=
=M

Research at LSE m

ISSN 0956-8549

Forecasting Crashes with a Smile

By

Ian W. R. Martin
Ran Shi

FINANCIAL MARKETS GROUP DISCUSSION PAPER NO. 936

October 2025

Any opinions expressed here are those of the authors and not necessarily those of the FMG. The
research findings reported in this paper are the result of the independent research of the
authors and do not necessarily reflect the views of the LSE.



Forecasting Crashes with a Smile

[an W. R. Martin Ran Shi*

September 2025

Abstract

We derive option-implied bounds on the probability of a crash in an individual
stock, and argue a priori that the lower bound should be close to the truth. The
lower bound successfully forecasts crashes both in and out of sample. Crucially,
our theory-based approach avoids the “crying wolf” problem faced by risk-neutral
crash probabilities, which severely overstate crash risk during crisis periods. Despite
having no free parameters, the lower bound outperforms elastic net, ridge, and Lasso
models that flexibly but atheoretically combine stock characteristics, risk-neutral

probabilities and the bound itself, because such models overfit during crisis periods.
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In this paper, we propose a new way of estimating the probability of a crash in an
individual stock. Our approach performs well in and out of sample, across industries and
over time, and it outperforms competitor models that exploit characteristics studied in
prior related literature. As our forecasts are based solely on asset prices—namely, the
prices of options on the stock in question, and of options on a broad stock index—they
are, in principle, available in real time.

Aside from the intrinsic interest of forecasting crashes, we would like to highlight
two further sources of motivation. First, we can use our predictor variable to generate
industry-level crash probability measures. Such series have many potential applications,
but a particularly important one is suggested by the work of Baron, Verner, and Xiong
(2021), who document a link between large declines in bank equity and macroeconomic
downturns. Instead of defining bank equity declines using ex post returns, our approach
supplies a measure of banks’ equity capital crash risk (plotted in the top panel of Figure 10)
that is forward-looking and observable in real time.

Second, our results relate to the issue of forecasting crashes at the aggregate level.
Wachter (2013) argues that the volatility of the stock market can be explained by time-
varying risk of a disaster in the sense of Barro (2006) and infers disaster probabilities from
the market price-dividend ratio. Martin (2017) shows how to use option prices to calculate
the probability of a crash in the market from the perspective of a log investor who holds
the market. Barro and Liao (2021) derive an option-pricing formula within an equilibrium
model and hence use index options to infer the probabilities of disasters. A fundamental
challenge for all these papers is that it is hard to test the predictive success of the resulting
implied market crash probability directly, given the relatively short available time series
and the fact that, by definition, crashes and disasters only occur rarely.! Expanding to the
international data does not fully solve this problem, in part because few countries have
long option prices series, and in part because, as Barro and Liao show, crashes are highly
correlated across countries (as theory would predict even if there is little or no correlation
in fundamentals, if financial markets are integrated, as in Martin (2013)). By exploiting
the cross-section, we gain statistical power that allows us to demonstrate the empirical

success of option-based measures, supporting the approach of these earlier papers.

!Backus et al. (2011) also study the relationship between option prices and disaster probabilities, but
they focus on the unconditional distribution whereas our goal is to quantify conditional crash probabilities.



From a theoretical point of view, forecasting crashes represents an interesting challenge
for two reasons. First, there is an obvious and widely used competitor for our approach,
namely, the risk-neutral probability of a crash, which can be calculated from asset prices
without any assumptions other than the absence of arbitrage. And yet it is natural to
worry that the risk-neutral probabilities, which put more weight on bad states of the
world, may overstate the true probabilities of crashes. Furthermore, standard theory
predicts (and we confirm empirically) that the risk-neutral probabilities will overstate
most dramatically—that is, will be prone to “crying wolf”—at times of high risk or high
risk aversion. This is unfortunate, given that policymakers are likely to be particularly
interested in accurate measurement of crash probabilities at such times.

Second, any attempt to forecast crashes in individual stocks using option prices seems
to run into the problem that the inferred crash probability ought to reflect the correlation
structure: the conclusions one would draw from a fixed set of prices should depend strongly
on whether the stock in question has, for example, a positive or negative beta. But the
prices of options on individual stocks and on the market reveal information only about
the marginal risk-neutral distributions of those stocks and of the market, and not about
their joint distribution.

We address these issues in two steps. To connect risk-neutral and true probabilities,
we take the perspective of a myopic investor with power utility who chooses to invest his
or her wealth fully in the S&P 500 index, which we treat as a proxy for “the market.”?
(While we think of this investor as a sensible benchmark, we do not need to assume
that all investors look the same: our investor may coexist with others who have different
beliefs, for rational or irrational reasons, and/or different preferences.) This implies that
the stochastic discount factor (SDF) is proportional to a power of the return on the S&P
500 index. In the special case in which risk aversion equals zero, the predictive variable
reduces to the risk-neutral probability of a crash, which can be inferred from out-of-the-
money put option prices, following Breeden and Litzenberger (1978): this is a widely used
indicator of crash probabilities but, as we will show, allowing for positive risk aversion

improves predictive performance.

2Related approaches have been adopted in the context of forecasting returns on the stock market
(Martin, 2017; Chabi-Yo and Loudis, 2020; Martin, 2021; Gao and Martin, 2021; Gandhi, Gormsen, and
Lazarus, 2022), individual stocks (Martin and Wagner, 2019; Kadan and Tang, 2020; Chabi-Yo, Dim,
and Vilkov, 2023), and currencies (Kremens and Martin, 2019; Della Corte, Gao, and Jeanneret, 2023).



Evidently, the power utility assumption is restrictive. In an ideal world we would
allow the SDF to depend on broader measures of wealth and potentially other state
variables. But option prices on the S&P 500 and on individual stocks are observable;
and they are forward-looking. The great strength of our approach is that it allows us
to avoid the alternative undesirable assumption, commonly made in the literature, that
backward-looking historical measures are good proxies for the forward-looking measures
that come out of theory. The empirical success of our approach suggests that the price of
our assumption is worth paying.

Having made the assumption, it is straightforward to infer the true distribution of
market returns from the risk-neutral distribution of market returns, as in Martin (2017).
To calculate the true distribution of a given stock’s returns, however, we would need to
observe the joint risk-neutral distribution of that stock’s and the market’s returns. The
problem is that observable option prices only allow us to infer the individual (that is,
marginal) risk-neutral distributions of the stock and of the market, without giving us any
control on the correlation structure. This is the central theoretical challenge.

We handle it by exploiting the theory of copulas and, more specifically, the Fréchet—
Hoeffding bounds. These allow us to derive upper and lower bounds on the true probabil-
ities of a crash that apply, under our maintained assumption on the form of the SDF, for
any correlation structure. As the bounds fully exploit information in the two marginal
distributions, they are tighter than naive bounds that only exploit the fact that correla-
tion must lie between plus and minus one. (This paper might more accurately be titled
“Forecasting Crashes with Two Smiles.”)

The resulting bounds vary substantially across firms and over time. Figure 1 illustrates
by plotting upper and lower bounds on the probability of a crash of at least 20% over
a one-month horizon for Apple and AIG. Figure 2 plots the time-series of the cross-
sectional median of the upper and lower bounds on crash probabilities, together with the
probability of a crash in the market (with the latter calculated based on the approach in
Martin (2017)). The market crash probability tends to be lower and less volatile than the
individual stock probabilities.

As we will show, the lower bound is tight if the stock’s return is a monotonic—and
potentially nonlinear—increasing function of the market return, while the upper bound

is tight if the stock’s return is a monotonic decreasing function of the market return. The
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Figure 1: Bounds on forward-looking probabilities of a crash (one month return less
than —20%) for Apple and AIG.

25% - -
Probability:
~— CS Median: upper bound
~ CS Median: lower bound
20% - ~— Market

15%+4

10%4

Probability of a 20% Crash

5%+

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
Date

Figure 2: Time series of cross-sectional medians of upper and lower bounds on crash
probabilities; and the crash probability of the S&P 500 index.



former case is more plausible, so we expect, of the two bounds, the lower bound to be a
better measure of the true crash probability.

To assess this prediction, we regress realized crash indicators onto the upper bound
and onto the lower bound. We consider crashes of size 10%, 20% and 30% over horizons
of one, three, six, and 12 months, and find that both bounds are statistically significant
predictors of crashes at all horizons and for all crash sizes. The same is true for the
risk-neutral probability of a crash (which, as we show, must always lie between the upper
and lower bounds).

If the lower bound were a perfect measure of the crash probability, we would find an
intercept equal to zero and slope coefficient equal to one in the associated regression. And
indeed we do find, for all 12 horizon/crash-size pairs, intercepts that are not significantly
different from zero and slope coefficients that are significantly positive and close to one.
The lower bound also outperforms the upper bound and the risk-neutral probability in
an R? sense for all 12 horizon/crash-size pairs.

The lower bound remains significant when we include 15 stock characteristics that
the prior literature has found useful in accounting for stock return variation, forecasting
crashes, or predicting bankruptcies: CAPM beta, firm size, the book-to-market ratio,
gross profits divided by total assets, three measures of trailing returns, realized volatil-
ity of market-adjusted returns, turnover, one-year sales growth, short interest scaled by
institutional ownership, leverage, net income to assets, cash to assets, and log price per
share. At horizons of one month and one quarter, the lower bound on its own achieves a
higher R? than all 15 stock characteristics do together.

We also test the validity and tightness of our bounds for stock crash probabilities,
following the approach of Back, Crotty, and Kazempour (2022). At all horizons and for
all crash sizes, we do not reject the null that the bounds are valid (that is, the lower
bounds are smaller and upper bounds are larger than the true crash probabilities). As
expected, we strongly reject the hypothesis that the upper bound is tight (with p-values
on the null hypothesis of tightness below 0.02 for 11 of the 12 horizon/crash-size pairs),
while the evidence is mixed on whether the lower bound is tight: we do not reject tightness
at the one-month and one-year horizons, but at the three-month and six-month horizons
we can reject tightness (with p-values between 0.02 and 0.12).

The lower bound successfully predicts crashes out of sample. We use it as a crash



forecaster with coefficient constrained to equal one, so that there are no parameters to es-
timate, and find that it outperforms the unadjusted risk-neutral probability at all horizons.
It also outperforms an approach that attempts to salvage the risk-neutral probabilities
by rescaling them, at each point in time ¢, by a stock- and time-specific parameter tuned
to match the historical relationship between that stock’s risk-neutral crash probability
and its realized crash probability. We carry out this exercise in two ways, using either an
expanding window or a rolling 3-year window to calibrate the historical relationship. In
both cases, the lower bound outperforms at all horizons.

We next compare the lower bound to a “kitchen sink” model that optimally combines
the 15 stock characteristics together with the risk-neutral probabilities and the lower
bound itself, using ridge, Lasso (Tibshirani, 1996) or elastic net (Zou and Hastie, 2005)
regularization with cross-validation to select models with the best out-of-sample perfor-
mance. The lower bound on its own outperforms the kitchen sink model at all horizons
for all three regularization methodologies, and for both rolling and expanding windows.

The problem with the kitchen sink model is that it chases performance by trying to
fit the recent historical experience. Following the financial crisis of 2008-9, for example,
the kitchen sink model puts extra weight on the risk-neutral probabilities, because their
excessively pessimistic predictions happen to have been correct during that period. But
this severely degrades the kitchen sink model’s subsequent performance. Our results show
that by imposing some theory-implied constraints, it is possible to alleviate this “crying
wolf” problem.

Related Literature. A large literature proposes methods to recover risk-neutral return
densities from option prices. An incomplete list includes Breeden and Litzenberger (1978);
Rubinstein (1994); Jackwerth and Rubinstein (1996); Ait-Sahalia and Lo (1998); Carr and
Madan (2001). Christoffersen, Jacobs, and Chang (2013) provide a survey. While the
starting point of our derivation relies on the insights of Breeden and Litzenberger (1978),
the major challenge of bounding the physical, as opposed to risk-neutral, expectations is
addressed by the new approach introduced in this paper.

Our work builds on a variety of papers that have studied the predictability of crashes.
At the level of market indices, Bates (1991) explores the behavior of S&P 500 futures
options prior to the stock market crash of 1987; more recently, Goetzmann, Kim, and

Shiller (2022) link “crash narratives” to volatility and investor expectations about crashes.



At the level of individual stocks, Chen, Hong, and Stein (2001) show that character-
istics such as turnover and past returns forecast negative return skewness in individual
stocks, Greenwood, Shleifer, and You (2019) use characteristics to forecast crashes at the
industry level conditional on past price rises, and Daniel, Klos, and Rottke (2023) docu-
ment that price run-ups combined with high short interest and low institutional ownership
forecast lower stock returns. These papers focus on returns over horizons of at least sev-
eral months: a distinctive feature of our approach is that it is empirically successful at
forecasting crashes at horizons as short as 1 month.

There is also a literature that focuses on how measures of skewness and tail- or
downside-risk are priced in the cross section of stock returns (see, for example, Ang,
Chen, and Xing (2006); Boyer, Mitton, and Vorkink (2009); Vilkov and Xiao (2013);
Kelly and Jiang (2014); Pederzoli (2021)) or option returns (see, for example, Bali and
Murray (2013)).

Elsewhere in the economics literature, the Fréchet—Hoeffding inequalities have been
applied by Heckman, Smith, and Clements (1997) and Manski (1997) in the context of
programme evaluation; and Dybvig (1988) uses similar ideas to derive bounds on contin-
gent claim prices in an economy with finitely many states. Fan and Patton (2014) review
the broader literature on the application of copulas in economics.

Organization of the paper. Section 1 introduces our approach and establishes various
theoretical properties of the bounds. Section 2 provides details of our data sample. Sec-
tions 3 and 4 present our empirical results, in and out of sample. Section 5 constructs
industry-level crash probability measures. Section 6 studies the relationship between our
measure of the crash probability and other characteristics. Section 7 concludes. All proofs

are in the Appendix.

1 Theory

We adopt the perspective of an investor (“the investor”) with power utility over next-
period wealth who is marginal in all markets, including option markets, but who chooses

to invest her wealth fully in the market, by which we mean the S&P 500 index. At time ¢,



the investor chooses portfolio weights w = [wy, ..., w,]" to solve the problem?

maxirgize E [u (wTR)} s.t. Zwi =1,
where u(z) = 2'77/(1—7), risk aversion equals v, and we write R = [Ry, ..., R,]" for the
vector of gross returns on the n assets from time ¢ to time t+ 1. The first-order conditions

for this problem are
E|(w'R)”R| =\ foralli,

where A is a Lagrange multiplier. By assumption, the investor chooses to invest fully in
the market, thus the market return, R,,, satisfies R,, = w' R. It follows that M = R /)
is a stochastic discount factor (SDF).

For any tradable payoff X, the risk-neutral expectation of X (which we denote with

an asterisk) satisfies, by definition,

1
—E*[X] = E[MX]
Ly
where Ry is the gross risk-free rate: the two sides of the above equation represent different
notational conventions for expressing the price at time ¢ of a claim to the payoff X paid

at time ¢t + 1. As MAR), =1, it follows that

E[X] = E[MAR), X] = AE[M(R,X)] = RAE* (R}, X]. (1)
f

Setting X = 1, we must have Ry = AE*[R],|, which allows us to eliminate A from (1):

E*[R) X]
EX] = —2—. 2
Hence we can infer the investor’s expectation of X if we can price a claim to R) X.
For the rest of the paper we will assume that the payoff X = h(R;) is a well-behaved
function of the return on a particular asset i, where h : Ry +— R is continuous almost

everywhere. We write @),,; for the joint risk-neutral cumulative distribution function

(CDF) of the market and individual stock return (R,,, R;), and @, and Q; for the marginal

3All expectations are conditional on current, time ¢, information. We suppress time subscripts to
streamline the notation.



CDFs of R,, and R;. Equation (2) can then be rewritten

fl"yh(y) del(l’, y)
JardQp(z)

E[h(R;)] = (3)

For example, if X = I(R; < q) is the indicator function for the event that stock i’s gross

return is less than ¢, then equation (2) implies that

B[R I(R: < q)]
ERL W

PlR; < q] =

because E[I(R; < ¢)] = P[R; < q]. Equation (4) shows that we can in principle infer
the true probability distribution of a particular stock return, as perceived by the power
utility investor who is holding the market, from risk-neutral distributions.

If stock i’s return were independent of the market return (under the joint risk-neutral
measure), then equation (4) would imply that the true and risk-neutral probabilities of a
crash in stock ¢ would be equal. In practice, however, we do not expect independence to

hold, as stocks are generally exposed to systematic risk. We can rewrite equation (4) as

cov* [RY  I(R; < q)]
B[R )

P[R; <q] =P[R, <q| +

As crashes are more likely to occur at times of market-wide bad news, the risk-neutral
covariance term in equation (5) will typically be negative, so that the risk-neutral proba-
bilities will overestimate actual crash probabilities.

Moreover, we should expect—and we will confirm, below—that the risk-neutral crash
probabilities overstate the truth most dramatically at scary moments in time (i.e., when
market-wide risk is high) and for scary stocks. This is unfortunate: it means that using
risk-neutral probabilities as forecasters of crashes is likely to be most problematic at
precisely the times (and for precisely those stocks for which) an accurate forecast would
be most valuable. We therefore view equation (4) as a disciplined way of adjusting the
risk-neutral probabilities to account for systematic (i.e., market) risk.

The challenge of implementing the equation, however, is that while index options
and individual stock options reveal risk-neutral expectations of univariate functions of
index or stock returns, they do not reveal risk-neutral expectations of two- (or higher-)

dimensional functions of index and stock returns simultaneously, as would be needed to
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Figure 3: Two joint distributions that are each consistent with the marginal risk-neutral
distributions in a 2 x 2 example.

calculate the numerators in (3) or (4).* Options on the market and on large-cap individual
stocks are liquid, but because they are written on a single underlying asset they reveal
only the marginal risk-neutral distributions, and not the correlation structure. To recover
the risk-neutral joint distribution, one would need to observe the prices of derivatives
whose payoffs are functions both of the stock index and of the stock of interest. But
such prices are not observable in practice. (By contrast the probability of a crash in the
market itself, as plotted in gray in Figure 2, is relatively easy to handle: when ¢ = m
the right-hand side of (4) is a ratio of risk-neutral expectations of functions of the single

random variable R,,, which can be calculated from index option prices in the usual way.)

An example. From the price of S&P 500 index options and options on Apple
stock, we can calculate the risk-neutral probability of a crash in the market and
in Apple, respectively. We might, for example, find that both Apple and the S&P
500 each have a risk-neutral crash probability equal to 5%. But these probabilities
are consistent with a continuum of joint distributions.

The two panels of Figure 3 indicate two possible scenarios that are in a sense
polar opposites. The left-hand panel describes a world in which Apple is risky,
crashing if—and only if—the market crashes. In this case Apple crashes are “scary”,
so the risk-neutral crash probability (which, in standard models, distorts the true
probability by a factor related to the marginal value of a dollar) should be expected
to overstate the true probability of a crash. In the right-hand panel, by contrast,
Apple crashes if and only if the market does not crash. In this case, Apple crashes
are relatively benign, so the standard logic predicts that the risk-neutral probability
should understate the true probability of an Apple crash.

1Ross (1976) showed in a finite-state setting that options on portfolios of assets could in principle be
used to recover risk-neutral joint densities. Martin (2018) points out that this result fails with continuous
states, and even with finite states given the assets that are traded in practice.
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More generally, although the observable one-dimensional risk-neutral distributions do
not make it possible to pin down the true crash probability precisely, we can nonetheless
derive bounds on the right-hand sides of (3) or (4): as in the 2 x 2 example, the marginals
place restrictions on the joint distribution.® To do so, we decompose the joint distribution
into two parts: the marginals and the dependence structure. The marginals can be
inferred from index and stock options, using the Breeden—Litzenberger approach. Roughly
speaking, we can then bound the integral in the numerator of (3) by minimizing and

maximizing over all possible dependence structures—more precisely, over all copulas.®
Definition 1. A (two-dimensional) copula is a function C : [0,1]? — [0, 1] such that
1. C is grounded: C(z,0) = C(0,y) =0 for any (z,y) in its domain;
2. C(z,1) =z and C(1,y) =y for any (z,y) in its domain;
3. C is two-increasing: for all rectangles B = [x1,y1] X [z2,y2] C [0,1]2, the “volume”
of B, which is defined by Vy(B) = C(x2,y2) — C(w2,91) — C(z1,32) + C(21,91) s

non-negative.

The following theorem of Sklar (1959) shows that any joint distribution can be asso-

ciated with a copula that “glues together” its marginals.

Theorem 1 (Sklar). Let Q be the joint CDF for the random vector (X,Y') with marginal
CDFs Fx and Fy. Then there exists a copula C, such that for all z,y € R,

Q(xay> = C(FX<1.>7 FY(?/))

We can therefore express the joint risk-neutral distribution of the market and stock
return as Qn;(z,y) = C(Qm(z), Qi(y)), where the risk-neutral index and individual stock
CDFs, @,, and @);, can be calculated from index and individual stock option prices.
Although C(-,-) is unknown, the following theorem supplies pointwise bounds that apply

to any copula.

Theorem 2 (Fréchet-Hoeffding). If C(u,v) is a copula, then

max(u +v — 1,0) < C(u,v) < min(u,v), (u,v) € [0, 1]

5Moreover, the diagonal and off-diagonal patterns visible in the two panels of Figure 3 are echoed in
the form of the lower and upper bounds: see the proof of Result 1 in Appendix A.1.
SFor a survey of the use of copulas in economics, see Fan and Patton (2014).
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Using the Fréchet—Hoeffding theorem, together with the work of Tchen (1980), we

have the following result, whose proof is in the Appendix.

Result 1. For a continuous and two-increasing’ function g defined on [0,00) x [0, 00),

we have the bounds

E* [g (B, Q7" (1 = Qu(Rn)))] < E'[g(Ru, Ri)] S E" [g (R, Q7' (Qu(Bw)))] - (6)

Result 1 provides bounds on the price of an asset whose payoff g(R,,, R;) can depend
in an arbitrary way on the correlation structure of R,, and R;. As the one-dimensional
risk-neutral distributions are observable from index and individual stock option prices,
we can treat ; and @), as observable functions. Thus the upper and lower bounds in
(6) are risk-neutral expectations of known functions of the single variable R,,. They can
therefore be calculated given observable index option prices.

Result 1 exhibits bounds that relate risk-neutral expectations of different random
variables to one another. It does not rely on any assumptions about the form of the SDF.
But, under our assumption on the power utility form of the SDF, we can set g(x,y) =

27h(y), as in equation (3), to derive the following result.®

Result 2. Let h be a continuous increasing function defined on [0, 00) that does not cross
the x-azis (that is, h(x)h(y) > 0 for any x,y > 0), and suppose the SDF is proportional
to R7. Then

E* [R,h (Q7 (1 = Qu(Rr)))]

These bounds are sharp, in the sense that the lower bound is achieved if R; and R,, are

countermonotonic, and the upper bound is achieved if R; and R,, are comonotonic.’

Note that the middle expectation above is a true—mnot a risk-neutral-—expectation. In
our application to crash probabilities, we set h(z) = —I(x < q) in Result 2. This delivers

the following variant of Result 2 on which our empirical work is based. As the bounds

"See Definition 1.

8In Appendix B, we show how to adapt Result 2 if h is Lipschitz continuous but not monotonic.

9Two random variables are said to be countermonotonic if one is a monotonically decreasing trans-
formation of the other, and comonotonic if one is a monotonically increasing transformation of the other.

12
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Figure 4: Left: an example of a comonotonic pair of random variables. Right: an
example of a lower comonotonic pair of random variables with thresholds (g, ¢).

depend only on tail outcomes for the stock, the lower bound is tight under the weaker
condition that the stock return and market return are comonotonic in the left tail.

More precisely, the condition for tightness of the lower bound is expressed in terms of
lower comonotonicity (a weaker assumption than comonotonicity). Specifically, (R,,, R;)
is lower comonotonic with threshold (g, ¢) if, in the terminology of Cheung (2009),
(=R, —R;) is upper comonotonic with threshold (—¢;, —q). Figure 4 illustrates.

Result 3. The probability of a crash in stock i, P[R; < q|, satisfies the bounds

E* [RLT (B < q1)]
E* [R)]

E* [RLT (B 2 qu)]
E* [R] ’

<P[R;, <¢q| <

where q = Q' (Qi(q)) and g = Q7' (1 — Qi(q))-
The lower bound is attained if the return on the market R,, and return on the stock
R; are lower comonotonic with thresholds (q;,q); this holds, in particular, if R, and R;
are comonotonic. The upper bound is attained if the two returns are countermonotonic.
The risk-neutral probability of a crash, P*[R; < ql, lies between the two bounds. It is

equal to the true crash probability if stock i’s return is independent of the market return.

As most stocks typically move with, rather than against, the market, we anticipate
that comonotonicity is closer to the truth than countermonotonicity. Hence, a priori, we
expect the lower bound to be tighter—closer to the true crash probability—than the upper

bound. As we will see below, our empirical results strongly support this expectation.
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Result 3 takes a particularly simple form in the special case in which asset ¢ is the
market index. As the market is comonotonic with itself, the lower bound holds with

equality, so that the probability of a market crash is

PR, < q = E* [R%]é{ [(gﬁ <4q] (7)

Equation (7) generalizes one of the results in Martin (2017), and we use it to calibrate the
level of risk aversion, v. We choose to calibrate risk aversion using market returns—rather
than by targeting forecasting performance for individual stocks—to minimize the effect of
in-sample information. As we show in Appendix C, setting v equal to two approximately
optimizes the predictive performance of our framework for movements in the market. For
the rest of the paper, we therefore set v = 2.

Our next result shows that the bounds in Result 3 widen as risk aversion rises.

Result 4. The lower bound s decreasing in v and the upper bound is increasing in .
When ~ = 0, the lower and the upper bounds are both equal to P*[R; < q|: this is the
case in which the true and risk-neutral expectations coincide, so that crash probabilities
can be inferred perfectly from option prices.
As v — o0, the bounds become trivial: for any q such that 0 < Q;(q) < 1, the lower
bound tends to 0 and the upper bound tends to 1.

It follows that higher risk aversion leads to more conservative bounds: increasing risk
aversion drives the lower bound down and the upper bound up.

It only remains to show how we calculate the bounds that appear in Result 3. Given a
chosen value of ¢, and hence of ¢; and ¢,, the risk-neutral expectations that appear in the
bounds can be calculated from index option prices. The only point at which the prices
of options on stock i itself are used is, therefore, in the calculation of ¢; and ¢,, which

are determined by the prices of index and of individual stock options via the risk-neutral
marginals Q,, () and Q;(+).

Result 5. For any v > 0, we can calculate the risk-neutral expectations in Result 3 using

observable option prices:

F 00
E*[R)] = R} + % [/0 (v — )K" ?put(K) dK —i—/F Y(y = K" ?call(K) dK | ,
0
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where Sy is the spot price of the market index; F' = RSy is the forward price; put(K)
and call(K) are the prices of index put and call options; and K; = ¢Sy and K, = q,5.

1.1 Fréchet—Hoeffding vs. Cauchy—Schwarz

The bounds in Result 3 are stronger than the bounds that follow from the fact that
correlation lies between plus and minus one (that is, from the Cauchy—Schwarz inequality).

To compare the two approaches, note that equation (5) implies that

o [Ry o IR < )] _

P*[R; < q] — <P[R; < q| <P*[R; < m ,
(8)
where o* ] = y/var* || denotes risk-neutral volatility. These bounds depend only on

univariate risk-neutral expectations, so can be calculated from observable option prices.

But this approach is less efficient than the bounds derived above because, in general,
comonotonic random variables are not perfectly positively correlated and countermono-
tonic random variables are not perfectly negatively correlated. This is easily seen in our
application, because the stock crash indicator (a binary variable) cannot be a linear func-
tion of a power of the market return (a continuous variable).!’ Tt is thus impossible for
the risk-neutral correlation between the terms R, and I(R; < ¢) in equation (5) to reach
plus or minus one. We report Fréchet-Hoeffding-implied bounds on these risk-neutral
correlations for stocks in our sample in Table A2 of the appendix.

It therefore follows that bounds obtained by “setting correlation equal to one” (or to
minus one) will be looser than the bounds supplied by Result 3. Indeed, the upper and
lower bounds on crash probabilities implied by the Cauchy-Schwarz inequality need not
even lie between zero and one. Table A3, in the appendix, reports the relative widths of

our bounds compared with the Cauchy—Schwarz bounds across firms. For all crash sizes

10For an example in which both variables are continuous, suppose that Z is Normal. Then e? and
e?? are comonotonic if ¢ > 0 and countermonotonic if ¢ < 0. But as ¢ tends to plus or minus infinity,

the correlation between the two tends to zero.
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and horizons, the Cauchy—Schwarz bounds are substantially wider than the bounds based
on the Fréchet-Hoeffding theorem. In the case of the 1 month/20% pair, the Cauchy—
Schwarz bounds are, on average, more than three times wider than the Fréchet-Hoeffding
bounds, while for the more extreme 1 month/30% pair, the Cauchy-Schwarz bounds are

on the order of ten times wider on average.

2 Data

We focus on firms included in the S&P 500 index, using index constituent information
from CRSP. Our sample runs from January 1996 to December 2022. On the last trading
day of each month ¢, we obtain, from OptionMetrics, the volatility surfaces of the S&P 500
index and of all firms that are S&P 500 constituents during month ¢, together with risk-
free rates. We then obtain stock prices, returns, trading volumes and shares outstanding
from CRSP to construct a firm-month panel. We emphasize that, unlike much of the
literature, we do not drop financial firms from our sample, as our theory applies equally
well to financial firms as to other industries

We face the issue that individual stock options are American style rather than FEuro-
pean style. We deal with this issue, following the related literature (Carr and Wu, 2009;
Kelly, Lustig, and Van Nieuwerburgh, 2016; Christoffersen, Fournier, and Jacobs, 2018;
Martin and Wagner, 2019), by using volatility surfaces reported by OptionMetrics, who
use proprietary multinomial tree models to account for early exercise premia. This is not
a perfect solution, but we believe that the distinction is likely to be relatively minor for
our applications, as the calculations required by Results 3 and 5 depend on the prices of
out-of-the-money options.

When calculating the integrals in Result 5, we extrapolate a flat volatility smile outside
the range of observed strikes, as is also standard in the literature. We provide additional
computational details on the construction of our bounds in Section D of the Appendix.

We write R;¢ 4, for the gross return on stock ¢ from time ¢ to time ¢ + 7, Pft(r, q)
and Pgt(T, q) for the lower and upper bounds on the probability that R;; ;. is less than
or equal to ¢, and ]P)Z:t(T, q) for the corresponding risk-neutral probability.

Table 1 reports summary statistics for these measures with ¢ = 70%, 80% and 90%, at

1, 3, 6, and 12 month horizons. For comparison, we also report the realized frequencies of
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Table 1: Summary statistics

This table presents summary statistics of realized crash events, our crash probability bounds, and risk-
neutral crash probabilities. The sample data are monthly from January 1996 to December 2022. The crash
events (realized crashes) under consideration are I'(R;¢—¢1r < q) for ¢ =10.7,0.8,0.9 and 7 =1, 3, 6, 12
months. The bounds and risk-neutral probabilities are measures of the conditional probabilities of crash
events.

averaged across firms averaged across time
(number of obs. T = 324) (number of obs. N = 1044)
horizon 1 3 6 12 1 3 6 12

Panel A: ¢ = 0.7, down by over 30%

mean  0.006 0.029 0.057 0.093 0.009 0.038 0.073 0.115
s.d. 0.019 0.064 0.100 0.120 0.025 0.067 0.103 0.147
mean  0.004 0.025 0.051 0.076 0.006 0.030 0.056 0.082
s.d. 0.007 0.019 0.023 0.023 0.013 0.032 0.042 0.049
mean  0.007 0.044 0.098 0.167 0.009 0.050 0.104 0.173
s.d. 0.012 0.037 0.050 0.056 0.017 0.045 0.061 0.071
mean  0.009 0.060 0.139 0.253 0.011 0.066 0.146 0.259
s.d. 0.016 0.053 0.077 0.094 0.020 0.056 0.078 0.093

realized
lower bound
risk-neutral

upper bound

Panel B: ¢ = 0.8, down by over 20%

mean  0.021 0.069 0.110 0.152 0.029 0.084 0.130 0.173
s.d. 0.048 0.107 0.140 0.158 0.059 0.092 0.129 0.165
mean  0.022 0.073 0.102 0.123 0.027 0.079 0.110 0.133
s.d. 0.020 0.028 0.027 0.027 0.029 0.046 0.052 0.056
mean  0.031 0.113 0.174 0.236 0.037 0.120 0.182 0.246
s.d. 0.031 0.050 0.053 0.058 0.036 0.058 0.065 0.072
mean  0.038 0.144 0.234 0.340 0.044 0.152 0.243 0.352
s.d. 0.040 0.071 0.082 0.097 0.042 0.069 0.079 0.089

realized
lower bound
risk-neutral

upper bound

Panel C: ¢ = 0.9, down by over 10%

mean  0.096 0.172 0.211 0.238 0.110 0.190 0.231 0.254
s.d. 0.123 0.170 0.184 0.193 0.089 0.119 0.152 0.182
mean  0.109 0.168 0.195 0.209 0.118 0.179 0.206 0.218
s.d. 0.036 0.031 0.027 0.023 0.050 0.055 0.056 0.056
mean  0.136 0.228 0.286 0.341 0.145 0.239 0.297 0.350
s.d. 0.050 0.051 0.051 0.049 0.056 0.061 0.063 0.063
mean  0.156 0.277 0.367 0.466 0.166 0.290 0.378 0.476
s.d. 0.064 0.074 0.080 0.085 0.062 0.070 0.073 0.073

realized
lower bound
risk-neutral

upper bound
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crashes. Specifically, for each month from January 1996 to December 2022, we calculate
cross-sectional averages of the realized crash indicator I(R;; 4, < ¢q) (which equals one
if the realized return is less than or equal to ¢, and zero otherwise), the upper and lower
bounds, and the risk-neutral crash probabilities. The first four columns of the table
report the means and standard deviations of these T = 324 observations at each of the
four horizons. Similarly, we calculate time-series averages of the same quantities for each
of the N = 1044 firms in our sample. The last four columns of Table 1 report the means
and standard deviations of these time-series averages. The sample means of cross-sectional
and time-series averages differ slightly because we have an unbalanced panel.

Consistent with the predictions of the theory and the discussion following Result 3, the
time-series and cross-sectional means of the lower bounds are close to the corresponding
mean realized crash frequencies, whereas the risk-neutral probabilities and (even more so)

the upper bounds overestimate the likelihood of crashes.

3 In-sample results

3.1 Regression tests

To test whether the option-implied bounds successfully measure the probability of a crash,

we run the regression

I(Riy1r < q) = a+ BXi(7,q) + €ipgr (9)

for a range of crash sizes ¢ and forecasting horizons 7 (measured in months). Here X, (7, q)
is the lower or upper bound on the crash probability (that is, Pﬁt(T, q) or ]P’gt(T, q)),
or the risk-neutral crash probability, P},(7,¢). Result 3 showed, under our maintained

assumptions, that the inequality
]P)lj;ut(T’ q) <P R < q) < ]P)gt(ﬂ q)

holds for any stock 4, forecasting horizon 7, and crash size ¢. If, moreover, one of the
bounds is close to the true crash probability, we should find « close to zero and /3 close

to one in the corresponding regression.
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Table 2: Regression tests of the option-implied crash probability measures

This table reports the results of running linear regressions
I(Rit—t4r < q) = a+ BXi(7,q) + €ittr,

in which ¢ = 0.7,0.8 and 0.9, and X stands for P (the lower bounds), PV (the upper bounds), or P*
(the risk-neutral probabilities). The data are monthly from January 1996 to December 2022. The stocks
under consideration are S&P 500 constituents. The return horizon 7 is one month, three months, six
months, or one year. Values in parentheses are firm-month two-way clustered standard errors following
Thompson (2011). Values in square brackets are standard errors following the panel bootstrap procedures

of Martin and Wagner (2019) using 2500 bootstrap samples.

lower bound risk-neutral upper bound
horizon 1 3 6 12 1 3 6 12 1 3 6 12
Panel A: ¢ = 0.70, down by over 30%
@ 0.00  0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.01) (0.01)
[0.00] [0.00] [0.01] [0.01] [0.00] [0.00] [0.01] [0.01] [0.00] [0.00] [0.01] [0.01]
I} 0.95 1.03 1.09 1.05 0.66 0.60 0.59 0.56 0.51 0.43 0.39 0.35
(0.15) (0.12) (0.11) (0.10) (0.11) (0.08) (0.07) (0.07) (0.09) (0.06) (0.05) (0.05)
[0.16] [0.14] [0.18] [0.15] [0.11] [0.11] [0.11] [0.11] [0.10] [0.09] [0.08] [0.07]
R? 3.90% 5.37% 5.17% 3.91% 3.77% 4.56% 4.01% 3.06% 3.63% 4.16% 3.41% 247%
Panel B: ¢ = 0.80, down by over 20%
@ 0.00 —-0.01 -0.01 0.02 0.00 —-0.01 —0.02 0.00 0.00 —-0.01 -0.01 0.01
(0.00) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.02)
[0.00] [0.01] [0.01] [0.02] [0.00] [0.01] [0.01] [0.02] [0.00] [0.01] [0.02] [0.03]
I} 0.92 1.03 1.15 1.07 0.68 0.69 0.73 0.66 0.56 0.51 0.49 0.41
(0.11) (0.09) (0.09) (0.08) (0.09) (0.07) (0.07) (0.07) (0.08) (0.06) (0.06) (0.06)
[0.11] [0.13] [0.15] [0.13] [0.09] [0.10] [0.11] [0.12] [0.07] [0.08] [0.10] [0.10]
R? 5.65% 5.15% 4.76% 3.69% 5.48% 4.50% 3.89% 2.96% 5.32% 4.11% 3.22% 2.30%
Panel C: ¢ = 0.90, down by over 10%
@ -0.02 —-0.01 -0.01 0.03 —-0.02 —-0.02 —-0.02 0.00 —0.02  0.00 0.01 0.05
(0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) (0.03) (0.01) (0.02) (0.02) (0.03)
[0.01] [0.02] [0.02] [0.03] [0.01] [0.02] [0.03] [0.04] [0.01] [0.03] [0.04] [0.05]
I} 1.05 1.07 1.12 1.01 0.88 0.83 0.80 0.68 0.75 0.63 0.54 0.41
(0.08) (0.07) (0.07) (0.08) (0.08) (0.08) (0.08) (0.09) (0.07) (0.07) (0.07) (0.08)
[0.08] [0.11] [0.12] [0.12] [0.07] [0.11] [0.12] [0.13] [0.08] [0.12] [0.12] [0.11]
R? 5.46% 3.71% 3.38% 2.41% 5.46% 3.39% 2.80% 1.83% 5.35% 3.03% 2.16% 1.23%
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Figure 5: Regression coefficients /3 for the lower bounds (OIB-LB) and the risk-neutral
(RN) probabilities in subsamples.

This figure presents the regression coeflicients of equation (9) in nine completely different subsamples,
when the independent variable is the lower bound, forecasting horizons are 7 = 1, 3,6, 12 months, and
the crash size ¢ = 0.8. The height of a blue bar represents the § estimate; error bars represent the 95%

confidence intervals calculated based on firm-month clustered standard errors.

The regression results are shown in Table 2, which reports two-way clustered standard
errors in parentheses, following Thompson (2011), and block bootstrapped standard errors
in square brackets, using the procedure of Martin and Wagner (2019). Across crash
sizes and forecasting horizons—and for all three right-hand side variables—the estimated
intercepts are close to zero, while the estimated slope coefficients are positive and strongly
significant.

The estimated slope coefficients exhibit a clear monotonic pattern'! that is consis-

tent with the theory. The estimated coefficients on the lower bound are largest (averaging

HRecall from Result 3 that the risk-neutral probability must lie between the upper and lower bounds.
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around 1.05 across crash sizes and horizons); the estimated coefficients on the risk-neutral
probability are significantly below one (averaging around 0.70); and the estimated coeffi-
cients on the upper bound are smallest (averaging around 0.50).

In the case of the lower bound, the estimated coefficients are insignificantly different
from one at all horizons and for all crash sizes. The lower bound also outperforms the
other two variables in an R? sense for almost all horizons and crash sizes. These results
are consistent with the discussion following Result 3.

Tables A4, A5 and A6, in the appendix, report the same regressions with time fixed
effects, firm fixed effects, and time and firm fixed effects, respectively. (Although such
specifications are not useful for prediction without prior knowledge of the values of the
fixed effects, they help us to understand where the success of the predictor variables comes
from.) Table A4 shows that the slope coefficients are little changed by the introduction of
time fixed effects: thus our measures successfully explain cross-sectional variation in crash
probabilities. Tables A5 and A6 show that the slope coefficients remain highly significant
at short horizons when firm fixed effects are included, either on their own or even jointly
with time fixed effects (but not at the 12 month horizon). For example, at the one-month
horizon with both time and firm fixed effects included, the coefficient on the lower bound
is 0.77 for the largest crashes (¢ = 0.7), 0.73 for intermediate crashes (¢ = 0.8), and 0.65
for the smallest crashes (¢ = 0.9), with standard errors in the range 0.05 to 0.13.

The good performance of the lower bound is not driven by any particular episode. Fig-
ure 5 plots the 3 coefficient estimates for equation (9) when the lower bounds P/,(7,0.8)
are used to forecast 20% crashes in nine non-overlapping three-year subsamples, at hori-
zons of 1, 3, 6, and 12 months. The coefficient estimates are significantly greater than
zero in all subsamples and across all forecasting horizons. The null § = 1 cannot be
rejected in 31 out of the 36 cases at the 95% confidence level. For comparison, the coeffi-
cient estimates for risk-neutral probabilities exhibit more pronounced variation over time.
Standard theory would suggest that risk-neutral probabilities are likely to overstate true
crash probabilities, particularly at times of heightened market risk or risk aversion and
for stocks that are highly exposed to systematic risk. Consistent with this view, we find
that the coefficients on the risk-neutral probabilities are closer to zero (and insignificantly
different from zero at horizons from 3 to 12 months) in subsamples covering the global

financial crisis and the Covid pandemic.
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The lower bound adjusts the risk-neutral probabilities to account for risk, and the
adjustment is disciplined by theory. By contrast, ad hoc adjustments to the risk-neutral
probabilities do not seem to work as well. To illustrate, consider the following simple

approach'? to “debiasing” the risk-neutral probabilities:

1. At time ¢, calculate firm 7’s mean historical realized crash probability, p;, and mean
historical risk-neutral crash probability, pf, by averaging, respectively, its histori-
cal crash event indicators and historical risk-neutral crash probabilities from the

beginning of the sample until time ¢.

2. Generate an adjusted crash probability measure for firm ¢ at time ¢ by multiplying

the time ¢ risk-neutral probability of a crash in firm ¢ by p;/p;.
3. Repeat for all time periods ¢ and firms «.

We repeat the in-sample regression analysis for these adjusted risk-neutral probabil-
ities and report the results in Table A7 in the appendix. For ease of comparability, the
table also reports the corresponding results for the lower bounds and the raw risk-neutral
probabilities (taken from Table 2). By construction, the adjusted risk-neutral probabili-
ties are close to the true crash probability when averaged over the entire sample. But they
are poor predictors of crashes, with low R?s; and the estimated coefficients on the adjusted
probabilities are significantly below one—and the associated intercepts significantly above
zero—for all horizons and crash sizes.

Sorting on correlation. Tables A8 and A9 report results of forecasting 20% crashes
at horizons of 1 and 12 months, respectively, in subsamples of stocks sorted on trailing
correlation. As elsewhere, the upper and lower bounds, and the risk-neutral probabilities,
are highly significant forecasters of crashes in all subsamples. We generally find that
the explanatory power (as measured by R?) is highest for the lower bound, and for high
correlation stocks.!?

Forecasting rallies. While we have focussed on forecasting crashes, it is also interesting
to forecast rallies: for example, Tsai and Wachter (2016) argue that growth stocks have a

higher probability of experiencing systematic booms. Result 7, in Appendix E, adapts the

12We consider other ways of adjusting the risk-neutral probabilities in the out-of-sample analysis
discussed in Section 4.
13Note, however, that high correlation is neither necessary nor sufficient for comonotonicity.
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approach of Section 1 to derive bounds on the probability of a rally, rather than a crash,
in a stock. In this case it is the upper bound that is attained if the return on the stock
and on the market are comonotonic (or under the weaker condition that the return on
the stock and on the market are comonotonic in the right tail), so a priori we expect the
upper bound to perform better in forecasting rallies. Tables A10 and A11 report summary
statistics and results of regressions of a realized rally indicator function onto the lower and
upper bounds, and onto the risk-neutral probability of a rally. While the upper bound
is a highly significant predictor of rallies, the coefficient is significantly smaller than 1 at
horizons above 1 month, which suggests that the comonotonicity assumption is further
from the truth in rally regimes than in crash regimes. This is broadly consistent with the
finding that stock return correlations are countercyclical (Campbell et al., 2001).
Forecasting returns. It is natural to wonder whether the success in forecasting crashes
documented in Table 2 translates directly into forecasting returns. It is not completely
clear what to expect, however. One possibility is that crashes are simply the consequence
of market mispricing. On this view, if our measure helps to detect stocks which are
overpriced, and hence likely to crash, then it might also forecast low realized returns on
average. At the opposite end of the spectrum, the market efficiency view would suggest
that stocks with a high probability of crashing should have high, not low, expected returns
in compensation for this risk. (A riskless bond is guaranteed not to crash, and earns no
risk premium as a result.) In practice we find that the evidence is not decisive, though it is
somewhat more favorable to the latter view. Table A12 reports the results of regressions
of returns onto the option-implied bounds and onto the risk-neutral crash probabilities.
At the 12-month horizon there is some evidence of a statistically significant and positive
relationship between crash probability and subsequent returns; at shorter horizons, the

relationship remains positive but is not statistically significant.

3.2 Validity and tightness tests

We now carry out formal tests of the validity and tightness of the crash probability bounds
based on conditional moment restrictions, following Back, Crotty, and Kazempour (2022)
(henceforth, BCK).

Let z; be a strictly positive vector of dimension d that incorporates conditioning
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variables known at time ¢. This vector includes a set of candidate variables that might

help to determine crash probabilities, and it determines another vector, of the same length,
A=E{I(Rits4r <q) — Xip(7,9)} 24,

where X represents lower or upper bounds. As each element of z; is strictly positive, we
can assess the validity of the lower bound!# by testing A > 0 against the alternative that
A € R? (that is, A is unrestricted). If the lower bound is valid, we can assess its tightness
by testing A = 0 against the alternative A > 0. Similarly, we can assess the validity of the
upper bound by testing A < 0 against the alternative A\ € R¢, and assess its tightness by
testing A = 0 against the alternative A < 0.

Following BCK, we include a constant in the vector z;, together with additional vari-
ables from Welch and Goyal (2008), transformed where necessary to guarantee positivity.

We then construct the estimator

T t
N 1 1
A= T tz:; N, 121 {I(Ri 1t < q) — Xit(1,0) } 24|

where NV, is the number of firms at time ¢, and estimate the variance-covariance matrix
of A using the Driscoll and Kraay (1998) estimator to account for heteroskedasticity and
serial correlation in the time series and cross sectional dependence across firms.

Table 3 reports the results of the BCK tests. The headline result is that we do not
reject validity of either the upper or the lower bound at any horizon or crash size.

For all horizons and crash sizes (except the extreme one month/30% scenario, where
we have lower power due to the relatively smaller number of crashes) we can, however,
strongly reject the hypothesis that the upper bound is tight. This was to be expected: the
upper bound is tight only if stock returns and the market return are countermonotonic—
that is, if all individual stock returns are monotonically decreasing functions of the market
return. This is implausible, even as an approximation, for a single stock; and it cannot
hold for all stocks given that the market return is a weighted average of individual stock

returns.

MIf the lower bound is valid then E; [I(R; - < q) — X;4(7,q)] > 0, where X, ;(7,q) = Pﬁt(
As z, is known at time ¢ and strictly positive, it follows that E; [{I(R;1—i+r < q¢) — Xi4(T,q)} 24
and hence that E [{I(R; -+ < q) — X;.4(7,¢)} 2¢] > 0 by the law of iterated expectations.

7,q).
>0,
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Table 3: Validity and tightness of the option-implied crash probability bounds: the Back,
Crotty, and Kazempour (2022) tests

This table reports the p-values for testing the validity and tightness of our proposed bounds, using the
methodology described in Back, Crotty, and Kazempour (2022). The data are monthly from January
1996 to December 2022. Firms under consideration are S&P 500 constituents. The return horizons,
denoted by 7, are one month, three months, six months, and one year. For ¢ = 0.7,0.8 and 0.9, define

A=E[{I(Rit—t+r < q) — Xit(T, )} 24,

where X stands for P¥ (the lower bounds), PV (the upper bounds), or P* (the risk-neutral probabilities);
the elements of z; are 1) a constant one, 2) the dividend yield of the market, 3) the earnings yield of the
market, 4) the spread between five-year and three-month treasury yields, 5) the net equity issuance scaled
by the market capitalization, 6) the month-to-month inflation rate, 7) the BAA-AAA credit spread, 8) the
book-to-market ratio of the market, 9) the three-month treasury yield and 10) the VIX index. Hy : A > 0
vs. Hy : A € R? tests if a lower bound is valid; Hy : A = 0 vs. H; : A > 0 tests if a lower bound is tight;
Hy: XA <0vs. Hi : X\ € R? tests if an upper bound is valid; Hy : A = 0 vs. H; : A < 0 tests if an upper
bound is tight.

lower bound upper bound
horizon 1 3 6 12 1 3 6 12

Panel A: ¢ = 0.70, down by over 30%

Validity 0.691 1.000 0.512 0.430 0.763 0.781 0.774 0.752
Tightness 0.414 0.118 0.039 0.157 0.316 0.009 0.000 0.016

Panel B: ¢ = 0.80, down by over 20%

Validity 0.462 0.375 0.621 0.502 1.000 1.000 0.751 0.754
Tightness 0.348 0.022 0.043 0.161 0.011 0.000 0.000 0.018

Panel C: ¢ = 0.90, down by over 10%

Validity 0.068 0.634 0.686 0.490 1.000 1.000 0.760 0.753
Tightness 0.134 0.059 0.058 0.116 0.000 0.000 0.000 0.019
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By contrast, as noted above, we expect a priori that the lower bound should be closer
to the truth. Here the evidence of tightness is mixed. We do not reject tightness of the
lower bound for any crash size at the 1-month horizon (with p-values on the null varying
between 0.134 and 0.414) or 12-month horizon (p-values between 0.116 and 0.161), but at

the 3- and 6-month horizons we can generally reject tightness with moderate confidence.

3.3 Comparison with other predictor variables

The previous section established that the theoretically motivated quantity P£t<7', q) is
a strongly significant forecaster of crashes. We now investigate whether this empirical
success survives the introduction of various stock characteristics, and compare the lower
bound more directly with the forecasting performance of the risk-neutral probability of a
crash. From now on we focus on declines of at least 20% in the interest of brevity.

We consider several stock characteristics, including seven variables associated with
the cross-section of expected stock returns: CAPM beta, relative size (the logarithms of a
firm’s market capitalization scaled by that of the S&P 500 index), book-to-market ratio,
gross profitability (gross profits scaled by total assets), two momentum measures (stock
returns from month —6 to month —1 and month —12 to month —1), and the most recent
month’s return (as a reversal signal).

We also consider various characteristics studied by a prior literature that has studied
related (though not identical) topics: the volatility of market-adjusted returns and aver-
age monthly turnover (both of which are highlighted in Chen, Hong, and Stein (2001)),
sales growth (Greenwood, Shleifer, and You, 2019), short interest scaled by institutional
ownership (Asquith, Pathak, and Ritter, 2005; Daniel, Klos, and Rottke, 2023), and four
variables motivated by the approach of Campbell, Hilscher, and Szilagyi (2008) to fore-
casting corporate bankruptcies and failures: the leverage (debt-to-asset) ratio, net income
scaled by total assets, cash and short-term investment scaled by total assets, and log price
per share. Appendix F gives further detail on the construction of all 15 characteristics,
and Table Al presents summary statistics.

Table 4 reports results for a crash of at least 20% over the next month. To make it
easier to assess the economic significance of the forecasting variables, we rescale the lower

bound, the risk-neutral probability, and all stock characteristics to have unit standard
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Table 4: Regression tests of the option-implied crash probability bounds: adjusted re-
gressions for 20% crashes in one month

This table reports the results from the following regressions:
I(Ri,t—>t+1 < 08) = ﬂ . Xit(l, 08) + A COIItI’OlSit + Eit+1,

in which X stands for PX (the lower bounds), P* (the risk-neutral probability), or both. The controls
are 15 firm characteristics from the literature. All independent variables are transformed to have a unit
standard deviation. Regression coefficients are reported in percentage points, and their two-way clustered
standard errors are included in the parentheses. The first five columns are simple OLS estimates, and
the sixth column reports estimates with time fixed effects, with a projected (within) R? replacing the
standard ones. Asterisks indicate coefficients whose t-statistics exceed four in magnitude.

I(Ri 41 <038)
(1) (2) (3) (4) (5) (6)

PER; 11 <0.8] 3.40* 3.02* 4.41 2.72*
(0.41) (0.58) (3.08) (0.33)
P*[Ri—t+1 < 0.8] 2.81% —1.39
(0.66) (3.36)
beta 0.48 0.12 0.18 0.10 0.22
(0.15) (0.16) (0.17) (0.14) (0.13)
relative size 0.06 —0.02 —0.04 —0.00 0.09
(0.10) (0.10) (0.10) (0.10) (0.07)
book-to-market —0.18 —0.20 —0.20 —0.20 —0.07
(0.11) (0.10) (0.10) (0.10) (0.08)
gross profit —-0.13 —0.08 —0.10 —0.07 —0.04
(0.09) (0.09) (0.09) (0.08) (0.07)
T(t—1)—t —0.27 —0.08 —0.06 —0.09 —0.16
(0.18) (0.18) (0.18) (0.19) (0.13)
T(t—6)—>(t—1) —0.45 —0.26 —0.26 —0.27 —0.34
(0.20) (0.19) (0.20) (0.20) (0.16)
T(t—12)— (t—1) —0.06 —0.06 —0.05 —0.07 -0.14
(0.19) (0.19) (0.19) (0.18) (0.17)
CHS-volatility 2.27* 0.31 0.44 0.32 0.50
(0.31) (0.37) (0.44) (0.39) (0.18)
turnover 0.18 —0.06 —-0.07 —0.05 0.08
(0.26) (0.25) (0.24) (0.24) (0.15)
sales growth 0.21 0.19 0.20 0.19 0.12
(0.11) (0.10) (0.11) (0.10) (0.08)
short int. 0.39* 0.34* 0.37* 0.33* 0.27*
(0.09) (0.08) (0.08) (0.08) (0.06)
leverage —-0.14 —-0.10 —-0.13 —0.08 —0.06
(0.12) (0.12) (0.12) (0.10) (0.11)
net income-to-asset —0.20 —0.13 —0.17 —0.12 —0.13
(0.12) (0.12) (0.12) (0.11) (0.08)
cash-to-asset —0.09 —0.09 —0.08 —0.09 —0.03
(0.08) (0.08) (0.08) (0.08) (0.07)
log price —0.34 0.13 0.05 0.15 0.06
(0.16) (0.15) (0.15) (0.17) (0.13)
intercept 0.04 0.00 —0.02 —0.01 —0.03
(0.03) (0.00) (0.03) (0.03) (0.03)
R?/R%-proj. 4.49%  5.65% 5.82% 5.69% 5.83% 4.72%
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deviation, and we multiply coeflicient estimates by 100. Each coefficient therefore mea-
sures the influence, in percentage points, of a one standard deviation move in the relevant
variable. Asterisks indicate coefficients with t-statistics greater than 4 in absolute value.!®

The first column of the table reports results for a multivariate regression of the crash
indicator variable onto the stock characteristics described above. Together, the charac-
teristics achieve an R? of 4.51%. Two of the characteristics are highly significant: the
volatility measure of Chen, Hong, and Stein (2001) has a t-statistic around 7, and short
interest scaled by institutional ownership has a t-statistic above 4. From now on, we refer
to this volatility measure as CHS wvolatility.

The second column shows that the lower bound, on its own, performs better than the
stock characteristics do collectively. It explains more of the variation in crashes, with R?
of 5.66%, and is highly statistically significant, with a ¢-statistic above 8. (This regression
is identical, up to the rescaling, to the regression with an estimated coefficient of 0.92
reported in Panel A of Table 2.)

The third column reports results of a multivariate regression that uses both the lower
bound and the stock characteristics to forecast crashes. The lower bound remains highly
significant, with a t¢-statistic above 5. Of the stock characteristics, only short interest
remains statistically significant, and the collective marginal contribution to explanatory
power of the characteristics is small. The coefficient on the lower bound is roughly an
order of magnitude greater than that on short interest: a one standard deviation move in
the lower bound moves the implied crash probability by 3.02 percentage points, whereas
a one standard deviation move in short interest moves the implied crash probability by
0.34 percentage points.

Columns (4) and (5) of the tables include the risk-neutral probability of a crash, either
alone as an alternative to the lower bound, or together with it. At all three horizons, the
risk-neutral probability enters strongly significantly when included on its own, but achieves
a lower R? than the lower bound does. When both are included together, the coefficient
on the lower bound is positive while that on the risk-neutral probability is negative; but
the coefficients are imprecisely estimated, as the lower bound and risk-neutral probability
are highly correlated.

Tables A13 and A14, in the Appendix, report similar results over horizons of one quar-

15We choose a high threshold to avoid false positives, as recommended by Harvey, Liu, and Zhu (2016).

28



ter and one year, respectively. As before, we rescale all right-hand side variables to have
unit standard deviation so that coefficient estimates indicate the economic importance
of the various potential predictors. The lower bound remains highly significant both in
statistical (the t-statistic is large) and economic (the estimated coefficient is large) terms.
In the univariate regression at the one-year horizon, for example, a one standard deviation
increase in the lower bound represents a 6.90 percentage point increase in the probability
of a crash, with a t-statistic above 12. When all stock characteristics are included, the
coefficient estimate drops to 5.17, with a t-statistic above 7. The stock characteristics
are more informative at this longer horizon: sales growth and short interest are highly

statistically significant with estimated coefficients of 1.76 and 2.32, respectively.

3.3.1 A “kitchen sink” approach

We conclude the in-sample section by trying a “kitchen sink” approach that also includes
15 squared characteristics (for example, book—to—marketit) and (125) = 105 interactions
between characteristics (for example, book-to-market;; x sales growth, ;).

Panel A of Table 5 reports the estimated coefficient on the lower bound across all
horizons. As in Table 4, we standardize all variables so that the reported coefficient
estimates can be interpreted as the effect of a 1 standard deviation move in the lower
bound on the forecast crash probability, measured in percentage points.

The left and middle blocks report results with no characteristics included, and with
the 15 characteristics included, at all horizons.'® The rightmost block reports results
when the characteristics, squared characteristics, and interaction terms are all included.
The estimated coefficient on the lower bound remains highly significant, and is reasonably
stable across specifications.

Panel B of the same table reports results when the risk-neutral probabilities are also
included. At the 1-month horizon, the relatively high correlation of the lower bound and
risk-neutral probabilities substantially increases the standard error on the lower bound
estimate; at other horizons, the lower bound remains highly significant. Meanwhile, the
coefficients on the risk-neutral probabilities are either insignificantly different from zero or

significantly negative, and the inclusion of the risk-neutral probabilities has little impact

16 At the 1-month horizon, the blocks with no controls and with the 15 characteristics repeat the
coefficient estimates reported in columns (2) and (3) of Table 4.
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Table 5: Regression tests of the option-implied crash probability bounds: additional
adjusted regressions for 20% crashes

This table reports the results from the following regressions:
I(Ri,t—>t+7 § 08) = ﬁ . Xit(’l', 08) + A controlsit + Eit+7 T = ]., 3, 6, 12

in which X stands for P¥ (the lower bounds), P* (the risk-neutral probability), or both. The first four
columns do not include controls. Columns 5-8 include the 15 firm characteristics as controls. Columns
9-12 include the 15 firm characteristics, 15 squared characteristics, and 105 pairwise interaction terms.
All independent variables are normalized to have unit standard deviation. Regression coefficients for
the lower bound (OIB-LB) and risk-neutral probabilities (RN) are reported in percentage points, and
two-way clustered standard errors are included in parentheses.

control: none control: characteristics control: “kitchen sink”
horizon 1 3 6 12 1 3 6 12 1 3 6 12
Panel A: the lower bound

OIB-LB 3.4 5.7 6.8 6.9 3.0 4.1 5.5 5.2 2.8 3.9 4.9 4.4
(0.4) (0.5) (0.5) (0.5) (0.6) (0.7) (0.8) (0.7) (0.7) (0.8) (0.8) (0.7)
R? 56% 5.1% 4.8% 3.7% 58% 5.6% 5.6% 5.0% 6.5% 6.8% 7.4% 7.5%

Panel B: the lower bound + risk-neutral probabilities

OIB-LB 4.7 11.3 11.9 9.5 44 10.8 120 9.1 2.1 103 121 9.1
(3.1) (2.7 (1.7) (2.0 (3.1) (2.8) (1.9 (2.0 (3.1) (3.00 (1.9 (1.9
RN —-1.3 —-57 —-53 -—-238 —-14 —-66 —-7.0 —4.5 07 —-64 -78 —-56
(3.2) (2.8) (1.8) (2.2) (34) (29) (1.9 (2.1) (34) (3.1) (2.0) (2.1)
R? 57% 5.4% 5.0% 3.8% 58% 5.9% 5.9% 5.2% 6.5% 7.0% T7.7% T7.7%

on the regression R?.

Summarizing, the risk-neutral probabilities do not contribute much incremental ex-
planatory power, whereas the characteristics contain useful information in sample, espe-
cially in the “kitchen sink” implementation and for crashes over longer horizons. As we
will now see, however, the characteristics and kitchen-sink approaches perform relatively

poorly out of sample.

4 Out-of-sample forecasts

The literature has shown that there can be large gaps between in-sample fit and out-
of-sample forecasting power, even if the true data generating process is stable over time

(Timmermann, 1993; Lewellen and Shanken, 2002; Martin and Nagel, 2022). In this
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Table 6: Diebold—Mariano tests of equal forecasting accuracy: the lower bound, the
risk-neutral and the adjusted risk-neutral forecasts

This table reports p-values from Diebold-Mariano tests (Diebold and Mariano, 1995) of the predictive
performance of the lower bound versus the risk-neutral probabilities and versus the adjusted risk-neutral
forecasts. We consider 20% crashes at horizons of 1, 3, 6 or 12 months. The competing forecaster in
Panel A is the risk-neutral probability without regression adjustments. Panel B and C adjust the risk-
neutral probabilities through trailing regressions using expanding windows (Panel B) or 3-year rolling
windows (Panel C). For a crash indicator y and a forecaster ¢, the squared error loss and cross entropy
loss are defined as (y — )% and —ylog ¢ — (1 — y) log(1 — 7)) respectively. The spectral density of the loss
differential is estimated using the Driscoll and Kraay (1998) estimator, accounting for general cross-firm
crash correlations.

horizon 1 3 6 12
Panel A: risk-neutral (o« =0,5=1)

Squared error 0.028 0.010 0.046 0.098
Cross entropy  0.059 0.007 0.053 0.189

Panel B: risk-neutral (expanding &, B)

Squared error  0.124 0.056 0.056 0.048
Cross entropy  0.005 0.015 0.007 0.015

Panel C: risk-neutral (3-year rolling &, ()

Squared error 0.045 0.120 0.046 0.004
Cross entropy  0.000 0.003 0.017 0.002

section, we assess the lower bound’s performance out of sample, using it to forecast crashes
with coefficients a and [ set equal to 0 and 1, respectively. This specification is well suited
to out-of-sample testing because there are no free parameters to be estimated.

We assess forecasting performance using the out-of-sample R? measure

p g o T (Bipr <08) — PE (Riyonir <08)}°
. Yo AI(Ritster <0.8) — pi,t}z ’

(10)

where 7 denotes the forecasting horizon, ]P’tL (Rit—t+r < 0.8) is the lower bound on the
probability of a 20% crash, and p;; is the historical average crash probability for firm ¢
estimated over the period from 1 to (t — 7). It follows from this definition that RZ_
increases if and only if the forecaster performs better in the newly included sample than
it does in the trailing sample.

For comparison, we calculate the corresponding out-of-sample R2s for the risk-neutral

probabilities, replacing P¥ (R; ;11 < 0.8) in equation (10) with P} (R; ;s < 0.8). We
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Panel A: Expanding-window adjustments for the risk-neutral probabilities
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Panel B: 3-year rolling-window adjustments for the risk-neutral probabilities

20% crash in 1 months

20% crash in 3 months

20% crash in 6 months

20% crash in 12 months

o | [Tol o |
- OIB-LB (a=0,B=1) - OIB-LB (a=0,B=1) OIB-LB (a0 =0,B=1) ] I OIB-LB (a =0,B=1)
-—-- RN(@=0,B=1) —-- RN(a=0,B=1) -—-- RN(a=0,B=1) \-—-- RN (<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>