.

We next examine the impact of green investors when the measures of the three types

of investors change over time. When the measure of green investors grows gradually over

time to a value µGK′ in year K ′, stocks in groups 92 to 100 drop in price less in year 0 and

more between years 0 and 10, compared to the case where the measure of green investors is

equal to µGK′ for the entire period. Likewise, the expected returns of these stocks rise less in

year 0 and more during years 0 and 10, including after their year of exclusion. We illustrate

these properties in Appendix B, in an example where the measure of green investors grows

linearly from 10% in year 0 to 30% in year 10, and the ratio µIk

µAk+µIk
of the measure of passive

investors to the total measure of active and passive investors is kept constant at 90%.

5 Climate Risk

In this section we compute the equilibrium numerically when the loadings {bcn}n=1,..,KN on

the climate transition risk factor Dc
t are positive.

5.1 Parameter Values

We choose values for (r,K,N,K ′, T, κs, σs, {D̄n, b
s
n, κ

i
n, D̄

i
n, σ

i
n, ηn}n=1,..,KN , {µAk, µIk, µGk}k=0,..,K′ , ρ)

as in Section 4.1 with minor modifications described at the end of this section. In the pres-

ence of climate risk, we need to choose additionally values for (κc, σc, {bcn}n=1,..,KN). We

set the mean-reversion and volatility parameters (κc, σc) of the climate factor equal to their

counterparts (κs, σs) for the business-cycle factor. We set the loadings {bcn}n=1,..,KN on the
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climate factor to bc

(100+α−⌈ n
K
⌉)

γ , where (bc, α, γ) are positive constants. Climate loadings are

the same for all firms in the same group because of the term ⌈ n
K
⌉, which is the group number,

and increase as the group number rises from 1 to 100. Climate loadings are thus highest

for the firms in group 100, which are the first to be excluded from the green index, second

highest for the firms in group 99, and so on. We assume this monotonicity property because

we are identifying climate loadings with firms’ GHG emissions, which increase as the group

number rises from 1 to 100.

Our specification for climate loadings has the additional property that the increase in

loadings with group number occurs at an increasing rate. This generates a heavy right tail in

the distribution of climate loadings. We assume this convexity property because firms’ GHG

emissions exhibit a heavy right tail. Indeed, Jondeau, Mojon, and Pereira Da Silva (2021)

estimate that the most polluting firms representing 1% of world market capitalization account

for 15% of total carbon emissions. Moreover, a policy that reduces emissions by 10% per

year over ten years—a cumulative reduction of 65% (= 1− (1− 10%)10)—requires excluding

in total the most polluting firms representing approximately 10% of market capitalization.

We calibrate α and γ based on these percentages, requiring that the sum of climate loadings

bcn across the firms in Group 100 is 15% of the sum of climate loadings across all firms, and

the sum of climate loadings across the firms in Groups 91 to 100 is 65% of the sum of climate

loadings across all firms. The values of (α, γ) are (5.83, 1.87).

The parameter bc determines the size of climate loadings in absolute terms (rather than

their relative comparison across firms, which is determined by (α, γ)). We calibrate bc based

on the relative size of shocks to the climate factor and to the business-cycle factor. Empirical

estimates on these shocks are not available to the best of our knowledge, but we consider

two values that generate a wide enough range. Under the first value, which is 1.5, climate

shocks to dividends are small: they are approximately 7% of business-cycle shocks for firms

in group 100, 1% for firms in group 90, and 0.03% for firms in group 1. Under the second
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value, which is 6, climate shocks to dividends are significantly larger: they are approximately

30% of business-cycle shocks for firms in group 100, 5% for firms in group 90, and 0.14% for

firms in group 1.

We make two modifications to the parameter values chosen in Section 4.1. First, because

climate loadings differ across firms, stock return moments differ across firms even in the

absence of green investors. The targets for expected return and R-squared in the absence

of green investors cannot thus concern a common value of these moments across firms, as

they do in Section 4.1. We assume instead that they concern the average of the moments

across firms. Second, because climate loadings are positive, our normalization D̄n + bsn +

bcn + D̄i
n = 1 no longer implies bs = 1 − D̄i. We maintain the assumption of Section 4.1

that {bsn, D̄i
n}n=1,..,KN are independent of n and denote them without the subscript n. To

ensure that D̄n+ bsn+ bcn+ D̄i
n = 1 holds for all n when bcn differs across firms, we reintroduce

the constant component D̄n and assume that its variation offsets the variation in bcn. We

minimize D̄n by setting it to zero for the firms with the highest climate loading, which are

in Group 100. As in Section 4.1, minimizing D̄n maximizes return variances.

We report results for σs = 0.5 and σs = 1.5, for a target expected return of 6% and for a

target R-squared of 25%. The values of (bs, η) are (0.778, 0.00397) for σs = 0.5 and bc = 1.5,

(0.843, 0.00212) for σs = 1.5 and bc = 1.5, (0.71, 0.0211) for σs = 0.5 and bc = 6, and

(0.743, 0.0139) for σs = 1.5 and bc = 6. The relative size of climate to business-cycle shocks

follows from these values. Indeed, since the climate factor follows a square-root process with

the same parameters as the business-cycle factor, the relative size of climate to business-cycle

shocks for firm n is the ratio of factor loadings, i.e.,

bcn
bsn

=
bc

bs
(
100 + α− ⌈ n

K
⌉
)γ . (5.1)

Substituting (K, bs, bc, α, γ) into (5.1), we find the ratio of factor loadings as function of n.
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5.2 Price Impact of Green Investors

We begin with the case bc = 1.5. In the absence of green investors, expected returns dif-

fer across stocks because firms load differently on the climate factor. The cross-sectional

standard deviation of expected returns ranges from 6 bps when σs = 0.5 to 16 bps when

σs = 1.5. The expected return of stocks in group 100 exceeds that of stocks in group 1 by

42 bps when σs = 0.5 and 110 bps when σs = 1.5. The difference across extreme groups is

significantly larger than the cross-sectional standard deviation because the heavy right tail

of climate loadings generates a heavy right tail of expected returns.

We next add green investors and assume that µGk

µAk+µGk
takes the highest value in our

calibration: green investors are 15% of the investor population and active investors are 10%

of active plus passive. The cross-sectional standard deviation of expected returns rises to 11

bps when σs = 0.5 and to 22 bps when σs = 1.5. The difference between the expected return

of stocks in group 100 and of stocks in group 1 rises to 64 bps when σs = 0.5 and to 141 bps

when σs = 1.5. Green investors raise the expected return of the most polluting stocks by 22-

30 bps. (This is approximately the change in the expected return difference between groups

100 and 1 because the expected return of stocks in group 1 stays approximately constant.)

The effect of green investors on expected returns is somewhat larger than the counterpart

effect in the absence of climate risk, which is 18-24 bps. The same is true for the effect of

green investors on prices: stocks in group 100 drop by 4.53% in year 0 when σs = 0.5 and

by 9.14% when σs = 1.5, while they drop by 2.75% and 6.01%, respectively, in the absence

of climate risk. The intuition why green investors have larger price impact in the presence

of climate risk is that climate risk introduces additional comovement between brown stocks,

thus raising the variance of a brown portfolio. As a result, active investors require a higher

expected return to buy brown stocks from green investors.

We next turn to the case bc = 6. In the absence of green investors, the cross-sectional

standard deviation of expected returns ranges from 96 bps when σs = 0.5 to 141 bps when
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σs = 1.5. The expected return of stocks in group 100 exceeds that of stocks in group 1 by

741 bps when σs = 0.5 and 1170 bps when σs = 1.5. These effects are 9-18 times larger than

when bc = 1.5. When green investors are 15% of the investor population and active investors

are 10% of active plus passive, the cross-sectional standard deviation of expected returns

rises to 107 bps when σs = 0.5 and to 155 bps when σs = 1.5. Moreover, the difference

between the expected return of stocks in group 100 and stocks in group 1 rises to 835 bps

when σs = 0.5 and to 1307 bps when σs = 1.5. Green investors raise the expected return

of the most polluting stocks by 93-136 bps. These effects are 7-13 times larger than when

bc = 1.5. The effect of green investors on expected returns is likewise significantly larger

than in the absence of climate risk. The same is true for the effect of green investors on

prices: stocks in group 100 drop by 10.78% in year 0 when σs = 0.5 and by 13.61% when

σs = 1.5.

6 Relationship to Empirical Findings

One strand of the empirical literature on divestment estimates the effect of ESG flows on

prices. To map our results to the empirical findings, we consider the price changes caused

by green investors in the version of our model without climate risk. Van Der Beck (2023)

estimates that a $1 flow into ESG stocks raises their aggregate market value by $0.7. The

aggregate flow into green stocks in our model is approximately equal to green investors’

aggregate flow out of brown stocks. Assuming that green investors are 15% of all investors

and recalling that they exclude 50 brown stocks by year 10, the aggregate flow into green

stocks by year 10 is 15% × 50 × V , where V is the average market capitalization of each

stock (which is the same across stocks in the absence of green investors and climate risk).

Since green investors keep 450 green stocks in their portfolio after year 10, the rise in the

aggregate market value of these stocks by that year is ∆E(Snt)
E(Snt)

× 450 × V , where ∆E(Snt)
E(Snt)

is

computed as the green line in Figure 2 for year 10 rather than year 0. The ratio of the rise
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in the aggregate market value of green stocks to the aggregate flow into green stocks thus

is 1
9×15%

∆E(Snt)
E(Snt)

. When passive investors are 50% of combined active and passive, that ratio

ranges from 0.039-0.10. When passive investors are 90%, the ratio ranges from 0.20-0.53.

Therefore, our results are closer to the 0.7 estimate in Van Der Beck (2023) for the 90% upper

bound. The results in Van Der Beck (2023), as well as the evidence surveyed in Gabaix and

Koijen (2021) that suggests an inverse elasticity of one for individual stocks (rather than 0.7

as in Van Der Beck (2023)), indicate that truly active investors could be even less than 10%

of combined active and passive.

Another strand of the empirical literature on divestment estimates the difference in ex-

pected returns between brown and green stocks. As shown in Pastor, Stambaugh, and Taylor

(2021), the expected returns of green stocks can be lower than of brown stocks because (i)

some investors prefer to hold green stocks and (ii) green stocks outperform brown stocks

following negative climate news. The risk effect is present in our model only in its version

with a climate risk factor. To map our results to the empirical findings, we use that ver-

sion and assume that green investors are 15% of all investors and passive investors are 90%

of combined active and passive. Our model not only quantifies the difference in expected

returns between brown and green stocks as a function of underlying parameters, but also

determines the relative size of the price impact and risk effects.

Bolton and Kacperczyk (2021) find an expected return increase of 180 bps per one stan-

dard deviation decrease in firms’ scope 1 carbon emissions, with the effect rising to 290 bps

for scope 2 emissions and to 400 bps for scope 3 emissions. The counterpart quantity in

our model is the cross-sectional standard deviation of expected returns. This is because

expected returns in our model vary across stocks only because of greenness. Among the two

cases analyzed in Section 5, our results are closer to the estimates in Bolton and Kacperczyk

(2021) when bc = 6, which is when climate shocks are approximately 30% of business-cycle

shocks for firms in group 100 and 0.45% for the average firm. The cross-sectional standard
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deviation of expected returns in that case ranges from 107-155 bps. Out of that standard

deviation, 11-14 bps are caused by the price impact of green investors and the remainder is

caused by stocks’ different loadings on the climate risk factor.

Eskildsen, Ibert, Jensen, and Pedersen (2024) find an expected return increase of 30 bps

per one standard deviation decrease in firms’ green score. Among the two cases analyzed in

Section 5, our results are closer to the estimate in Eskildsen, Ibert, Jensen, and Pedersen

(2024) when bc = 1.5, which is when climate shocks are approximately 7% of business-cycle

shocks for firms in group 100 and 0.45% for the average firm. The cross-sectional standard

deviation of expected returns in that case ranges from 11-22 bps. Out of that standard

deviation, 5-6 bps are caused by the price impact of green investors and the remainder is

caused by firms’ different loadings on the climate risk factor.

7 Conclusion

We study how green investors impact firms’ stock prices and cost of capital in a model

where they interact dynamically with active and passive investors. Green investors track

a capitalization-weighted index that progressively excludes the brownest firms. Active

investors hold a mean-variance efficient portfolio of all firms. Passive investors track a

capitalization-weighted index that includes all firms. Passive investors can be interpreted

broadly to include investors who are classified as active but track indexes closely because of

explicit or implicit constraints or trade infrequently even in the absence of such constraints.

The index tracked by green investors captures within our model the mechanics of “net

zero” or “Paris aligned” indexes. We assume that 1% of the most polluting firms are excluded

from the green index each year for ten years. This yields an average reduction rate of carbon

emissions of 10% per year, given the heavy right tail of the distribution of emissions. Green

portfolios need to generate such a reduction rate to stay roughly on a net zero trajectory by

2050. Since exclusion is based on the emissions of individual firms and not on whether they
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belong to a particular sector (no sector is a priori excluded), green investors could engage

in a best-in-class approach and help the development of green technologies, including in the

energy and electricity production industries.

The impact of green investors in our calibration is significantly larger than in previous

ones. This is because of the passive investors, who cause stock price elasticities to be low

and in line with empirical estimates (e.g., Gabaix and Koijen (2021), Van Der Beck (2023)).

When the fraction of green investors is 15% and active investors constitute 10% of the

remainder, exclusion from the green index raises the cost of capital of the brownest firms

by 18-24 bps and lowers their stock prices by 2.8%-6.3%. These effects become larger in the

presence of climate risk, under the assumption that firms’ loadings on that risk reflect their

emissions. When climate shocks are 30% of business-cycle shocks for the brownest firms

and 2% for the average firm, exclusion from the green index raises the cost of capital of the

brownest firms by 93-136 bps and lowers their stock prices by 10.8-13.6%.

We assume perfect foresight regarding the timing of exclusion and the set of firms to be

excluded. Because of this assumption, a significant fraction of the price decline due to future

exclusion is anticipated in the current price—70% for the firms to be excluded after ten

years. In practice, exclusion might not be perfectly predictable. This would attenuate the

immediate effects and strengthen the gradual subsequent effects. The ultimate effects (after

ten years) would remain the same. Because the effects of net zero investment on stock prices

are gradual, a first-mover advantage could arise among investors who consider greening their

portfolio.

Our analysis focuses on the impact of green investors on stock prices and does not account

for linkages between stock prices and corporate investment. One linkage relates to incentives:

in a similar spirit to Heinkel, Kraus, and Zechner (2001), firms would seek to decarbonize

faster to avoid their exclusion from the green index. A meaningful analysis of incentives would

require treating the composition of the green index as endogenous. The composition of the
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green index might still be deterministic in the equilibrium path, so our perfect foresight

assumption regarding the timing of exclusion and the set of firms to be excluded might

hold.8 Another linkage is that the drop in the stock prices of the brownest firms when they

are excluded from the green index could force them to cut down on investment, further

accentuating the drop. This could strengthen incentives, but could also result perversely

in brown firms finding it costlier to invest in greening their business model (Hartzmark

and Shue (2024)). Extending our analysis to incorporate real investment and its two-way

feedback with stock prices is a promising direction of future research.

8The following simple example illustrates why perfect foresight might hold in the presence of incentives.
There are only two firms, 1 and 2. Firm 2 is the brownest initially. Firms can become greener by making
an investment, with firm 1 deciding first and firm 2 deciding second after observing firm 1’s decision. The
green index excludes the firm that is the brownest after investments are made.
If investments are no possible (as in our model), then firm 2 is excluded from the green index because it

is the brownest initially. If investments are possible, then firm 2 is again excluded. Moreover, if firm 2 is
not much browner than firm 1 initially, then firm 1 makes the investment. Indeed, firm 1 knows that if it
does not make the investment then firm 2 will make it and become greener than firm 1, causing firm 1 to be
excluded.
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Appendix – For Online Publication

A Proof of Proposition 3.1

We first derive the first-order conditions of passive and green investors. Taking the first-order

condition in (3.5) and using (3.9)-(3.11), we find

KN∑
n=1

ηnµ
u
nk−ρλIk

∑
j=s,c

(
KN∑
n=1

ηnb
j
n

)2

(σj)2Eu
k

[
Dj

t (a
j
1t)

2
]
+

KN∑
n=1

η2n(σ
i
n)

2Eu
k

[
Di

nt(a
i
n1t)

2
] = 0.

(A.2)

Using the definition of µu
nk, the first-order condition (3.8) of active investors and (3.9)-(3.11),

we can write (A.2) as
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Rearranging (A.3) and taking (as1t, a
c
1t, {ain1t}n=1,..,N) to be constant in [K ′T,∞), we find

∑
j=s,c

(
KN∑
m=1

ηmb
j
m

)(
KN∑
m=1

[
1− (µAK′ + µIK′)λIK′ − µGK′λGK′1{m≤(K−K′)N}

]
ηmb

j
m

)
(σj āj1K′)
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for [K ′T,∞). We likewise find
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for [kT, (k+1)T ) and k = 0, .., K ′−1. Following the same steps, we can write the first-order

condition of green investors as
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for [K ′T,∞), and
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for [kT, (k + 1)T ) and k = 0, .., K ′ − 1.
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We next determine aj1t for j = s, c. Identifying terms in Dj
t in (3.12) yields the ODE
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j
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2 +
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dt

= 0. (A.8)

When k = 0, .., K ′ − 1, (A.8) is defined over t ∈ [kT, (k + 1)T ), and when k = K ′, (A.8)

is defined over t ∈ [K ′T,∞). When k = K ′, we look for a constant solution of (A.8),

corresponding to the steady state. Such a solution āj1K′ must satisfy the quadratic equation
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Equation (A.9) has two solutions if
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which we assume. We focus on the smaller solution, which is the continuous extension of

the unique solution when gjK′ = 0, and is as in the proposition. When k = 0, .., K ′ − 1, we

solve (A.8) recursively with terminal condition limt→(k+1)T aj1t = aj1,(k+1)T . We find
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which yields (3.13).

We next determine ain1t. Identifying terms in Di
nt in (3.12) yields the ODE
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When k = 0, .., K ′ − 1, (A.10) is defined over t ∈ [kT, (k + 1)T ), and when k = K ′, (A.10)

is defined over t ∈ [K ′T,∞). When k = K ′, we look for a constant solution of (A.10).

Proceeding as for aj1t, we find āin1K′ in the proposition. When k = 0, .., K ′ − 1, we solve

(A.10) recursively with terminal condition limt→(k+1)T ain1t = ain1,(k+1)T . Proceeding as for

aj1t, we find (3.14).
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For t ∈ [K ′T,∞), the solution is constant and equal to
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B Alternative Calibration

Figure B.1 is the counterpart of Figure 4 when the measure of green investors grows linearly

from 10% in year 0 to 30% in year 10, and the ratio µIk

µAk+µIk
of the measure of passive

investors to the total measure of active and passive investors is kept constant at 90%.
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Top panel: Prices

Bottom panel: Expected returns

Figure B.1: Prices and expected returns for all stock groups, as a function of time, for
σs = 1.5, target expected return 6%, target R-squared 25%, measure µGk of green investors
growing linearly from 10% in year 0 to 30% in year 10, and ratio µIk

µAk+µIk
of the measure of

passive investors to the total measure of active and passive investors kept constant at 90%.
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