Discussion of

"Voting on Public Goods: Citizens vs Shareholders"

By R. Dottling, D. Levit, N. Malenko, M. Rola-Janicka

Sir Oliver Hart Conference on Sustainable Investing

London School of Economics

December 2025

Issue

Why on earth would we want firms to care for the common good, instead of just maximising profits?

Shouldn't we leave this to democratically elected governments?

Frictionless world: yes!

With frictions: no! prosocial firms and shareholders can help reach better outcomes

Great paper!

Important question, elegant model, insightful results: read it!

This discussion

- 1. simplified model capturing some of the key mechanisms in the paper (paper much richer than my stylised summary)
- 2. comment on microfoundation

Simplified model

2 firms, each with mass-one continuum of shareholders (each shareholder owns 1 share in only one of the two firms)

Firms can supply public good

All shareholders have same preferences about public good

If gov can observe true supply of public good \rightarrow first best achieved with subsidy

If firms can greenwash (pretend some activities create public good while they in fact don't) \rightarrow inefficiency, but mitigated if firms somewhat internalise their impact on welfare

No greenwashing

Each firm $i \in \{1, 2\}$ earns profit

$$\pi_i = \pi + \sigma x_i - \frac{\phi}{2} x_i^2,$$

- x_i = public good (eg decarbonisation), marginal cost ϕx_i
- $\sigma =$ subsidy (linear in decarbonisation)

Citizens' hold shares in 1 firm only \rightarrow utility if hold *i*

$$U_i = \gamma(x_1 + x_2) + \pi_i - \tau$$

Utilitarian welfare (transfers wash out)

$$U = \frac{U_i + U_2}{2} = \gamma(x_1 + x_2) + \pi - \frac{\phi}{4}(x_1^2 + x_2^2)$$

Optimal policies without greenwashing

If firm maximises profit:

$$\max_{\mathsf{x}_i} \pi_i \to \mathsf{x}_i = \frac{\sigma}{\phi}$$

If firm internalises effect of x_i on its own shareholders:

$$\max_{\mathsf{x}_i} U_i \to \mathsf{x}_i = \frac{\sigma + \gamma}{\phi} > \frac{\sigma}{\phi}$$

Socially optimal supply of public good by firm i

$$\max_{x_i} U o x_i^* = 2 \frac{\gamma}{\phi}$$

Implementing social optimum when no greenwashing

If x_i chosen by profit maximising firms, set σ to max welfare

$$x_i = \frac{\sigma}{\phi} = 2\frac{\gamma}{\phi} \implies \sigma^* = 2\gamma$$

// carbon tax = social cost: decarb subsidy = social benefits

If x_i chosen by firm maximising utility of own shareholders, set σ s.t

$$x_i = \frac{\sigma + \gamma}{\phi} = 2\frac{\gamma}{\phi} \implies \sigma^{**} = \gamma$$

- \forall firms objective, optimal σ implements social optimum
- lower subsidy needed when firms internalise some welfare

With greenwashing

Firm $i \rightarrow \text{greenwash } y_i$, at cost

$$\frac{\phi y_i^2}{2\delta}$$

 δ high \rightarrow greenwashing comes cheap

Gov obs $x_i + y_i \rightarrow \text{subsidy } \sigma(x_i + y_i)$

Firm *i* earns profit

$$\pi_{i} = \pi + \sigma(x_{i} + y_{i}) - \frac{\phi}{2}(x_{i}^{2} + \frac{y_{i}^{2}}{\delta})$$

Utilitarian welfare: greenwashing = wasteful expenses

$$\frac{U_i + U_2}{2} = \gamma(x_1 + x_2) + \pi - \frac{\phi}{4} \left(x_1^2 + x_2^2 + \frac{y_1^2 + y_2^2}{\delta} \right)$$

Firm policies with greenwashing

Profit maximising firm

$$x_i = \frac{\sigma}{\phi}, y_i = \frac{\delta \sigma}{\phi}$$

Shareholders of i, internalising only x_i

$$x_i = \frac{\sigma + \gamma}{\phi}, y_i = \frac{\delta \sigma}{\phi}$$

In both cases

- same supply of public good (x) as without greenwashing
- greenwashing (y) even if firm internalizes some public good

Gov policy with greenwashing if firms max profits

Choose subsidy to max utilitarian welfare:

$$\max_{\sigma} \frac{U_i + U_2}{2} = \gamma(x_1 + x_2) + \pi - \frac{\phi}{4} \left(x_1^2 + x_2^2 + \frac{y_1^2 + y_2^2}{\delta} \right)$$

s.t. response of firms that max profits: $x_i = \frac{\sigma}{\phi}$, $y_i = \frac{\delta \sigma}{\phi}$

Optimal policy: less public good than if no greenwashing

$$\sigma = \frac{2\gamma}{1+\delta} < \sigma^* \to x_i = \frac{1}{1+\delta} \frac{2\gamma}{\phi} < x_i^*$$

 \uparrow greenwash $\rightarrow \downarrow$ subsidy efficiency $\rightarrow \downarrow$ subsidy $\rightarrow \downarrow$ public good

Gov policy with greenwashing if firms partly internalise

Choose subsidy to max utilitarian welfare:

$$\max_{\sigma} \frac{U_i + U_2}{2} = \gamma(x_1 + x_2) + \pi - \frac{\phi}{4} \left(x_1^2 + x_2^2 + \frac{y_1^2 + y_2^2}{\delta} \right)$$

s.t. response of firms that partly internalise: $x_i = \frac{\sigma + \gamma}{\phi}$, $y_i = \frac{\delta \sigma}{\phi}$

Optimal policy: again less public good than if no greenwashing

$$\sigma = \frac{\gamma}{1 + \frac{\delta^2}{2}} < \sigma^{**} \rightarrow x_i = \frac{\gamma}{\phi} \frac{2 + \frac{\delta^2}{2}}{1 + \frac{\delta^2}{2}} < x_i^*$$

More public good when firms partly internalise

Firms internalise effect of public good on their shareholders

- ightarrow need less subsidy to incentivise given amount public good
- ightarrow effect of greenwashing (make subsidy inefficient) is less strong

Supply of public good

when firms partly internalise > when firms just max profits

$$rac{\gamma}{\phi}rac{2+rac{\delta^2}{2}}{1+rac{\delta^2}{2}}>rac{1}{1+\delta}rac{2\gamma}{\phi}$$

Microfoundation

"regulators' inability to discriminate between x and y could be due to an information friction, as regulators may lack the firm-specific knowledge that shareholders ... may possess."

Assumption that regulator does not observe x and y separately, but only their sum is fine :)

It would also be reasonable to assume regulator observes profit, which is a function of \boldsymbol{x} and \boldsymbol{y}

2 unknowns, 2 equations \rightarrow inference about x and y

Even if profit is function of x and y + noise, still contains info, that should be used by gov

Economic intuition

Suppose decarbonisation is expensive (ϕ large), while greenwashing is cheap (δ high)

Firm claims to have done a lot of decarbonisation (x), but in fact greenwashed (y)

Gov observes x+y, which in itself is not enough to tell how much greenwashing there was

But gov also observes profit (before subsidies), which is strongly decreasing in x, weakly decreasing in y

If profit is high, gov should ask: how come you have such high profits if you did a lot of costly decarbonisation? \to tax profits

Mechanism design

x and y =costly actions, observed by shareholders, not by gov mechanism = mapping:

observations $(x + y, profit) \rightarrow transfers (tax, subsidy)$ optimal mechanism:

max welfare, s.t. incentive compatibility (of x and y) conjecture: high γ , low $\delta \to {\sf relax\ IC} \to {\sf larger\ } x$

- maybe qualitative results similar as in present paper ?
- maybe additional insights on optimal gov policy?

Conclusion

Great paper! Deals with important and timely issues! Must read!

Because I really like the paper, I would be happy to see the authors dig deeper into the matter :)