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Abstract

We analyze 18 quadrillion models for the joint pricing of corporate bond and stock returns.
Strikingly, we find that equity and nontradable factors alone suffice to explain corporate
bond risk premia once their Treasury term structure risk is accounted for, rendering the
extensive bond factor literature largely redundant for this purpose. While only a handful of
factors, behavioral and nontradable, are likely robust sources of priced risk, the true latent
stochastic discount factor is dense in the space of observable factors. Consequently, a
Bayesian Model Averaging Stochastic Discount Factor explains risk premia better than all
low-dimensional models, in- and out-of-sample, by optimally aggregating dozens of factors
that serve as noisy proxies for common underlying risks, yielding an out-of-sample Sharpe
ratio of 1.5 to 1.8. This SDF, as well as its conditional mean and volatility, are persistent,
track the business cycle and times of heightened economic uncertainty, and predict future
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Wherever there is risk, it must be compensated to the lender by a higher premium or interest.

— J. R. McCullough (1830, pp. 508–9)

In their seminal paper, Fama and French (1993) set themselves to “examine whether variables

that are important in bond returns help to explain stock returns, and vice versa.” Thirty years

later, the equity literature has produced its own, independent, ‘factor zoo’ (Cochrane (2011)),

while the corporate bond literature has effectively returned to square one with Dickerson,

Mueller, and Robotti (2023) showing that there is no satisfactory (observable) factor model for

that asset class.1 Hence, to date, a model for the joint pricing of corporate bonds and stocks

has escaped discovery—we fill this gap.

Generalizing recent methodological advances in Bayesian econometrics (Bryzgalova, Huang,

and Julliard (2023)) to handle heterogeneous asset classes, we comprehensively analyze all

observable factors and models proposed to date in the bond and equity literature. Our method

allows us to not only study models or factors in isolation, but also consider all of their possible

combinations, resulting in over 18 quadrillion models stemming from the joint zoo of corporate

bond and stock factors. And we do so while relaxing the cornerstone assumptions of previous

studies: the existence of a unique, low-dimensional, correctly specified and well-identified factor

model.

Ultimately, this allows us to pinpoint the robust sources of priced risk in both markets, and a

novel benchmark Stochastic Discount Factor (SDF) that prices both asset classes, significantly

better than all existing models, both in- and out-of-sample. Remarkably, our analysis reveals

that once corporate bonds’ Treasury term structure risk is accounted for, stock and nontradable

factors alone suffice to explain corporate bond risk premia—rendering the extensive bond factor

literature largely redundant for this purpose.

First, we find that the ‘true’ latent SDF of bonds and stocks is dense in the space of

observable bond and stock factors—literally dozens of factors, both tradable and nontradable,

are necessary to span the risks driving asset prices. Yet, the SDF-implied maximum Sharpe ratio

is not excessive, indicating that, as we confirm in our analysis, multiple bond and stock factors

proxy for common sources of fundamental risk. Importantly, density of the SDF implies that

the sparse models considered in the previous literature are affected by severe misspecification

1More precisely, they document that all low dimensional linear factor models in the previous literature add
little spanning to a simple bond version of the Capital Asset Pricing Model, the CAPMB. At the same time,
they show that the CAPMB is in itself an unsatisfactory pricing model.
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and, as we show, rejected by the data and outperformed by the most likely SDF components

that we identify.

Second, a Bayesian Model Averaging Stochastic Discount Factor (BMA-SDF) over the space

of all possible models (including bond, stock, and nontradable factors) explains (jointly and

separately) corporate bond and equity risk premia better than all existing models and most

likely factors, both in- and out-of-sample. Moreover, the BMA-SDF’s conditional mean and

volatility—hence, the implied conditional Sharpe ratio achievable in the economy—have clear

business cycle patterns. In particular, the volatility of the SDF increases sharply at the onset

of recessions and at times of heightened economic uncertainty. That is, the estimated SDF

behaves as one would expect from the intertemporal marginal rate of substitution of an agent

exposed to the risks arising from general economic conditions and market turmoil.

Third, the predictability of the first and second moments of the SDF suggests time-varying

risk premia in the economy and predictability of asset returns with lagged SDF information. We

verify this by running predictive regressions of future asset returns on the conditional variance

of the BMA-SDF, alone and interacted with the conditional mean of the SDF, as implied by

the Hansen and Jagannathan (1991) representation of the conditional SDF. We not only find

that lagged SDF information is highly significant in predicting future asset returns, but also

that the amount of explained time series variation in monthly and annual returns is much larger

than what is achievable with canonical predictors. This result is remarkable for two reasons.

First, the BMA-SDF is not by construction geared toward predicting future returns: it is

instead identified only under the restriction that a valid SDF should explain the cross-section

of risk premia—not the time series of returns. Second, it offers an important validation of our

estimation of the SDF: if risk premia are time-varying, future returns should be predictable

with lagged SDF information, and that is exactly what our BMA-SDF delivers.

Fourth, we show theoretically that, to construct a tradable portfolio that captures the SDF-

implied maximum Sharpe ratio achievable in the economy, one should focus on the posterior

expectation of the market prices of risk of all factors, rather than on the factors’ posterior

probabilities (or some ancillary selection statistic), which have been the focus of the previous

literature. Such an approach can correctly recover the pricing of risk even if the observed factors

are only noisy proxies of the true, yet latent, sources of risk priced in the market. In the data,

this yields a trading strategy with a time-series out-of-sample annualized Sharpe ratio of 1.5

to 1.8 (despite only yearly rebalancing) in an evaluation period (July 2004 to December 2022)
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that spans both the Global Financial Crisis and the COVID pandemic.

Fifth, we shed light on which factors, and which types of risk, are reflected in the cross-

section of bond and equity risk premia. We find that only a handful of factors should be

in the SDF with high probability. In particular, two factors meant to capture the bond and

stock post-earnings announcement drift anomalies, PEADB and PEAD, respectively, are very

likely sources of priced risk in the joint cross-section of bond and stock returns.2 In addition

to these two behavioral sources of risk, the other most likely components of the SDF are

all nontradable in nature, and are a proxy for the slope of the Treasury yield curve (YSP),

the AAA/BAA yield spread (CREDIT), and the idiosyncratic equity volatility (the IVOL of

Campbell and Taksler (2003)). As we show, these factors alone are enough to price the cross-

section of bonds and stocks better than canonical observable factor models. Nevertheless, the

importance of individual factors should not be overstated. Even excluding the most likely

factors when constructing it, the BMA-SDF strongly outperforms these individual factors and

all low dimensional factor models—from the celebrated Fama and French (1993) model to the

latest arrival in the zoo (Dick-Nielsen et al. (2025)). This superior performance occurs because

the true latent SDF is dense and demands large compensations for risks that are not fully

spanned by just a handful of individual observable factors. Furthermore, we find that both

discount rate and cash-flow news are sources of priced risk, and yield sizeable contributions

(albeit larger for the former) to the Sharpe ratio of the latent SDF.

Sixth, we demonstrate that a portion of corporate bond risk premia serves as compensation

for their implicit Treasury term structure risk. Once this component is removed, the factors

proposed in the tradable bond factor zoo have very little residual information content for

characterizing the SDF: in this case, a BMA-SDF constructed only with stock and nontradable

factors can explain the joint cross-section of bonds and stocks as well as our full BMA-SDF.

This finding extends and explains the result in van Binsbergen et al. (2025), who show that once

corporate bond returns are adjusted for duration risk, the equity CAPM has higher explanatory

power for bond risk premia than benchmark bond models. Furthermore, we show that the

empirical success of the bond factor zoo in the previous literature is largely driven by its ability

to price the Treasury term structure risk—a component of bond risk premia that tradable stock

2The post-earnings announcement drift phenomenon is the observation, first documented in equity markets,
whereby firms experiencing positive earnings surprises subsequently earn higher returns than those with negative
earnings surprises. See, e.g., Hirshleifer and Teoh (2003), Della Vigna and Pollet (2009), Hirshleifer et al. (2011)
and Nozawa et al. (2025) for the microfoundations of this phenomenon.
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factors do not capture.

Finally, we conduct extensive robustness checks. Most notably, we show that: (i) altering

the priors regarding the relative importance of bond versus stock factors, or equivalently a

potential ‘alpha mismeasurement’ phenomenon in bond market data, has only a limited effect

on the posterior probabilities of the factors and the pricing performance of the BMA-SDF; (ii)

a BMA-SDF estimated with a prior that imposes sparsity—overwhelmingly the focus of the

previous literature—performs worse than our baseline BMA-SDF, yet still improves upon com-

peting models; (iii) as our theoretical results imply, removing the most likely factors from the

estimation—a challenging test for the method—leads to only minor deterioration in the perfor-

mance of the BMA-SDF in- and out-of-sample; (iv) all findings remain materially unchanged

across hundreds of sets of corporate bond and stock in-sample test assets—we identify a similar

set of most likely factors, consistent market prices of risk, and stable in-sample asset pricing

performance; (v) out-of-sample, the pricing performance of the BMA-SDF is superior across

millions of alternative cross-sections of stocks and bonds; (vi) lastly, the results are robust to

extending, by dozens of factors, both the stock and bond factor zoos that we consider in our

baseline estimation (to maximize the time-series sample size), to varying sample and subsample

estimations, and to using a multiplicity of different corporate bond datasets.

The remainder of the paper is organized as follows. Below, we review the most closely

related literature and our contribution to it. Section 1 describes the data used in our analysis,

while Section 2 outlines our Bayesian SDF method and its properties for inference, selection,

and aggregation. Section 3 presents our empirical findings, and Section 4 contains extensive

robustness checks. Section 5 concludes. Additional details and results are reported in the

Appendix and the Internet Appendix.

Closely related literature. Our research contributes to the active and growing body of work

that critically reevaluates existing findings in the empirical asset pricing literature using robust

inference methods. Following Harvey et al. (2016), a large literature has tried to understand

which existing factors (or their combinations) drive the cross-section of returns. In particular,

Gospodinov et al. (2014) develop a general method for misspecification-robust inference, while

Giglio and Xiu (2021) exploit the invariance principle of PCA and recover the risk premium

of a given factor from the projection on the span of latent factors driving a cross-section of

returns. Similarly, Dello Preite et al. (2025) recover latent factors from the residuals of an asset
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pricing model, effectively completing the span of the SDF. Feng et al. (2020) combine cross-

sectional asset pricing regressions with the double-selection LASSO of Belloni et al. (2014) to

provide valid inference on the selected sources of risk when the true SDF is sparse. Kozak

et al. (2020) use a ridge-based approach to approximate the SDF and compare sparse models

based on principal components of returns. Our approach instead identifies a dominant pricing

model—if such a model exists—or a BMA across the space of all models, even if the true model

is not sparse in nature, hence cannot be proxied by a small number of factors. Furthermore,

and importantly, our work focuses on the co-pricing of corporate bond and stock returns, hence

shedding light on both the common, as well as the market specific, sources of risk.

As Harvey (2017) stresses in his American Finance Association presidential address, the

factor zoo naturally calls for a Bayesian solution—and we adopt one. In particular, we generalize

the Bayesian method of model estimation, selection, and averaging developed in Bryzgalova,

Huang, and Julliard (2023) to handle heterogeneous asset classes.

Numerous strands of the literature rely on Bayesian tools for asset allocation, model selec-

tion, and performance evaluation. Our approach is most closely linked to Pástor and Stambaugh

(2000) and Pástor (2000) in that we assign a prior distribution to the vector of pricing errors,

and this maps into a natural and transparent prior for the maximal Sharpe ratio achievable

in the economy. Barillas and Shanken (2018) also extend the prior formulation of Pástor and

Stambaugh (2000) and provide a closed-form solution for the Bayes factors when all factors

are tradable in nature. Chib et al. (2020) show that the improper prior formulation of Bar-

illas and Shanken (2018) is problematic, and provide a new class of priors that leads to valid

comparisons for tradable factor models. As in these papers, our model and factor selection is

based on posterior probabilities, but our method is designed to work with both tradable and

nontradable factors—as we show, the latter are a first-order source of priced risk in the joint

space of corporate bonds and stock returns.

Our work is closely related to the literature that stresses the optimality of Bayesian model

averaging for a very wide set of optimality criteria (see, e.g., Schervish (1995) and Raftery and

Zheng (2003)).3 We highlight that Bayesian model averaging over the space of models can be

expressed as model averaging over the space of factors. This allows us to show that posterior

3In particular, BMA is “optimal on average,” i.e., no alternative method can outperform the BMA for
all values of the true unknown parameters. Furthermore, a BMA-SDF can be microfounded thanks to the
equivalence between an economy populated by agents with heterogeneous beliefs and a Bayesian representative
agent setting (Heyerdahl-Larsen et al. (2023)).
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factor probabilities (which the previous Bayesian asset pricing literature has overwhelmingly

focused on) and posterior market prices of risk (across the space of models) have very different

information content. In particular, as we demonstrate, it is the latter, not the former, that tells

us how to construct tradable portfolios that achieve the BMA-SDF-implied maximum Sharpe

ratio. In the data, this yields a trading strategy with an (annualized) out-of-sample Sharpe

ratio of 1.5 to 1.8. Most importantly, our approach can deal with a very large factor space,

is not affected by the common identification failures that invalidate inference in asset pricing

(see, e.g., Kan and Zhang (1999a,b), Kleibergen (2009), and Gospodinov et al. (2019)), and

provides an optimal method for aggregating the pricing information stemming from the joint

zoo of corporate bond and equity factors even if only noisy proxies of the true fundamental

risks are available.

In the complete market benchmark, the pricing measure should be consistent across asset

classes, and equilibrium models normally yield nontradable state variables. Therefore, we focus

on the co-pricing of corporate bonds and stocks, and consider jointly a very broad collection of

potential sources of risk that extends well beyond the set of bond and stock tradable factors

that have been studied in isolation in the previous literature. Hence, our paper speaks to the

large literature on co-pricing, originated with the seminal work of Fama and French (1993),

and market segmentation of bonds and stocks (see, e.g., Chordia et al. (2017), Choi and Kim

(2018), or Sandulescu (2022)). In particular, our paper is related to the body of work that

explores whether equity market risk proxies (see, e.g., Blume and Keim (1987) and Elton et al.

(2001)), equity volatilities (see, e.g., Campbell and Taksler (2003) and Chung et al. (2019)),

and equity-based characteristics (see, e.g., Fisher (1959), Giesecke et al. (2011), and Gebhardt

et al. (2001)) are likely drivers of corporate bond returns, and on the commonality of risks

across markets (see, e.g., He et al. (2017), Lettau et al. (2014), and Chen et al. (2024)).

Overall, we find that factors in both the corporate bond and equity zoos are needed for the

joint pricing of both asset classes, and stock factors do carry relevant information to explain

bond returns. Yet, there is substantial overlap between the risks spanned by these two markets.

That is, multiple bond and stock factors are noisy proxies for common underlying sources of

risk. Nevertheless, as we show, corporate bond risk premia include an implicit compensation

for Treasury term structure risk—a risk that the bond factor zoo, and nontradable factors

proposed therein, price very well, while equity factors do not. And once this term structure

risk component is removed, tradable bond factors become largely unnecessary for the joint
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pricing of bonds and stocks.

Several theoretical contributions stress that real economic activity and the business cycle

should be among the drivers of bond risk premia (see, e.g., Bhamra et al. (2010), Khan and

Thomas (2013), Chen et al. (2018), and Favilukis et al. (2020)). Echoing both the general

equilibrium model predictions of Gomes and Schmid (2021) and the empirical findings of Elton

et al. (1995) and Elkamhi et al. (2023), we show that the BMA-SDF conditional first and

second moments have a clear business cycle pattern and peak during recessions and at times

of heightened economic uncertainty, and that nontradable factors (especially proxies of the

economic cycle such as the slope of the yield curve), are salient components of the pricing

measure.4 Furthermore, we show that the business cycle properties of the BMA-SDF and its

volatility are predictable, and predict—as theory implies in this case—future asset returns,

generating a substantial degree of time variation in conditional risk premia.

Our work also relates to behavioral biases and market frictions in asset pricing. In partic-

ular, complementing the evidence of Daniel et al. (2020) and Bryzgalova et al. (2023) for the

equity market, we show that the post-earnings announcement drifts of both bonds (see Nozawa

et al. (2025)) and stocks are extremely likely drivers of corporate bond and stock risk premia.

Furthermore, we show that cash-flow and discount rate news (see, e.g., Vuolteenaho (2002),

Cohen et al. (2002), Zviadadze (2021), and Delao et al. (2025)) are both important drivers of

risk premia in the joint cross-section of bonds and stocks, but the latter are responsible for a

larger share of the volatility of the co-pricing SDF.

1 Data
Our analysis relies on a combination of corporate bond and stock data, which we present below

and in more detail in Internet Appendix IA.1. As academic research relies on various sources

for corporate bond data, we are careful to estimate our model across all datasets available to

us to ensure that our results are neither driven by the data source nor the choice of bond or

stock test assets (see the discussion in Section 4.4).

4Elton et al. (1995) show that adding fundamental macro-risk variables (such as GNP, inflation and term
spread measures) significantly improves pricing performance relative to equity and bond market index models.
Elkamhi et al. (2023) show that the long-run consumption risk measure of Parker and Julliard (2003) yields a
one-factor model with significant explanatory power for corporate bonds, and such an SDF, as documented in
Parker and Julliard (2005), has a very strong business cycle pattern.
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1.1 Corporate bond data and corporate bond returns
Our baseline results in the main text are based on the constituents of the corporate bond

data set from the Bank of America Merrill Lynch (BAML) High Yield (H0A0) and Investment

Grade (C0A0) indices made available via the Intercontinental Exchange (ICE) from January

1997 to December 2022. For the period from January 1986 to December 1996, we augment

the data using the Lehman Brothers Fixed Income (LBFI) database.5 These data are then

merged with the Mergent Fixed Income Securities Database (FISD) to obtain additional bond

characteristics. After merging the two datasets and applying the standard filters, our bond-

level data spans 37 years, resulting in a total of 444 monthly observations. Our corporate bond

sample is representative of the U.S. market and, once merged with CRSP equity data, covers

75% of the total stock market capitalisation of all listed firms on average (see Figure IA.3 of

the Internet Appendix).6

In the baseline analysis, we use excess bond returns defined as the total bond return minus

the one-month risk-free rate of return.7 In addition, we follow van Binsbergen et al. (2025)

and repeat our analysis with duration-adjusted returns, whereby we subtract the return on a

portfolio of duration-matched U.S. Treasury bonds from the total bond return. We do not

further winsorize, trim, or augment the underlying bond return data in any way, avoiding the

biases that such procedures normally induce (Duarte et al. (2025) and Dickerson et al. (2024)).

1.2 The joint factor zoo
We use all factors in published papers for which a monthly time series matching our sample is

publicly available. Our bond-specific factor zoo includes 16 tradable bond factors. From the

equity literature, we include an additional 24 tradable factors. This set is smaller than the

tradable equity factor zoo in Bryzgalova et al. (2023) as for several of their 34 tradable factors,

an updated series is not publicly available. Moreover, we exclude factors for which authors

did not provide sufficient information for exact replication.8 Our nontradable zoo comprises 14

5We follow van Binsbergen et al. (2025) and begin the LBFI sample in 1986. Prior to 1986, bonds in the
LBFI database are predominantly investment grade (91% of bonds) with 67% of all bonds priced with matrix
pricing (i.e., the prices are not actual dealer quotes).

6See Internet Appendix IA.1 for a detailed description of the databases and associated cleaning procedures.
Therein, we also discuss the additional datasets used for robustness tests.

7We use the one-month risk-free rate from Kenneth French’s website.
8The excluded factors are all among the least likely components of the equity SDF in Bryzgalova et al.

(2023). Nevertheless, we consider all of their factors in our robustness analysis.
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factors, many of which have previously been used to study stock returns.

Overall, in our baseline analysis, we consider 54 factors—40 tradable and 14 nontradable—

yielding 254 ≈ 18 quadrillion models. In Section 4.4.3, we extend this to include dozens of

additional factors available over varying subsamples, for a grand total of 91 candidate pricing

factors. All factors are described in Table A.1 of Appendix A.9 Internet Appendix IA.1.3

analyzes the robustness of bond factors with respect to data source and calculation method.

1.3 In-sample bond and stock test assets
For our in-sample (IS) estimation of the BMA-SDF, we construct a set of 50 bond portfolios

that are sorted on various bond characteristics to ensure a sufficiently broad cross-section. The

first 25 portfolios are double-sorted on credit spreads and bond size, while the remaining 25

portfolios are double-sorted on bond rating and time-to-maturity. All portfolios are value-

weighted based on the market capitalization of the bond issue, defined as the bond dollar value

multiplied by the number of outstanding units of the bond. For the stock test assets, we rely

on a set of 33 portfolios and anomalies very similar to those used in Kozak et al. (2020) and

Bryzgalova et al. (2023).10

In addition, we include the 40 tradable factors as Barillas and Shanken (2017) emphasize

that factors included in a model should price any factor excluded from the model. This, along

with the use of a nonspherical pricing error formulation (i.e., GLS) also imposes (asymptotically)

the restriction of factors pricing themselves. For the estimation of the co-pricing BMA-SDF,

we naturally include both bond and stock tradable factors, while we only include the respective

bond and stock tradable factors to estimate the bond- and stock-specific BMA-SDFs.

In summary, our baseline cross-section comprises a wide array of 50 bond and 33 stock

portfolios, as well as the underlying 40 tradable factors, for a total of 123 IS test assets.

1.4 Out-of-sample bond and stock test assets
To test the out-of-sample (OS) asset pricing efficacy of the BMA-SDF estimated on the IS

test assets, we employ a broad cross-section of additional corporate bond, stock, and U.S.

Treasury bond portfolios. For bonds, we use decile-sorted portfolios on: (i) bond historical

9All factors are publicly available from the authors’ personal websites and public repositories, listed therein.
We make our 16 tradable bond factors available on the companion website: openbondassetpricing.com

10These are publicly available from Chen and Zimmermann (2022) and Jensen et al. (2023), and replicable
using CRSP and Compustat. See jkpfactors.com.
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95% value-at-risk, (ii) duration, (iii) bond value (Houweling and Van Zundert (2017)), (iv)

bond book-to-market (Bartram et al. (2025)), (v) long-term reversals (Bali et al. (2021a)),

(vi) momentum (Gebhardt et al. (2005b)), as well as the bond version of the 17 Fama-French

industry portfolios—totaling 77 bond-based portfolios.

For stocks, we include decile-sorted portfolios on: (i) earnings-to-price, (ii) momentum,

(iii) long-term reversal, (iv) accruals, (v) size (measured by market capitalization), (vi) equity

variance, in addition to the equity version of the 17 Fama-French industry portfolios (following

Lewellen et al. (2010)), also resulting in 77 stock-based portfolios.

For U.S. Treasury bonds, we use monthly annualized continuously compounded zero-coupon

yields from Liu and Wu (2021). We price the U.S. Treasury bonds each month using the yield

curve data and then compute monthly discrete excess returns across the term structure as

the total return in excess of the one-month Treasury Bill rate. Our set of OS U.S. Treasury

portfolios consists of 29 portfolios, ranging from 2-year Treasury notes up to 30-year Treasury

bonds in increments of one year.

In summary, our baseline OS test assets comprise 154 bond and stock portfolios (77 each)

from the 14 distinct cross-sections discussed above.11 We not only use the joint cross-section,

but we also construct 214 − 1 = 16, 383 possible unique combinations of OS cross-sections.12

For robustness, we conduct OS pricing tests with the Jensen et al. (2023) and the Dick-Nielsen

et al. (2025) bond and stock anomaly data.

2 Econometric method
This section introduces the notation and summarizes the methods employed in our empirical

analysis. We consider linear factor models for the SDF and focus on the SDF representation

since we aim to identify the factors that have pricing ability for the joint cross-section of

corporate bond and stock returns.13

We first review the frequentist estimation and the inference problems that arise therein in

the presence of weak identification caused by weak and useless factors. We then summarize

11All are available from Kenneth French’s webpage and Cynthia Wu’s webpage.
12Further details about factors and in- and out-of-sample test assets, as well as links to the data sources, can

be found in Table IA.II of the Internet Appendix.
13Recall that a factor might have a significant risk premium even if it is not part of the SDF, just because it

has non-zero correlation with the true latent SDF. Hence, in order to identify the pricing measure, focusing on
the SDF representation is the natural choice.
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the Bayesian method proposed by Bryzgalova, Huang, and Julliard (2023) to address the weak

identification problem, present our extension of the approach to handle different asset classes,

and introduce a more flexible prior structure. Finally, we establish a set of important new

properties for the Bayesian model averaging of the SDF, and illustrate its mechanics in finite

samples with a simulation study.

2.1 Frequentist estimation of linear factor models
We begin by introducing the notation used throughout the paper. The returns of N test assets,

which are long-short portfolios, are denoted by Rt = (R1t . . . RNt)
⊤, t = 1, . . . T . We consider

K factors, ft = (f1t . . . fKt)
⊤, t = 1, . . . T , that can be either tradable or nontradable. A linear

SDF takes the form Mt = 1 − (ft − E[ft])
⊤λf , where λf ∈ RK is the vector containing the

market prices of risk (MPRs) associated with the individual factors. Throughout the paper,

E[X] or µX denote the unconditional expectation of an arbitrary random variable X.

In the absence of arbitrage opportunities, we have that E[MtRt] = 0N ; hence, expected

returns are given by µR ≡ E[Rt] = Cfλf , where Cf is the covariance matrix between Rt and

ft, and prices of risk, λf , are commonly estimated via the cross-sectional regression

µR = λc1N +Cfλf +α = Cλ+α, (1)

where C = (1N ,Cf ), λ⊤ = (λc,λ
⊤
f ), λc is a scalar average mispricing (equal to zero under the

null of the model being correctly specified), 1N is an N -dimensional vector of ones, and α ∈ RN

is the vector of pricing errors in excess of λc (equal to zero under the null of the model).

Such models are usually estimated via GMM, MLE or two-pass regression methods (see,

e.g., Hansen (1982), Cochrane (2005)). Nevertheless, as pointed out in a substantial body of

literature, the underlying assumptions for the validity of these methods (see, e.g., Newey and

McFadden (1994)), are often violated (see, e.g., Kleibergen and Zhan (2020) and Gospodinov

and Robotti (2021)), and identification problems arise in the presence of a weak factor (i.e.,

a factor that does not exhibit sufficient comovement with any of the assets, or has very little

cross-sectional dispersion in this comovement, but is nonetheless considered a part of the SDF).

These issues, in turn, lead to incorrect inferences for both weak and strong factors, erroneous

model selection, and inflate the canonical measures of model fit.14

14These problems are common to GMM (Kan and Zhang (1999a)), MLE (Gospodinov et al. (2019)), Fama-
MacBeth regressions (Kan and Zhang (1999b), Kleibergen (2009)), and even Bayesian approaches with flat
priors for risk prices (Bryzgalova et al. (2023)).
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2.2 The Bayesian solution
Albeit robust frequentist inference methods have been suggested in the literature for specific

settings, our task is complicated by the fact that we want to parse the entire zoo of bond and

stock factors, rather than estimate and test an individual model. Furthermore, we aim to iden-

tify the best specification—if a dominant model exists—or aggregate the information in the

factor zoo into a single SDF if no clear best model arises. Therefore, we extend the Bayesian

method proposed in Bryzgalova, Huang, and Julliard (2023) (BHJ), since it is applicable to

both tradable and nontradable factors, can handle the entire factor zoo, is valid under misspec-

ification, and is robust to weak inference problems. This Bayesian approach is conceptually

simple, since it leverages the naturally hierarchical structure of cross-sectional asset pricing,

and restores the validity of inference using transparent and economically motivated priors.

Consider first the time-series layer of the estimation problem. Without loss of generality,

we order the K1 tradable factors first, f
(1)
t , followed by K2 nontradable factors, f

(2)
t ; hence

ft ≡ (f
(1),⊤
t ,f

(2),⊤
t )⊤ andK1+K2 = K. Denote by Yt ≡ ft∪Rt the union of factors and returns,

where Yt is a p-dimensional vector.15 Modelling {Yt}Tt=1 as multivariate Gaussian with mean µY

and variance matrix ΣY , and adopting the conventional diffuse prior π(µY ,ΣY ) ∝ |ΣY |−
p+1
2 ,

yields the canonical Normal-inverse-Wishart posterior for the time series parameters (µY ,ΣY )

in equations (A.11) and (A.12) of Appendix B.

The cross-sectional layer of the inference problem allows for misspecification of the factor

model via the average pricing errors α in equation (1). We model these pricing errors, as

in the previous literature (e.g., Pástor and Stambaugh (2000) and Pástor (2000)), as α ∼
N (0N , σ

2ΣR), yielding the cross-sectional likelihood (conditional on the time series parameters)

p(data|λ, σ2) = (2πσ2)−
N
2 |ΣR|−

1
2 exp

{
− 1

2σ2
(µR −Cλ)⊤Σ−1

R (µR −Cλ)

}
, (2)

where, in the cross-sectional regression, the ‘data’ are the expected risk premia, µR, and the

factor loadings, C ≡ (1N ,Cf ). The above likelihood can then be combined with a prior for risk

prices (presented below) to obtain a posterior distribution that informs inference and model

selection.

Note that the assumption of a Gaussian conditional cross-sectional likelihood in equation

(2) is not strictly necessary, and we could, in principle, use an alternative formulation (al-

beit, in most cases, this would cause us to lose many of the closed-form results that make our

15If one requires the tradable factors to price themselves, then Yt ≡ (R⊤
t ,f

(2),⊤
t )⊤ and p = N +K2.
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method able to handle such high-dimensional models and parameter spaces). Nevertheless,

there are two key reasons why Gaussianity is the most preferable assumption. First, the canon-

ical quasi-maximum likelihood estimation property applies (Bollerslev and Wooldridge (1992)):

that is, the likelihood in equation (2) yields consistent estimates even if the true distribution

is not Gaussian. Instead, different distributional assumptions would yield consistency only if

we “guess” the right distribution. Hence, Gaussianity is the robust choice. Second, consider

estimating the model Rt = Cλ + εt. Denoting with ET the sample analogue of the uncon-

ditional expectation operator, we have ET [Rt] = Cλ + ET [εt]. This implies that the pricing

error α should be equal to ET [εt]. But the latter, under very general central limit theorem

conditions (see, e.g., Hayashi (2000)), follows (under the null of the model) the limiting dis-

tribution α|ΣR ∼ N (0N ,
1
T
ΣR). Hence, the Gaussian likelihood encoding in equation (2) not

only ensures consistent estimates but is also a natural choice that guarantees compatibility of

our hierarchical Bayesian modeling with frequentist asymptotic theory.

To handle model and factor selection, we introduce a vector of binary latent variables

γ⊤ = (γ0, γ1, . . . , γK), where γj ∈ {0, 1}. When γj = 1, the j-th factor (with associated loadings

Cj) should be included in the SDF, and should be excluded otherwise.16 In the presence of

potentially weak factors and, hence, unidentified prices of risk, the posterior probabilities of

models and factors are not well defined under flat priors.

To solve this issue, BHJ introduce an (economically motivated) prior that, albeit not infor-

mative, restores the validity of posterior inference. In particular, the uncertainty underlying the

estimation and model selection problem is encoded via a (continuous spike-and-slab) mixture

prior, π(λ, σ2,γ,ω) = π(λ | σ2,γ)π(σ2)π(γ | ω)π(ω), where

λj | γj, σ2 ∼ N
(
0, r(γj)ψjσ

2
)
. (3)

Note the presence of three new elements, r(γj), π(ω) and ψj, in the prior formulation.

First, r(γj) captures the ‘spike-and-slab’ nature of the prior formulation. When the factor

should be included, we have r(γj = 1) = 1, and the prior, the ‘slab,’ is just a diffuse distribution

centred at zero. When instead the factor should not be in the model, r(γj = 0) = r ≪ 1, the

prior is extremely concentrated—a ‘spike’ at zero. As r → 0, the prior spike is just a Dirac

distribution at zero, hence it removes the factor from the SDF.17

16In the baseline analysis, we always include the common intercept in the cross-sectional layer, that is, γ0 = 1.
Nevertheless, we also consider γ0 = 0, i.e., no common intercept, in the robustness analysis.

17We set r = 0.001 in our empirical analysis.
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Second, the prior π(ω) not only gives us a way to sample from the space of potential

models, but also encodes belief about the sparsity of the true model using the prior distribution

π(γj = 1|ωj) = ωj. Following the literature on predictor selection, we set

π(γj = 1|ωj) = ωj, ωj ∼ Beta (aω, bω) . (4)

Different hyperparameters aω and bω determine whether one a priori favors more parsimonious

models or not. The prior expected probability of selecting a factor is aω
aω+bω

and we set aω = bω =

1 in the benchmark case, that is, we have a uniform (flat) prior for the model dimensionality

and each factor has an ex ante expected probability of being selected equal to 50%.18

Third, the Bayesian solution to the weak factor problem in BHJ is to set

ψj = ψ × ρ̃j
⊤ρ̃j, (5)

where ρ̃j ≡ ρj −
(

1
N

∑N
i=1 ρj,i

)
× 1N , ρj is an N × 1 vector of correlation coefficients between

factor j and the test assets, and ψ ∈ R+ is a tuning parameter that controls the degree of

shrinkage across all factors. That is, factors that have vanishing correlation with asset returns,

or extremely low cross-sectional dispersion in their correlations (hence cannot help in explaining

cross-sectional differences in returns), have a low value of ψj and are therefore endogenously

shrunk toward zero. Instead, such a prior has no effect on the estimation of strong factors

since these have large and dispersed correlations with the test assets, yielding a large ψj and

consequently a diffuse prior.

Finally, for the cross-sectional variance scale parameter, σ2, estimation and inference can be

based on the canonical diffuse prior π(σ2) ∝ σ−2. As per Proposition 1 of Chib et al. (2020),

since the parameter σ is common across models and has the same support in each model, the

marginal likelihoods obtained under this improper prior are valid and comparable.

The above hierarchical system yields a well-defined posterior distribution from which all

the unknown parameters and quantities of interest can be sampled. Nevertheless, the prior

formulation of BHJ might be overly restrictive when applied, as in our empirical analysis, to

different asset classes jointly. To illustrate this, consider the case in which (as in our empirical

application) all factors are standardized, and note that equations (3) to (5) then yield the

following (squared) prior Sharpe ratio (SR) for each factor fk,t:

Eπ[SR
2
fk

| σ2] =
aω

aω + bω
ψσ2ρ̃⊤

k ρ̃k, as r → 0.

18However, we could set for instance, aω = 1 and bω >> 1 to favor sparser models.
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This implies that two factors with the same (sum of squared) demeaned correlations with

asset returns will have exactly identical prior Sharpe ratios. This feature is unsatisfactory

when considering factors proposed for pricing different asset classes, as the maximum Sharpe

ratio achievable in different market segments might actually be quite different. We relax this

constraint in the next subsection by introducing a new, more flexible prior formulation that

preserves the robustness of the estimator to weak and spurious factors.

2.3 A spike-and-slab prior for heterogeneous classes of factors
We now generalize the prior specification in equation (3). As in BHJ, we formalize a continuous

spike-and-slab prior that, using the correlation between factors and asset returns, endogenously

solves the problems arising from weak factor identification. However, unlike them, we introduce

an additional hyperparameter that researchers can use to encode their prior belief about how

much of the SDF Sharpe ratio in the data can be captured with factors coming from, respec-

tively, the bond and stock factor zoos. Specifically, we formulate a spike-and-slab prior for the

vector of all factors’ market prices of risk as19

λ|σ2,γ ∼ N (0, σ2D−1). (6)

For illustrative purposes, consider first the case in which we have only two types of factors under

consideration: K1 bond-market-based factors (ordered first) and K − K1 stock-market-based

factors (ordered last). In this case we can encode our prior beliefs about which factors are

more likely drivers of observed risk premia by setting D as a diagonal matrix with elements

c (the prior precision for the intercept), [(1 + κ)r(γ1)ψ1)]
−1, ..., [(1 + κ)r(γK1)ψK1 ]

−1, [(1 −
κ)r(γK1+1)ψK1+1]

−1, ..., [(1−κ)r(γK)ψK ]
−1. The ψj elements are defined as in equation (5) and

endogenously solve the problems arising from weak factors. Similarly, r(γj), as before, captures

the spike-and-slab nature of the prior formulation.

The new hyperparameter κ ∈ (−1, 1) encodes the prior belief about which class of factors is

more likely to explain the Sharpe ratio of asset returns. To see this, consider the case in which

both factors and returns are standardized (as in our empirical implementation). In this case:

Eπ

[
SR2

f |γ, σ2
]

Eπ [SR2
α|σ2]

=
ψ

N

[
(1 + κ)

K1∑
k=1

r(γk)ρ̃
⊤
k ρ̃k + (1− κ)

K∑
k=K1+1

r(γk)ρ̃
⊤
k ρ̃k

]
,

where SRf and SR2
α denote, respectively, the Sharpe ratios achievable with all factors and the

19More precisely, the first element of λ is the coefficient associated with the common cross-sectional intercept,
while the remaining elements are the market prices of risks of the factors under consideration.
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Sharpe ratio of the pricing errors.

The above implies that the only free ‘tuning’ parameters in our setting, ψ and κ, have

straightforward economic interpretations and can be transparently set. To see this, first consider

κ = 0 (the homogeneous prior specification). In this case (with a uniform prior of factor

inclusion), the expected prior Sharpe ratio achievable with the factors is just Eπ[SR
2
f | σ2] =

1
2
ψσ2

∑K
k=1 ρ̃

⊤
k ρ̃k as r → 0. Hence, prior beliefs about the achievable Sharpe ratio with the

factors fully pin down ψ.20 When instead κ ̸= 0, the prior is heterogeneous across types of

factors, and this parameter encodes our prior expectation about which type of factors explains

a larger share of the Sharpe ratio of the asset returns. As κ → 1− (κ → −1+), the prior

becomes concentrated on only bond (stock) factors being able to explain the Sharpe ratio of

asset returns. For example, setting κ = 0.5 encodes the prior belief that, ceteris paribus, bond

factors explain a 1+κ
1−κ

= 3 times as large a share of the squared Sharpe ratio than equity factors.

More generally, we can flexibly encode prior beliefs about the saliency of more than two

categories of factors by setting D = D̃ × κ, where D̃ is a diagonal matrix with elements

c, (r(γ1)ψ1)
−1, ..., (r(γK)ψK)

−1 and κ is a conformable column vector with elements 1, 1 +

κ1, . . . , 1 + κK such that
∑K

k=1 κj = 0 and 0 < |κj| < 1 ∀j.
Note that this general prior encoding maintains the same assumption of exponential tails for

all factors (given the Gaussian formulation in equation (6)). And there is a very good reason for

this: useless factors generate heavy-tailed cross-sectional likelihoods (in the limit, the likelihood

is an improper “uniform” on R), with peaks for the market prices of risk that deviate toward

infinity. But, as first pointed out by Jeffreys (1961), as the peak of a thick-tailed likelihood

moves away from the exponential-tail prior, the posterior distribution eventually reverts back

to the prior. Hence, in our setting, the exponential tails of the prior play an important role:

they shrink the price of risk of useless factors toward zero.

The transparency and interpretability of our prior formulation allows us, in the empirical

analysis, to report results for various prior expectations of the Sharpe ratio achievable in the

economy,21 prior probability of factor inclusion, shares of the prior Sharpe ratio achievable with

the different types of factors that we consider, and account for a potential “mismeasurement

alpha” in the corporate bond data.

20Without a uniform prior for the SDF dimensionality, the prior Sharpe ratio value becomes Eπ[SR
2
f | σ2] =

aω

aω+bω
ψσ2

∑K
k=1 ρ̃

⊤
k ρ̃k as r → 0. Hence, beliefs about the prior Sharpe ratio and model dimensionality fully pin

down the hyperparameters.
21More precisely, we report results for different prior values of

√
Eπ[SR2

f | σ2].
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Furthermore, note that pure ‘level’ factors—i.e., factors that have no explanatory power for

cross-sectional differences in asset returns but capture the average level of risk premia across

assets—can be accommodated by removing the free intercept in the SDF (since it would be

collinear with a pure level factor) and using simple correlations (instead of cross-sectionally

demeaned ones) in equation (5), i.e. setting ψj = ψ × ρ⊤
j ρj. We consider this particular case

among our robustness exercises, and it leaves our main findings virtually unchanged.

2.4 Model and factor selection and aggregation
Our Bayesian hierarchical system defined in the previous subsections yields a well-defined pos-

terior distribution from which all the unknown parameters and quantities of interest (e.g., R2,

SDF-implied Sharpe ratio, and model dimensionality) can be sampled to compute posterior

means and credible intervals via the Gibbs sampling algorithm described in Appendix B. Most

importantly, these posterior draws can be used to compute posterior model and factor probabil-

ities, and, hence, identify robust sources of priced risk and—if such a model exists—a dominant

model for pricing assets.

Model and factor probabilities can also be used for aggregating optimally, rather than

selecting, the pricing information in the factor zoo. For each possible model γm that one

could construct with the universe of factors, we have the corresponding SDF: Mt,γm = 1 −
(ft,γm − E[ft,γm ])⊤ λγm . Therefore, we construct a BMA-SDF by averaging all possible SDFs

using the posterior probability of each model as weights:

MBMA
t =

m̄∑
m=1

Mt,γm Pr (γm|data) , (7)

where m̄ is the total number of possible models.22

The BMA aggregates information about the true latent SDF over the space of all possible

models, rather than conditioning on a particular model. At the same time, if a dominant model

exists (a model for which Pr (γm|data) ≈ 1), the BMA will use that model alone. Importantly,

pricing with the BMA-SDF is robust to the problems arising from collinear loadings of assets on

the factors, since any convex linear combination of factors with collinear loadings has exactly the

same pricing implications. Moreover, the BMA-SDF can be microfounded, as in Heyerdahl-

Larsen et al. (2023), thanks to the equivalence of a log utilities and heterogeneous beliefs

economy with a representative agent using the Bayes rule. Furthermore, BMA aggregation is

22See, e.g., Raftery et al. (1997) and Hoeting et al. (1999).
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optimal under a wide range of criteria, but in particular, it is optimal on average: no alternative

estimator can outperform it for all possible values of the true unknown parameters.23 Finally,

since its predictive distribution minimizes the Kullback-Leibler information divergence relative

to the true unknown data-generating process, the BMA aggregation delivers the most likely

SDF given the data, and the estimated density is as close as possible to the true unknown one,

even if all of the models considered are misspecified.

Importantly, the BMA has particularly appealing properties when applied to the construc-

tion of the SDF. To see this, note that the BMA-SDF defined in equation (7)—thanks to the

linearity of the models considered—can be rewritten as a weighted sum over the space of factors,

rather than over the space of models. That is:

MBMA
t = 1−

K∑
j=1

E[λj|data, γj = 1]Pr(γj = 1|data)︸ ︷︷ ︸
≡ E[λj |data]

(fj,t − E[fj,t]) , as r → 0. (8)

This expression makes clear that the weight attached to each factor in the BMA-SDF is driven

by two elements. First, the probability of the factor being a “true” source of priced risk,

Pr(γj = 1|data). Hence, naturally, when a factor is more likely (given the data) to drive asset

risk premia, it features more prominently in the BMA-SDF. Second, when a factor commands

a large market price of risk in the models that include it, i.e. when E[λj|data, γj = 1] is large, it

will, ceteris paribus, have a larger role in the BMA-SDF. These two forces are jointly captured

in E[λj|data], the posterior expectation of the market price of risk given the data only, i.e.,

independently of the individual models.

This property of the BMA-SDF implies that, when parsing the factor zoo, there are two

quantities of key interest. First, Pr(γj = 1|data), as we want to discern which variables are more

likely, given the data, to be fundamental sources of risk and, hence, should be included in our

theoretical models for explaining asset returns. Second, and arguably as important, E[λj|data],

as this quantity pins down how salient the given factor is in the BMA approximation of the SDF.

Furthermore, E[λj|data] yields the weights that should be assigned to the factors in a portfolio

that best approximates the true latent SDF. For these reasons, we track both quantities in our

empirical analysis.

Furthermore, this implies that posterior probabilities of factors that are not true sources

of fundamental risk will not necessarily tend to zero if they nevertheless help span the true

23See, e.g., Raftery and Zheng (2003) and Schervish (1995).
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latent risks driving asset returns. That is, it might well be the case that, for a given factor,

the posterior probability of being part of the SDF (Pr(γj = 1|data)) is smaller than the prior

one—hence indicating that the data do not support the factor being a fundamental risk—while

at the same time its estimated posterior market price of risk (E[λj|data]) is substantial, since

the factor helps the BMA-SDF span the risks in asset returns. This is not a contradiction, but

rather an important element of strength of our method.

To illustrate these properties, consider the case in which the “true” SDF contains only one

factor. That is, M true
t = 1 − λfft,true, where ftrue is the true source of fundamental risk and

to simplify exposition, we employ the normalizations E[ft,true] = 0 and var(ft,true) = 1. Note

that under this innocuous normalization the risk premium and market price of risk of the

factor coincide, i.e. λtrue =
√
var(M true

t ) = −cov(M true
t , ft,true) = µtrue. Consistent with the

postulated one factor structure, the vector of test assets’ excess returns Rt follows the process

Rt = µR +Cft,true +wR,t,

where wR,t ⊥ ft,true and E[wR,t] = 0. Hence, it follows that the true factor prices perfectly (in

population) the asset returns, as µR = −cov(M true
t ,Rt) = Cλtrue.

Suppose further that there are a set of factors, “noisy proxies” of the true factor ftrue, that

the researcher considers as potential sources of fundamental risk,

fj,t = δjft,true +
√

1− δ2j wj,t, |δj| < 1,

for each noisy proxy j, with wj,t ⊥ ft,true and wj,t
iid∼ (0, 1). Note that in this handy encoding

δj captures both the correlation between the true source of risk and the j-th noisy proxy and

the latter’s signal-to-noise ratio (as
√

var(fj,t) = 1 by construction).

Suppose that a researcher tests the pricing ability of the j-th noisy proxy by considering

the misspecified SDF M̃j,t = 1− λ̃jfj,t. We then have that the misspecified SDF prices the test

assets perfectly in population (as long as the noise in the factor is “classical,” i.e. wj,t ⊥ wR,t):

µR = −cov(M̃j,t,Rt) = Cδjλ̃j with λ̃j = λtrue/δj. (9)

That is, the noisy proxy seems indistinguishable from the true factor in its pricing ability for

the test assets, and it yields an estimated market price of risk (in population) that is larger (in

absolute terms) than that of the true factor.24

Nevertheless, our method will detect such factor as a noisy proxy since our hierarchical

24Furthermore, |λ̃j | → ∞ as |δj | → 0, in yet another manifestation of the weak factor problem.
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Bayesian framework requires factors to self-price. To see this, note that the true risk premium

of the noisy proxy is µj ≡ −cov(M true
t , fj,t) ≡ δjλtrue, while instead the misspecified SDF

that prices the cross-section of test assets yields an implied risk premium for the factor given

by µ̃j := −cov(M̃j,t, fj,t) = λ̃j = λtrue/δj. Thus, the noisy proxy will fail to self-price, since

|µ̃j| > |µj| ∀|δj| < 1, and its self-mispricing will be proportional to | 1
δ2j

− 1|.
This implies that, once the candidate factors are added to the set of test assets, factors that

have a higher correlation (δj) with the true source of risk will have overall better performance

in the cross-sectional likelihood in equation (2). Moreover, since µ̃j −→
|δj |→1

µj, noisy proxies with

a higher signal-to-noise ratio will tend to have higher posterior probabilities. Importantly, the

BMA-SDF is more robust in recovering the pricing of risk than other canonical estimators. The

reason being that, as per equation (9), simple cross-sectional estimation with the noisy proxy

included in the SDF yields an upward biased market price of risk for this factor, E[λj|data, γj =

1]. Nevertheless, due to the self-pricing restriction that the noisy proxy will not satisfy, the

posterior probability of such factors, Pr(γj = 1|data), will be strictly smaller than one. This,

in turn, will counteract the upward bias in the market price of risk since the factor enters the

BMA in equation (8) with a weight equal to E[λj|data, γj = 1]Pr(γj = 1|data) (as r → 0).

Note that this analytical example of the properties of our estimator is without loss of

generality. For instance, a misspecified SDF with multiple noisy proxies will also yield an

upward-biased measure of the market price of risk. Consequently, the misspecified SDF will

not be able to satisfy the self-pricing restriction of the factors; hence, it will achieve a posterior

probability strictly smaller than one. Therefore, this upward biased measure of the market

price of risk implied by the misspecified SDF will be counteracted in the BMA in equation (8)

by a Pr (γm|data) << 1.

But are these population (hence asymptotic) properties of our method likely to hold in a

finite sample? We address this question with a realistic simulation exercise.

2.4.1 Simulation

We calibrate a single (pseudo-true) useful factor (ftrue) that mimics the pricing ability of the

HML factor in the cross-section of the 25 Fama-French size and book-to-market portfolios.

That is, we consider a setting with a partially misspecified pricing kernel (as HML yields sizable

pricing errors in the cross-section used for calibration). To make the estimation challenging, we

always include a useless factor (as this breaks the validity of canonical estimation methods), and
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consider noisy proxies with different correlations with the useful factor. In each experiment we

include a variable number of noisy proxies fj, j = 1, ..., 4 with correlations with the pseudo-true

factor equal to 0.4, 0.3, 0.2, and 0.1, respectively. Further details of the simulation design are

reported in Internet Appendix IA.2.

Simulation results are reported in Figure 1 for different sample sizes and a prior Sharpe ratio

of 60% of the ex post maximum Sharpe ratio in the simulated samples. Results for different

priors and sample sizes are reported in the Internet Appendix. We conduct six experiments. In

the first three (experiments I to III), the pseudo-true factor is included among the candidate

factors, while in the latter three (experiments IV to VI) only its noisy proxies are included.

Panel A of Figure 1 reports the BMA-SDF-implied market price of risk for several simulation

designs in time series samples with only 400 monthly observations. The horizontal red dashed

line denotes the Sharpe ratio of the pseudo-true factor, while the shaded grey area denotes the

frequentist 95% confidence region for the market price of risk of the HML factor estimated via

GMM in the (true) cross-section of 25 size and book-to-market portfolios with 665 monthly

observations. Remarkably, the BMA-SDF estimator accurately recovers the market price of

risk of the SDF not only when the pseudo-true factor is included among the candidate pricing

factors (experiments I to III), but also when only noisy proxies of the true source of risk are

included (experiments IV to VI). Moreover, the estimates are sharp—the distributions of the

BMA-MPRs across simulation runs have 95% coverage areas very similar to the ones obtained

(without accounting for model uncertainty) in the much longer true sample. Furthermore, as

the time series sample size increases, Panel B of Figure 1 illustrates that the BMA estimates of

the MPRs of the SDF become progressively more concentrated on the pseudo-true value, and

converge to it in the large sample (see Panel B of Figure IA.9 of the Internet Appendix), even

if only noisy proxies of the true source of risk are among the factors considered.

That is, our method can correctly recover the pricing of risk in the economy even when

the true source of risk is not among the set of tested factors. Nevertheless, as illustrated in

Panels C to F of Figure 1, this goal is achieved by the BMA in two different ways, depending

on whether the pseudo-true factor is included among the tested ones or not.

First, when the pseudo-true factor is among the tested ones (experiments I to III), its

estimated MPR (Panels C and D) is concentrated on the pseudo-true value, and converges to

it as the time series sample size increases (as per Figure IA.9 of the Internet Appendix), and

its posterior probability of being part of the SDF becomes progressively closer to one. On the
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A: BMA-SDF market price of risk, T = 400 B: BMA-SDF market price of risk, T = 1600

C: Factors’ market price of risk, T = 400 D: Factors’ market price of risk, T = 1600

E: Factors’ posterior probabilities, T = 400 F: Factors’ posterior probabilities, T = 1600

Figure 1: Simulation evidence with useless factors and noisy proxies

Simulation results from applying our Bayesian methods to different sets of factors. Each experiment is repeated
1,000 times with the specified sample size (T ). The data-generating process is calibrated to match the pricing
ability of the HML factor (as a pseudo-true factor) for the Fama-French 25 size and book-to-market portfolios.
Horizontal red dashed lines denote the market price of risk of HML, and the grey shaded area the frequentist
95% confidence region of its GMM estimate in the historical sample of 665 monthly observations. The prior is
set to 60% of the ex post maximum Sharpe ratio. Simulation details are in Internet Appendix IA.2. Half-violin
plots depict the distribution of the estimated quantities across the simulations, with black error bars denoting
centered 95% coverage, and white circles denoting median values, across repeated samples. In all experiments
we include a useless factor (uf ), while the pseudo-true factor (ftrue) is included only in experiments I to
III. In each experiment we include a variable number of noisy proxies fj , j = 1, ..., 4 with correlations with
the pseudo-true factor equal to, respectively, 0.4, 0.3, 0.2, and 0.1. The factors considered in the various
experiments are:
Experiment I: uf and ftrue. Experiment IV: uf , and f1.
Experiment II: uf , ftrue and f1. Experiment V: uf , f1 and f2.
Experiment III: uf , ftrue, f1 and f2. Experiment VI: uf , f1, f2, f3 and f4.
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contrary, the estimated MPRs of the noisy proxies are small and tend to zero as the sample size

increases. Similarly, the market price of risk of the useless factor is effectively shrunk to zero.

Note that while the posterior probability of the pseudo-true factor goes to one as the sample

size increases, the probabilities of the useless factor and noisy proxies do revert to their prior

value (Panels E and F). This might seem counterintuitive at first, but it is exactly what should

be expected: as the posterior MPR of a given factor goes to zero, the fit of a model that includes

that factor becomes indistinguishable from the one of a model that does not include said factor.

Hence, the posterior probability of a factor whose MPR is sharply estimated to be close to zero

should revert to its prior value—exactly what our method delivers. Note also that such factors,

as shown in equation (8), will have zero weight in the BMA-SDF (as E[λj|data] → 0).

Second, when the pseudo-true factor is not among the tested factors (experiments IV to

VI), the BMA-SDF still correctly recovers the overall price of risk (Panels A and B), but does

so by assigning non-zero MPRs (Panels C and D), and posterior probabilities above their prior

values, to the noisy proxies. Furthermore, as in the above-derived analytical results, noisy

proxies more correlated with the pseudo-true factor have higher posterior probabilities and

MPRs. Nevertheless, even asymptotically (Panel F of Figure IA.9 of the Internet Appendix),

the posterior probability of the noisy proxies will not tend to one—as discussed above, thanks to

the self-pricing restriction imposed by our estimator. This also implies that the BMA will not

simply select the “best” noisy proxy. Instead, it will use multiple proxies in order to maximize

the signal, and minimize the noise, that noisy proxies bring to the table.

The robustness of this last result should not be overstated. In the presence of the true factor

among the tested ones, the data will always overcome the prior and converge to the truth under

standard conditions (see, e.g., Schervish (1995, Thm. 7.78)). Nevertheless, when the true factor

is not among the tested ones and the prior encodes a very high degree of shrinkage (via a very

small prior Sharpe ratio), we should expect an attenuation bias in the BMA-SDF-implied MPR

in the economy. This is due to the fact that, in the presence of only noisy proxies, no linear

combination of them will be able to perfectly price (even asymptotically) both test assets and

the factors themselves. Hence, the data will always provide some support for the case in which

none of the factors should be included in the SDF, in turn reducing the BMA estimation of

the overall MPR achievable with the factors (see, e.g., Panel B of Figure IA.10 of the Internet

Appendix). This does not imply that one should prefer very little or no shrinkage at all, as this

is crucial to preempt weak and useless factors from invalidating inference. Hence, exactly as
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we do in our empirical exercises, one should analyze the sensitivity of the results to the prior

degree of shrinkage.

The above theoretical and simulation-based results stress the robustness of our method in

both a large and small sample. Furthermore, they highlight that factor posterior probabilities

and market prices of risk carry different, yet salient, information. Hence, both quantities should

be tracked and analyzed (as we do in our empirical exploration). For instance, one might find

that a given factor has both a posterior probability below its prior value—hence, it is unlikely

to be a source of fundamental risk—and a large posterior MPR—since it is highly correlated

with the true sources of priced risk, and it will consequently have a large weight in the BMA

approximation of the true latent SDF in equation (8). In a nutshell, posterior probabilities tell

us which factors should be included in a theoretical model given the data, since they identify

the most likely sources of priced risk, while instead posterior market prices of risk tell us which

factors should be included (and with what weight) in a portfolio that best approximates the

true latent SDF and delivers the maximum achievable Sharpe ratio with the factors at hand.

3 Estimation results
In this section, we apply the hierarchical Bayesian method to a large set of factors proposed in

the previous bond and equity literature. Overall, we consider 40 tradable and 14 nontradable

factors, yielding 254 ≈ 18 quadrillion possible models for the combined bond and stock factor

zoo. In Sections 3.1 and 3.4 we only consider returns for the bond portfolios in excess of the

short-term risk-free rate (calculated as outlined in Section 1.1). In Section 3.3, we also use

duration-adjusted excess returns, as well as U.S. Treasury portfolios, to disentangle the credit

and Treasury term structure components of corporate bond returns.

3.1 Co-pricing bonds and stocks
We now consider the pricing power of the 54 factors to gauge the extent to which the cross-

section of corporate bond and stock returns is priced by the joint factor zoo. The IS test

assets include the 50 bond and 33 stock portfolios described in Section 1.3 in addition to the 40

tradable factor portfolios (for a total N = 123). Throughout, we use the continuous spike-and-

slab approach described in Section 2. To report the results, we refer to the priors as a fraction

of the ex post maximum Sharpe ratio in the data, which is equal to 5.4 annualized for the joint

cross-section of portfolios, from a very strong degree of shrinkage (20%, i.e., a prior annualized
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Sharpe ratio of 1.0), to a very moderate one (80% or a prior annualized Sharpe ratio of 4.2).

Given that the results demonstrate considerable stability across a wide range of prior Sharpe

ratio values, we present selected findings for a prior set at 80% of the ex post maximum, as this

choice tends to yield the best out-of-sample performance.25

3.1.1 The co-pricing SDF

We start by asking which factors are likely components of the latent SDF in the economy.

Figure 2 reports the posterior probabilities (given the data) of each factor (i.e., E[γj|data], ∀j)
for different values of the prior Sharpe ratio achievable with the linear SDF (expressed as a

percentage of the ex post maximum Sharpe ratio). See Table A.1 of Appendix A for a detailed

description of the factors.

Recall that we have a uniform (hence flat) prior for the model dimensionality and each fac-

tor has an ex ante expected probability of being selected equal to 50%, depicted by the dashed

horizontal line in Figure 2. Several observations are in order. First, with some notable excep-

tions, most factors proposed in the corporate bond and equity literatures have (individually)

a posterior probability of being part of the SDF that is below its prior value of 50%. That is,

given the data, they are unlikely sources of fundamental risks.

Second, given that their posterior probabilities are above the prior 50% value for the entire

range of prior Sharpe ratios considered, five factors are identified as likely sources of fundamen-

tal risk in the bond and equity markets. In particular, there is strong evidence for including

two tradable factors, PEADB and PEAD (i.e., respectively, the bond and stock post-earnings

announcement drift factors), as a source of priced risk in the SDF. Partially, this is a surprising

result, as PEADB has not specifically been proposed as a priced risk factor in the previous

literature. Nozawa et al. (2025) are the first to document a post-earnings announcement drift

in corporate bond prices, and they rationalize their finding with a stylized model of disagree-

ment. They also show that a strategy that purchases bonds issued by firms with high earnings

surprises and sells bonds of firms with low earnings surprises generates sizable Sharpe ratios

and large risk-adjusted returns. On the other hand, Bryzgalova et al. (2023) and Avramov et al.

(2023) find strong evidence that the stock market post-earnings announcement drift (PEAD)

factor of Daniel et al. (2020) exhibits a particularly high posterior probability of being part of

the SDF for stock returns. In fact, PEAD is the only other tradable factor with a posterior

25Additional results for different values of the prior Sharpe ratio are reported in Table A.2 of Appendix C.
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Figure 2: Posterior factor probabilities: Co-pricing factor zoo.

Posterior probabilities, E[γj |data], of the 54 bond and stock factors described in Appendix A. The prior for each
factor inclusion is a Beta(1, 1), yielding a prior expectation for γj of 50%. Results are shown for different values
of the prior Sharpe ratio,

√
Eπ[SR2

f | σ2], with values set to 20%, 40%, 60% and 80% of the ex post maximum
Sharpe ratio of the test assets. Labels are ordered by the average posterior probability across the four levels of
shrinkage. Test assets are the 83 bond and stock portfolios and 40 tradable bond and stock factors described in
Section 1. The sample period is 1986:01 to 2022:12 (T = 444).

probability of being part of the SDF that prices the joint cross-section of corporate bond and

stock returns that is above 50%. That is, the only two tradable factors with high posterior

probabilities are the bond and stock versions of the post-earnings announcement drift. Note

that, in equilibrium models in which rational agents with limited risk-bearing capacity face be-

havioural asset demand, the drivers of the latter become part of the pricing measure—exactly

as we find (see, e.g., De Long et al. (1990)). Note also that, as shown in Table IA.III of the In-

ternet Appendix, these are the tradable factors with the highest Sharpe ratio in our full sample.

Moreover, PEADB has the highest Sharpe ratio among bond factors when the sample is split

in half, while PEAD has the highest Sharpe ratio among stock factors in the first half, and one

of the highest in the second half of the sample (see Table IA.IV of the Internet Appendix).26

Furthermore, the nontradable idiosyncratic equity volatility factor (IVOL) of Campbell and

Taksler (2003) is supported by the data as a fundamental source of priced risk. Interestingly,

26Despite its reduced time series predictability in most recent data (see, e.g., Martineau (2022)), we document
remarkable stability of the post-earnings announcement drift for forming long-short corporate bond and stock
portfolios across subsamples in Internet Appendix IA.4. That is, the cross-sectional predictability of the post-
earnings announcement drift within a portfolio context remains robust and does not appear to be driven by
micro-cap stocks.
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the rationale behind this factor closely connects bond and stock markets: as per the seminal

insight of Merton (1974), equity claims are akin to a call option on the value of the assets of the

firm, while the debt claim contains a short put option on the same. Consequently, Campbell

and Taksler (2003) suggest, changes in the firm’s volatility should be expected to affect bond

and stock prices.27

Additionally, two more nontradable factors have posterior probabilities of being part of the

SDF above 50% for all values of the prior Sharpe ratio: the slope of the Treasury yield term

structure (YSP, Koijen et al. (2017)), a well-known predictor of business cycle variation, and

the AAA/BAA yield spread (CREDIT, Fama and French (1993)), a common metric of the risk

compensation differential between safer and riskier securities. Interestingly, the term premium

and default risk factors are originally suggested in Fama and French (1993) exactly for the

purpose of co-pricing bonds and stocks.

Third, there are a few factors for which the posterior probability is roughly equal to the

prior (implying that at least some of these factors are likely to be weakly identified at best),

and there is a large set of factors that are individually unlikely to be sources of fundamental

risk in the SDF pricing the joint cross-section of bond and stock returns. In particular, besides

PEADB and PEAD, all tradable bond and stock market factors are individually unlikely to

capture fundamental risk in the SDF. For instance, with a prior Sharpe ratio set to 80% of the

ex post maximum, the posterior probabilities for 30 of the 40 tradable bond and stock factors

are below 40% (see Figure 2 as well as the top panel of Figure 4). Nevertheless, as shown

theoretically and in the simulation in Section 2.4, and discussed extensively below, this does

not imply that these factors, jointly, do not carry relevant information to characterize the true

latent SDF.

Notably, the stock as well as the bond market factors (MKTS and MKTB, respectively)

both exhibit posterior probabilities below 50% for almost the full range of prior Sharpe ratios

for the joint cross-section of returns. Nevertheless, when separately pricing the cross-sections

of stock and bond returns with only the factors in their respective zoos, both market indices

become likely components of the SDF: for all prior levels in the MKTS case, and for all but

one in the MKTB case (see Tables IA.V and IA.VI of the Internet Appendix). This confirms

the finding that the equity market index contains valuable information for pricing stocks in

an unconstrained SDF based on stock factors only (as in Bryzgalova et al. (2023)). However,

27See, e.g., Dickerson et al. (2025) for a model of the correlation of bonds and stocks of the same firm.
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when the space of potential factors is expanded to include both stock and bond factors, without

dimensionality restrictions on the SDF as we do in our baseline co-pricing exercise, models with

MKTS (and more so in the MKTB case) overall perform worse than denser models containing

factors from both zoos. That is, the information in the market indices appears to be spanned

by the other factors in the zoo. This finding is unlikely to be driven by the market indices

acting as “level” or “weak” factors since asset returns display large and well-dispersed loadings

on these factors, and the market prices of risk they command are substantial when included

in the SDF (see Table A.2 of Appendix C and the bottom panel of Figure 4). Moreover, we

show in Internet Appendix IA.3.1 that removing the free intercept, and the prior penalization

of pure level factors, leaves all of the above results virtually unchanged.

Given the focus of most (yet not all) of the previous literature on selecting models character-

ized by a small number of factors, the above findings raise the question of whether the handful

of most likely factors that we have identified are enough to capture the span of the true, latent,

SDF that jointly prices bonds and stocks. Moreover, are factors less likely to be sources of

fundamental risk really devoid of useful pricing information? Since our Bayesian method does

not ex ante impose the existence of a unique, low-dimensional, and correctly specified model—

all assumptions that are needed with conventional frequentist asset pricing methods—we can

formally answer these questions.

The top panel of Figure 3 reports the posterior dimensionality of the SDF in terms of

observable factors to be included in it, and the bottom panel shows the posterior distribution

of the Sharpe ratios achievable with such an SDF. It is evident that the sparse models suggested

in the previous literature have very weak support in the data, and are misspecified with very

high probability, as a substantial number of factors is needed to capture the span of the true

latent SDF: the posterior median number of factors is 22 with a centered 95% coverage of 15

to 29 factors. In fact, the posterior probability of a model with less than 10 factors is virtually

zero, indicating that the quest for a sparse, unique, SDF model among the observable factors

in the joint bond and stock factor zoo is misguided at best.

But, as often argued, wouldn’t a dense SDF imply an unrealistically high Sharpe ratio

achievable in the market? The bottom panel of Figure 3 highlights that the SDF-implied

Sharpe ratio is not unrealistically large (recall that the ex post maximum Sharpe ratio in the

data is 5.4), suggesting that many factors are likely to span a lot of common risks. Furthermore,

Table 1 shows that albeit the most likely (top five) factors to be included in the SDF for pricing
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Figure 3: Posterior SDF dimensionality and Sharpe ratios: Co-pricing factor zoo.

Posterior distributions of the number of factors to be included in the co-pricing SDF (top panel) and of the SDF-
implied Sharpe ratio (bottom panel), computed using the 54 bond and stock factors described in Appendix A.
The prior distribution for the jth factor inclusion is a Beta(1, 1), yielding a flat prior for the SDF dimensionality
depicted in the top panel. The prior Sharpe ratio is set to 80% of the ex post maximum Sharpe ratio of the 83
bond and stock portfolios and 40 tradable factors described Section 1. The sample period is 1986:01 to 2022:12
(T = 444).

bonds and stocks (jointly or separately) are responsible for a substantial share of the Sharpe

ratio (e.g., E[SRf |data] ranges from 0.78 to 1.46 for a 60% to 80% prior), the share of the SDF

squared Sharpe ratio generated by these factors alone (E
[
SR2

f/SR
2
m|data

]
) is quite limited. This

means that there is substantial additional priced risk in the factor zoo that is not captured by

the most likely factors. That is, the less likely factors are noisy proxies for latent fundamental

risks and are needed, jointly, to provide an accurate characterization of the risks priced by the

true latent SDF. This feature of the data arises not only when jointly pricing bonds and stocks

(Panel A), but also when separately focusing on the pricing of the two asset classes using their

respective factor zoos (Panels B and C).

As shown in Section 2.4, if a dominant, low-dimensional, model is not supported by the

data—as the above evidence implies—we can optimally aggregate the pricing information in

the factor zoo by constructing a Bayesian model averaging of all possible models. Moreover, the

model averaging is equivalent to a factor averaging, where the weights of the individual factors

are simply the factors’ posterior market prices of risk (E[λj|data]). Hence, large posterior

market prices of risk reveal which factors (true sources of risk or noisy proxies) are useful in

29



Table 1: Most likely (top five) factor contribution to the SDF

Panel A: Co-pricing SDF Panel B: Bond SDF Panel C: Stock SDF

Total prior SR: 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%

E[SRf |data] 0.26 0.57 1.06 1.24 0.28 0.71 1.10 1.46 0.17 0.42 0.78 1.10
E
[

SR2
f

SR2
m
|data

]
0.13 0.20 0.32 0.28 0.34 0.57 0.65 0.70 0.12 0.22 0.35 0.42

Posterior mean of implied Sharpe ratios achievable with the most likely (top five) factors, E[SRf |data], and
their share of the SDF squared Sharpe ratio, E

[
SR2

f/SR
2
m|data

]
. Panels A, B and C report results using the

corresponding factor zoos, for the co-pricing, bond-only, and stock-only BMA-SDFs, respectively. Top five co-
pricing factors are PEADB, IVOL, PEAD, CREDIT and YSP. Top five bond factors are PEADB, CREDIT,
MOMBS, YSP and IVOL. Top five stock factors are PEAD, IVOL, MKTS, CMAs and LVL. The total prior
Sharpe ratio is expressed as a share of the ex post maximum Sharpe ratio of the test assets.

approximating the true, latent, SDF.

In Figure 4 we list all 54 factors in increasing order of posterior probabilities (i.e., Pr(γj =

1|data), top panel), for a prior Sharpe ratio of 80% of the maximum ex post Sharpe ratio,

along with the corresponding annualized posterior means of the price of risk of the factors

(E[λj|data], bottom panel). Posterior probabilities and market prices of risk for different priors

are tabulated in Table A.2 of Appendix C.

All five factors with posterior probabilities higher than their prior values (i.e., PEADB,

IVOL, PEAD, CREDIT and YSP) command substantial market prices of risk, implying a

considerable weight in a portfolio that best approximates the true latent SDF. Hence, not only

does the data support their inclusion in the SDF, but they also play an important role in its

BMA estimate.

Out of the next fifteen factors with the highest (individual) posterior probabilities, ten are

nontradable in nature. Nevertheless, the risk prices of several of these nontradable factors

are small and, in some cases, effectively shrunk toward zero. This is due to the fact that

these are likely weak factors in the joint cross-section of corporate bond and stock returns

and, consequently, carry a near-zero weight in the portfolio that approximates the SDF.28 The

occurrence of weak factors, which, in fact, is most common among the nontradable ones, causes

identification failure and invalidates canonical estimation approaches (e.g., GMM, MLE, and

two-pass regressions). This is not an issue for our Bayesian method, which restores inference

by design, by regularizing the marginal likelihood. Furthermore, for these factors, both shown

theoretically and in the simulation in Section 2.4, the posterior probabilities revert to their

28That is, their correlations with the test assets are small and have little cross-sectional dispersion. See, e.g.,
Gospodinov et al. (2019) and Kleibergen (2009) for a formal definition of weak and level factors.
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Figure 4: Posterior factor probabilities and risk prices: Joint factor zoo (excess bond returns).

The figure reports posterior probabilities, E[γj |data], and posterior means of annualized market prices of risk,
E[λj |data], of the 54 bond and stock factors described in Appendix A. The prior for each factor inclusion is
a Beta(1, 1), yielding a prior expectation for γj of 50%. The prior Sharpe ratio is set to 80% of the ex post
maximum Sharpe ratio of the 83 stock and bond portfolios and the 40 tradable factors described in Section 1.
The sample period is 1986:01 to 2022:12 (T = 444).

prior value as the market prices of risk tend to zero.

Interestingly, several factors with posterior probabilities below their prior values—hence

unlikely sources of fundamental risk—do carry very sizeable posterior market prices of risk. For

example, the equity market index factor carries the third largest MPR among equity factors and

the sixth largest among the tradable ones. Section 2.4 informs us exactly how to interpret such

findings: these are factors that the data do not support as being fundamental sources of risk

(hence the posterior probability being below the prior value), but that nevertheless have a high

correlation with the true latent priced risk and, hence, feature prominently in the BMA-SDF

to provide an accurate approximation of the true latent SDF.

This aggregation property of the BMA-SDF is clearly displayed in Figure IA.12 of the

Internet Appendix, where we plot the cumulative SDF-implied Sharpe ratio when subsequently

adding factors ordered by their (individual) posterior probability. While the Sharpe ratio

increases with the number of factors, some factors seem to contribute more to the implied

Sharpe ratio than others. For example, the factors ranked 6 to 9 (LVL, INFLC, INFLV, UNCr)

do not appear to add much individually, while the Sharpe ratio increases markedly once factors

10 (CMAs) and 11 (CRY) are included. This is because many factors are potentially noisy
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proxies for the same fundamental sources of risk that are important for the SDF. As shown

in Section 2.4, factors that are useful noisy proxies for a particular fundamental source of risk

not fully spanned by individual factors will exhibit nonzero market prices of risk (or portfolio

weights). However, the Sharpe ratio only substantially increases once the first of the factors

spanning (at least partially) a common risk is included in the analysis. In contrast, subsequent

factors spanning the same risk generate a much smaller increase in the Sharpe ratio due to the

enhanced signal extraction of the common risk. Further examining the four factors in positions 8

to 11, these are all nontradable in nature and related to inflation, interest rates, and uncertainty.

Similarly, factors in positions 16 to 19 are all related to different measures of macroeconomic

uncertainty. While it is important to include all of these factors in the SDF to increase the signal

to noise ratio of latent fundamental risk, their individual marginal contribution to the Sharpe

ratio may be minimal as they share common spanning. This is highlighted by the posterior

confidence interval in the figure. As more factors are added sequentially, one might expect

the posterior uncertainty to increase, as the uncertainty about the individual market prices of

risk is compounded in the SDF. Nevertheless, the opposite occurs in Figure IA.12—overall, the

posterior confidence region shrinks as factors are added. Moreover, the last few factors have

virtually no effect on the posterior mean of the Sharpe ratio, but they do reduce the confidence

region significantly, as the BMA aggregation increases the signal to noise ratio.

3.1.2 Cross-sectional asset pricing

We now turn to the asset pricing performance of the BMA-SDF based on the joint cross-section

and factor zoos, as well as based on bond and stock portfolios separately. In Table 2 we report

results for in-sample cross-sectional pricing using various performance measures, while out-of-

sample results are summarized in Table 3. The in-sample assets for the joint cross-section in

Panel A of Table 2 are the 83 portfolios of bonds and stocks (described in Section 1.4) plus

40 tradable factors. Panels B and C focus only on bonds (50 portfolios and 16 bond tradable

factors) and stocks (33 anomaly portfolios and 24 stock tradable factors), respectively. The out-

of-sample test assets in Table 3 comprise 77 bond portfolios and 77 stock portfolios (described

in Section 1.4), which are considered jointly in Panel A and separately in Panels B and C.

When assessing the pricing performance, we compare our BMA-SDF for different levels

of prior Sharpe ratio shrinkage with the performance of a number of benchmark models. In

particular, we consider the bond CAPM (CAPMB), the stock CAPM, the Fama and French
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(1993) five-factor model (FF5), the intermediary asset pricing model of He et al. (2017) (HKM),

the PCA-based SDF of Kozak et al. (2020) (KNS) and the risk premia PCA approach of Lettau

and Pelger (2020) (RPPCA).29 In addition, since most of the previous literature focuses on

selection (rather than aggregation) of pricing factors, we also include the respective ‘top’ factor

models (TOP) from our Bayesian analysis that comprise only the five factors with the highest

posterior probabilities (for the joint cross-section for example, this is a five-factor model with

PEADB, IVOL, PEAD, CREDIT, and YSP). All the benchmark model SDFs are estimated

via a GLS version of GMM.30 Note that for the cross-sectional OS pricing, we do not refit the

BMA-SDF or the other benchmark models to the new data. Instead, we use the estimated

parameters from the respective IS pricing exercises.

For the in-sample pricing in Table 2, a few observations are in order. First and foremost,

the BMA-SDF using moderate shrinkage (80% of the prior Sharpe ratio) outperforms virtually

all benchmark models on almost all dimensions considered, with the best alternative model

being KNS. Second, no low dimensional model performs well. This should not come as a

surprise given the discussion in Section 3.1.4, which implies that all low-dimensional models

are both misspecified with a very high probability and are strongly rejected by the data. In

fact, the performance of both the bond and stock CAPM is rather disappointing compared to

the BMA-SDF. Moreover, popular models such as FF5 and HKM do not perform particularly

well either. Third, the low dimensional TOP factor model, albeit better performing than the

low dimensional models from the literature, delivers inferior pricing compared to the BMA-

SDF with moderate shrinkage, once again pointing out that aggregation of factors, rather than

selection, is preferred by the data. This highlights that just the most likely factors are not

sufficient to provide an accurate characterization of the risks spanned by the true latent SDF.

Fourth, the results are fairly consistent across the three panels. Apart from the BMA-SDF,

KNS, and RPPCA deliver consistently better IS pricing performance than the low dimensional

models.

The co-pricing BMA-SDF performs exceptionally well out-of-sample (see Panel A of Ta-

ble 3). While KNS is a close contender regarding in-sample performance, the BMA-SDF

strongly dominates KNS out-of-sample. In Internet Appendix IA.3.2 we show that the strong

OS performance of the co-pricing BMA-SDF is not driven by the specific, yet rich, selection

29The SDFs of both KNS and RPPCA are re-estimated using our data and the methods proposed in the
original papers. Details of the estimation for all benchmark models are reported in Appendix D.

30See Appendix D for further details.
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Table 2: In-sample cross-sectional asset pricing performance

BMA-SDF prior Sharpe ratio CAPM CAPMB FF5 HKM TOP KNS RPPCA

20% 40% 60% 80%

Panel A: Co-pricing bonds and stocks

RMSE 0.214 0.203 0.185 0.167 0.260 0.278 0.258 0.259 0.230 0.166 0.197
MAPE 0.167 0.154 0.139 0.125 0.194 0.221 0.198 0.192 0.171 0.126 0.132
R2

OLS 0.155 0.240 0.367 0.487 −0.244 −0.426 −0.233 −0.238 0.023 0.489 0.282
R2

GLS 0.106 0.168 0.232 0.285 0.078 0.083 0.087 0.078 0.263 0.176 0.267

Panel B: Pricing bonds

RMSE 0.180 0.148 0.121 0.104 0.209 0.214 0.201 0.206 0.162 0.192 0.091
MAPE 0.129 0.109 0.091 0.079 0.146 0.135 0.143 0.146 0.128 0.111 0.067
R2

OLS 0.196 0.455 0.638 0.733 −0.083 −0.134 −0.006 −0.049 0.347 0.088 0.794
R2

GLS 0.211 0.299 0.381 0.444 0.172 0.195 0.238 0.175 0.549 0.071 0.419

Panel C: Pricing stocks

RMSE 0.230 0.241 0.236 0.220 0.292 0.264 0.275 0.292 0.352 0.162 0.175
MAPE 0.186 0.189 0.181 0.166 0.229 0.211 0.221 0.226 0.294 0.133 0.141
R2

OLS 0.023 −0.075 −0.029 0.103 −0.570 −0.282 −0.392 −0.574 −1.288 0.515 0.433
R2

GLS 0.145 0.213 0.287 0.353 0.120 0.118 0.130 0.121 0.330 0.311 0.493

The table presents the cross-sectional in-sample asset pricing performance of different models pricing bonds and
stocks jointly (Panel A), bonds only (Panel B) and stocks only (Panel C), respectively. For the BMA-SDF, we
provide results for prior Sharpe ratio values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe
ratio of the test assets. TOP includes the top five factors with an average posterior probability greater than
50%. CAPM is the standard single-factor model using MKTS, and CAPMB is the bond version using MKTB.
FF5 is the five-factor model of Fama and French (1993), HKM is the two-factor model of He et al. (2017). KNS
stands for the SDF estimation of Kozak et al. (2020) and RPPCA is the risk premia PCA of Lettau and Pelger
(2020). Estimation details for the benchmark models are given in Appendix D. Bond returns are computed in
excess of the one-month risk-free rate of return. By panel the models are estimated with the respective factor
zoos and test assets. Test assets are the 83 bond and stock portfolios and the 40 tradable bond and stock factors
(Panel A), the 50 bond portfolios and 16 tradable bond factors (Panel B), and the 33 stock portfolios and 24
tradable stock factors (Panel C), respectively. All are described in Section 1. All data are standardized, that
is, pricing errors are in Sharpe ratio units. The sample period is 1986:01 to 2022:12 (T = 444).

of test assets in our baseline analysis presented here. In particular, we compare the perfor-

mance of the BMA-SDF vis-à-vis the closest competitor, KNS, across 214 − 1 = 16, 383 OS

cross-sections. Depending on the measure of fit (i.e., R2
GLS, R2

OLS, RMSE, and MAPE), the

BMA-SDF outperforms KNS in 96.6% to 99.9% of all OS cross-sections we consider.

Additionally, note that, as shown in Internet Appendix IA.3.2, the pricing ability of the

BMA-SDF significantly outperforms, in- and out-of-sample, not only the benchmark models in

Tables 2 and 3, but also a much broader set of additional benchmark models designed specifically

to price the bond and stock cross-sections individually.31

31In Table IA.XII of the Internet Appendix we consider an expanded set of benchmarks that includes the
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Figure 5: Pricing out-of-sample stocks and bonds with different BMA-SDFs.

This figure plots the distributions of R2
GLS , R2

OLS , RMSE and MAPE in Panels A, B, C and D respectively across
16,383 possible bond and stock cross-sections using the 14 sets of stock and bond test assets (214 − 1 = 16, 383)
priced using the respective BMA-SDF (the empty set is excluded). The models are first estimated using the
baseline set of IS test assets and then used to price (with no additional parameter estimation) each set of
the 16,383 OS combinations of test assets. The red distributions correspond to the pricing performance of
the co-pricing BMA-SDF. The blue (yellow) distributions correspond to the pricing performance of the bond
(stock) only BMA-SDF. The BMA-SDFs are computed with a prior Sharpe ratio value set to 80% of the ex
post maximum Sharpe ratio of the IS test assets. All data are standardized, that is, pricing errors are in Sharpe
ratio units. The sample period is 1986:01 to 2022:12 (T = 444).
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Table 3: Out-of-sample cross-sectional asset pricing performance

BMA-SDF prior Sharpe ratio CAPM CAPMB FF5 HKM TOP KNS RPPCA

20% 40% 60% 80%

Panel A: Co-pricing bonds and stocks

RMSE 0.114 0.102 0.095 0.090 0.224 0.154 0.139 0.223 0.171 0.160 0.153
MAPE 0.081 0.074 0.069 0.065 0.192 0.129 0.102 0.190 0.135 0.143 0.130
R2

OLS 0.357 0.489 0.557 0.603 −1.478 −0.161 0.053 −1.444 −0.442 −0.268 −0.159
R2

GLS 0.038 0.070 0.098 0.124 0.028 0.034 0.036 0.028 0.090 0.065 0.028

Panel B: Pricing bonds

RMSE 0.123 0.116 0.110 0.106 0.129 0.128 0.140 0.133 0.102 0.114 0.100
MAPE 0.090 0.085 0.081 0.079 0.094 0.092 0.104 0.098 0.084 0.083 0.073
R2

OLS 0.051 0.156 0.237 0.296 −0.051 −0.029 −0.231 −0.112 0.342 0.180 0.375
R2

GLS 0.019 0.056 0.081 0.102 −0.004 0.024 −0.032 −0.007 0.101 0.066 0.045

Panel C: Pricing stocks

RMSE 0.105 0.088 0.077 0.070 0.123 0.119 0.116 0.124 0.149 0.078 0.104
MAPE 0.078 0.067 0.062 0.057 0.089 0.085 0.082 0.091 0.115 0.060 0.082
R2

OLS 0.298 0.508 0.620 0.683 0.032 0.099 0.136 0.019 −0.422 0.613 0.305
R2

GLS 0.090 0.160 0.227 0.280 0.103 0.065 0.099 0.107 0.079 0.207 0.072

The table presents the cross-sectional out-of-sample asset pricing performance of different models pricing bonds
and stocks jointly (Panel A), bonds only (Panel B) and stocks only (Panel C), respectively. For the BMA-SDF,
we provide results for prior Sharpe ratio values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe
ratio of the test assets. TOP includes the top five factors with an average posterior probability greater than
50%. CAPM is the standard single-factor model using MKTS, and CAPMB is the bond version using MKTB.
FF5 is the five-factor model of Fama and French (1993), HKM is the two-factor model of He et al. (2017). KNS
stands for the SDF estimation of Kozak et al. (2020) and RPPCA is the risk premia PCA of Lettau and Pelger
(2020). Estimation details for the benchmark models are given in Appendix D. Bond returns are computed in
excess of the one-month risk-free rate of return. The models are first estimated using the baseline IS test assets.
The resulting SDF is then used to price (with no additional parameter estimation) each set of the OS assets.
The IS test assets are the same as in Table 2. OS test assets are the combined 154 bond and stock portfolios
(Panel A), as well as the separate 77 bond and stock portfolios (Panels B and C). All are described in Section 1.
All data are standardized, that is, pricing errors are in Sharpe ratio units. The sample period is 1986:01 to
2022:12 (T = 444).

Given the findings in Tables 2 and 3 that bonds and stocks can be accurately priced sepa-

rately with BMA-SDFs constructed based only on their respective factor zoos, a natural question

is whether only bond or stock factors are sufficient to price jointly both asset classes. We answer

this question in Figure 5 where we compare the OS pricing performance of the co-pricing BMA-

SDF (in red, from Panel A of Table 2) to that of BMA-SDFs constructed separately with only

models of Bai et al. (2019), van Binsbergen et al. (2025), Bali et al. (2021b), Chung et al. (2019), Carhart
(1997), Hou et al. (2015), Fama and French (2015) (with and without the addition of the momentum factor),
Daniel et al. (2020), and the DEFTERM specification of Fama and French (1993). In addition, in Figures IA.14
and IA.15 of the Internet Appendix, we report an extensive comparison of the BMA-SDF performance relative
to the Dick-Nielsen et al. (2025) five-factor corporate bond model.
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bond (in blue, from Panel B of Table 2) and stock (in yellow, from Panel C of Table 2) factors,

respectively. As test assets, we again utilize the 16,383 combinations of our OS bond and stock

cross-sections. Throughout, the co-pricing BMA-SDF exhibits significantly lower pricing errors

and considerably higher R2s compared to the bond-only or stock-only BMA-SDFs. That is, in

order to price the joint cross-section of bond and stock excess returns, we require information

from both factor zoos.

In Internet Appendix IA.3.2 we show that the co-pricing BMA-SDF can also effectively price

the bond and stock cross-sections separately, indicating that the superior performance of the

co-pricing BMA-SDF is not simply a result of its ability to price one cross-section better than

the other. Furthermore, the asset-class-specific BMA-SDFs price their respective cross-sections

very well. However, information from the bond factor zoo alone is insufficient to price the cross-

section of stock returns, and conversely, information from the stock factor zoo is inadequate to

price the cross-section of corporate bond excess returns.

3.1.3 The saliency of factors over time

We now investigate to what extent the relevance of individual factors remains stable over time.

To this end, we initially estimate our model for a shorter sample period before subsequently

re-estimating the relevant quantities for progressively longer samples. Specifically, we split our

sample in half, resulting in two sub-samples with 222 monthly observations each. We first

estimate the model for the first subsample spanning July 1986 to June 2004, and then re-

estimate it every year, adding twelve new observations at each iteration. Similarly, we estimate

backward in time starting with the second subsample from December 2022 to July 2004 and

add one year of data at every step. We follow our methodology described in Section 2 and,

throughout, we fix the shrinkage at 80% of the corresponding ex post maximum Sharpe ratio for

the respective window. We present the results for the five top factors (based on their posterior

probability) in two heatmaps in Figure 6 for the forward (Panel A) and backward estimation

(Panel B), respectively, with a higher rank reflected by a darker shade of blue. The top factors

ranked by their market prices of risk are also presented in heatmaps in Figure IA.17 of the

Internet Appendix.

Overall, the relevant factors remain remarkably stable. The top five factors from Figure 2,

PEADB, IVOL, PEAD, CREDIT, and YSP, all feature prominently in both Panels A and B

of Figure 6. Similarly, factors that exhibit high market prices of risk in the bottom panel of
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Figure 6: Time-varying factor importance.

The figure highlights the top five factors over time, ordered by their posterior probabilities E[γj,t|datat], and
the number of times they are present in the top five, estimated using expanding samples going forward (Panel
A) and backward (Panel B) in time. We use half of the sample as the initial window (T = 222) and then
re-estimate the model every year with an expanding sample. The factors are ordered by the total number of
times they are present in the ‘top five.’ The results are shown for prior level of Sharpe ratio shrinkage set to
80% of the ex post maximum up until year t.

Figure 4 such as PEADB, CRY, MOMBS, or QMJ, remain highly ranked over a wide range

of estimation windows in Figure IA.17 of the Internet Appendix. When considering rankings
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based on market prices of risk, the stock market factor MKTS becomes particularly relevant for

the backward estimation while it remains just outside the top five for the full sample. Overall,

the results based on time-varying windows largely align with the full sample results presented

earlier.

3.1.4 Which risks?

Next, we further decompose the posterior dimensionality of the SDF and its implied Sharpe

ratio to better understand which types of risk are likely to be part of the true latent pricing

measure and to what extent different factors capture common information.

Table 4 presents the decomposition of the posterior SDF dimensionality and Sharpe ratio

split between nontradable and tradable bond and stock factors for different prior values. Panel A

reports results for the pricing of the joint cross-section of stock and corporate bond returns using

factors from both zoos to construct the SDF. Instead, Panels B and C focus, respectively, on

the separate pricing of corporate bonds and stocks using only factors from their respective zoos.

Several salient patterns are evident.

First, Panel A shows that an accurate characterisation of the pricing measure requires an

SDF that is dense not only in the overall space of observable factors (as per the top Panel

of Figure 3), but also over the individual subspaces of nontradable as well as bond and stock

tradable factors: the posterior mean number of factors is about 7 for nontradable factors, 6 to

8 for bond, and 9 to 12 for stock tradable factors. Furthermore, this density of the SDF is not

driven by the co-pricing task: even pricing only bonds (Panel B) or stocks (Panel C) requires

about 7 nontradable, 6 to 8 (for bonds) or 10 to 12 (for stocks) tradable factors, respectively.

Second, each of the three categories of factors is economically important. Focusing on the

moderate prior shrinkage case (i.e., 80% of the ex post achievable Sharpe ratio) in Panel A,

the posterior mean of the annualized Sharpe ratio ascribable to the various types of factors

(E[SRf |data]) is 1.12 for nontradable factors, and 1.51 and 1.77, respectively, for tradable bond

and stock factors. Third, there is substantial common priced information across the categories

of factors, as the sum of the Sharpe ratios generated by the three sets of factors (for example

1.12 + 1.51 + 1.77 = 4.40 in Panel A) is much larger than the average posterior SDF-implied

Sharpe ratio (which is around 2.5 in the bottom panel of Figure 3). This overlap in risks

captured by different types of factors is particularly strong among tradable factors, where the

sum of the Sharpe ratios of bond and stock factors in the SDF is 1.51 + 1.77 = 3.28, while the
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Table 4: BMA-SDF dimensionality and Sharpe ratio decomposition by factor type

Total prior SR Total prior SR
20% 40% 60% 80% 20% 40% 60% 80%

Panel A: Co-pricing BMA-SDF

Nontradable factors Tradable factors

Mean 6.97 6.94 6.97 6.80 19.52 18.78 17.84 15.51
5% 4 4 4 4 14 14 13 10
95% 10 10 10 10 25 24 23 21
E[SRf |data] 0.21 0.43 0.70 1.12 0.86 1.44 1.91 2.27
E
[ SR2

f

SR2
m
|data

]
0.08 0.11 0.15 0.23 0.94 0.93 0.90 0.84
Tradable bond factors Tradable stock factors

Mean 7.85 7.50 7.21 6.32 11.67 11.28 10.63 9.19
5% 4 4 4 3 8 7 7 5
95% 11 11 11 10 16 15 15 13
E[SRf |data] 0.56 0.95 1.28 1.51 0.66 1.13 1.50 1.77
E
[ SR2

f

SR2
m
|data

]
0.43 0.43 0.43 0.39 0.59 0.60 0.57 0.53

Panel B: Bond BMA-SDF

Nontradable factors Tradable factors

Mean 6.98 6.95 7.02 7.03 7.81 7.77 7.38 6.41
5% 4 4 4 4 5 5 4 3
95% 10 10 10 10 11 11 11 10
E[SRf |data] 0.18 0.37 0.60 0.97 0.52 0.92 1.25 1.45
E
[ SR2

f

SR2
m
|data

]
0.15 0.18 0.22 0.33 0.86 0.83 0.78 0.66

Panel C: Stock BMA-SDF

Nontradable factors Tradable factors

Mean 6.98 7.02 6.92 7.02 11.82 11.54 11.11 9.81
5% 4 4 4 4 8 7 7 6
95% 10 10 10 10 16 16 15 14
E[SRf |data] 0.14 0.29 0.47 0.79 0.60 1.03 1.39 1.70
E
[ SR2

f

SR2
m
|data

]
0.08 0.10 0.14 0.23 0.94 0.93 0.92 0.87

The table reports posterior means of number of factors (along with the 90% confidence intervals), implied Sharpe
ratios E[SRf |data], and the ratio of SR2

f to the total SDF-implied squared Sharpe ratio E
[
SR2

f/SR
2
m|data

]
for different subsets of factors. Subsets are tradable and nontradable factors, and within tradables we further
separate bond and stock factors. Panels A, B and C report results for the co-pricing, bond-only and stock-only
BMA-SDFs, respectively, using the corresponding factor zoos.

posterior mean Sharpe ratio for all tradable factors jointly is approximately 2.27. The degree of

common spanning of priced risks can be formally assessed by focusing on the estimated share of

the squared Sharpe ratio of the SDF generated by the different types of factors, E
[ SR2

f

SR2
m
|data

]
.

Summing the shares in Panel A ascribable to, respectively, nontradable (0.23) and tradable

bond (0.39) and stock (0.53) factors yields a total of 1.15, i.e., more than 100%, indicating

substantial commonality among the fundamental risks spanned by the different types of factors.
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Furthermore, the sum of the shares for bond and stock factors (0.39 + 0.53 = 0.92) is much

larger than the share due to all tradable factors jointly (0.84). That is, tradable bond and

stock factors capture, at least partially, the same underlying sources of priced risk. Similarly,

summing the shares of squared Sharpe ratios ascribable to nontradable and tradable factors in

Panels A to C yields 1.07, 0.99, and 1.1, indicating some common spanning between tradable

and nontradable factors driven mostly by equity factors.

Since, in the cross-sectional layer of our estimation method (encoded by the likelihood

function in equation (2)), the “regressors” are the loadings in the N ×K matrix of covariances

between test assets and factors (C), the degree of commonality in pricing implications of the

factors in the zoo can be gauged by performing a principal component analysis on the matrix

CTC (in the OLS case, or CTΣ−1C in the GLS case). In Figure IA.20 of the Internet Appendix,

we perform such an analysis and document that the largest five principal components of the

factor loadings explain more than 99% of their cross-sectional variation (in the OLS case, and

more than 80% in the GLS case). That is, overall, the findings of this section highlight that

the factor zoo is akin to a jungle of noisy proxies for common underlying sources of risk.

Given the salience of tradable factors for the BMA-SDF outlined above, with their share of

the squared Sharpe ratio of the SDF in the two-thirds to four-fifths range, a natural question

is what types of risks these factors capture. Using the method pioneered by Campbell and

Shiller (1988) and extended by Vuolteenaho (2002), we classify the tradable factors into those

that relate more to discount rate (DR) news and those for which, instead, cash-flow (CF) news

is more important.32 Internet Appendix IA.5 details the empirical (VAR) methodology used

for categorizing our 40 tradable bond and stock factors as (mostly) driven by either discount

rate or cash-flow news. Therein, we also demonstrate, with extensive robustness tests, that the

decomposition remains quite stable across alternative approaches.

Table 5 decomposes, for a range of prior values, the contribution to the SDF dimensionality

and Sharpe ratio of the tradable factors, primarily related to DR news on one hand and to CF

news on the other. Panel A reports results for the joint pricing of bonds and stocks with all

factors, while Panels B and C focus on the two asset classes and factor zoos separately. The

left and right four columns pertain to DR and CF news, respectively. First, DR news factors

marginally dominate the composition of the co-pricing BMA-SDF in Panel A. The average

factor-implied Sharpe ratios, E[SRf |data], of the DR news-driven factors are consistently higher

32See Koijen and Van Nieuwerburgh (2011) and more recent work by Zviadadze (2021).
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Table 5: Discount rate vs. cash-flow news

Discount rate news Cash-flow news

Total prior SR Total prior SR
20% 40% 60% 80% 20% 40% 60% 80%

Panel A: Co-pricing BMA-SDF, tradable bond and stock factors

Mean 9.81 9.60 9.28 8.20 9.71 9.18 8.56 7.31
5% 6 6 6 5 6 6 5 4
95% 14 13 13 12 13 13 12 11
E[SRf |data] 0.65 1.19 1.70 2.10 0.60 1.06 1.45 1.77
E
[ SR2

f

SR2
m
|data

]
0.58 0.67 0.75 0.75 0.51 0.55 0.57 0.56

Panel B: Bond BMA-SDF, tradable bond factors

Mean 4.97 5.05 4.94 4.43 2.85 2.72 2.44 1.98
5% 2 3 2 2 1 1 1 0
95% 8 8 7 7 5 5 4 4
E[SRf |data] 0.44 0.85 1.21 1.43 0.28 0.50 0.64 0.69
E
[ SR2

f

SR2
m
|data

]
0.67 0.74 0.75 0.65 0.35 0.32 0.27 0.21

Panel C: Stock BMA-SDF, tradable stock factors

Mean 5.01 4.91 4.79 4.38 6.81 6.63 6.31 5.43
5% 2 2 2 2 4 4 3 2
95% 8 7 7 7 10 10 9 9
E[SRf |data] 0.37 0.73 1.11 1.48 0.47 0.83 1.16 1.44
E
[ SR2

f

SR2
m
|data

]
0.44 0.54 0.65 0.72 0.65 0.66 0.69 0.68

The table reports posterior means of number of factors (along with the 90% confidence intervals), implied Sharpe
ratios E[SRf |data], and the ratio of SR2

f to the total SDF-implied squared Sharpe ratio E
[
SR2

f/SR
2
m|data

]
for

discount rate and cash-flow news driven tradable factors, respectively.

than those of their CF-driven counterparts. This translates into a significantly higher proportion

of the total implied Sharpe ratio being driven by DR-related factors. For a prior level equal

to 80% of the ex post achievable Sharpe ratio, DR-driven factors account for 75% of the total

squared Sharpe ratio of the SDF, compared to 56% for the CF-driven factors. Second, when

considering the corporate bond BMA-SDF (Panel B), the total Sharpe ratio is predominantly

driven by bond factors related to DR news. The factor-implied Sharpe ratio E[SRf |data] and

E
[ SR2

f

SR2
m
|data

]
for DR-driven factors are nearly double that of the CF-driven factors. Finally,

when considering only stock factors (Panel C), both DR and CF news appear to play an equally

important role, providing very similar contributions to the Sharpe ratio of the BMA-SDF.

In Internet Appendix IA.5.3, we discuss the estimated positioning of the individual factors

on the spectrum of DR and CF news. Interestingly, the two most likely tradable components of

the BMA-SDF, the post-earnings announcement drift factors in bonds and stocks, PEAD and
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PEADB, are primarily driven by DR news.33

3.2 Trading the BMA–SDF
We now investigate the implementability of the BMA-SDF as a trading strategy and compare

its performance to tradable benchmark strategies.

Portfolio weights for the tradable strategies are constructed by normalizing the posterior

means of the MPRs of the SDF representations to sum to one in each specification. Since all

benchmark models are exclusively based on tradable factors, we constrain the BMA-SDF to

use only such factors. This means that our approach, de facto, focuses on a lower bound for the

trading performance of the BMA-SDF since nontradable factors in the BMA-SDF command a

non-trivial Sharpe ratio (see Table 4). To facilitate comparison, all tradable portfolio strategies

are normalized to have the same volatility as the equity market index.

The IS results are presented in Panel A of Table 6. The IS Sharpe ratio of the tradable

BMA-SDF ranges from 1.99 (20% shrinkage) to 2.85 (80% shrinkage). The closest competitor is

the KNS model, which delivers an IS Sharpe ratio of 2.57. The TOP γ and λ models, using the

top five tradable factors by posterior probability and MPR, respectively, also perform well with

Sharpe ratios of 2.14 and 2.15 respectively. Note also that the tradable version of the BMA-

SDF tends to exhibit much less negative skewness and thinner tails than the other benchmark

strategies.

In Panel B of Table 6, we examine the time series OS performance of the same set of tradable

portfolios. To conduct this exercise, the out-of-sample period is July 2004 to December 2022—a

particularly challenging one as it contains both the Great Recession as well as the contraction

during the COVID pandemic.

We use the first half of our baseline data (January 1986 to June 2004) as the training sample

for the initial estimation of the tradable portfolio weights. These weights are used to form the

portfolios that are held over the first 12 months out-of-sample. Recursively, after one year,

the training sample is expanded by twelve months; the portfolio weights are recomputed using

the resulting MPRs in the expanded training sample, and the performance of the portfolios is

assessed over the following twelve months (yielding, in total, 222 months of OS history).

Strikingly, the OS performance of the BMA-SDF portfolio in Panel B of Table 6 is now

significantly greater than any other model considered. The Sharpe ratio of the BMA-SDF

33See e.g., Penman and Yehuda (2019) for a discussion on how earnings reports contain both discount rate
and cash-flow news.
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Table 6: Trading the BMA-SDF and benchmark models

BMA-SDF prior Sharpe ratio TOP γ TOP λ KNS RPPCA FF5 HKM MKTB MKTS EW

20% 40% 60% 80%

Panel A: In-sample – 1986:01 to 2022:12 (T = 444)

Mean 31.38 38.94 43.43 45.03 33.77 34.04 40.54 39.59 12.20 8.37 10.18 8.29 19.42
SR 1.99 2.46 2.75 2.85 2.14 2.15 2.57 2.51 0.77 0.53 0.64 0.52 1.23
IR 1.73 2.28 2.52 2.59 1.94 1.90 2.33 2.18 0.02 0.34 −0.47 0.29 –
Skew 0.76 0.73 0.54 0.31 0.47 0.44 0.51 0.90 −0.70 −0.65 −0.71 −0.78 −0.29
Kurt 3.55 3.08 2.47 2.00 2.53 2.54 2.98 3.07 3.41 1.91 4.68 2.22 4.63

Panel B: Out-of-sample – 2004:07 to 2022:12 (T = 222)

Mean 22.72 25.73 27.17 27.90 20.59 23.41 20.36 23.01 5.90 7.12 8.22 8.71 17.15
SR 1.46 1.65 1.74 1.79 1.32 1.50 1.31 1.48 0.38 0.46 0.53 0.56 1.10
IR 0.98 1.24 1.38 1.46 1.40 1.37 0.85 1.07 −0.27 −0.26 −0.04 −0.21 –
Skew 0.30 0.04 −0.10 −0.13 −0.62 0.17 −1.19 −0.60 −1.59 −0.37 −0.93 −0.54 −1.06
Kurt 2.39 3.59 4.06 3.77 5.77 2.38 11.97 7.74 10.60 1.51 5.42 1.28 7.22

In-sample (Panel A) and out-of-sample (Panel B) performance of the co-pricing BMA-SDF tradable portfolio
across prior SR levels, the ‘TOP’ model factors portfolios, the latent co-pricing factor models (KNS and RPPCA),
notable benchmark models (FF5, HKM, MKTS, MKTB) and the equally-weighted portfolio (EW) of all (40)
tradable factors. The in-sample weights for the tradable portfolios are formed scaling the (posterior means of
the) MPRs to sum to one in each specification considered. The Top γ (λ) model uses the MPRs from the most
likely (highest absolute MPRs) factors with 80% shrinkage. These factors are: PEADB, PEAD, CMAs, CRY
and MOMBS (γ) and PEADB, MOMBS, CRY, PEAD and CMAs (λ). For KNS, the weights are obtained
directly from the Kozak et al. (2020) procedure. For RPPCA, FF5 and HKM, the weights are estimated via
GMM. In Panel B, the results are strictly out-of-sample. An expanding window is used with an initial window
of 222 months to conduct the estimation. These weights are then used to invest in the factors over the next
12 months. Thereafter, we re-estimate the models in an expanding fashion every year. The Top model input
factors change dynamically at each estimation. For KNS, we re-conduct the two-fold cross-validation at every
estimation to pin down the optimal parameters. For RPPCA, we re-estimate the PCs at every estimation. The
Mean is annualized and presented in percent. The Sharpe ratio and Information ratio are annualized. The
benchmark factor to compute the IR is the EW factor. Skew and Kurt are skewness and kurtosis, respectively.
The models are estimated with the 83 bond and stock portfolios and the 40 tradable bond and stock factors as
described in Section 1. For the BMA-SDFs, we report results for a range of prior Sharpe ratio values that are
set as 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the relevant portfolios and factors. In
Panel B, this ratio changes with the expanding window. The IS period is 1986:01 to 2022:12 (T = 444) and the
OS period is 2004:07 to 2022:12 (T = 222).

portfolio is approximately 1.8 (80% shrinkage). Moreover, all of the BMA-SDF specifications

convincingly outperform the equally weighted (EW) portfolio of tradable factors, which has a

SR of 1.1 and is known to be exceedingly difficult to beat (DeMiguel et al., 2009).

But is this robust OS economic performance of the BMA-SDF portfolio due to just a handful

of lucky episodes? Figure 7 depicts, in log scale, the cumulative returns of investing $1 in the OS

BMA-SDF strategy along with notable benchmarks. For ease of comparison, portfolio returns

are scaled to have a constant volatility equal to that of the stock market factor (MKTS).
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Figure 7: Out-of-sample investing in the BMA-SDF tradable portfolio and benchmark models.

Out-of-sample cumulative return of investing $1 in the co-pricing BMA-SDF tradable portfolio with 80% SR
prior, the latent factor models KNS and RPPCA, the stock and bond market factors, MKTS and MKTB, and
an equally-weighted factor portfolio EW. An expanding window is used with an initial window of 222 months
to conduct the estimation. These weights are then used to invest in the factors which are held constant over
the next 12 months. Thereafter, we re-estimate the models in an expanding fashion every year. For KNS, we
re-conduct the two-fold cross-validation every estimation to pin down the optimal parameters. For RPPCA,
we re-estimate the PCs every estimation. The models are estimated to price the 83 bond and stock portfolios
and the 40 tradable bond and stock factors (N = 123) as described in Section 1. The out-of-sample evaluation
period is 2004:07 to 2022:12 (T = 222).

Out-of-sample, the BMA-SDF (80% shrinkage) tradable portfolio is the clear winner with a

cumulative dollar value over the investment period of $174 versus $71 for RPPCA. Furthermore,

in virtually any multi-year sub-period, the slope (and hence the log return) of the tradable

BMA-SDF strategy is higher than that of any of the alternative strategies, stressing that the

outperformance is extremely stable out-of-sample, and not just driven by a few lucky events.

3.3 The information content of the two factor zoos
As shown in Section 3.1.2 (see Tables 2 and 3), although one can construct well-performing

BMA-SDFs to price bonds and stocks separately using the information in their respective zoos,

the joint pricing of these assets requires information from both sets of factors (see Figure 5). In

this section, we demonstrate that this result arises from the fact that corporate bond returns

reflect not only a component related to compensation for exposure to credit risk, but also a

Treasury term structure risk premium that is not captured by equity-based factors.

To illustrate this point, we now turn our focus to bond returns in excess of duration-matched

portfolios of U.S. Treasuries. More precisely, for every bond i, we construct the following
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Figure 8: Pricing the joint cross-section of stock and duration-adjusted bond returns.

This figure plots the distributions of R2
GLS , R2

OLS , RMSE and MAPE in Panels A, B, C and D respectively across
16,383 possible bond and stock cross-sections using the 14 sets of stock and bond test assets (214 − 1 = 16, 383)
priced using the respective BMA-SDF (the empty set is excluded). All bond test assets (IS and OS) and factors
are formed with duration-adjusted returns defined in equation (10). The models are first estimated using the
baseline set of IS test assets and then used to price (with no additional parameter estimation) each set of
the 16,383 OS combinations of test assets. The red distributions correspond to the pricing performance of
the co-pricing BMA-SDF. The blue (yellow) distributions correspond to the pricing performance of the bond
(stock) only BMA-SDF. The BMA-SDFs are computed with a prior Sharpe ratio value set to 80% of the ex
post maximum Sharpe ratio of the IS test assets. All data are standardized, that is, pricing errors are in Sharpe
ratio units. The sample period is 1986:01 to 2022:12 (T = 444).
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duration-adjusted return

Rbond i,t −RTreasury
dur bond i,t︸ ︷︷ ︸

Duration-adjusted return

≡ Rbond i,t −Rf,t︸ ︷︷ ︸
Excess return

−
(
RTreasury

dur bond i,t −Rf,t

)
︸ ︷︷ ︸

Treasury component

, (10)

where Rbond i,t is the return of bond i at time t, Rf,t denotes the short-term risk-free rate, and

RTreasury
dur bond i,t denotes the return on a portfolio of Treasury securities with the same duration as

bond i (constructed as in van Binsbergen et al. (2025), see also Internet Appendix IA.6). As is

evident from the right-hand side of equation (10), the duration adjustment removes the implicit

Treasury component from the bond excess return, hence isolating the remaining sources of risk

compensation that investing in a given bond entails.

Figure 8 reports the distribution of OS measures of fit (R2
GLS, R2

OLS, RMSE, and MAPE)

across 16,383 possible bond and stock cross-sections using the 14 sets of stock and bond test

assets for three different BMA-SDFs based on (i) bond factors only, (ii) stock factors only, and

(iii) both bond and stock factors. The contrast with Figure 5 is stark: once bond returns are

adjusted for duration, the BMA-SDF based solely on equity information prices jointly bonds

and stocks as effectively as the co-pricing BMA-SDF that additionally includes bond factors.

That is, the information content of the bond factor zoo becomes largely irrelevant for co-pricing

once the Treasury component of bond returns is removed.

This last finding raises a natural question: why do we need the bond factors for co-pricing

assets in the absence of the duration adjustment? As we are about to demonstrate, bond factors

price the Treasury component of corporate bond returns.

Panel A of Figure 9 summarizes the in-sample pricing of the Treasury component of corpo-

rate bond returns using the Treasury component bond BMA-SDF based only on the bond factor

zoo. That is, as in-sample test assets we use the Treasury component of the 50 bond portfolios

and estimate the model using the 14 nontradable and the 16 tradable bond factors.34 The

pricing (evaluated at the posterior mean of the SDF) is nearly perfect, with a cross-sectional

(constrained) R2
OLS of about 97%. Similarly, Panel B shows that the out-of-sample pricing of a

cross-section of Treasury excess returns using the same BMA-SDF is also nearly perfect, with

a constrained R2
OLS of 92% and average excess returns and SDF-implied risk premia aligning

34We do not include the factors among the test assets so that the evaluation of fit is based only on the ability
to explain the Treasury component. Expected risk premia of portfolios in the figure are proxied by their time
series averages (on the vertical axis), while the SDF-implied ones are computed as minus the covariance of (the
posterior mean of) the BMA-SDF, hence imposing the theoretical restriction coming from the fundamental asset
pricing equation. The constrained R2 is computed imposing a unit slope and zero intercept.
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Figure 9: Pricing the Treasury component of corporate bond returns.

Plots of sample averages of excess returns for Treasury portfolios, on the y-axis, against BMA-SDF-implied risk
premia, computed as minus the covariance between portfolio returns and the (posterior mean of the) BMA-SDF,
constructed using the nontradable factors plus only bond (Panels A and B) or stock (Panels C and D) factors, on
the x-axis. Panels A and C: excess returns are the Treasury component from equation (10), RTreasury

dur bond i,t −Rf,t,
using the 50 IS bond portfolio test assets. Panels B and D: 29 Treasury portfolios of excess returns on Treasury
securities with maturities spanning 2 to 30 years. All are described in Section 1. The Treasury component
bond and stock BMA-SDFs are estimated using the 50 IS portfolios and the respective bond and stock factors
in addition to the 14 nontradable factors described in Appendix A. For either estimation we do not impose
self-pricing for the stock and bond factors. OLS R2s are from a constrained regression that sets the slope
coefficient to one. The sample period is 1986:01 to 2022:12 (T = 444).
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closely around the 45-degree line.

In contrast, Panels C and D of Figure 9 report the same cross-sectional pricing exercises

using the BMA-SDF based only on stock factors. Clearly, the equity-based BMA-SDF is not

able to price the Treasury component of corporate bond returns, neither in- nor out-of-sample,

yielding extremely low measures of fit (the constrained R2
OLS is only 6%) and slope coefficients

very far from the theoretical value.

The above highlights that the bond factor zoo is necessary for co-pricing bonds and stocks

because the factors proposed in the corporate bond literature price well the Treasury component

implicit in corporate bond returns—a component that stock factors fail to price. However, once

this component is accounted for—as in the case of duration-adjusted bond returns—co-pricing

can effectively be achieved using only equity information.

But does one really need our Bayesian machinery comprising quadrillions of models to

uncover this phenomenon? The answer, resoundingly, is yes. As highlighted in Tables IA.XVI

and IA.XVII (Panels B and D) of the Internet Appendix, unlike our BMA-SDF, canonical

equity-based factor models do quite a poor job in pricing corporate bond returns even after

removing their Treasury component (with small, and mostly negative, measures of fit, and

significantly larger pricing errors than the BMA-SDF). This is due to the fact that both the co-

pricing and stock-based BMA-SDFs that price duration-adjusted corporate bonds (and stocks)

are dense in the space of both tradable and nontradable factors (as per Panel C of Table 4).

That is, the link between duration-adjusted bond returns and equity market factors extends far

beyond the one between these assets and just the equity market index (van Binsbergen et al.

(2025)) or just a handful of factors. Consequently, and importantly, the reward for holding this

risk is a multiple of that for the market index alone (with posterior annualized Sharpe ratios of

about 1.4 to 1.7 just for the tradable component, as per Panel C of Table 4). Furthermore, the

high degree of (posterior) factor density of the equity-based SDF that prices duration-adjusted

bond returns implies that canonical inference based on low-dimensional models is unreliable

(due to misspecification) and affected by a severe omitted variable problem (Giglio and Xiu

(2021)). For example, in Figure IA.26 of the Internet Appendix, we test the equity CAPM

as a pricing model for the duration-adjusted bond returns. We do so in both SDF and “beta”

representations using (unlike previous literature) robust estimation methods. As the figure

highlights, using robust inference, one would not find a statistically significant link between

duration-adjusted bond returns and the equity market index in such a heavily misspecified
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setting.

Moreover, the Treasury component of corporate bonds is also economically important. The

ex post (annualized) maximum Sharpe ratio of the duration-matched Treasury portfolios in

equation (10) is approximately 1.48. As illustrated in the bottom panel of Figure IA.22 of

the Internet Appendix, this is roughly the posterior mode of the Sharpe ratio achievable with

the BMA-SDF that prices the Treasury component only with factors in the corporate bond

factor zoo. Note also that, as depicted in the top panel of the figure, even for pricing just this

Treasury component, the required SDF is quite dense, with a median number of factors equal

to 14 and a posterior 95% C.I. ranging from 8 to 19 factors. Furthermore, as shown in Table

IA.XVIII of the Internet Appendix, the required SDF is dense in the space of both nontradable

and tradable factors.

Mirroring the analysis in Section 3.1, we can assess which factors are more likely to price

the Treasury component individually, and how factors should be optimally combined to achieve

a portfolio that captures the priced risks in these assets. Figure IA.23 of the Internet Appendix

reports the posterior factor probabilities and market prices of risk implied by the pricing of the

Treasury component of corporate bond returns using the corporate bond factor zoo (the prior

Sharpe ratio is set to 80% of the ex post maximum Sharpe ratio). Overwhelmingly, the most

likely factors are nontradable: five out of the six factors with posterior probability higher than

the prior value are nontradable. Furthermore, largely, these factors are the same as those that

appear most likely when co-pricing bonds and stocks (the top three being YSP, CREDIT and

LVL, followed by the IVOL factor). Moreover, these nontradable factors command large market

prices of risk and the probability of zero nontradable factors being in the bond BMA-SDF that

prices the Treasury component of corporate bond returns is virtually zero (or 0.014%).

The bottom panel of Figure IA.23 of the Internet Appendix tells us which portfolios to form

to capture the common risk priced in these cross-sections. Interestingly, in addition to the

most likely factors, the bond market index (MKTB) and the traded term structure risk factor

(TERM, i.e., the difference between the monthly long-term government bond return and the

one-month T-Bill rate of return, Fama and French (1992)) feature prominently in the BMA-

SDF with, respectively, the second and third largest portfolio weights—and the largest among

tradable factors. That is, these factors are not likely fundamental sources of risk, but they

appear correlated with the true sources.

This finding also explains the success of the MKTB factor in Dickerson et al. (2023). As
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Internet Appendix IA.7 also confirms, the bond market index commands a large risk premium

in its own market, but it is not likely to be part of the true latent SDF. Nevertheless, it

commands a substantial risk premium as compensation for being highly correlated with the

latent fundamental risks in the bond market, particularly the Treasury component, making it

advantageous in a portfolio designed to capture these risks (as per BMA-SDF weights).

Note that, at least in nominal terms, the cash flows of Treasury bonds are perfectly known

in advance. Hence, arguably, we would expect discount rate news to be the primary drivers of

their priced risk (Chen and Zhao (2009)). Given the flexibility of our general prior introduced

in Section 2.3, we can use our discount-rate and cash-flow news decomposition of the factors to

encode this prior belief about the relative importance of DR versus CF news. In particular, we

can use the V(Ndr)
V(u) estimates for each factor to compute the (normalized) κ weighting vector to

inform the prior: DR factors are assigned a positive weight, while CF factors receive a negative

weight. This encodes prior beliefs that traded bond factors classified as being driven (relatively)

more by DR news, ceteris paribus, explain a larger portion of the squared Sharpe ratio compared

to factors driven by CF news. We report the posterior factor probabilities and market prices

of risk implied by the pricing of the Treasury component of corporate bond returns with this

DR factor tilt in Figure IA.24, and the corresponding pricing statistics in Table IA.XIX of the

Internet Appendix. Obviously, this tilt makes the DR factors individually more likely, pushing

the likelihood of the MKTB factor above the prior value, but the pricing results are overall very

similar to those with the more diffuse prior encoding, with only a very minor improvement in

OS pricing performance and a small perturbation of the portfolio composition as outlined in

the bottom panel of Figure IA.24.

Our analysis also sheds light on the degree of integration between equity and corporate

bond markets. First, as illustrated by the generalized canonical correlation (GCC) analysis

in Figure IA.8 of the Internet Appendix, there is substantial commonality—in the time series

dimension—between bond and stock returns, with the first GCC being just under 75% (Panel

C). Furthermore, upon removing the Treasury component from bond returns, the GCC analysis

remains virtually unchanged (Panel E), once again suggesting that the Treasury component has

distinct drivers compared to the risks spanned in equity markets.

Second, Table 4 shows both evidence of an overlap between the latent risks captured by

equity and bond factors (in Panel A, the sum of the Sharpe ratios achievable with either of

the two sets of tradable factors is larger than the Sharpe ratios achievable with these tradable
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factors jointly), but also of separation between the risks priced in the two markets (as the

maximum Sharpe ratios achievable with the BMA-SDFs that use only equity or bond factors

to separately price the two markets, Panels B and C, are smaller than the Sharpe ratios of the

co-pricing BMA-SDF that uses the same factors jointly, in Panel A).

Third, the evidence that equity factors can price corporate bond returns once their Trea-

sury component is accounted for (Figure 8), and that stock factors cannot price this Treasury

component (Figure 9), suggests both a segmentation between equity risk and Treasury markets

and a commonality between stock markets and credit risk in bonds.

Fourth, in Table IA.XX of the Internet Appendix, we report the time series correlations

between (the posterior means of) BMA-SDFs constructed with equity and bond factors, jointly

and separately, to price (jointly and separately) stock returns, bond excess returns, duration-

adjusted bond returns, and the Treasury component of corporate bond returns. Therein, the

correlation between the bond-factors BMA-SDF that prices the Treasury component of bond

returns and the stock-factors BMA-SDF that prices equity returns stands out as particularly

low: 0.172 (80% shrinkage). For comparison, the correlations between the co-pricing BMA-SDF

and the bond- and stock-only BMA-SDFs that price these asset classes separately are all well

in excess of 70%. Once again, this suggests that the (partial) evidence of segmentation between

equity and bond markets is driven by the Treasury component in the latter.

Hence, overall, we find both evidence of commonality of risks priced in the two markets—net

of Treasury effects—and hence of integration, and of a degree of segmentation generated by the

implicit loading of corporate bonds on Treasury-related risks.

3.4 The economic properties of the co-pricing SDF
We now turn to assessing the economic properties of the co-pricing BMA-SDF. Figure 10

depicts the time series of the BMA-SDF (that is, its posterior mean), along with its conditional

time series mean (estimated using an ARMA(3,1) model selected via both the Akaike and the

Bayesian Information Criteria, AIC and BIC). Both the SDF and its conditional mean exhibit

clear business cycle behavior as they increase during expansions and tend to peak right before

recessions, being substantially reduced during economic contractions. Moreover, as highlighted

in Panel A of Figure IA.27 of the Internet Appendix, the BMA-SDF is highly predictable:

virtually all of its autocorrelation coefficients are statistically significant at the 1% level up to

20 months ahead, and the p-value of the Ljung and Box (1978) test of joint significance is zero
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Figure 10: The co-pricing SDF and its conditional mean.

The figure plots the time series of the (posterior mean of the) co-pricing BMA-SDF and its conditional mean.
The conditional mean is obtained by fitting an ARMA(3,1) to the BMA-SDF whereby the order of the ARMA
is selected using the AIC and the BIC. Shaded areas denote NBER recession periods. The sample period is
1986:01 to 2022:12 (T = 444).

at this horizon. Additionally, about one-fifth of its time series variance is explained by its own

lags (23% for the best AR specification and 19% for the best ARMA specification according to

the BIC).

Note also that, as shown in Figure IA.28 of the Internet Appendix, none of the other

celebrated SDF models come close to displaying such a level of business cycle variation and

persistency: the KNS SDF has about 11% of its time series variation being predictable by its

own history, while this number drops to 4% for RPPCA, and is only 2% to 3% for FF5 and

CAPMB, and zero for HKM and CAPM. Remarkably, as shown in Panel A of Table IA.XXI

of the Internet Appendix, the SDFs with a higher degree of persistency, KNS and RPPCA,

are exactly the ones with the highest degree of correlation with the BMA-SDF (0.78 and 0.55,

respectively), and are the closest competitors for the BMA-SDF in the pricing exercises in

Section 3.1. Instead, SDFs that perform significantly worse in cross-sectional pricing have both

little time series persistency and correlations with the BMA-SDF in the 0.16 to 0.29 range.

Obviously, the nontradable factors in the BMA-SDF play an important role in generating a

pronounced business cycle pattern and a high degree of predictability. Nevertheless, even when

removing the nontradable factors from the BMA-SDF, the resulting SDF remains predictable,

with 5% to 10% of its time series variation explained by its own lags, and a highly significant
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Ljung and Box (1978) test statistic even up to 20 months ahead. Furthermore, note that the

five most likely factors in the SDF (PEAD, IVOL, PEADB, CREDIT, YSP) explain only about

47% of the time series variation of the BMA-SDF, further confirming the dense nature of the

pricing kernel. Individually, only PEADB and IVOL explain marginally more than 20% of the

time series variation of the SDF, with the other factors accounting individually for 3% to 7%.

Recall that the variance of the SDF is equal to the squared Sharpe ratio achievable in the

economy. Hence, whether our filtered SDF implies time-varying compensation for risk can

be elicited by analyzing the predictability of its volatility. As pointed out in Engle (1982),

the presence of volatility clustering can be assessed, without taking a parametric stance on

the variance process, by simply analyzing the serial correlation of the squared one-step-ahead

forecast errors, since these are consistent (yet noisy) estimates of the latent conditional variance.

Note that, for instance, such a variance proxy has been used extensively in the macrofinance

literature (see, e.g., Bansal et al. (2005), Bansal et al. (2012), Beeler and Campbell (2012), and

Chen (2017)), and squared forecast errors of returns are commonly used as a proxy for latent

conditional variances.

Panel B of Figure IA.27 of the Internet Appendix reports the empirical autocorrelation

function of the squared forecast errors of the co-pricing BMA-SDF. Most of the autocorrelation

coefficients are statistically significant at the 1% level up to seven months ahead. Moreover,

the Ljung and Box (1978) test strongly rejects the joint null of zero autocorrelations up to 20

months into the future (the p-value of the test is zero). That is, not only does the first moment

of our filtered SDF exhibit substantial predictability, but so does its second moment, suggesting

time-varying risk compensation in the economy.

To tackle the question of whether the SDF-implied time variation in risk compensation (i.e.,

the economy-wide conditional Sharpe ratio) that we uncover makes economic sense, we fit a

simple GARCH(1,1) (see Bollerslev (1986)) process to our BMA-SDF.35 Figure 11 presents the

estimated conditional volatility of the SDF, revealing striking results. The implied conditional

Sharpe ratio is not only highly countercyclical but also exhibits pronounced spikes during peri-

ods of market turbulence and heightened economic uncertainty. These include Black Monday,

the Asian financial crisis, the burst of the dot-com bubble, the 9/11 terrorist attacks, the Iraq

35We estimate the process based on the posterior mean of the BMA-SDF. Ideally, one would estimate the
volatility process for each draw of the SDF and for each possible model, and then compute the posterior
average of these ‘draws’ for the volatility process. Nevertheless, since GARCH estimation requires numerical
optimisation, the ideal approach is unfeasible in our model space with quadrillions of models.
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Figure 11: Volatility of the co-pricing BMA-SDF.

The figure plots the annualized volatility of the co-pricing BMA-SDF along with the volatilities of the CAMPB
and FF5 SDFs. The volatility of the BMA-SDF is obtained by fitting an ARMA(3,1)-GARCH(1,1) to the
posterior mean of the co-pricing BMA-SDF whereby the specification is selected via the AIC and the BIC. The
GARCH quasi-maximum likelihood coefficient estimates are:

σ2
t+1 = ω + αϵ2t + βσ2

t

ω α β
Estimate 0.01 0.15 0.81
Robust SE 0.00 0.04 0.06

CAPMB is the bond single-factor model using MKTB, and FF5 is the five-factor model of Fama and French
(1993). Estimation details for the benchmark models are given in Appendix D. The volatilities of the SDFs are
also computed using a GARCH(1,1) model after selecting an ARMA mean process using the AIC and the BIC.
Shaded areas denote NBER recession periods. The sample period is 1986:01 to 2022:12 (T = 444).

invasion, the great financial crisis, the Greek default and subsequent eurozone debt crisis, the

COVID pandemic, and the aftermath of Russia’s invasion of Ukraine. Note that the estimated

GARCH coefficients imply a highly persistent conditional volatility, with deviations from the

mean exhibiting a half-life of approximately 16.6 months.36

As per Panel A in Table 4, nontradable factors account for about a quarter of the SDF

variance. Hence, a natural question is whether the SDF volatility pattern depicted in Figure 11

is simply due to tradable factors. We evaluate this conjecture by removing all tradable fac-

tors from the BMA-SDF and re-estimating the volatility process of this nontradable-only SDF.

We find that the resulting volatility process remains very persistent (with a half-life of 12.3

months), with pronounced business cycle variation and reaction to periods of heightened eco-

36Recall that the half-life of a GARCH(1,1) process is defined as 1+ ln(1/2)
ln(α+β) where α and β denote, respectively,

the coefficients on lagged squared error and variance.
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nomic uncertainty (see Figure IA.29 of the Internet Appendix). Moreover, it has a correlation

with the volatility of the BMA-SDF in Figure 11 of about 62%. That is, both tradable and

nontradable components of the BMA-SDF are characterized by a very persistent volatility with

a clear business cycle pattern.

But is the strong countercyclical behavior of the BMA-SDF volatility, and its sharp increase

during periods of economic uncertainty, just a mechanical byproduct of it loading on several

tradable factors? Figure 11 suggests that this is not the case. Focusing on the celebrated

five-factor model of Fama and French (1993) and the bond CAPM (which is not incrementally

outperformed by alternative models considered in Dickerson et al. (2023)), we apply the same

procedure of estimating their SDF coefficients and computing the implied conditional volatilities

using a GARCH specification (after fitting a mean model based on the AIC and the BIC). The

estimated volatilities for these two SDF models in Figure 11 make clear that the use of tradable

factors in the SDF does not mechanically deliver our findings for the BMA-SDF: both the

cyclical pattern and the reaction to periods of heightened economic uncertainty are much less

pronounced for the FF5 model, and even more so for the CAPMB. This is formally measured

in Figure IA.30 of the Internet Appendix that shows that the half-life of volatility shocks to the

FF5 SDF model is only 4.2 months, and for the CAPMB it is just 3 months. Finally, Figure

IA.31 of the Internet Appendix depicts the residual of the linear projection of the BMA-SDF

estimated volatility on the estimated volatilities of the KNS, RPPCA, CAPM, CAPMB, HKM

and FF5, with the residual showing a strong business cycle pattern and being particularly large

and positive during periods of high economic uncertainty, suggesting that these alternative SDF

models do not sufficiently capture these states despite being based on tradable factors.

The observed business cycle variations and predictability in both the first and second mo-

ments of the SDF would imply, within a structural model, time-varying and predictable risk

premia for tradable assets. Therefore, we now turn to testing this time series prediction of our

BMA-SDF identified from cross-sectional pricing.

The precise functional form of the predictive relation between current SDF moments and

future asset returns does depend on the postulated model. Nevertheless, as shown in Bryzgalova

et al. (2024), the Hansen and Jagannathan (1991) conditional SDF projections on the space of

returns imply a (log) linear SDF driven by two factors: the innovations to the SDF and the

product of the conditional mean of the SDF and the same innovations. Therefore, assuming a

contemporaneous linear relationship between asset returns and the SDF yields a simple linear
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A: Predictability of monthly log returns
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B: Predictability of twelve months cumulative log returns

Figure 12: Predictability of tradable factors with lagged SDF information.

The figure shows the R2s of predictive regressions of factor returns on the previous month estimates of the co-
pricing BMA-SDF conditional variance and conditional variance interacted with the conditional mean. Panel
A shows R2s for one-month ahead predictions while Panel B shows R2s for one-year ahead predictions. The
volatility of the BMA-SDF is obtained by fitting an ARMA(3,1)-GARCH(1,1) to the posterior mean of the co-
pricing BMA-SDF whereby the specification is selected via the AIC and the BIC. To account for the overlapping
nature of the observations in Panel B, we construct robust standard errors by (i) using a Bartlett kernel (Newey
and West (1987)) with 15 lags, (ii) constructing a sandwich estimate of the covariance matrix, and (iii) applying
a degrees of freedom correction. The 40 predicted tradable factors are described in Appendix A.

dependence of conditional risk premia on two variables: (i) the conditional variance of the SDF

and (ii) the product of this conditional variance with the conditional mean of the SDF.

Leveraging this insight, we run predictive regressions of asset (log) returns between time t−1
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and t, as well as cumulated (log) returns between t−1 and t+12, on SDF information observed

at time t−1: Et−1[Mt]×Et−1[σ
2
t ] and Et−1[σ

2
t ], where the conditional mean is constructed, as in

Figure 10, by fitting an ARMA(3,1) process (the preferred specification according to the BIC),

and the conditional variance is obtained from the GARCH(1,1) estimates depicted in Figure 11

(and also selected via the BIC).

As test assets to be predicted, we employ the bond and stock factors used in our cross-

sectional analysis since these are generally hard to predict and should, according to the previous

literature, demand sizable risk premia.

Figure 12 summarizes the predictability results. In Panel A, we report the R2 values for the

one-month-ahead predictions, and in Panel B the same for the cumulative twelve-month-ahead

predictive regressions. We encode, via shading, the joint statistical significance of the regressors

as implied by an F -test of the regression coefficients.

The results are striking. For the majority of test assets, we find that information embedded

in the lagged SDF significantly predicts future asset returns. At the monthly horizon shown

in Panel A, this predictability is statistically significant in 75% of cases at the 10% confidence

level and in 62% of cases at the 5% significance level. Second, the amount of predictability is

economically large, albeit not unrealistically so: for the statistically significant cases it ranges

from 1.1% to 6% at the monthly horizon (Panel A). At the twelve-month horizon (Panel B)

the median R2 is about 10%, with many factors having more than one-fifth of their time

series variation being predictable. Moreover, even with an extremely conservative approach to

constructing the covariance matrix, the F -test yields statistically significant results in about

60% of cases at the 10% level and 45% of cases at the 5% level.37

4 Robustness
In this section, we discuss an extensive array of robustness exercises that all confirm our main

findings.

4.1 Factor tilting
Our novel spike-and-slab prior in Section 2.3 allows us to assign a heterogeneous degree of prior

shrinkage to the different types of factors by setting the hyper-parameter κ to values different

37We construct conservative standard errors by (i) using a Bartlett kernel (Newey and West (1987)) with
15 lags, (ii) constructing a sandwich estimate of the covariance matrix, and (iii) applying a degrees of freedom
correction to account for the relatively small sample of independent observations.
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from zero. This parameter encodes our prior belief about the share of the SDF Sharpe ratio

generated by the respective types of factors.

Consider κ ∈ {−0.5, 0.5}. Setting κ = 0.5 for bond factors implies the belief that, ceteris

paribus, they explain a share of the squared Sharpe ratio of the SDF that is 1+κ
1−κ

= 3 times as

large as the share of stock factors. This represents a substantial departure from the homoge-

neous prior setting (i.e., κ = 0). Nevertheless, since our prior is not dogmatic and does not

impose a hard threshold, it can be falsified if the data do not conform with it.

Figure IA.32 of the Internet Appendix reports the posterior factor probabilities estimated

with the tilted prior in favor of either bond or stock factors. Remarkably, the factors that we

identify as more likely given the data in Section 3.1.1 still have posterior probabilities above

the prior value in 9 out of 10 cases. That is, the likelihood of the data is quite informative for

these more likely factors, and the prior perturbation has only a limited effect on the posterior

probabilities. Similarly, the posterior market prices of risk depicted in Figure IA.33 of the

Internet Appendix highlight that the set of factors that features more prominently in the co-

pricing BMA-SDF is largely unchanged, albeit their individual posterior λs do vary in the

expected directions.

For a sparse SDF, we would expect these perturbations of the posterior λs to have a sub-

stantial impact on its pricing ability. For a dense SDF that combines multiple noisy proxies for

common underlying sources of risk, we should expect instead a much more muted effect (as also

implied by our simulation results in Section 2.4.1). Table IA.XXII of the Internet Appendix

summarizes the resulting in- and out-of-sample pricing performance of the tilted BMA-SDF for

our baseline cross-section of test assets. Overall, the effect of the prior tilting is quite small

but unambiguous in direction: as we tilt toward either type of factor, the out-of-sample pricing

ability deteriorates. This strengthens the results in Section 3.3: for the co-pricing of bond and

stock excess returns, we need information from both factor zoos. Consequently, over-reliance

on either type of factor worsens the BMA-SDF performance.

Interestingly, as shown in Table IA.XXIII of the Internet Appendix, where we consider the

separate pricing of bond and stock excess returns, the deterioration in pricing performance is

stronger for equities when tilting the prior in favor of bond factors—again reinforcing the result

in Section 3.3 of a much more limited information content in the bond factor zoo relative to

the equity one.

Finally, we revisit our findings on co-pricing when bond returns are duration-adjusted. The
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results in Section 3.3 strongly suggest that, once the Treasury component of bond returns is

accounted for, the bond factor zoo becomes largely redundant. If this were truly the case, we

would expect that tilting the prior in favor of stock (bond) factors should actually improve

(worsen) the pricing ability of the BMA-SDF. This is exactly what Figure IA.34 of the Internet

Appendix highlights. Unambiguously, as we tilt the prior away from bond factors, the out-of-

sample measures of cross-sectional fit improve. Furthermore, an extreme tilt in favor of stock

factors (see Figure IA.35 of the Internet Appendix) maximizes the pricing ability of the BMA-

SDF. This reinforces our previous finding: bond factors are largely redundant for co-pricing

bond and stock portfolios once the Treasury component of the latter is accounted for.

4.2 Imposing sparsity
Recall that in our method, beliefs regarding SDF density are encoded through a Beta-distributed

prior probability of factor inclusion: π(γj = 1|ωj) = ωj ∼ Beta(aω, bω). In our baseline

estimations, we assign a Beta(1, 1) prior distribution to this quantity—equivalent to a uniform

prior on [0, 1] and analogous to the flat prior implicit in canonical frequentist inference. This

specification reflects our decision not to take an ex ante stance on whether the SDF should be

sparse or dense.

However, the literature commonly assumes a high degree of sparsity, either ex ante or

through specification selection, typically favoring factor models with approximately five factors.

Our framework accommodates such beliefs in a flexible, non-dogmatic manner by choosing the

prior mean and variance of ωj, E[ωj] =
aω

aω+bω
and Var(ωj) =

aωbω
(aω+bω)2(aω+bω+1)

.

Using appropriate aω and bω, we can concentrate the prior on model dimensions typical in

the literature. Specifically, we set aω ≈ 3.54 and bω ≈ 34.66 to achieve two objectives: (i) the

prior expectation of included factors, E[ωj]×K, yields the canonical five-factor model, and (ii)

the prior two standard deviation credible interval encompasses models with zero to ten factors

(since Var(ωj) = (2.5/K)2).

Results using this sparsity-favoring prior appear in Internet Appendix IA.9.2. Three key

findings emerge. First, Table IA.XXIV of the Internet Appendix shows that the factors with

posterior probabilities exceeding the prior value (that is, 9.26%) are essentially identical to

those in our baseline estimates. The only exception occurs under the lowest prior shrinkage,

where PEAD’s posterior probability drops below this threshold—an expected outcome given

this prior’s reduced ability to control confounding effects from weak factors. Second, Table
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IA.XXV of the Internet Appendix demonstrates that the BMA-SDF’s pricing performance

under the sparsity-favoring prior remains superior to alternative specifications in the literature,

particularly out-of-sample. Third, despite this relative advantage, imposing sparsity degrades

the performance of the BMA-SDF compared to our baseline findings in Tables 2 and 3. This

deterioration is expected: as Figure 3 and Table 4 demonstrate, the data strongly support a

dense SDF. Consequently, artificially imposing sparsity necessarily worsens the performance of

BMA-SDF, as our results confirm. These findings highlight once more that the quest for a

pricing kernel in the previous literature, focusing on low-dimensional observable factor models,

relies on a stringent assumption not supported by the data.

4.3 Estimation excluding the most likely factors
The empirical findings in Section 3.1 strongly suggest that the joint zoo of bond and stock

factors resembles a jungle of noisy proxies for common underlying sources of risk. As we show

theoretically in Section 2.4 and in simulation in Section 2.4.1, if this characterization is accurate,

our BMA-SDF method should provide a good approximation of the true latent SDF even when

factors capturing fundamental risk sources are removed from the candidate set.

To assess whether this robustness property holds in the data, we remove the factors iden-

tified as most salient for characterizing the true latent SDF, construct a BMA-SDF using the

remaining factors, and evaluate its pricing ability both in- and out-of-sample. We perform this

exercise by removing three different factor sets: (i) the top five factors ranked by posterior

probabilities; (ii) the top five factors ranked by posterior weights in the BMA-SDF (i.e., factors

with the largest posterior market prices of risk); and (iii) the union of factors from sets (i)

and (ii). This constitutes a stringent test of our method, as we remove the factors individually

identified as the most informative about priced risk in the economy.

Internet Appendix IA.9.3 reports the empirical results. Remarkably, the BMA-SDF con-

structed with this limited information set still strongly outperforms canonical models from the

literature both in- and out-of-sample (see Table IA.XXVI of the Internet Appendix). As shown

in Figures IA.36 to IA.38 of the Internet Appendix, this performance is achieved by increasing

the posterior weights, E[λj|data], of several noisy proxies in the BMA-SDF—precisely what our

theoretical and simulation results in Section 2.4 predict.

However, we do observe some minor degree of deterioration in the performance of the BMA-

SDF, particularly when minimal prior shrinkage is applied. This is again an expected outcome
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given this prior’s reduced ability to control confounding effects from weak factors. However, even

in the most extreme case, this reduction remains moderate, with out-of-sample R2 measures

dropping by only 8% in the worst-case scenario.

Overall, these results confirm both the soundness and robustness of our method in recovering

pricing information from the factor zoo and our finding that most factors are noisy proxies of

common underlying risk sources.

4.4 Estimation uncertainty
Finally, we show that our asset pricing results are robust across (i) different corporate bond

data, (ii) varying bond and stock cross-sections and (iii) different factor zoos and sample periods.

The detailed results are presented in Internet Appendix IA.10.

4.4.1 Varying corporate bond data

In Internet Appendix IA.1 we describe different sources for corporate bond data used for aca-

demic research and, in particular, we show the robustness of the bond factors with respect

to the data source and calculation method. In this section we confirm that the asset pricing

implications are also robust to the choice of corporate bond data. Detailed results are presented

in Internet Appendix IA.10.1.

In particular, we compare the pricing performance of the co-pricing BMA-SDF across five

different sets of corporate bond data: (i) our baseline LBFI/BAML ICE bond-level data, (ii)

the LBFI/BAML ICE firm-level data, (iii) the LBFI/BAML ICE bond-level data but using

only quotes (i.e., removing matrix prices), (iv) the transaction-based WRDS TRACE data,

and (v) the transaction-based DFPS TRACE data. That is, with each of these datasets, we

re-estimate the co-pricing BMA-SDF using the 83 test assets and 54 tradable and nontradable

factors. Across estimations, only the 50 IS bond test assets and tradable bond factors change.

First, the ex post Sharpe ratios across all shrinkage levels are very closely aligned, as shown

in Table IA.XXVII of the Internet Appendix. Second, the posterior probabilities across the

data sets are very consistent. On average, eight out of the ten most likely factors (including

the top five) match the baseline results from Section 3.1.1 (see Figure IA.39 of the Internet

Appendix). Finally, the in- and out-of-sample asset pricing performance of the BMA-SDF is

fairly consistent across corporate bond data sets and, most importantly, the BMA-SDF still

emerges as the dominant model across all estimations, with a tight spread between min and

max values (see Figures IA.40 (IS) and IA.41 (OS) of the Internet Appendix).
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4.4.2 Varying cross-sections

Our baseline estimate of the BMA-SDF is specific to the test assets that we describe in Section 1.

We now vary the cross-section of test assets and re-estimate the co-pricing BMA-SDF for

hundreds of alternative sets of test assets across bonds and stocks.

Specifically, we include the 153 long-short equity anomalies provided by Jensen et al. (2023)

and the corporate bond counterparts from Dick-Nielsen et al. (2025) for a joint corporate bond

and stock cross-section of 306 anomalies. From this very large cross-section, we then ran-

domly sample anomaly pairs to generate 100 in-sample co-pricing cross-sections. Each sampled

cross-section consists of 25 bond and 25 stock portfolios from the same underlying anomaly

characteristic. Together with the 40 tradable bond and stock factors, we use 90 IS test assets

for the estimation. In Figure IA.42 of the Internet Appendix we present the average posterior

probabilities (Panel A) and the market prices of risk (Panel B), along with their respective

minimum and maximum values across the 100 estimations, with the Sharpe ratio shrinkage set

to 80% of the ex post maximum. IVOL, PEADB, and PEAD still emerge as the most probable

factors for inclusion in the SDF—consistent with the results documented in Figure 2 and Table

A.2 of Appendix C.

In Figures IA.43 (IS) and IA.44 (OS) of the Internet Appendix we present the averages,

minima and maxima of the R2
GLS (Panel A) and R2

OLS (Panel B) values across the 100 sets of

test assets for the BMA-SDF across our four Sharpe ratio shrinkage levels and the additional

models we consider in Tables 2 and 3. The BMA-SDF with 60% and 80% Sharpe ratio shrinkage,

as well as the ‘TOP’ model, outperform all other models, confirming the results presented in

Section 3.1.2. Finally, we also obtain similar results when we switch the IS and OS test assets

(i.e., instead of evaluating the pricing performance on the OS test assets, we use them to

estimate the BMA-SDF); these results are presented in Figure IA.45 and Table IA.XXVIII of

the Internet Appendix. For all sets of IS test assets, our results remain materially the same.

That is, we identify a similar set of factors that should be included in the co-pricing SDF,

estimate consistent market prices of risk, and obtain similar in- and out-of-sample asset pricing

performance for the BMA-SDF.

To further assess the OS performance of our approach, we evaluate its pricing ability across

millions of potential OS cross-sections of bond and stock portfolios. Again, we use the Jensen

et al. (2023) and the Dick-Nielsen et al. (2025) anomaly data. We form OS cross-sections with

50 and 100 portfolios (i.e., 25 and 50 anomaly pairs, for stocks and bonds), respectively. From
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the 306 anomalies, we sample the respective cross-section one million times and evaluate the

OS pricing performance using the BMA-SDFs estimated with the baseline set of test assets in

Panel A of Table 2. The results are presented in Table IA.XXIX of the Internet Appendix with

the BMA-SDF and the TOP factors model ounce again outperforming their competitors.

4.4.3 Varying factor zoos and sample periods

Finally, we check the robustness of our results regarding the expansion of the factor zoo and

the alteration of the sample periods. First, in order to expand the set of stock and nontradable

factors included in our analysis, we consider a shorter sample (ending in December 2016) to

include all 51 stock factors considered in Bryzgalova et al. (2023) as well as their stock portfolio

of IS test assets to re-estimate the co-pricing BMA-SDF. Second, we extend the corporate bond

factor zoo from 16 to 29 factors by adding the 13 Dick-Nielsen et al. (2025) composite bond

return factors formed with equity characteristics. Third, we restrict the sample period to the

TRACE era (from 2002 onward only) and include the tradable liquidity factor (LRF) from Bai

et al. (2019) and the two nontradable illiquidity factors from Lin et al. (2011). Fourth, we

estimate the models for the pre-TRACE period (1986 to 2002) and repeat the analysis using

the split used by van Binsbergen et al. (2025) who consider pre- and post-2000 data. Finally,

we estimate the models on an extended time series starting in 1977, resulting in a total of 549

observations in the time series.

The posterior probabilities and market prices of risk for these estimations are reported in

Figures IA.46 to IA.48 of the Internet Appendix, with associated asset pricing results docu-

mented in Table IA.XXX (IS) and IA.XXXI (OS) of the Internet Appendix. The IS and OS

asset pricing results for the pre- and post-TRACE and pre- and post-2000 sample splits are

reported in Tables IA.XXXII and IA.XXXIII of the Internet Appendix, respectively.

Overall, the results are remarkably robust, and our BMA-SDF generally outperforms com-

peting models, independently of how we cut the data.

As we show, both theoretically and in simulation in Section 2.4, the stability of the findings

is to be expected given the robust inference method we use: if individual factors are combina-

tions of signal (about the fundamental sources of risk) plus “noise” (their unpriced component,

see, e.g., Daniel et al. (2020)), the BMA-SDF provides an optimal aggregation scheme that

maximizes the signal-to-noise ratio of the resulting SDF. Hence, albeit perturbations of the

data might alter the signal-to-noise ratio of individual factors, this effect is largely mitigated in
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the BMA-SDF that our method delivers, rendering such issues, as the data confirms, of second

order concern for our analysis.

5 Conclusion
We generalize the Bayesian estimation method of Bryzgalova et al. (2023) to handle multiple

asset classes, developing a novel understanding of factor posterior probabilities and model

averaging in asset pricing, and we apply it to the study of over 18 quadrillion linear factor

models for the joint pricing of corporate bond and stock returns.

Strikingly, decomposing bond excess returns into their credit and Treasury components re-

veals that nontradable and tradable stock factors are largely sufficient for pricing the credit

component, making the bond factor literature effectively redundant for this purpose. Con-

versely, tradable bond factors (along with nontradable ones) remain necessary for pricing the

Treasury component—a risk that stock factors do not seem to capture.

Overall, we find that the true latent SDF is dense in the space of observable nontradable and

tradable bond and stock factors. Importantly, this implies that all low dimensional observable

factor models proposed to date are affected by severe misspecification and rejected by the data.

Individually, only very few factors should be included in the SDF with high probability. Most

notably, two tradable behavioral factors capturing the post-earnings announcement drift in

bonds and stocks exhibit posterior probabilities above their prior value, along with nontradable

factors such as the slope of the Treasury yield curve, the AAA/BAA yield spread, and the

idiosyncratic equity volatility. However, these factors capture only a fraction of the risks priced

in the joint cross-section of bonds and stocks, and literally dozens of other factors, both tradable

and nontradable, are necessary—jointly—to span the risks driving asset prices. Nevertheless,

the SDF-implied maximum Sharpe ratio is not extreme because the many factors necessary for

an accurate characterization of the latent SDF are multiple noisy proxies for common underlying

sources of risk.

A Bayesian Model Averaging over the space of all possible Stochastic Discount Factor models

aggregates this diffuse pricing information optimally and outperforms all existing models in

explaining—jointly and individually—the cross-section of corporate bond and stock returns,

both in- and out-of-sample. Furthermore, leveraging the fact that the Bayesian averaging over

the space of models is equivalent to an averaging over the space of factors, we show that the

BMA-SDF yields a tradable strategy with a time-series out-of-sample Sharpe ratio of 1.5 to

65



1.8, with only yearly rebalancing, in the challenging evaluation period spanning July 2004 to

December 2022.

The BMA-SDF exhibits a distinctive business cycle behavior, and persistent and cyclical

first and second moments. Furthermore, its volatility increases sharply during recessions and at

times of heightened economic uncertainty, suggesting time variation in conditional risk premia.

And indeed, we find that lagged BMA-SDF information is a strong and significant predictor of

future asset returns.
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Appendix

A The factor zoo list
We list all 54 bond, stock and nontradable factors we consider in Table A.1 along with a detailed

description of their construction, associated reference, and data source.

Table A.1: List of factors for cross-sectional asset pricing. This table lists all tradable bond, stock
as well as the nontradable factors used in the main paper. For each of the factors, we present their identification
index (Factor ID), a description of the factor construction, and the source of the data for downloading and/or
constructing the factor time series.

Factor ID Factor name and description Reference Source

Panel A: Tradable corporate bond factors

CRF Credit risk factor. Equally-weighted average return
on two ‘credit portfolios’: CRFV aR, and CRFREV .
CRFV aR is the average return difference between the
lowest-rating (i.e., highest credit risk) portfolio and
the highest-rating (i.e., lowest credit risk) portfolio
across the VaR95 portfolios. CRFREV is the aver-
age return difference between the lowest-rating port-
folio and the highest-rating portfolio across quintiles
sorted on bond short-term reversal.

Bai et al. (2019) Open Source
Bond Asset
Pricing

CRY Bond carry factor. Independent sort (5× 5) to form
25 portfolios according to ratings and bond credit
spreads (CS). For each rating quintile, calculate the
weighted average return difference between the high-
est CS quintile and the lowest CS quintile. CRY is
computed as the average long-short portfolio return
across all rating quintiles.

Hottinga et al.
(2001), Houweling
and Van Zundert
(2017)

Open Source
Bond Asset
Pricing

DEF Bond default risk factor. The difference between the
return on the market portfolio of long-term corpo-
rate bond returns (the Composite portfolio on the
corporate bond module of Ibbotson Associates) and
the long-term government bond return.

Fama and French
(1992) and Gebhardt
et al. (2005a).

Amit Goyal’s
website

DRF Downside risk factor. Independent sort (5 × 5) to
form 25 portfolios according to ratings and 95%
value-at-risk (VaR95). For each rating quintile, cal-
culate the weighted average return difference be-
tween the highest VaR5 quintile and the lowest VaR5
quintile. DRF is computed as the average long-short
portfolio return across all rating quintiles.

Bai et al. (2019) Open Source
Bond Asset
Pricing

DUR Bond duration factor. Independent sort (5 × 5) to
form 25 portfolios according to ratings and bond du-
ration (DURB). For each rating quintile, calculate
the weighted average return difference between the
highest DURB quintile and the lowest DURB quin-
tile. DUR is computed as the average long-short
portfolio return across all rating quintiles.

Gebhardt et al. (2005a)
and Dang et al. (2023).

Open Source
Bond Asset
Pricing

HMLB Bond book-to-market factor. Independent sort (2 ×
3) to form 6 portfolios according to bond size and
bond book-to-market (BBM), defined as bond prin-
cipal value scaled by market value. For each size
portfolio, calculate the weighted average return dif-
ference between the lowest BBM tercile and the high-
est BBM tercile. HMLB is computed as the average
long-short portfolio return across the two size port-
folios.

Bartram et al. (2025) Open Source
Bond Asset
Pricing
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LTREVB Bond long-term reversal factor. Dependent sort
(3×3×3) to form 27 portfolios according to ratings,
maturity, and the 48-13 cumulative previous bond
return (LTREVB). For each rating quintile, the fac-
tor is computed as the average return differential be-
tween the portfolio with the lowest LTREVB and
the one with the highest LTREVB within the rat-
ing and maturity portfolios. LTREVB is computed
as the average long-short portfolio return across the
nine rating-maturity terciles.

Bali et al. (2021a) Open Source
Bond Asset
Pricing

MKTB Corporate Bond Market excess return. Constructed
using bond returns in excess of the one-month risk-
free rate of return.

Dickerson et al. (2023) Open Source
Bond Asset
Pricing

MKTBD Corporate Bond Market duration-adjusted return.
Constructed using bond returns in excess of their
duration-matched U.S. Treasury bond rate of return.

van Binsbergen et al.
(2025)

Open Source
Bond Asset
Pricing

MOMB Bond momentum factor formed with bond momen-
tum. Independent sort (5 × 5) to form 25 portfo-
lios according to ratings and the 12-2 cumulative
previous bond return (MOM). For each rating quin-
tile, calculate the weighted average return difference
between the highest MOM quintile and the lowest
MOM quintile. MOMB is computed as the average
long-short portfolio return across all rating quintiles.

Gebhardt et al.
(2005b)

Open Source
Bond Asset
Pricing

MOMBS Bond momentum factor formed with equity momen-
tum. Independent sort (5× 5) to form 25 portfolios
according to ratings and the 6-1 cumulative previ-
ous equity return (MOMs). For each rating quin-
tile, calculate the weighted average return difference
between the highest MOMs quintile and the lowest
MOMs quintile. MOMBS is computed as the average
long-short portfolio return across all rating quintiles.

Hottinga et al. (2001),
Gebhardt et al.
(2005b) and Dang
et al. (2023)

Open Source
Bond Asset
Pricing

PEADB Bond earnings announcement drift factor. Indepen-
dent sort (2 × 3) to form 6 portfolios according to
market equity and earnings surprises (CAR), com-
puted according to Chan et al. (1996). For each firm
size portfolio, calculate the weighted average return
difference between the highest CAR terciles and the
lowest CAR tercile. PEADB is computed as the av-
erage long-short portfolio return across the two firm
size portfolios.

Nozawa et al. (2025) Open Source
Bond Asset
Pricing

STREVB Bond short-term reversal factor. Independent sort
(5 × 5) to form 25 portfolios according to ratings
and the prior month’s bond return (REV). For each
rating quintile, calculate the weighted average return
difference between the lowest REV quintile and the
highest REV quintile. STREVB is computed as the
average long-short portfolio return across all rating
quintiles.

Khang and King
(2004) and Bali et al.
(2021a)

Open Source
Bond Asset
Pricing

SZE Bond size factor. Dependent sort (3 × 3) to form
3 portfolios according to ratings and then with
each rating tercile another 3 portfolios on bond size
(SIZE). Bond size is defined as bond price multiplied
by issue size (amount outstanding). For each rating
tercile, calculate the weighted average return differ-
ence between the lowest SIZE tercile and the highest
SIZE tercile. SZE is computed as the average long-
short portfolio return across all rating terciles.

Hottinga et al. (2001)
and Houweling and
Van Zundert (2017)

Open Source
Bond Asset
Pricing

TERM Bond term structure risk factor. The difference be-
tween the monthly long-term government bond re-
turn and the one-month T-Bill rate of return.

Fama and French
(1992) and Gebhardt
et al. (2005a).

Amit Goyal’s
website

VAL Bond value factor. Independent sort (2× 3) to form
6 portfolios according to bond size and bond value
(VALB). VALB is computed via cross-sectional re-
gressions of credit spreads on ratings, maturity, and
the 3-month change in credit spread. The percentage
difference between the actual credit spread and the
fitted (’fair’) credit spread for each bond is the VALB

characteristic. For each size portfolio, calculate the
weighted average return difference between the high-
est VALB tercile and the lowest VALB tercile. VAL
is computed as the average long-short portfolio re-
turn across the two size portfolios.

Correia et al. (2012)
and Houweling and
Van Zundert (2017)

Open Source
Bond Asset
Pricing
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Panel B: Tradable stock factors

BAB Betting-against-beta factor, constructed as a portfo-
lio that holds low-beta assets, leveraged to a beta of
1, and that shorts high-beta assets, de-leveraged to
a beta of 1.

Frazzini and Pedersen
(2014)

AQR data
library

CMA Investment factor, constructed as a long-short port-
folio of stocks sorted by their investment activity.

Fama and French
(2015)

Ken French web-
site

CMAs CMA with a hedged unpriced component. Daniel et al. (2020) Kent Daniel
website

CPTLT The value-weighted equity return for the New York
Fed’s primary dealer sector not including new equity
issuance.

He et al. (2017) Zhiguo He web-
site

FIN Long-term behavioral factor, predominantly captur-
ing the impact of share issuance and correction.

Daniel et al. (2020) Kent Daniel
website

HML Value factor, constructed as a long-short portfolio of
stocks sorted by their book-to-market ratio.

Fama and French
(1992)

Ken French web-
site

HML_DEV A version of the HML factor that relies on the current
price level to sort the stocks into long and short legs.

Asness and Frazzini
(2013)

AQR data
library

HMLs HML with a hedged unpriced component. Daniel et al. (2020) Kent Daniel
website

LIQ Liquidity factor, constructed as a long-short portfolio
of stocks sorted by their exposure to LIQ_NT.

Pástor and Stambaugh
(2003)

Robert Stam-
baugh website

LTREV Long-term reversal factor, constructed as a long-
short portfolio of stocks sorted by their cumulative
return accrued in the previous 60-13 months.

Jegadeesh and Titman
(2001)

Ken French web-
site

MGMT Management performance mispricing factor. Stambaugh and Yuan
(2017)

Global factor
data website

MKTS Market excess return. Sharpe (1964) and
Lintner (1965)

Ken French web-
site

MKTSs Market factor with a hedged unpriced component. Daniel et al. (2020) Kent Daniel
website

MOMS Momentum factor, constructed as a long-short port-
folio of stocks sorted by their 12-2 months cumulative
previous return.

Carhart (1997), Je-
gadeesh and Titman
(1993)

Ken French web-
site

PEAD Short-term behavioral factor, reflecting post-
earnings announcement drift.

Daniel et al. (2020) Kent Daniel
website

PERF Firm performance mispricing factor. Stambaugh and Yuan
(2017)

Global factor
data website

QMJ Quality-minus-junk factor, constructed as a long-
short portfolio of stocks sorted by the combination
of their safety, profitability, growth, and the quality
of management practices.

Asness et al. (2019) AQR data
library

RMW Profitability factor, constructed as a long-short port-
folio of stocks sorted by their profitability.

Fama and French
(2015)

Ken French web-
site

RMWs RMW with a hedged unpriced component. Daniel et al. (2020) Kent Daniel
website

R_IA Investment factor, constructed as a long-short port-
folio of stocks sorted by their investment-to-capital.

Hou et al. (2015) Lu Zhang web-
site

R_ROE Profitability factor, constructed as a long-short port-
folio of stocks sorted by their return on equity.

Hou et al. (2015) Lu Zhang web-
site

SMB Size factor, constructed as a long-short portfolio of
stocks sorted by their market cap.

Fama and French
(1992)

Ken French web-
site

SMBs SMB with a hedged unpriced component. Daniel et al. (2020) Kent Daniel
website

STREV Short-term reversal factor, constructed as a long-
short portfolio of stocks sorted by their previous
month return.

Jegadeesh and Titman
(1993)

Ken French web-
site

Panel C: Nontradable corporate bond and stock factors

CPTL Intermediary capital nontradable risk factor. Con-
structed using AR(1) innovations to the market-
based capital ratio of primary dealers, scaled by the
lagged capital ratio.

He et al. (2017) Zhiguo He’s web-
site

CREDIT Bond credit risk factor. Difference between the yields
of BAA and AAA indices from Moody’s. Also com-
puted with our own data as the difference between
the average yield of BAA and (AAA+AA) rated
bonds. See Section IA.11 of the Internet Appendix
for further computational details.

Fama and French
(1993)

Amit Goyal’s
website or FRED
for AAA and
BAA indices.

EPU Economic Policy Uncertainty. First difference in the
economic policy uncertainty index.

Baker et al. (2016) and
Dang et al. (2023)

FRED

EPUT Economic Tax Policy Uncertainty. First difference in
the economic tax policy uncertainty index.

Baker et al. (2016) and
Dang et al. (2023)

FRED
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INFLC Shocks to core inflation. Unexpected core infla-
tion component captured by an ARMA(1,1) model.
Monthly core inflation is calculated as the percentage
change in the seasonally adjusted Consumer Price In-
dex for All Urban Consumers: All Items Less Food
and Energy which is lagged by one-month to account
for the inflation data release lag.

Fang et al. (2024) FRED

INFLV Inflation volatility. Computed as the 6-month
volatility of the unexpected inflation component cap-
tured by an ARMA(1,1) model. Monthly inflation is
calculated as the percentage change in the season-
ally adjusted Consumer Price Index for All Urban
Consumers (CPI) which is lagged by one-month to
account for the inflation data release lag.

Kang and Pflueger
(2015) and Ceballos
(2023)

FRED

IVOL Idiosyncratic equity volatility factor. Cross-sectional
volatility of all firms in the CRSP database in each
month t.

Campbell and Taksler
(2003)

CRSP

LVL Level term structure factor. Constructed as the
first principal component of the one- through 30-
year CRSP Fixed Term Indices U.S. Treasury Bond
yields.

Koijen et al. (2017) CRSP Indices

LIQNT Liquidity factor, computed as the average of
individual-stock measures estimated with daily data
(residual predictability, controlling for the market
factor)

Pástor and Stambaugh
(2003)

Robert Stam-
baugh’s website

UNC First difference in the Macroeconomic uncertainty in-
dex.

Ludvigson et al. (2015)
and Bali et al. (2021b)

Sydney Ludvig-
son’s website

UNCf First difference in the Financial economic uncer-
tainty index.

Ludvigson et al. (2015) Sydney Ludvig-
son’s website

UNCr First difference in the Real economic uncertainty in-
dex.

Ludvigson et al. (2015) Sydney Ludvig-
son’s website

VIX First difference in the CBOE VIX. Chung et al. (2019) FRED
YSP Slope term structure factor. Constructed as the dif-

ference in the five and one-year U.S. Treasury Bond
yields.

Koijen et al. (2017) CRSP Indices

B Posterior sampling
The posterior of the time series parameters follows the canonical Normal-inverse-Wishart dis-

tribution (see, e.g., Bauwens, Lubrano, and Richard (1999)) given by

µY |ΣY ,Y ∼ N (µ̂Y , ΣY /T ) , (A.11)

ΣY |Y ∼ W−1

(
T − 1,

T∑
t=1

(Yt − µ̂Y ) (Yt − µ̂Y )
⊤

)
, (A.12)

where µ̂Y ≡ 1
T

∑T
t=1 Yt, W−1 is the inverse-Wishart distribution, Y ≡ {Yt}Tt=1, and note that

the covariance matrix of factors and test assets, Cf , is contained within ΣY .

Define D = D̃ × κ where D̃ is a diagonal matrix with elements c, (r(γ1)ψ1)
−1, ...,

(r(γK)ψK)
−1 and κ is a conformable column vector with elements 1, 1 + κ1, . . . , 1 + κK such

that
∑K

k=1 κj = 0 and 0 < |κj| < 1 ∀j.It then follows that, given our prior formulations, the

posterior distributions of the parameters in the cross-sectional layer (λ,γ,ω, σ2), conditional
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on the draws of µR, ΣR, and C from the time series layer, are:

λ|data, σ2,γ,ω ∼ N
(
λ̂, σ̂2(λ̂)

)
, (A.13)

p(γj = 1|data,λ,ω, σ2,γ−j)

p(γj = 0|data,λ,ω, σ2,γ−j)
=

ωj

1− ωj

p(λj|γj = 1, σ2)

p(λj|γj = 0, σ2)
, (A.14)

ωj|data,λ,γ, σ2 ∼ Beta (γj + aω, 1− γj + bω) , (A.15)

σ2|data,ω,λ,γ ∼ IG
(
N +K + 1

2
,
(µR −Cλ)⊤Σ−1

R (µR −Cλ) + λ⊤Dλ

2

)
, (A.16)

where λ̂ = (C⊤Σ−1
R C + D)−1C⊤Σ−1

R µR, σ̂2(λ̂) = σ2(C⊤Σ−1
R C + D)−1 and IG denotes the

inverse-Gamma distribution.

Hence, posterior sampling is achieved with a Gibbs sampler that draws sequentially the

time series layer parameters (µR, ΣR, and C) from equations (A.11) and (A.12), and then,

conditional on these realizations, draws sequentially from equations (A.13) to (A.16).

C Probabilities and risk prices across prior Sharpe ratios
We report the full list of posterior probabilities and the associated annualized risk premia (in

Sharpe ratio units) which complements the results from Figure 2 in Table A.2.

D Benchmark asset pricing models
We benchmark the performance of the BMA-SDF against several frequentist asset pricing mod-

els as well as other latent factor models. In the following, we provide the estimation details

for the models that are compared to the BMA-SDF in Section 3.1. A larger set of comparison

benchmark models is considered in Internet Appendix IA.3.2.

CAPM and CAPMB. The single-factor equity CAPM and the bond equivalent CAPMB.

The CAPM is the value-weighted equity market factor from Kenneth French’s webpage. The

bond CAPM (CAPMB) is the value-weighted corporate bond market factor. We estimate factor

risk prices using a GLS version of GMM (see, e.g., Cochrane (2005, pp. 256–258)).

FF5. The original five-factor model of Fama and French (1993) that includes the MKTS,

SMB and HML factors from Fama and French (1992) and the default (DEF) and term structure
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Table A.2: Posterior factor probabilities and risk prices for the co-pricing factor zoo

Factor prob., E[γj|data] Price of risk, E[λj|data]

Total prior Sharpe ratio Total prior Sharpe ratio
Factors 20% 40% 60% 80% 20% 40% 60% 80%

PEADB 0.555 0.629 0.713 0.711 0.054 0.213 0.446 0.645
PEAD 0.523 0.559 0.618 0.614 0.035 0.138 0.297 0.449
IVOL 0.502 0.529 0.567 0.623 0.010 0.043 0.108 0.265
CREDIT 0.498 0.497 0.530 0.557 0.008 0.033 0.084 0.191
YSP 0.507 0.502 0.504 0.519 0.003 0.014 0.034 0.088
MOMBS 0.492 0.518 0.543 0.476 0.059 0.200 0.366 0.432
INFLV 0.509 0.514 0.511 0.484 0.002 0.007 0.014 0.022
INFLC 0.500 0.501 0.494 0.492 −0.001 −0.004 −0.011 −0.028
CMAs 0.489 0.500 0.502 0.480 0.015 0.061 0.131 0.215
LVL 0.495 0.493 0.491 0.493 0.000 0.002 0.006 0.019
EPU 0.509 0.503 0.498 0.457 0.001 0.004 0.008 0.009
UNCr 0.494 0.490 0.499 0.480 0.001 0.004 0.012 0.032
MKTS 0.496 0.510 0.494 0.458 0.055 0.173 0.289 0.391
EPUT 0.500 0.492 0.497 0.462 0.003 0.009 0.016 0.019
LIQNT 0.501 0.482 0.492 0.475 −0.003 −0.013 −0.039 −0.095
CRY 0.483 0.463 0.501 0.479 0.049 0.151 0.334 0.500
QMJ 0.499 0.501 0.487 0.438 0.072 0.193 0.321 0.412
RMWs 0.500 0.501 0.481 0.438 0.025 0.077 0.141 0.205
UNCf 0.499 0.492 0.479 0.446 −0.002 −0.001 0.018 0.065
UNC 0.487 0.484 0.480 0.445 −0.001 -0.000 0.005 0.014
VIX 0.482 0.485 0.468 0.452 0.000 0.002 0.005 0.010
SZE 0.502 0.465 0.464 0.421 0.006 0.026 0.061 0.104
CPTL 0.487 0.480 0.457 0.411 0.016 0.046 0.067 0.074
MKTB 0.521 0.482 0.439 0.376 0.091 0.188 0.248 0.278
MKTSs 0.494 0.478 0.447 0.397 0.015 0.038 0.064 0.103
LTREVB 0.500 0.482 0.437 0.387 0.016 0.051 0.079 0.094
SMBs 0.491 0.476 0.450 0.384 0.004 0.016 0.029 0.034
CPTLT 0.478 0.459 0.456 0.406 0.023 0.068 0.130 0.186
LIQ 0.475 0.476 0.443 0.390 0.005 0.025 0.053 0.082
BAB 0.485 0.492 0.435 0.372 0.021 0.054 0.076 0.097
VAL 0.501 0.469 0.426 0.378 0.016 0.056 0.099 0.126
STREV 0.487 0.476 0.445 0.365 0.009 0.034 0.071 0.101
LTREV 0.498 0.473 0.432 0.357 0.009 0.031 0.052 0.057
PERF 0.503 0.469 0.433 0.343 0.048 0.104 0.120 0.093
R_ROE 0.490 0.465 0.416 0.357 0.049 0.103 0.135 0.159
MGMT 0.490 0.475 0.420 0.338 0.058 0.125 0.162 0.173
CRF 0.494 0.454 0.421 0.349 0.015 0.052 0.093 0.123
HMLs 0.478 0.461 0.411 0.357 0.004 0.011 0.021 0.026
CMA 0.469 0.464 0.421 0.351 0.028 0.063 0.077 0.063
HML_DEV 0.492 0.446 0.414 0.353 0.001 0.002 0.014 0.041
HMLB 0.475 0.464 0.438 0.326 0.038 0.104 0.148 0.120
MOMB 0.472 0.459 0.424 0.346 −0.002 −0.007 −0.005 −0.003
MOMS 0.464 0.445 0.422 0.365 0.020 0.057 0.095 0.139
STREVB 0.478 0.449 0.414 0.349 0.003 0.007 0.011 0.007
MKTBD 0.487 0.442 0.403 0.351 0.014 0.029 0.029 0.015
R_IA 0.473 0.437 0.418 0.349 0.034 0.079 0.120 0.140
TERM 0.474 0.443 0.397 0.354 0.027 0.058 0.085 0.116
SMB 0.476 0.434 0.410 0.331 0.010 0.044 0.079 0.086
HML 0.477 0.435 0.405 0.327 0.003 −0.016 −0.037 −0.040
DUR 0.475 0.422 0.393 0.352 0.010 −0.021 −0.081 −0.146
DRF 0.471 0.435 0.401 0.330 0.039 0.068 0.069 0.034
DEF 0.467 0.421 0.395 0.333 0.000 −0.007 −0.021 −0.030
FIN 0.476 0.424 0.392 0.311 0.034 0.035 0.015 −0.004
RMW 0.473 0.428 0.381 0.315 0.027 0.019 −0.018 −0.055

The table reports posterior probabilities, E[γj |data], and posterior means of annualized market prices of risk,
E[λj |data], of the 54 bond and stock factors described in Appendix A. The prior for each factor inclusion is a
Beta(1, 1), yielding a prior expectation for γj of 50%. Results are tabulated for different values of the prior
Sharpe ratio,

√
Eπ[SR2

f | σ2], with values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio
of the test assets. The factors are ordered by the average posterior probability across the four levels of shrinkage.
Test assets are the 83 bond and stock portfolios and 40 tradable bond and stock factors described in Section 1.
The sample period is 1986:01 to 2022:12 (T = 444).
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(TERM) factors introduced in Fama and French (1993). We estimate factor risk prices using a

GLS version of GMM (see, e.g., Cochrane (2005, pp. 256–258)).

HKM. The intermediary capital two-factor asset pricing model of He, Kelly, and Manela

(2017). Includes the MKTS factor from Fama and French (1992) and the value-weighted (trad-

able version) of the intermediary capital factor, CPTLT in excess of the one-month risk-free

rate. We estimate factor risk prices using a GLS version of GMM (see, e.g., Cochrane (2005,

pp. 256–258)).

KNS. The latent factor model approach of Kozak et al. (2020). For each in-sample bond,

stock or co-pricing cross-section, we select the optimal shrinkage level and number of factors

chosen by twofold cross-validation. Given our data has a time series length of T = 444, the first

sample is simply January 1986 to June 2004 and the second sample is July 2004 to December

2022.

RPPCA. The risk premia PCA methodology of Lettau and Pelger (2020). We use five

principal components. In our main estimation used for the baseline results, we set γ from

their equation (4) equal to 20. Changing this parameter to 10, or a lower value, does not

quantitatively affect pricing performance.
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IA.1 Details on data sources, factors and test assets

In this section we first describe in detail the various sources for corporate bond data and test
assets before we briefly discuss the coverage of our bond and stock data sample. Next, we
assess the robustness of the corporate bond factors for different construction methods and data
sources. Finally, we provide a list of the bond and stock test assets in Table IA.II.

IA.1.1 Corporate bond databases

First, we describe the sources of corporate bond data. All data filters below are applied verbatim
across all of the bond databases we consider. Across all databases, we filter out bonds with
maturity less than one year. Furthermore, for consistency, across all databases, we define bond
ratings as those provided by Standard & Poors (S&P). We include the full spectrum of ratings
(AAA to D) but exclude unrated bonds. Irrespective of the data source, we do not winsorize
or trim bond returns in any way.

IA.1.1.1 Mergent Fixed Income Securities Database

The Mergent Fixed Income Securities Database (FISD) contains bond issue and issuer charac-
teristic data. We apply the standard filters used in the extant literature to the FISD data:

1. Only keep bonds that are issued by firms domiciled in the United States of America,
COUNTRY_DOMICILE == ‘USA’.

2. Remove bonds that are private placements, PRIVATE_PLACEMENT == ‘N’.

3. Only keep bonds that are traded in U.S. Dollars, FOREIGN_CURRENCY == ‘N’.

4. Bonds that trade under the 144A Rule are discarded, RULE_144A == ‘N’.

5. Remove all asset-backed bonds, ASSET_BACKED == ‘N’.

6. Remove convertible bonds, CONVERTIBLE == ‘N’.

7. Only keep bonds with a fixed or zero coupon payment structure, i.e., remove bonds with
a floating (variable) coupon, COUPON_TYPE != ‘V’.

8. Remove bonds that are equity linked, agency-backed, U.S. Government, and mortgage-
backed, based on their BOND_TYPE.

9. Remove bonds that have a “non-standard” interest payment structure or bonds not caught
by the variable coupon filter (COUPON_TYPE). We remove bonds that have an
INTEREST_FREQUENCY equal to −1 (N/A), 13 (Variable Coupon), 14 (Bi-Monthly), and
15 and 16 (undocumented by FISD). Additional information on INTEREST_FREQUENCY is
available on page 60 to 67 of the FISD Data Dictionary 2012 document.
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IA.1.1.2 Bank of America Merrill Lynch Database

The Bank of America Merrill Lynch (BAML) data is made available by the Intercontinental
Exchange (ICE) and provides daily bond price quotes, accrued interest, and a host of pre-
computed corporate bond characteristics such as the bond option-adjusted credit spread (OAS),
the asset swap spread, duration, convexity, and bond returns in excess of a portfolio of duration-
matched Treasuries. The ICE sample spans the time period January 1997 to December 2022 and
includes constituent bonds from the ICE Bank of America High Yield (H0A0) and Investment
Grade (C0A0) Corporate Bond Indices.

BAML ICE bond filters. We follow van Binsbergen et al. (2025) and take the last quote
of each month to form the bond-month panel. We then merge the ICE data to the filtered
Mergent FISD data. The following ICE-specific filters are then applied:

1. Only include corporate bonds, Ind_Lvl_1 == ‘corporate’

2. Only include bonds issued by U.S. firms, Country == ‘US’

3. Only include corporate bonds denominated in U.S. dollars, Currency == ‘USD’

BAML ICE bond returns. Total bond returns are computed in a standard manner in ICE,
and no assumptions about the timing of the last trading day of the month are made because
the data is quote based, i.e., there is always a valid quote at month-end to compute a bond
return. This means that each bond return is computed using a price quote at exactly the
end of the month, each and every month. This introduces homogeneity into the bond returns
because prices are sampled at exactly the same time each month. ICE only provides bid-side
pricing, meaning bid-ask bias is inherently not present in the monthly sampled prices, returns
and credit spreads. The monthly ICE return variable is (as denoted in the original database)
trr_mtd_loc, which is the month-to-date return on the last business day of month t.

IA.1.1.3 Lehman Brothers Fixed Income Database

The Lehman Brothers Fixed Income (LBFI) database holds monthly price data for corporate
(and other) bonds from January 1973 to December 1997. The database categorizes the prices
as either quote or matrix prices and identifies whether the bonds are callable or not. However,
as per Chordia et al. (2017), the difference between quote and matrix prices or callable and
non-callable bonds does not have a material impact on cross-sectional return predictability.
Hence, we include both types of observations. In addition, the LBFI data provides key bond
details such as the amount outstanding, credit rating, offering date, and maturity date. For
the main results, we use the LBFI data from January 1986 to December 1996.

LBFI bond filters. As for the other databases, we merge the LBFI data to the pre-filtered
Mergent FISD data and then apply the following LBFI-specific filters following Elkamhi et al.
(2023):
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1. Only include corporate bonds classified as ‘industrial,’ ‘telephone utility,’ ‘electric utility,’
‘utility (other),’ and ‘finance,’ as per the LBFI industry classification system, icode ==
{3 | 4 | 5 | 6 | 7}.

2. Remove the following dates for which there are no observations or valid return data, date
== {1975-08 | 1975-09 | 1984-12 | 1985-01}.

LBFI bond returns. The LBFI data includes corporate bond returns that have been pre-
computed. The accuracy is empirically verified by Elkamhi et al. (2023).

LBFI additional filters. We follow Bessembinder et al. (2008) and Chordia et al. (2017)
and apply the following filters to the LBFI data to account for potential data errors:

1. Remove observations with large return reversals, defined as a 20% or greater return fol-
lowed by a 20% or greater return of the opposite sign.

2. Remove observations if the prices appear to bounce back in an extreme fashion relative
to preceding days. Denote Rt as the month t return, we exclude an observation at month
t if Rt ×Rt−k < −0.02 for k = 1, . . . , 12.

3. Remove observations if prices do not change for more than three months, i.e., Pt

Pt−3
− 1 !=

0, where P is the quoted or matrix price.

IA.1.1.4 Trade Reporting and Compliance Engine Database

For many researchers, the Trade Reporting and Compliance Engine (TRACE) database is
the main source of corporate bond data as it is available through Wharton Research Data
Services (WRDS TRACE) from August 2002 to December 2022. An alternative version of the
TRACE data (DFPS TRACE) is processed by Dick-Nielsen et al. (2025) and provided online
via Christian Stolborg’s website. The DFPS TRACE data also assumes a return is valid if
there are available bond prices in the last five business days of month t and t+ 1. The data is
then checked for erroneous data points, and 292 data points are discarded. See Appendix B of
Dick-Nielsen et al. (2025) for additional details. The data is also available from August 2002
but ends in December 2021.

TRACE returns. A key difference between quote- (e.g., BAML ICE) and transaction-based
(e.g., TRACE) databases is that for the latter transaction prices might not land on the very last
business days of consecutive months t and t+1, implying that prices may not align with month-
end CRSP equity signals. As a result, assumptions are required as to what kind of sampling
criterion should be used to compute a monthly time series of bond returns. Consistent with
Dickerson, Robotti, and Rossetti (2024), we use the bond return variable denoted RET_L5M from
WRDS TRACE which recognizes a valid monthly bond return if the bond trades within the
5-day window toward the end of months t and t+ 1, respectively. Mechanically, this implies a
monthly time series of bond returns that is not strictly contiguous, i.e., in month t the bond
could be traded on the third last business day and in month t+1 the same bond may trade on
the very last business day. Although quote-based databases are not a ‘panacea’ for corporate

5

https://wrds-www.wharton.upenn.edu/login/?next=/pages/get-data/wrds-bond-returns/
https://www.stolborg.com/data


Last
5 business days

of the month

Last
5 business days

of the month

Rt+1

Pt Pt+1

A: Transaction prices

Last
business day

of the month

Last
business day

of the month

Rt+1

Pt Pt+1

B: Quotes

Figure IA.1: Calculating bond returns using transaction- and quote-based data.

Panel A shows the timing of how prices are sampled to calculate monthly returns for the transaction-based
WRDS TRACE data. The designated ‘end-of-the-month’ transaction price Pt and Pt+1 must be within the last
five business days of the month. The pseudo ‘month-end’ return is then computed with these clean prices and
any accrued interest. Panel B shows the timing for a bond return calculation using quote-based prices in the
BAML ICE and LBFI data. Price quotes are available on the very last business day of each month, resulting
in a contiguous monthly return series.

bond data issues, they do allow for bond returns to be consistently computed because a valid
month-end quote is always available.

Figure IA.1 illustrates the timing of prices used to compute ‘monthly’ bond returns with
any version of the WRDS TRACE data vs. the BAML ICE quote-based data. In Panel A, a
monthly transaction return is valid if a bond trades within the last five days of months t and
t + 1. Missing returns NaN are recorded if, for example, a bond trades in the middle of month
t and then only again on the last business day of month t+ 1. In Panel B, contiguous returns
can be computed because a valid indicative quote is available from the pool of dealers that
are queried by BAML ICE, thus, bond return calculations are aligned with their analogue for
stocks in CRSP.

We use WRDS TRACE as well as DFPS TRACE for our robustness tests that are discussed
in Section 4 and in Internet Appendices IA.1.3 and IA.10.1.

IA.1.2 Combined bond and stock data coverage

For our baseline results, we use corporate bond factors and test assets calculated from the
dataset that combines the LBFI and the ICE data over the joint sample period January 1986
to December 2022, whereby we splice the data together. Before 1997 we use the LBFI data
and, thereafter, we rely on ICE data. Stock factors and test asset returns are all calculated
using CRSP data available through WRDS.

Our equity sample comprises close to ten thousand firms (9,994), while our corporate bond
sample contains a total of 5,824 issuers. Overall, we can match 2,211 firms that have both
public equity as well as corporate bonds outstanding throughout our sample period. That is,
78% of the firms in our sample do not issue corporate bonds, and 62% of the corporate bond
issuers are not publicly listed. Figure IA.2 illustrates the overlap of equity and bond data in
terms of the number of firms. The red-shaded set comprises all unique firms (as determined
by the PERMNO) in the CRSP data; the blue-shaded set comprises the unique corporate bond
issuers in our data set (as determined by the ISSUER_CUSIP). The brown intersection comprises
the 2,211 corporate bond issuers that are publicly listed.

In Figure IA.3 we further put in perspective the coverage of our data in terms of market
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Figure IA.2: Corporate bond and equity issuers.

This figure depicts a Venn diagram where the red-shaded set comprises all 9,994 unique firms (as determined
by the PERMNO) in the CRSP data. The blue-shaded set are all 5,824 unique issuing firms from our primary
corporate bond sample as determined by the six digit ISSUER_CUSIP. The brown-shaded intersection comprises
the 2,211 firms with outstanding corporate debt that we can match to CRSP PERMNO identifiers.

capitalisation. Even though 62% of the firms in the CRSP sample do not issue corporate debt,
our matched sample captures around the same percentage as the S&P 500 index in terms of total
U.S. market capitalisation. At the end of our sample period, the total market capitalisation of
CRSP firms is USD 22.1 trillion while the market capitalisation of our corporate bond matched
equity sample is only about 16% smaller with USD 18.4 trillion (see Panel A in Figure IA.3).
Panel B plots the coverage in percent, defined as the equity market capitalisation of firms in
the merged sample divided by the total market capitalisation of all CRSP firms. The average
coverage is 74.5% but remains at or above 80% for the post-2000 period.

IA.1.3 Corporate bond factor zoo robustness

An extensive and ongoing academic debate discusses what could drive replication issues and
differences in the performance of corporate bond factors. On the one hand, Dick-Nielsen et al.
(2025) argue that data errors and researchers’ data cleaning assumptions are the underlying
cause of the bond replication ‘crisis.’ On the other hand, Dickerson et al. (2024) posit that a
combination of the failure to adjust for corporate bond microstructure issues combined with
ex post and asymmetric winsorization and/or trimming of the bond return distribution are the
core drivers of the crisis.1

In this section we examine to what extent data choices may affect corporate bond factors.
For all comparisons we re-construct 14 of our 16 corporate bond factors, excluding DEF and

1Recently, Jostova et al. (2024) and Li (2023) add to the debate by examining the role of outliers specifically
for the corporate bond momentum factor (MOMB).
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Table IA.I: The corporate bond factor zoo across data choices

Benchmark data Alternative data Sample period Significant difference

LBFI/BAML ICE LBFI/BAML ICE firm-level 1986:01–2022:12 CRY, DUR, PEADB, STREVB
LBFI Q&M LBFI Q only 1986:01–1996:12 VAL
BAML ICE WRDS TRACE 2002:08–2022:12 CRF
BAML ICE DFPS TRACE 2002:08–2021:12 CRY, HMLB

The table documents which corporate bond factors exhibit significantly different average returns when comparing
the benchmark combined LBFI/BAML ICE data with factors calculated at the bond level with alternatives.
We compare bond factors (i) calculated using bond- vs. firm-level data; (ii) that remove matrix prices (quotes
and matrix vs. quotes only); (iii) that are calculated using transaction-based WRDS TRACE; and (iv) that are
calculated using transaction-based DFPS TRACE data. The factors are listed in column “Significant difference”
when factor averages between the benchmark construction and the alternative are significantly different at the
5% level of significance.

TERM as they are independent of the corporate bond data.2 We first examine differences
between factors formed at the bond vs. the firm level. Then, we confirm that removing
bonds with matrix prices does not materially affect our corporate bond factors and, finally,
we show that the differences between factors based on quotes and factors constructed using
transaction prices are negligible. The results are summarized in Table IA.I. Unless otherwise
noted, the benchmark data are corporate bond factors calculated at the bond-level using the
combined LBFI/BAML ICE data as discussed in Section 1 (LBFI/BAML ICE). Overall, the
factor construction is very robust to the different dimensions of comparison. Changes in data
(rows two through four in Table IA.I) never lead to more than two factors displaying significantly
different means, although the values remain economically small. Moreover, we show in Internet
Appendix IA.10.1 that even these significant differences do not affect our estimation results.

IA.1.3.1 Bond- vs. firm-level factors

To study the differences between bond- and firm-level corporate bond factors, we focus on our
baseline data, the combined LBFI and BAML ICE bond data. First, we merge the corporate
bond data to firm-level PERMNO and GVKEY identifiers. We then follow Choi (2013) and compute
a ‘representative’ firm(PERMNO)-level return as the value-weighted average comprising all out-
standing bonds for firm i over month t+1 using bond market capitalization weights formed at
the end of month t. As in our main analysis, the sample spans 37 years from January 1986 to
December 2022. Before January 1997, we merge corporate bond issuers to their PERMNO via the
historical NCUSIP and manually check for errors. Thereafter, we apply the merging methodology
outlined in Fang (2025).3

Firm-level corporate bond factors. There are benefits and costs associated with con-
structing factors with firm-level ‘representative’ bond returns. One potential benefit is that in

2DEF and TERM rely on the data repository of Amit Goyal.
3The full panel of identification variables and dates necessary to merge the data are available on

https://openbondassetpricing.com/bond-compustat-crsp-link/.
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a bond-level analysis, firms with a very large number of bonds are given a higher weight com-
pared to firms with fewer or only a single bond outstanding. However, an obvious drawback
is that bond-specific information may be aggregated out at the firm level. For example, firms
with multiple outstanding bonds may have issued securities with different maturities or even
different credit ratings. Thus, for corporate bond factors based on bond-level characteristics,
bond-level returns are a natural choice for factor construction.

In Figure IA.4 we compare bond- and firm-level versions of our 14 tradable bond factors
ordered by the average bond-level factor return. Panel A presents the respective average returns,
while Panel B shows their differences along with associated 95% standard error bars. For most
factors, the return differences are not only statistically insignificant but also economically very
small—only four factors have average differences that are statistically significant at the 5%
level, three of which also generate sizable economic differences. These are all factors that
are by construction dependent on bond-level information such as CRY (credit spread), DUR
(duration) and STREVB (bond return), i.e., these are the factors where we would not only
expect a difference, but where a factor construction using bond-level data is the natural choice.
For both CRY and DUR, the bond-level factor returns are around 0.10% higher per month,
while for STREVB, this difference is roughly twice as high. At the other end of the spectrum,
PEADB generates an additional 0.04% per month on average using firm-level as opposed to
bond-level returns.

The results suggest that within a representative firm with multiple bonds outstanding,
aggregating returns across the term structure appears to negatively affect factors that capture
term structure phenomena (such as CRY and DUR). At the same time, using firm-level returns
may be more appropriate when using a signal based on firm- or equity-level characteristics as
it will be homogeneous across all of the outstanding bonds. However, as we show in Section
IA.10.1, these significant differences ultimately become irrelevant as they pertain to our baseline
results and the estimated BMA-SDF.

IA.1.3.2 Quotes vs. quotes & matrix prices

Over the sample period January 1986 to December 1996 the LBFI database uses matrix pricing
whereas the BAML ICE database uses a combination of actual transaction prices and indica-
tive bid-side quotes sourced from multiple dealers at 3:00pm Eastern Time (Intercontinental
Exchange, 2021). Overall, 39%, 41%, and 31% of all, investment-grade and noninvestment-
grade bond prices are set with matrix pricing. To assess pricing differences we follow exactly
the same factor construction process as with our baseline LBFI data (including matrix-priced
bonds) used in the main results and then proceed to exclude any bond that is not priced with
an actual quote. In Panel A of Figure IA.5 show the factor averages over the LBFI sample
period January 1986 to December 1996. The return differences are presented in Panel B.

Overall, quote- and quote-matrix-factors are very similar, with the smallest and largest
average monthly differences equal to −0.022% for SZE and 0.032% for VAL, respectively. In
fact, only VAL has an average return difference that is statistically significant at the 5% level.
Thus, our results are consistent with Hong and Warga (2000), Choi (2013), Choi and Richardson
(2016) and Chordia et al. (2017), who all find that the impact of removing bonds set with matrix
prices on factor premia is quantitatively immaterial.
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IA.1.3.3 Quotes vs. transaction prices

We now compare the quote-based BAML ICE factors with factors formed using the 2025 version
of WRDS TRACE. The time series of the comparison is restricted to August 2002 to December
2022, starting with the commencement of the WRDS TRACE bond return data. Note that the
current version of the WRDS TRACE dataset does not truncate bond returns at the +100%
level although Dickerson, Robotti, and Rossetti (2024) documents that this truncation used in
a prior version of the data does not result in material differences to out-of-sample factor premia.

Figure IA.6 presents the results comparing WRDS TRACE vs. BAML ICE factors. Across
the 14 bond factors, all are very closely aligned. Only a single factor, the credit risk factor (CRF)
of Bai et al. (2019) yields a statistically significant difference whereby the average return of the
factor formed with the BAML ICE data is larger by just under 0.10% per month. In Figure
IA.7 we repeat the exercise using DFPS TRACE using a sample that ends in 2021 (the last
available observation in the DFPS TRACE data ends then). Not very surprisingly, the results
are not very different. The differences remain economically small at under 0.10% per month,
although now, CRY and HMLB exhibit statistically significantly different average returns.

While there is an ongoing debate regarding the use of quotes versus transaction prices in
corporate bond research, the differences in average returns are relatively minor at the monthly
rebalancing frequency and as long as the data are cleaned and processed appropriately.4

IA.1.4 In- and out-of-sample test assets

In Table IA.II we describe the in- and out-of-sample portfolio and anomaly data we use to
estimate and test the BMA-SDFs and other asset pricing models we consider in the paper along
with the associated reference and source. The IS corporate bond test assets are the 50 IS bond
portfolios listed in Panel A in addition to the 16 tradable corporate bond factors from Panel A
in Table A.1 of Appendix A. The IS stock test assets are the 33 stock portfolios listed in Panel
B in addition to the 25 tradable stock factors from Panel B in Table A.1 of Appendix A.

Figure IA.8 we plot the percentage variation explained by the first five principal compo-
nents of the respective test assets for stock excess returns (Panel A), corporate bond excess
returns (Panel B) and duration-adjusted corporate bond excess returns (Panel D), respec-
tively (see Internet Appendix IA.6 for details on the duration adjustment). The first principal
component captures around 49%, 66% and 77% of the total variation for stock, bond and
duration-adjusted bond excess returns, respectively. Panels C and E of Figure IA.8 show
the generalized correlations between bond and stock portfolios. Define v̂Bt and v̂St as the
top five principal components of the corporate bond and stock IS test assets. The general-
ized correlations between v̂Bt and v̂St are then defined as the square root of the eigenvalues of
cov(v̂Bt , v̂

S
t )

⊤cov(v̂Bt )
−1cov(v̂Bt , v̂

S
t )cov(v̂

S
t )

−1.

4See Dickerson et al. (2024) for additional discussion on the differences between transaction vs. quote data
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Figure IA.3: Bond and stock issuers market capitalisation.

Panel A plots the total market capitalisation (in USD trillions) of all listed firms in CRSP (red line) along
with the total market capitalisation of the subset that has publicly traded debt in our merged bond-stock data
sample at each month t. Panel B plots the time-varying coverage in percent, defined as the sum of the total
CRSP market capitalisation divided by the market capitalisation of the firms in our corporate bond matched
sample. The sample period is 1986:01 to 2022:12 (T = 444).
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Figure IA.4: Bond factor comparison: Bond- vs. firm-level.

Panel A displays the average monthly bond factor returns constructed at the bond or the firm level, respectively,
using the combined LBFI/BAML ICE quote-based data. Panel B reports the average return differences in
percent. The standard error bars represent the 95% confidence interval. The factors computed at the firm level
use a ‘representative’ bond return for month t + 1 computed as the value-weighted average return of all of a
firms’ bonds outstanding over month t + 1 using bond market capitalization weights formed at month t. The
sample period is 1986:01 to 2022:12 (T = 444).
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Figure IA.5: Bond factor comparison: Quotes matrix prices vs. quotes only.

Panel A displays the average monthly bond factor returns constructed at the bond level with the LBFI data
using returns computed with both bond price quotes as well as matrix prices and with quotes only. Panel B
reports the average return differences in percent. The standard error bars represent the 95% confidence interval.
The sample period is 1986:01 to 1996:12 (T = 232).
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Figure IA.6: Bond factor comparison: BAML ICE vs. WRDS TRACE.

Panel A displays the average monthly bond factor returns constructed at the bond level with the BAML ICE
and the WRDS TRACE data, respectively. Panel B reports the average return differences in percent. The
standard error bars represent the 95% confidence interval. The sample period is 2002:08 to 2022:12 (T = 245),
starting with the first observation in WRDS TRACE.
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Figure IA.7: Bond factor comparison: BAML ICE vs. DFPS TRACE.

Panel A displays the average monthly bond factor returns constructed at the bond level with the BAML ICE
and the DFPS TRACE data, respectively. Panel B reports the average return differences in percent. The
standard error bars represent the 95% confidence interval. The sample period is 2002:08 to 2021:12 (T = 232),
starting with the first observation in DFPS TRACE.
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Table IA.II: List of corporate bond, stock and U.S. Treasury bond test assets. This table lists
the in and out-of-sample test assets used for the baseline results in the paper. For each test asset, we present
their identification (Asset ID), a description of their construction, and the source of the data for downloading
and/or constructing the time series. Panel A describes the IS corporate bond portfolios/anomalies. Panel B
describes the IS stock portfolios/anomalies. Panel C describes the OS corporate bond portfolios/anomalies.
Panel D describes the OS stock portfolios/anomalies. Panel E describes the OS U.S. Treasury portfolios.

Asset ID Name and description Reference Source

Panel A: In-sample bond portfolios/anomalies

25 spread/size
bond portfolios

5 Bond credit spread × 5 bond market capi-
talization double sorted portfolios.

Nozawa (2017) and
Elkamhi et al. (2023)

Open Source
Bond Asset
Pricing

25 rating/maturity
bond portfolios

5 Bond rating × 5 bond time to maturity dou-
ble sorted portfolios.

Gebhardt et al. (2005)
and others

Open Source
Bond Asset
Pricing

Panel B: In-sample stock portfolios/anomalies

cash_at CashAssets. Cash and short term investments
scaled by assets.

Palazzo (2012) Global Factor
Data

ope_be FCFBook. Operating profits-to-book equity. Fama and French
(2015)

Global Factor
Data

ocf_me CFPrice. Operating cash flow-to-market. Desai et al. (2004) Global Factor
Data

at_turnover Asset Turnover. Sales scaled by average of to-
tal assets.

Haugen and Baker
(1996)

Global Factor
Data

capx_gr2 CapIntens. CAPEX 2 year growth. Anderson and Garcia-
Feijóo (2006)

Global Factor
Data

div12m_me DP tr. Dividend yield. Litzenberger and Ra-
maswamy (1979)

Global Factor
Data

ppeinv_gr1a PPE delta. Change in property, plant and
equipment less inventories scaled by lagged as-
sets.

Lyandres et al. (2008) Global Factor
Data

sale_me SalesPrice. Sales-to-market. William C. Barbee
et al. (1996)

Global Factor
Data

ret_12_7 IntermMom. Price momentum t-12 to t-7. Novy-Marx (2012) Global Factor
Data

prc_highprc_252d YearHigh. Current price to high price over last
year.

George and Hwang
(2004)

Global Factor
Data

ni_me PE tr. Earnings-to-price. Basu (1983) Global Factor
Data

bidaskhl_21d BidAsk. 21 day high-low bid-ask spread. Corwin and Schultz
(2012)

Global Factor
Data

dolvol_126d Volume. Dollar trading volume. Brennan et al. (1998) Global Factor
Data

dsale_dsga SGASales. Change sales minus change SG&A. Abarbanell and Bushee
(1998)

Global Factor
Data

cop_atl1 Cash-based operating profits-to-lagged book
assets.

Ball et al. (2016) Global Factor
Data

ivol_capm_252d iVolCAPM. Idiosyncratic volatility from the
CAPM (252 days).

Ali et al. (2003) Global Factor
Data

ivol_ff3_21d iVolFF3. Idiosyncratic volatility from the
Fama-French 3-factor model.

Ang et al. (2006) Global Factor
Data

rvol_21d Return volatility. Ang et al. (2006) Global Factor
Data

ebit_sale ProfMargin. Operating profit margin after de-
preciation.

Soliman (2008) Global Factor
Data

ocf_at PriceCostMargin. Operating cash flow to as-
sets.

Bouchaud et al. (2019) Global Factor
Data

opex_at OperLev. Operating leverage. Novy-Marx (2011) Global Factor
Data

lnoa_gr1a NetSalesNetOA. Change in long-term net op-
erating assets.

Fairfield et al. (2003) Global Factor
Data

oaccruals_at Operating accruals. Sloan (1996) Global Factor
Data

at_gr1 Asset growth. Asset growth (1yr). Cooper et al. (2008) Global Factor
Data

eqnpo_12m Net equity payout (1yr). Daniel and Titman
(2006)

Global Factor
Data

gp_at Gross profit scaled by assets. Novy-Marx (2013) Global Factor
Data

capex_abn Abnormal corporate investment. Titman et al. (2004) Global Factor
Data

noa_at NetOA. Net operating assets to total assets. Hirshleifer et al. (2004) Global Factor
Data

o_score Ohlson O-score. Dichev (1998) Global Factor
Data

niq_at ROA. Quarterly return on assets. Balakrishnan et al.
(2010)

Global Factor
Data
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chcsho_12m Net stock issues. Pontiff and Woodgate
(2008)

Global Factor
Data

re_60_12 LRreversal. Long-run reversal. Bondt and Thaler
(1985)

Open Asset Pric-
ing

debt_me Lev. Market leverage. Bhandari (1988) Open Asset Pric-
ing

Panel C: Out-of-sample bond portfolios/anomalies

10× VaR portfolios Decile sorted bond portfolios sorted on 24-
month rolling 95% historical value-at-risk
(VaR) defined as the second lowest return
value in the rolling period.

Bai et al. (2019) Open Source
Bond Asset
Pricing

10× duration port-
folios

Decile sorted bond portfolios sorted on bond
duration.

Gebhardt et al. (2005) Open Source
Bond Asset
Pricing

10× bond value
portfolios

Decile sorted bond portfolios sorted on bond
market capitalization defined as bond price
multiplied by bond amount outstanding.

Houweling and
Van Zundert (2017)

Open Source
Bond Asset
Pricing

10× bond BTM
portfolios

Decile sorted bond portfolios sorted on bond
book-to-market (BTM) defined as the market
value of the bond scaled by the par value.

Bartram et al. (2025) Open Source
Bond Asset
Pricing

10× bond LTREV
portfolios

Decile sorted bond portfolios sorted on bond
long-term reversal defined as the sum of the
bond returns from t-12 to t-48.

Bali et al. (2021a) Open Source
Bond Asset
Pricing

10× bond MOM
portfolios

Decile sorted bond portfolios sorted on bond
momentum defined as the sum of the bond re-
turns from t-6 to t-1.

Gebhardt et al. (2005) Open Source
Bond Asset
Pricing

17× bond FF17
portfolios

17 Fama-French industry portfolios computed
with bond returns.

Kelly et al. (2023) Open Source
Bond Asset
Pricing

Panel D: Out-of-sample stock portfolios/anomalies

10× E/P portfolios Decile sorted stock portfolios sorted on the
earning-to-price ratio (E/P).

Fama & French Kenneth
French’s web-
page

10× MOM portfo-
lios

Decile sorted stock portfolios sorted on equity
momentum.

Fama & French Kenneth
French’s web-
page

10× LTREV port-
folios

Decile sorted stock portfolios sorted on stock
long-term reversals.

Fama & French Kenneth
French’s web-
page

10× accruals port-
folios

Decile sorted stock portfolios sorted on equity
accruals.

Fama & French Kenneth
French’s web-
page

10× size portfolios Decile sorted stock portfolios sorted on firm
size (market capitalization).

Fama & French Kenneth
French’s web-
page

10× variance port-
folios

Decile sorted stock portfolios sorted on
earnings-to-price ratio (E\/P).

Fama & French Kenneth
French’s web-
page

17× stock FF17
portfolios

17 Fama-French industry portfolios computed
with stock returns.

Fama & French Kenneth
French’s web-
page

Panel E: Out-of-sample Treasury portfolios

29× Treasury port-
folios

Monthly excess U.S. Treasury bond returns
computed across the term structure us-
ing annualized continuously-compounded zero
coupon yields computed as in Liu and Wu
(2021). We price the U.S. Treasury Bonds
each month using the yield-curve data and
then compute monthly discrete excess returns
across the term structure as the total return
in excess of the one-month Treasury Bill rate.
The portfolios span from the 2-year T Bond
up until the 30-year T-Bond in increments of
1-year.

Liu and Wu (2021) Jing Cynthia
Wu’s webpage
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Figure IA.8: Principal components and generalized correlations between bonds and stocks.

Panel A shows the percent variation explained by the first five principal components of the IS stock test assets.
Panels B and D show the same information for the corporate bond portfolios constructed used bond excess
and duration-adjusted bond excess returns, respectively. Panels C and E report the respective generalized
(canonical) correlations between corporate bonds and stocks. See Internet Appendix IA.6 for the duration
adjustment. The stock test assets comprise 33 portfolios and the 24 tradable stock factors (N = 57), the bond
test assets comprise the 50 portfolios and 16 tradable bond factors (N = 66). The sample period is 1986:01 to
2022:12 (T = 444).
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IA.2 Simulation design

We build a simple setting for a linear factor model that includes strong and weak factors and
noisy proxies of the strong factors. The cross-section of asset returns is calibrated to mimic the
empirical properties of 25 size and value portfolios of Fama-French. All factors and portfolio
returns are generated from normal distributions. We calibrate the strong (useful) factor to
mimic the HML portfolio. To generate a misspecified setting, we include the pricing errors
from the GMM-OLS estimation of the model with HML as the only factor. A useless factor
is simulated from an independent normal distribution with mean zero and standard deviation
1%. Noisy proxies, ft,j, of the true factors are generated to have correlation ρj with the useful
factor and the same variance as the latter.

In summary,

ft,useless
iid∼ N (0, (1%)2),

(
Rt

ft,hml

)
iid∼ N

([
R̄
f̄hml

]
,

[
Σ̂R Ĉhml

Ĉ⊤
hml σ̂2

hml

])
, and

ft,j = δjft,hml +
√

1− δ2jwt,j, |δj| < 1, where wt,j
iid∼ N (0, σ̂2

hml)

where the factor loadings, risk prices, and the variance-covariance matrix of returns and factors
are equal to their sample estimates from the time series and cross-sectional regressions of the
GMM-OLS procedure, applied to 25 size-and-value portfolios and HML as a factor. All the
simulation parameters are estimated on monthly data from July 1963 to December 2017. For
each sample size and experiment considered, we generate one thousand artificial samples, and
in each artificial sample, we estimate the posterior probabilities of the factors, their posterior
(mean) market prices of risk, and the BMA-SDF-implied market price of risk.

Figures IA.9 and IA.10 show some additional evidence from simulations that is discussed in
Section 2.4.1.
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A: BMA-SDF market price of risk, T = 200 B: BMA-SDF market price of risk, T = 20, 000

C: Factors’ market price of risk, T = 200 D: Factors’ market price of risk, T = 20, 000

E: Factors’ posterior probabilities, T = 200 F: Factors’ posterior probabilities, T = 20, 000

Figure IA.9: Simulation evidence in very large and very small samples.

Simulation results from applying our Bayesian methods to different sets of factors. Each experiment is
repeated 1,000 times with the specified sample size (T ). Data generating process calibrated to match the
pricing ability of the HML factor (as pseudo-true factor) for the Fama-French 25 Size and Book-to-Market
portfolios. Horizontal red dashed lines denote the market price of risk of HML, and the grey shaded area the
frequentist 95% confidence region of its GMM estimate in the historical sample of 665 monthly observations.
The prior is set to 40% of the expost maximum Sharpe ratio. Simulation details are in Internet Appendix
IA.2. Half-violin plots depict the distribution of the estimated quantities across simulation, with black error
bars denoting centered 95% coverage, and white circles denoting median values, across repeated samples. In all
experiments we include a useless factor (uf ), while the pseudo-true factor (ftrue) is included only in experiments
I–III. In each experiment we include a variable number of noisy proxies fj , j = 1, ..., 4 with correlations with
the pseudo-true factor equal to, respectively, .4, .3, .2, and .1. The factors consider in the various experiments are:
Experiment I: uf and ftrue. Experiment IV: uf , and f1.
Experiment II: uf , ftrue and f1. Experiment V: uf , f1 and f2.
Experiment III: uf , ftrue, f1 and f2. Experiment VI: uf , f1, f2, f3 and f4.
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A: BMA-SDF market price of risk, T = 400 B: BMA-SDF market price of risk, T = 1, 600

C: Factors’ market price of risk, T = 400 D: Factors’ market price of risk, T = 1, 600

E: Factors’ posterior probabilities, T = 400 F: Factors’ posterior probabilities, T = 1, 600

Figure IA.10: Simulation evidence with useless factors and noisy proxies, prior SR = 40%.

Simulation results from applying our Bayesian methods to different sets of factors. Each experiment is
repeated 1,000 times with the specified sample size (T ). Data generating process calibrated to match the
pricing ability of the HML factor (as pseudo-true factor) for the Fama-French 25 Size and Book-to-Market
portfolios. Horizontal red dashed lines denote the market price of risk of HML, and the grey shaded area the
frequentist 95% confidence region of its GMM estimate in the historical sample of 665 monthly observations.
The prior is set to 40% of the expost maximum Sharpe ratio. Simulation details are in Internet Appendix
IA.2. Half-violin plots depict the distribution of the estimated quantities across simulation, with black error
bars denoting centered 95% coverage, and white circles denoting median values, across repeated samples. In all
experiments we include a useless factor (uf ), while the pseudo-true factor (ftrue) is included only in experiments
I–III. In each experiment we include a variable number of noisy proxies fj , j = 1, ..., 4 with correlations with
the pseudo-true factor equal to, respectively, .4, .3, .2, and .1. The factors consider in the various experiments are:
Experiment I: uf and ftrue. Experiment IV: uf , and f1.
Experiment II: uf , ftrue and f1. Experiment V: uf , f1 and f2.
Experiment III: uf , ftrue, f1 and f2. Experiment VI: uf , f1, f2, f3 and f4.
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IA.3 Additional co-pricing results

In this section we provide additional results to complement the analysis in Section 3.1.

Table IA.III: Tradable factor performance statistics: Full sample

SR IR µ t-stat. α t-stat.

Panel A: Corporate bond factors

CRF 0.04 0.04 0.08 [0.75] 0.08 [0.69]
CRY 0.13 0.02 0.23 [2.21] 0.03 [0.41]
DEF 0.02 −0.03 0.03 [0.39] −0.05 [−0.56]
DRF 0.12 −0.09 0.27 [2.35] −0.09 [−1.88]
DUR 0.08 −0.15 0.14 [1.66] −0.14 [−2.51]
HMLB 0.14 0.06 0.21 [2.44] 0.09 [1.19]
LTREVB 0.11 0.12 0.09 [2.09] 0.11 [1.97]
MKTB 0.19 - 0.30 [3.55] - -
MKTBD 0.06 −0.01 0.08 [1.05] −0.02 [−0.20]
MOMB −0.00 0.03 −0.01 [−0.10] 0.04 [0.53]
MOMBS 0.19 0.26 0.18 [3.69] 0.23 [4.36]
PEADB 0.36 0.40 0.13 [7.17] 0.14 [6.88]
STREVB 0.04 0.00 0.07 [0.95] 0.00 [−0.07]
SZE 0.09 0.11 0.07 [1.78] 0.08 [2.30]
TERM 0.12 0.01 0.36 [2.50] 0.03 [0.23]
VAL 0.06 0.06 0.07 [1.16] 0.07 [0.94]

Panel B: Stock factors

BAB 0.20 0.23 0.74 [3.52] 0.84 [3.55]
CMA 0.14 0.20 0.29 [2.55] 0.40 [3.45]
CMAs 0.16 0.19 0.20 [3.24] 0.24 [3.77]
CPTLT 0.11 −0.02 0.75 [2.21] −0.08 [-0.42]
FIN 0.14 0.23 0.59 [2.78] 0.86 [4.25]
HML 0.06 0.08 0.18 [1.02] 0.25 [1.26]
HML_DEV 0.04 0.04 0.16 [0.81] 0.14 [0.68]
HMLs 0.06 0.07 0.10 [1.01] 0.12 [1.19]
LIQ 0.08 0.06 0.29 [1.52] 0.24 [1.24]
LTREV 0.06 0.05 0.17 [1.16] 0.14 [0.86]
MGMT 0.18 0.26 0.52 [3.37] 0.70 [4.33]
MKTS 0.15 - 0.69 [3.22] - -
MKTSs 0.17 0.12 0.56 [3.39] 0.34 [2.27]
MOMS 0.11 0.15 0.51 [2.3] 0.66 [3.36]
PEAD 0.26 0.28 0.53 [5.4] 0.56 [5.98]
PERF 0.17 0.24 0.52 [3.4] 0.66 [4.93]
QMJ 0.19 0.32 0.47 [3.45] 0.69 [6.44]
RMW 0.15 0.20 0.38 [2.95] 0.48 [3.81]
RMWs 0.21 0.20 0.31 [4.67] 0.31 [4.46]
R_IA 0.14 0.20 0.31 [2.72] 0.42 [3.55]
R_ROE 0.18 0.24 0.49 [3.58] 0.62 [5.35]
SMB 0.02 −0.01 0.06 [0.45] −0.03 [-0.25]
SMBs 0.03 0.04 0.06 [0.58] 0.08 [0.72]
STREV 0.07 0.02 0.24 [1.69] 0.06 [0.45]

The table lists corporate bond and stock tradable factor performance statistics. SR is the Sharpe ratio, IR is the
Information ratio, µ is the average return, and α is the single-factor MKTB (MKTS) alpha. All statistics are
reported monthly. µ and α are reported in percent. t-statistics are reported in square brackets with Newey-West
standard errors computed with four lags. The sample period is 1986:01 to 2022:12.
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IA.3.1 The co-pricing SDF

Factor statistics. Tables IA.III and IA.IV provide performance statistics such as the Sharpe
and Information ratio, average return µ and a one-factor α using MKTB and MKTS for the
tradable bond and stock factors, respectively. The two factors with the highest Sharpe ratios
in Table IA.III—PEADB with a SR of 0.36 and PEAD with a SR of 0.26—are also the two
tradable factors with the highest posterior probabilities in Figure 2. For comparison, the SR
of the bond and stock market factors MKTB and MKTS are 0.19 and 0.15, respectively. Table
IA.IV shows the performance statistics for subsamples pre- and post-2000. PEADB displays
the highest SR for a bond factor for both subsample periods, whereas PEAD is particularly
strong in the first half of the sample. In the second half, the stock factors with the highest SR
are BAB and RMWs with a SR of 0.21.

Posterior probabilities and market prices of risk. In Table A.2 of Appendix C we
provide the full list of posterior probabilities and the associated annualized risk premia (in
Sharpe ratio units) for the co-pricing factor zoo across the full range of prior Sharpe ratios we
consider. Tables IA.V and IA.VI report the corresponding information for the respective bond
and stock factor zoos.
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Figure IA.11: Posterior factor probabilities: Co-pricing factor zoo (no intercept).

Posterior probabilities, E[γj |data], of the 54 bond and stock factors described in Appendix A. All models are
estimated without an intercept. The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation
for γj of 50%. Results are shown for different values of the prior Sharpe ratio,

√
Eπ[SR2

f | σ2], with values
set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the test assets. Labels are ordered
by the average posterior probability across the four levels of shrinkage. Test assets are the 83 bond and stock
portfolios and 40 tradable bond and stock factors described in Section 1. The sample period is 1986:01 to
2022:12 (T = 444).
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Table IA.IV: Tradable factor performance statistics: Subsamples

1986:01–1999:12 2000:01–2022:12
SR IR µ t-stat. α t-stat. SR IR µ t-stat. α t-stat.

Panel A: Corporate bond factors

CRF 0.10 0.22 0.08 [1.26] 0.16 [2.31] 0.03 0.02 0.08 [0.47] 0.05 [0.29]
CRY 0.25 0.24 0.18 [2.94] 0.18 [2.63] 0.12 -0.02 0.26 [1.59] -0.02 [-0.26]
DEF -0.05 0.06 -0.05 [-0.73] 0.05 [0.89] 0.04 -0.04 0.08 [0.70] -0.07 [-0.62]
DRF 0.12 -0.24 0.17 [1.48] -0.11 [-3.05] 0.13 -0.06 0.33 [1.93] -0.07 [-0.94]
DUR 0.09 -0.24 0.12 [1.12] -0.13 [-2.81] 0.07 -0.13 0.15 [1.28] -0.14 [-1.68]
HMLB 0.22 0.11 0.18 [2.48] 0.07 [1.32] 0.13 0.06 0.23 [1.74] 0.10 [0.89]
LTREVB 0.12 0.33 0.07 [1.37] 0.15 [3.37] 0.11 0.10 0.11 [1.66] 0.09 [1.27]
MKTB 0.21 - 0.29 [2.43] - - 0.18 - 0.31 [2.67] - -
MKTBD 0.06 0.12 0.05 [0.72] 0.09 [1.53] 0.06 -0.04 0.11 [0.88] -0.06 [-0.47]
MOMB -0.08 -0.13 -0.09 [-1.04] -0.14 [-1.60] 0.02 0.08 0.04 [0.38] 0.14 [1.23]
MOMBS 0.33 0.36 0.11 [3.79] 0.12 [3.77] 0.19 0.27 0.21 [2.89] 0.29 [3.64]
PEADB 0.41 0.41 0.08 [4.89] 0.08 [5.09] 0.38 0.42 0.17 [6.07] 0.18 [5.85]
STREVB -0.04 -0.03 -0.05 [-0.50] -0.04 [-0.43] 0.07 0.02 0.13 [1.40] 0.03 [0.36]
SZE 0.08 0.13 0.03 [0.91] 0.05 [1.55] 0.10 0.11 0.09 [1.56] 0.10 [1.92]
TERM 0.14 -0.12 0.37 [1.73] -0.14 [-1.58] 0.11 0.03 0.35 [1.84] 0.10 [0.49]
VAL -0.01 0.24 -0.01 [-0.12] 0.14 [2.44] 0.10 0.04 0.12 [1.39] 0.05 [0.57]

Panel B: Stock factors

BAB 0.18 0.18 0.60 [1.72] 0.60 [1.67] 0.21 0.25 0.82 [3.40] 0.93 [3.33]
CMA 0.09 0.26 0.18 [1.12] 0.42 [3.07] 0.16 0.19 0.36 [2.25] 0.41 [2.51]
CMAs 0.22 0.31 0.27 [2.78] 0.36 [3.72] 0.13 0.14 0.16 [2.06] 0.18 [2.25]
CPTLT 0.16 -0.05 1.08 [2.10] -0.20 [-0.75] 0.08 -0.01 0.55 [1.21] -0.04 [-0.15]
FIN 0.16 0.32 0.53 [1.93] 0.90 [3.65] 0.14 0.20 0.62 [2.15] 0.83 [3.06]
HML 0.03 0.15 0.07 [0.30] 0.33 [1.47] 0.07 0.07 0.25 [1.03] 0.26 [0.95]
HML_DEV -0.04 0.06 -0.13 [-0.48] 0.16 [0.67] 0.08 0.06 0.34 [1.25] 0.23 [0.85]
HMLs 0.11 0.19 0.17 [1.25] 0.28 [2.04] 0.03 0.03 0.05 [0.40] 0.05 [0.37]
LIQ 0.05 0.07 0.17 [0.62] 0.22 [0.86] 0.09 0.07 0.36 [1.42] 0.29 [1.15]
LTREV 0.11 0.11 0.26 [1.26] 0.26 [1.17] 0.04 0.03 0.12 [0.60] 0.09 [0.39]
MGMT 0.18 0.36 0.41 [2.21] 0.68 [4.28] 0.18 0.23 0.58 [2.70] 0.71 [3.18]
MKTS 0.23 - 1.00 [3.04] - - 0.11 - 0.50 [1.74] - -
MKTSs 0.24 0.14 0.74 [2.72] 0.37 [1.46] 0.14 0.10 0.45 [2.30] 0.30 [1.79]
MOMS 0.32 0.28 0.99 [3.59] 0.86 [3.08] 0.04 0.09 0.22 [0.73] 0.43 [1.73]
PEAD 0.57 0.55 0.92 [8.06] 0.87 [7.68] 0.13 0.16 0.29 [2.29] 0.35 [2.79]
PERF 0.19 0.17 0.42 [2.32] 0.37 [1.86] 0.17 0.26 0.57 [2.64] 0.75 [4.54]
QMJ 0.27 0.38 0.45 [2.90] 0.60 [3.95] 0.17 0.30 0.49 [2.46] 0.68 [5.11]
RMW 0.16 0.18 0.25 [1.71] 0.28 [2.05] 0.16 0.20 0.46 [2.62] 0.57 [3.48]
RMWs 0.21 0.20 0.28 [2.80] 0.27 [2.68] 0.21 0.21 0.34 [3.88] 0.33 [3.70]
R_IA 0.17 0.35 0.31 [2.04] 0.54 [4.28] 0.13 0.16 0.31 [1.94] 0.37 [2.20]
R_ROE 0.38 0.36 0.73 [4.99] 0.68 [4.66] 0.11 0.19 0.34 [1.76] 0.51 [3.42]
SMB -0.09 -0.13 -0.26 [-1.11] -0.35 [-1.44] 0.08 0.06 0.26 [1.53] 0.17 [1.02]
SMBs -0.07 -0.07 -0.14 [-0.95] -0.13 [-0.81] 0.08 0.09 0.18 [1.31] 0.19 [1.39]
STREV 0.09 0.03 0.21 [1.07] 0.07 [0.41] 0.07 0.03 0.25 [1.34] 0.10 [0.51]

The table lists corporate bond and stock tradable factor performance statistics. SR is the Sharpe ratio, IR is the
Information ratio, µ is the average return, and α is the single-factor MKTB (MKTS) alpha. All statistics are
reported monthly. µ and α are reported in percent. t-statistics are reported in square brackets with Newey-West
standard errors computed with four lags. The sample is split into two subperiods following van Binsbergen et al.
(2025). The first sample is from 1986:01 to 1999:12, the second sample is from 2000:01 to 2022:12.

No intercept. For the baseline analysis in Section 3.1.1 we always include an intercept. In
the following, we repeat the previous analysis excluding the intercept. Figure IA.11 is the
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Table IA.V: Posterior factor probabilities and risk prices for the corporate bond factor zoo

Factor prob., E[γj|data] Price of risk, E[λj|data]

Total prior Sharpe ratio Total prior Sharpe ratio
Factors 20% 40% 60% 80% 20% 40% 60% 80%

PEADB 0.602 0.738 0.832 0.820 0.090 0.342 0.634 0.798
MOMBS 0.516 0.612 0.640 0.605 0.074 0.281 0.487 0.602
CREDIT 0.511 0.535 0.580 0.679 0.008 0.034 0.088 0.240
IVOL 0.499 0.510 0.535 0.558 0.005 0.018 0.045 0.112
YSP 0.497 0.506 0.525 0.567 0.003 0.013 0.035 0.100
INFLV 0.498 0.501 0.508 0.515 0.004 0.017 0.041 0.080
LIQNT 0.508 0.502 0.499 0.498 −0.002 −0.006 −0.015 −0.035
MKTB 0.513 0.523 0.512 0.443 0.068 0.179 0.288 0.359
CRY 0.479 0.487 0.513 0.509 0.036 0.123 0.276 0.451
LVL 0.492 0.493 0.489 0.510 -0.000 -0.000 -0.000 0.002
UNCf 0.510 0.504 0.497 0.468 −0.008 −0.027 −0.050 −0.076
INFLC 0.493 0.487 0.485 0.499 -0.000 −0.001 −0.003 −0.007
EPU 0.490 0.492 0.487 0.483 0.003 0.010 0.018 0.029
UNCr 0.502 0.486 0.483 0.469 -0.000 0.000 0.003 0.009
UNC 0.506 0.492 0.494 0.445 −0.004 −0.012 −0.020 −0.024
EPUT 0.489 0.466 0.480 0.475 0.004 0.012 0.027 0.053
VIX 0.483 0.483 0.482 0.449 -0.000 −0.001 −0.005 −0.012
CPTL 0.500 0.489 0.470 0.414 0.001 0.006 0.021 0.045
DRF 0.489 0.477 0.444 0.387 0.026 0.051 0.056 0.022
SZE 0.477 0.479 0.451 0.380 0.012 0.046 0.090 0.103
HMLB 0.496 0.478 0.448 0.364 0.035 0.095 0.139 0.130
STREVB 0.491 0.468 0.423 0.354 0.001 0.005 0.009 0.007
VAL 0.469 0.457 0.416 0.332 0.019 0.071 0.120 0.121
MKTBD 0.470 0.447 0.406 0.336 0.011 0.031 0.042 0.037
DUR 0.463 0.424 0.388 0.353 0.010 −0.014 −0.077 −0.160
LTREVB 0.481 0.457 0.394 0.293 0.025 0.063 0.072 0.054
DEF 0.460 0.443 0.390 0.320 −0.006 −0.021 −0.044 −0.067
MOMB 0.482 0.437 0.386 0.305 −0.005 −0.010 −0.003 0.010
TERM 0.455 0.422 0.372 0.307 0.040 0.071 0.069 0.068
CRF 0.467 0.418 0.364 0.299 0.013 0.050 0.083 0.100

The table reports posterior probabilities, E[γj |data], and posterior means of annualized market prices of risk,
E[λj |data], of the 16 tradable bond and 14 nontradable factors described in Appendix A. The prior for each
factor inclusion is a Beta(1, 1), yielding a prior expectation for γj of 50%. Results are tabulated for different
values of the prior Sharpe ratio,

√
Eπ[SR2

f | σ2], with values set to 20%, 40%, 60% and 80% of the ex post
maximum Sharpe ratio of the test assets. The factors are ordered by the average posterior probability across
the four levels of shrinkage. Test assets are the 50 bond portfolios and the 16 tradable bond factors described
in Section 1. The sample period is 1986:01 to 2022:12 (T = 444).

no intercept analogue to Figure 2 in the paper. While the posterior probabilities are slightly
different and the ordering is changed a little, the top five factors remain the same. Table IA.VII
complements Table A.2 of Appendix C and provides the full list of posterior probabilities and
the associated annualized risk premia (in Sharpe ratio units) for the co-pricing factor zoo across
the full range of prior Sharpe ratios, estimated without an intercept. Tables IA.VIII and IA.IX
report the corresponding information for the respective bond and stock factor zoos.
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Table IA.VI: Posterior factor probabilities and risk prices for the stock factor zoo

Factor prob., E[γj|data] Price of risk, E[λj|data]

Total prior Sharpe ratio Total prior Sharpe ratio
Factors 20% 40% 60% 80% 20% 40% 60% 80%

PEAD 0.520 0.579 0.665 0.701 0.034 0.141 0.332 0.552
MKTS 0.510 0.560 0.587 0.566 0.041 0.161 0.317 0.469
IVOL 0.499 0.520 0.508 0.567 0.004 0.017 0.043 0.128
LVL 0.510 0.506 0.517 0.511 0.001 0.002 0.005 0.014
CMAs 0.497 0.492 0.528 0.527 0.020 0.077 0.177 0.294
UNCr 0.499 0.507 0.503 0.509 0.001 0.003 0.009 0.028
CREDIT 0.502 0.512 0.491 0.510 -0.000 −0.001 −0.002 −0.002
EPU 0.504 0.503 0.498 0.509 −0.002 −0.006 −0.013 −0.033
INFLC 0.505 0.502 0.501 0.501 0.000 0.000 0.001 0.002
VIX 0.504 0.503 0.497 0.494 -0.000 −0.002 −0.005 −0.015
INFLV 0.501 0.499 0.494 0.500 -0.000 −0.002 −0.003 −0.005
RMWs 0.497 0.512 0.513 0.461 0.032 0.101 0.188 0.257
EPUT 0.495 0.496 0.490 0.490 0.001 0.004 0.013 0.035
UNCf 0.491 0.497 0.487 0.490 0.000 0.002 0.009 0.035
CPTL 0.500 0.500 0.486 0.476 0.017 0.058 0.103 0.159
YSP 0.494 0.494 0.490 0.482 0.001 0.003 0.008 0.023
UNC 0.487 0.489 0.484 0.491 -0.000 0.001 0.005 0.015
LIQNT 0.488 0.488 0.474 0.493 -0.000 −0.002 −0.008 −0.035
QMJ 0.491 0.485 0.484 0.473 0.049 0.129 0.244 0.390
CPTLT 0.493 0.496 0.486 0.451 0.019 0.064 0.108 0.136
MKTSs 0.526 0.500 0.468 0.410 0.018 0.049 0.073 0.081
LIQ 0.500 0.486 0.461 0.413 0.006 0.023 0.050 0.075
BAB 0.494 0.494 0.458 0.384 0.027 0.075 0.118 0.147
MGMT 0.503 0.478 0.448 0.394 0.057 0.128 0.201 0.248
STREV 0.475 0.467 0.467 0.401 0.007 0.030 0.074 0.115
MOMS 0.500 0.491 0.439 0.377 0.016 0.042 0.054 0.061
R_IA 0.497 0.469 0.452 0.388 0.030 0.068 0.106 0.127
PERF 0.503 0.481 0.450 0.370 0.038 0.094 0.131 0.137
CMA 0.492 0.467 0.433 0.370 0.025 0.056 0.071 0.067
LTREV 0.478 0.471 0.437 0.361 0.007 0.022 0.031 0.033
R_ROE 0.488 0.469 0.429 0.357 0.039 0.082 0.099 0.096
HMLs 0.485 0.461 0.421 0.366 0.006 0.016 0.019 0.011
SMBs 0.484 0.460 0.430 0.353 0.004 0.020 0.038 0.055
HML_DEV 0.481 0.458 0.410 0.375 0.005 0.017 0.053 0.122
RMW 0.502 0.453 0.414 0.325 0.034 0.042 0.019 −0.018
FIN 0.470 0.439 0.409 0.330 0.031 0.033 0.010 −0.010
SMB 0.474 0.440 0.415 0.316 0.011 0.047 0.088 0.098
HML 0.460 0.431 0.401 0.343 0.002 −0.030 −0.082 −0.131

Posterior probabilities, E[γj |data], and posterior means of annualized market prices of risk, E[λj |data], of the
24 tradable stock and 14 nontradable factors described in Appendix A. The prior for each factor inclusion is
a Beta(1, 1), yielding a prior expectation for γj of 50%. Results are tabulated for different values of the prior
Sharpe ratio,

√
Eπ[SR2

f | σ2], with values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio
of the test assets. The factors are ordered by the average posterior probability across the four levels of shrinkage.
Test assets are the 33 stock portfolios and the 24 tradable stock factors (N = 57) described in Section 1. The
sample period is 1986:01 to 2022:12 (T = 444).
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Table IA.VII: Posterior factor probabilities and risk prices for the co-pricing factor zoo (no
intercept)

Factor prob., E[γj|data] Price of risk, E[λj|data]

Total prior Sharpe ratio Total prior Sharpe ratio
Factors 20% 40% 60% 80% 20% 40% 60% 80%

PEADB 0.539 0.632 0.693 0.690 0.059 0.231 0.458 0.644
IVOL 0.528 0.577 0.655 0.699 0.022 0.091 0.232 0.490
PEAD 0.506 0.581 0.613 0.621 0.043 0.168 0.332 0.486
MOMBS 0.533 0.576 0.580 0.516 0.077 0.258 0.440 0.506
CREDIT 0.495 0.512 0.532 0.554 0.010 0.041 0.099 0.209
YSP 0.492 0.510 0.514 0.523 0.004 0.017 0.044 0.108
UNCr 0.513 0.520 0.503 0.484 0.001 0.004 0.012 0.030
LVL 0.496 0.499 0.505 0.509 0.001 0.006 0.015 0.041
INFLC 0.503 0.499 0.501 0.499 −0.001 −0.004 −0.011 −0.028
QMJ 0.508 0.510 0.512 0.471 0.082 0.220 0.377 0.495
CRY 0.500 0.487 0.510 0.475 0.063 0.195 0.395 0.547
MKTS 0.499 0.502 0.501 0.458 0.062 0.188 0.321 0.419
LIQNT 0.486 0.486 0.493 0.486 −0.003 −0.016 −0.044 −0.105
EPUT 0.504 0.493 0.484 0.462 0.003 0.008 0.015 0.020
INFLV 0.483 0.484 0.486 0.486 0.001 0.005 0.009 0.007
VIX 0.493 0.498 0.488 0.456 −0.003 −0.008 −0.018 −0.035
CMAs 0.481 0.484 0.492 0.477 0.016 0.062 0.135 0.220
RMWs 0.513 0.502 0.475 0.443 0.031 0.087 0.152 0.221
EPU 0.503 0.490 0.473 0.457 0.000 0.001 0.002 0.003
SZE 0.491 0.488 0.482 0.427 0.007 0.029 0.067 0.100
CPTLT 0.496 0.476 0.466 0.427 0.030 0.084 0.145 0.216
UNCf 0.498 0.495 0.451 0.409 −0.009 −0.020 −0.013 0.018
UNC 0.476 0.472 0.463 0.425 −0.003 −0.008 −0.009 −0.014
CPTL 0.496 0.479 0.450 0.404 0.020 0.053 0.070 0.059
LIQ 0.495 0.480 0.464 0.390 0.007 0.031 0.065 0.095
MOMS 0.494 0.475 0.444 0.386 0.025 0.071 0.122 0.174
LTREVB 0.495 0.466 0.431 0.371 0.018 0.055 0.087 0.097
SMBs 0.489 0.463 0.435 0.370 0.006 0.022 0.036 0.041
MKTSs 0.484 0.463 0.422 0.383 0.022 0.051 0.081 0.130
VAL 0.475 0.461 0.441 0.375 0.018 0.064 0.118 0.145
MOMB 0.491 0.483 0.427 0.347 −0.001 -0.000 0.005 0.013
R_IA 0.484 0.470 0.429 0.365 0.037 0.088 0.131 0.151
BAB 0.503 0.467 0.423 0.352 0.029 0.062 0.083 0.093
PERF 0.496 0.475 0.437 0.334 0.055 0.115 0.131 0.098
R_ROE 0.493 0.476 0.414 0.354 0.055 0.118 0.153 0.178
STREV 0.477 0.463 0.425 0.363 0.012 0.044 0.085 0.120
CMA 0.489 0.466 0.422 0.347 0.033 0.070 0.078 0.064
LTREV 0.491 0.464 0.417 0.344 0.011 0.034 0.052 0.050
HMLs 0.482 0.450 0.426 0.357 0.006 0.018 0.031 0.038
STREVB 0.486 0.464 0.416 0.347 0.005 0.013 0.023 0.024
HML_DEV 0.486 0.448 0.425 0.347 0.005 0.011 0.039 0.081
DEF 0.474 0.454 0.410 0.344 0.001 −0.003 −0.015 −0.016
HMLB 0.487 0.461 0.412 0.317 0.052 0.129 0.161 0.133
MGMT 0.473 0.450 0.422 0.332 0.062 0.129 0.170 0.166
TERM 0.490 0.442 0.407 0.333 0.039 0.081 0.128 0.157
CRF 0.471 0.443 0.410 0.340 0.018 0.063 0.106 0.132
SMB 0.475 0.439 0.395 0.333 0.014 0.058 0.091 0.102
MKTBD 0.472 0.443 0.395 0.326 0.018 0.033 0.030 0.013
HML 0.462 0.440 0.402 0.331 0.004 −0.017 −0.039 −0.042
RMW 0.478 0.434 0.390 0.327 0.033 0.020 −0.028 −0.080
FIN 0.462 0.443 0.391 0.313 0.038 0.042 0.009 −0.013
MKTB 0.488 0.433 0.383 0.298 0.118 0.204 0.241 0.207
DRF 0.468 0.420 0.376 0.301 0.053 0.076 0.062 0.025
DUR 0.427 0.394 0.376 0.282 0.012 −0.025 −0.086 −0.099

The table reports posterior probabilities, E[γj |data], and posterior means of annualized market prices of risk,
E[λj |data], of the 54 bond and stock factors described in Appendix A. All models are estimated without an
intercept. The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation for γj of 50%. Results
are tabulated for different values of the prior Sharpe ratio,

√
Eπ[SR2

f | σ2], with values set to 20%, 40%, 60%
and 80% of the ex post maximum Sharpe ratio of the test assets. The factors are ordered by the average
posterior probability across the four levels of shrinkage. Test assets are the 83 bond and stock portfolios and 40
tradable bond and stock factors described in Section 1. The sample period is 1986:01 to 2022:12 (T = 444).
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Table IA.VIII: Posterior factor probabilities and risk prices for the corporate bond factor zoo
(no intercept)

Factor prob., E[γj|data] Price of risk, E[λj|data]

Total prior Sharpe ratio Total prior Sharpe ratio
Factors 20% 40% 60% 80% 20% 40% 60% 80%

PEADB 0.611 0.756 0.799 0.753 0.125 0.425 0.669 0.761
MOMBS 0.584 0.727 0.729 0.605 0.174 0.571 0.812 0.746
CREDIT 0.519 0.584 0.642 0.687 0.028 0.113 0.256 0.494
IVOL 0.513 0.553 0.601 0.642 0.024 0.091 0.209 0.446
YSP 0.506 0.512 0.520 0.557 0.006 0.022 0.054 0.139
UNCf 0.516 0.530 0.511 0.459 −0.034 −0.103 −0.169 −0.225
INFLC 0.506 0.489 0.501 0.504 −0.002 −0.007 −0.018 −0.045
INFLV 0.497 0.509 0.507 0.482 0.005 0.017 0.027 0.021
LVL 0.485 0.502 0.505 0.496 0.000 0.003 0.012 0.040
UNCr 0.496 0.509 0.500 0.483 -0.000 0.000 0.004 0.012
VIX 0.499 0.503 0.499 0.468 −0.008 −0.030 −0.072 −0.133
LIQNT 0.488 0.497 0.490 0.471 −0.003 −0.013 −0.028 −0.053
CRY 0.486 0.507 0.512 0.427 0.089 0.288 0.492 0.490
EPU 0.483 0.491 0.483 0.456 0.001 0.001 −0.003 −0.008
EPUT 0.486 0.482 0.482 0.458 0.004 0.012 0.023 0.055
UNC 0.488 0.485 0.469 0.422 −0.009 −0.024 −0.036 −0.050
CPTL 0.498 0.481 0.425 0.342 −0.006 −0.018 −0.013 −0.003
VAL 0.475 0.470 0.434 0.359 0.033 0.112 0.171 0.177
SZE 0.474 0.473 0.433 0.350 0.017 0.055 0.087 0.082
CRF 0.472 0.441 0.390 0.322 0.026 0.086 0.127 0.153
MKTB 0.505 0.463 0.380 0.267 0.203 0.330 0.331 0.245
LTREVB 0.478 0.454 0.381 0.294 0.031 0.075 0.079 0.058
MOMB 0.468 0.440 0.378 0.289 0.005 0.021 0.040 0.053
STREVB 0.471 0.430 0.371 0.289 0.008 0.023 0.037 0.032
MKTBD 0.454 0.441 0.367 0.295 0.017 0.044 0.046 0.031
HMLB 0.472 0.437 0.378 0.264 0.079 0.162 0.179 0.114
TERM 0.462 0.416 0.368 0.285 0.068 0.119 0.162 0.169
DEF 0.449 0.426 0.361 0.285 −0.004 −0.017 −0.032 −0.042
DUR 0.445 0.392 0.346 0.236 −0.009 −0.097 −0.143 −0.083
DRF 0.440 0.390 0.337 0.245 0.053 0.043 0.019 −0.002

The table reports posterior probabilities, E[γj |data], and posterior means of annualized market prices of risk,
E[λj |data], of the 16 tradable bond and 14 nontradable factors described in Appendix A. All models are estimated
without an intercept. The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation for γj of
50%. Results are tabulated for different values of the prior Sharpe ratio,

√
Eπ[SR2

f | σ2], with values set to
20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the test assets. The factors are ordered by
the average posterior probability across the four levels of shrinkage. Test assets are the 50 bond portfolios and
the 16 tradable bond factors described in Section 1. The sample period is 1986:01 to 2022:12 (T = 444).
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Table IA.IX: Posterior factor probabilities and risk prices for the stock factor zoo (no inter-
cept)

Factor prob., E[γj|data] Price of risk, E[λj|data]

Total prior Sharpe ratio Total prior Sharpe ratio
Factors 20% 40% 60% 80% 20% 40% 60% 80%

PEAD 0.531 0.583 0.695 0.719 0.038 0.154 0.371 0.604
MKTS 0.522 0.566 0.615 0.589 0.053 0.197 0.385 0.545
IVOL 0.486 0.505 0.525 0.571 0.005 0.023 0.063 0.175
CMAs 0.505 0.509 0.529 0.528 0.022 0.086 0.191 0.316
CREDIT 0.514 0.506 0.512 0.507 -0.000 −0.001 −0.002 −0.003
UNCr 0.503 0.518 0.511 0.506 0.001 0.003 0.010 0.028
QMJ 0.505 0.504 0.511 0.511 0.063 0.170 0.318 0.502
YSP 0.503 0.503 0.510 0.511 0.001 0.003 0.010 0.030
LVL 0.508 0.512 0.494 0.501 0.001 0.004 0.010 0.027
CPTL 0.505 0.515 0.506 0.488 0.020 0.070 0.123 0.184
LIQNT 0.504 0.510 0.499 0.498 -0.000 −0.003 −0.013 −0.048
INFLC 0.497 0.500 0.501 0.513 -0.000 -0.000 0.000 0.002
VIX 0.501 0.503 0.502 0.500 −0.001 −0.002 −0.007 −0.020
EPU 0.515 0.505 0.500 0.479 −0.001 −0.005 −0.011 −0.023
INFLV 0.500 0.500 0.500 0.496 -0.000 −0.001 −0.002 −0.003
EPUT 0.483 0.504 0.493 0.501 0.001 0.007 0.018 0.050
RMWs 0.503 0.510 0.492 0.460 0.039 0.117 0.201 0.279
UNCf 0.486 0.489 0.490 0.483 −0.001 −0.002 0.003 0.019
CPTLT 0.496 0.492 0.492 0.465 0.024 0.075 0.126 0.152
UNC 0.482 0.485 0.493 0.479 0.000 0.001 0.003 0.009
MKTSs 0.504 0.512 0.466 0.412 0.019 0.054 0.077 0.092
STREV 0.485 0.479 0.481 0.446 0.010 0.041 0.093 0.155
LIQ 0.492 0.490 0.470 0.407 0.008 0.031 0.064 0.090
PERF 0.510 0.497 0.459 0.385 0.047 0.115 0.154 0.159
MGMT 0.516 0.479 0.453 0.376 0.075 0.156 0.232 0.258
BAB 0.496 0.484 0.444 0.379 0.039 0.095 0.138 0.164
MOMS 0.497 0.470 0.431 0.381 0.018 0.046 0.064 0.083
SMBs 0.491 0.464 0.428 0.363 0.007 0.027 0.053 0.072
R_ROE 0.478 0.463 0.429 0.341 0.050 0.096 0.115 0.101
LTREV 0.495 0.456 0.413 0.341 0.012 0.030 0.041 0.040
HMLs 0.489 0.441 0.423 0.347 0.008 0.020 0.031 0.021
SMB 0.474 0.453 0.416 0.347 0.018 0.070 0.116 0.131
HML_DEV 0.461 0.444 0.400 0.374 0.008 0.030 0.080 0.166
HML 0.480 0.443 0.404 0.334 0.004 −0.035 −0.095 −0.139
CMA 0.480 0.444 0.401 0.336 0.035 0.068 0.082 0.075
R_IA 0.469 0.428 0.410 0.341 0.038 0.076 0.112 0.133
FIN 0.479 0.418 0.376 0.318 0.043 0.037 0.009 −0.012
RMW 0.479 0.417 0.357 0.319 0.043 0.043 0.013 −0.034

The table reports posterior probabilities, E[γj |data], and posterior means of annualized market prices of risk,
E[λj |data], of the 24 tradable stock and 14 nontradable factors described in Appendix A. All models are
estimated without an intercept. The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation
for γj of 50%. Results are tabulated for different values of the prior Sharpe ratio,

√
Eπ[SR2

f | σ2], with values
set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the test assets. The factors are ordered
by the average posterior probability across the four levels of shrinkage. Test assets are the 33 stock portfolios
and the 24 tradable stock factors described in Section 1. The sample period is 1986:01 to 2022:12 (T = 444).
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Cumulative SDF-implied Sharpe ratio. In Figure IA.12 we plot the cumulative SDF-
implied Sharpe ratio when subsequently adding factors ordered on their (individual) posterior
probability. Overall, the Sharpe ratio is increasing in the number of factors. However, not all of
them add the same amount to the implied Sharpe ratio. This is due to the fact that many factors
are potentially noisy proxies for the same fundamental sources of risk that are important for the
SDF. As shown in Section 2.4, factors that are useful noisy proxies for a particular fundamental
source of risk not fully spanned by individual factors will display nonzero market prices of risk
(or portfolio weights). The figure nicely illustrates the aggregation property of the BMA-SDF
as discussed in Section 2.4.
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Figure IA.12: Cumulative co-pricing SDF-implied Sharpe ratio.

We incrementally compute the implied Sharpe ratio of the SDF by sequentially adding each of the 54 factors
in order of their posterior probability of inclusion (see top Panel of Figure 4). We estimate the factor-implied
Sharpe ratio as the annualized standard deviation of the SDF. The vertical red dashed line denotes the posterior
median number of factors that should be included in the SDF. The light blue squares (red triangles) represent
tradable bond (stock) factors. The dark blue circles represent nontradable factors. The light blue dashed lines
and shaded area denote the centred 90% confidence interval. The 54 factors that comprise the co-pricing factor
zoo are described in Appendix A. The prior Sharpe ratio is set to 80% of the ex post maximum Sharpe ratio
of the 83 bond and stock portfolios and the 40 tradable factors described in Section 1. The sample period is
1986:01 to 2022:12 (T = 444).
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IA.3.2 Cross-sectional asset pricing

In this section we provide additional results to complement the analysis in Section 3.1.2.

BMA-SDF vs. KNS. There is a legitimate concern that the strong OS performance of
the co-pricing BMA-SDF might be driven by the particular, yet rich, selection of test assets
that we use in the main text. To address this concern, we also consider the separate pricing of
all the possible combinations of the 14 different cross-sections comprising our OS test assets.
Figure IA.13 of the Internet Appendix visualizes the performance of the BMA-SDF vis-à-vis
the best competitor, KNS, by depicting the distributions of different measures of fit across
214 − 1 = 16, 383 OS cross-sections. For the cross-sectional R2

OLS, RMSE, and MAPE, there is
virtually no overlap in the distributions for the co-pricing BMA-SDF and KNS, with the former
clearly besting the latter, implying that the Bayesian approach delivers strictly better OS pricing
than its best competitor. There is only an overlap in the distribution when considering R2

GLS

as the measure of fit, yet the BMA-SDF outperforms KNS in 96.6% of the OS cross-sections
and its measure of fit concentrates on much higher values.

No intercept. For the baseline analysis in Section 3.1.2 we always include an intercept.
In the following, we repeat the previous analysis excluding the intercept. Tables IA.X (IS)
and IA.XI (OS) complement Tables 2 (IS) and 3 (OS) by reporting the in- and out-of-sample
cross-sectional pricing performance of all models we consider with an estimation that excludes
the intercept. Qualitatively, results remain unchanged although most measures of fit for the
BMA-SDFs improve at least marginally when the intercept is excluded in the estimation.

Additional asset specific models. Following on from the discussion above, we show in
Table IA.XII how well the BMA-SDF performs vis-à-vis an additional set of bond and stock
factor models. For pricing the cross-section of bond excess and duration-adjusted returns, we
compare the in- and out-of-sample performance of the BMA-SDF to (i) the modified three-factor
model of Bai et al. (2019) including MKTB, DRF, and CRF bond factors (BBW3), (ii) the
two-factor decomposed bond market factor model from van Binsbergen et al. (2025) (DCAPM),
(iii) the DEFTERM model of Fama and French (1993), (iv) the MACRO model of Bali et al.
(2021b) comprising MKTB and macroeconomic uncertainty UNC, and (v) the six-factor CWW
model of Chung et al. (2019) that adds innovations to the VIX index as a sixth factor to the
FF5 model of Fama and French (1993). To price the cross-section of excess stock returns, we
consider (i) the Carhart (1997) four-factor model that adds MOMS to the Fama and French
(1992) three-factor model (FFC4), (ii) the Hou et al. (2015) four-factor model (HXZ4), (iii) the
five-factor model of Fama and French (2015) which augments their three-factor model with the
RMW and CMA factors (FF52015), (v) the FF5∗ model of Daniel et al. (2020) which removes
unpriced risk from the original FF5 factors, and (vi) the FF6 model which augments the FF5
model with MOMS.

In addition to the models listed above and examined in Table IA.XII, we explore the latest
(five-)factor corporate bond model proposed by Dick-Nielsen et al. (2025) that includes bond
market, bond age, 1-year firm CAPEX growth, stock momentum and within-firm value as
factors based on corporate bond returns. Again, we consider a large set of out-of-sample test
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Table IA.X: In-sample cross-sectional asset pricing performance (no intercept for BMA-SDF)

BMA-SDF prior Sharpe ratio CAPM CAPMB FF5 HKM TOP KNS RPPCA

20% 40% 60% 80%

Panel A: Co-pricing bonds and stocks

RMSE 0.209 0.201 0.185 0.165 0.260 0.278 0.258 0.259 0.230 0.166 0.197
MAPE 0.158 0.149 0.135 0.121 0.194 0.221 0.198 0.192 0.171 0.126 0.132
R2

OLS 0.195 0.254 0.369 0.495 −0.244 −0.426 −0.233 −0.238 0.023 0.489 0.282
R2

GLS 0.051 0.129 0.204 0.266 0.078 0.083 0.087 0.078 0.263 0.176 0.267

Panel B: Pricing bonds

RMSE 0.171 0.130 0.104 0.091 0.209 0.214 0.201 0.206 0.162 0.192 0.091
MAPE 0.116 0.093 0.078 0.069 0.146 0.135 0.143 0.146 0.128 0.111 0.067
R2

OLS 0.277 0.578 0.732 0.796 −0.083 −0.134 −0.006 −0.049 0.347 0.088 0.794
R2

GLS 0.096 0.241 0.337 0.392 0.172 0.195 0.238 0.175 0.549 0.071 0.419

Panel C: Pricing stocks

RMSE 0.240 0.258 0.249 0.231 0.292 0.264 0.275 0.292 0.365 0.162 0.175
MAPE 0.192 0.201 0.189 0.172 0.229 0.211 0.221 0.226 0.304 0.133 0.141
R2

OLS −0.066 −0.229 −0.145 0.015 −0.570 −0.282 −0.392 −0.574 −1.457 0.515 0.433
R2

GLS 0.060 0.146 0.237 0.317 0.120 0.118 0.130 0.121 0.299 0.311 0.493

The table presents the cross-sectional in-sample asset pricing performance of different models pricing bonds and
stocks jointly (Panel A), bonds only (Panel B) and stocks only (Panel C), respectively. For the BMA-SDF, we
provide results for prior Sharpe ratio values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe
ratio of the test assets. TOP includes the top five factors with an average posterior probability greater than
50%. CAPM is the standard single-factor model using MKTS, and CAPMB is the bond version using MKTB.
FF5 is the five-factor model of Fama and French (1993), HKM is the two-factor model of He et al. (2017). KNS
stands for the SDF estimation of Kozak et al. (2020) and RPPCA is the risk premia PCA of Lettau and Pelger
(2020). Estimation details for the benchmark models are given in Appendix D. Bond returns are computed in
excess of the one-month risk-free rate of return. By panel the models are estimated with the respective factor
zoos and test assets. All BMA-SDFs are estimated without an intercept. Test assets are the 83 bond and stock
portfolios and the 40 tradable bond and stock factors (Panel A), the 50 bond portfolios and 16 tradable bond
factors (Panel B), and the 33 stock portfolios and 24 tradable stock factors (Panel C), respectively. All are
described in Section 1. All data is standardized, that is, pricing errors are in Sharpe ratio units. The sample
period is 1986:01 to 2022:12 (T = 444).

assets to compare the model performance to our BMA-SDF (where we consider both the co-
pricing as well as the bond only BMA-SDF) and we visualize the results using the distributions
of different measures of fit. In Figure IA.14 we consider the 27− 1 = 127 possible combinations
of our OS corporate bond portfolios and in Figure IA.15 we repeat the analysis for one million
sets of 50 OS test assets based on combinations of corporate bond portfolios formed with the
Jensen et al. (2023) characteristics. Throughout, we first estimate the models using the baseline
set of IS test assets and then we use the resulting SDF to price the respective OS test assets
without re-estimation. The green distributions correspond to the pricing performance of the
DFPS model, while the red and blue distributions correspond to the pricing performance of the
co-pricing and corporate bond only BMA-SDF, respectively. While there is substantial overlap
in the distributions of all measures of fit for the 127 combinations of our baseline OS bond
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Table IA.XI: Out-of-sample cross-sectional asset pricing performance (no intercept for BMA-
SDF)

BMA-SDF prior Sharpe ratio CAPM CAPMB FF5 HKM TOP KNS RPPCA

20% 40% 60% 80%

Panel A: Co-pricing bonds and stocks

RMSE 0.111 0.101 0.094 0.088 0.224 0.154 0.139 0.223 0.171 0.160 0.153
MAPE 0.080 0.075 0.069 0.065 0.192 0.129 0.102 0.190 0.135 0.143 0.130
R2

OLS 0.391 0.498 0.568 0.614 −1.478 −0.161 0.053 −1.444 −0.442 −0.268 −0.159
R2

GLS 0.032 0.070 0.104 0.133 0.028 0.034 0.036 0.028 0.090 0.065 0.028

Panel B: Pricing bonds

RMSE 0.120 0.110 0.105 0.101 0.129 0.128 0.140 0.133 0.102 0.114 0.100
MAPE 0.087 0.080 0.077 0.076 0.094 0.092 0.104 0.098 0.084 0.083 0.073
R2

OLS 0.087 0.233 0.299 0.360 −0.051 −0.029 −0.231 −0.112 0.342 0.180 0.375
R2

GLS 0.056 0.107 0.133 0.158 −0.004 0.024 −0.032 −0.007 0.101 0.066 0.045

Panel C: Pricing stocks

RMSE 0.102 0.087 0.078 0.072 0.123 0.119 0.116 0.124 0.163 0.078 0.104
MAPE 0.076 0.068 0.063 0.059 0.089 0.085 0.082 0.091 0.127 0.060 0.082
R2

OLS 0.334 0.515 0.614 0.666 0.032 0.099 0.136 0.019 −0.696 0.613 0.305
R2

GLS 0.054 0.133 0.208 0.264 0.103 0.065 0.099 0.107 0.100 0.207 0.072

The table presents the cross-sectional out-of-sample asset pricing performance of different models pricing bonds
and stocks jointly (Panel A), bonds only (Panel B) and stocks only (Panel C), respectively. For the BMA-SDF,
we provide results for prior Sharpe ratio values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe
ratio of the test assets. TOP includes the top five factors with an average posterior probability greater than
50%. CAPM is the standard single-factor model using MKTS, and CAPMB is the bond version using MKTB.
FF5 is the five-factor model of Fama and French (1993), HKM is the two-factor model of He et al. (2017). KNS
stands for the SDF estimation of Kozak et al. (2020) and RPPCA is the risk premia PCA of Lettau and Pelger
(2020). Estimation details for the benchmark models are given in Appendix D. Bond returns are computed in
excess of the one-month risk-free rate of return. The models are first estimated using the baseline IS test assets.
All BMA-SDFs are estimated without an intercept. The resulting SDF is then used to price (with no additional
parameter estimation) each set of the OS assets. The IS test assets are the same as in Table IA.X. OS test
assets are the combined 154 bond and stock portfolios (Panel A), as well as the separate 77 bond and stock
portfolios (Panels B and C). All are described in Section 1. All data is standardized, that is, pricing errors are
in Sharpe ratio units. The sample period is 1986:01 to 2022:12 (T = 444).

test assets, the BMA-SDF outperforms the DFPS model in 60% to 93% of the cross-sections,
depending on whether we consider the bond only or the co-pricing BMA-SDF and depending
on the measure of fit. For the one million sets of OS test assets, the results become considerably
stronger: the bond only BMA-SDF outperforms the DFPS model in nearly 100% of the cross-
sections based on the cross-sectional R2

GLS and in over 80% of the cross-sections for the other
measures of fit.

In summary—and not very surprisingly given the results in Section 3.1.2—our BMA-SDFs
outperform all additional models originally designed to price the individual bond and stock
cross-sections, respectively.
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Table IA.XII: Cross-sectional asset pricing performance: Additional models

BMA-SDF Bond factor models Stock factor models

BMA-80% BBW3 DCAPM DEFTERM MACRO CWW FFC4 HXZ4 FF52015 FF5∗ FF6

Panel A: In-sample co-pricing stocks and bonds

RMSE 0.167 0.270 0.250 0.220 0.279 0.258 0.236 0.283 0.247 0.272 0.242
MAPE 0.125 0.217 0.192 0.171 0.222 0.198 0.174 0.236 0.193 0.217 0.193
R2

OLS 0.487 −0.342 −0.158 0.103 −0.438 −0.231 −0.029 −0.478 −0.125 −0.367 −0.083
R2

GLS 0.285 0.087 0.080 0.077 0.083 0.087 0.091 0.116 0.111 0.127 0.117

Panel B: Out-of-sample co-pricing stocks and bonds

RMSE 0.090 0.147 0.145 0.144 0.150 0.139 0.227 0.272 0.229 0.152 0.234
MAPE 0.065 0.124 0.117 0.115 0.125 0.102 0.203 0.253 0.203 0.121 0.210
R2

OLS 0.603 −0.068 −0.035 −0.018 −0.111 0.049 −1.544 −2.648 −1.580 −0.135 −1.697
R2

GLS 0.124 0.040 0.028 0.025 0.035 0.036 0.034 0.022 0.049 0.031 0.051

Panel C: Out-of-sample pricing stocks

RMSE 0.076 0.114 0.117 0.115 0.119 0.102 0.079 0.084 0.089 0.097 0.075
MAPE 0.057 0.082 0.085 0.083 0.085 0.072 0.058 0.065 0.068 0.072 0.059
R2

OLS 0.629 0.171 0.117 0.156 0.097 0.327 0.597 0.549 0.489 0.403 0.641
R2

GLS 0.276 0.127 0.064 0.046 0.061 0.114 0.151 0.196 0.186 0.119 0.208

Panel D: Out-of-sample pricing bonds

RMSE 0.101 0.123 0.136 0.140 0.127 0.138 0.134 0.122 0.127 0.122 0.130
MAPE 0.074 0.092 0.099 0.103 0.092 0.100 0.098 0.087 0.092 0.090 0.095
R2

OLS 0.354 0.050 −0.164 −0.243 −0.015 −0.197 −0.136 0.058 −0.012 0.055 −0.073
R2

GLS 0.107 0.045 0.020 0.015 0.033 0.009 −0.048 −0.061 0.019 0.031 −0.019

Panel A presents the cross-sectional in-sample asset pricing performance of different bond and stock asset pricing
models. Panels B, C and D present the out-of-sample asset pricing performance for the joint, bond and stock
cross-sections, respectively. For bonds we consider five models: (i) the modified three-factor model of Bai et al.
(2019) including MKTB, DRF, and CRF bond factors (BBW3), (ii) the two-factor decomposed bond market
factor model from van Binsbergen et al. (2025) (DCAPM), (iii) the DEFTERM model of Fama and French
(1993), (iv) the MACRO model of Bali et al. (2021b) comprising MKTB and macro economic uncertainty UNC,
and (v) the six-factor CWW model of Chung et al. (2019) that adds innovations to the VIX index as a sixth
factor to the FF5 model of Fama and French (1993). For stocks we consider six models: (i) the Carhart (1997)
four-factor model that adds MOMS to the Fama and French (1992) three-factor model (FFC4), (ii) the Hou
et al. (2015) four-factor model (HXZ4), (iii) the five-factor model of Fama and French (2015) which augments
their three-factor model with the RMW and CMA factors (FF52015), (v) the FF5∗ model of Daniel et al. (2020)
which removes unpriced risk from the original FF5 factors, and (vi) the FF6 model which augments the FF5
model with MOMS. IS test assets are the 83 bond and stock portfolios and 40 tradable bond and stock factors.
OS test assets are the combined 154 bond and stock portfolios (Panel B), as well as the separate 77 bond and
stock portfolios (Panels C and D). All are described in Section 1. All models are first estimated using the
baseline IS test assets (Panel A) and then used to price (with no additional parameter estimation) each set of
OS assets (Panels B to D). We use GMM-GLS to estimate factor risk prices for bond and stock specific factor
models. All data is standardized, that is, pricing errors are in Sharpe ratio units. The sample period is 1986:01
to 2022:12 (T = 444).
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Separate pricing of bonds and stocks. In Section 3.1.2 we show that we need information
from the joint factor zoo to price the joint cross-section of stock and bond excess returns. Here,
we examine whether the co-pricing BMA-SDF can also price well bonds and stocks individually.
In Figure IA.16 we report OS R2

GLS and R2
OLS for the separate pricing of these two asset classes

using the 27 − 1 = 127 possible combinations of our OS corporate bond portfolios in Panels
A and B, and the same number of combinations of OS stock portfolios in Panels C and D,
respectively. Clearly, the co-pricing BMA-SDF can individually price the respective bond and
stock cross-sections well, implying that the superior performance of the co-pricing BMA-SDF
is not due to the fact that it prices one cross-section better than the other. Nevertheless, the
asset-class-specific BMA-SDFs also price the respective cross-sections very well. That is, using
only information from the bond market factor zoo delivers a pricing performance for the cross-
section of bond excess returns that is only marginally worse than the one achievable with the
co-pricing BMA-SDF. Similarly, the stock-only BMA-SDF does price stock returns very well
OS. However, the respective factor zoos fail at “cross-pricing.” Clearly, the information in the
bond factor zoo alone is insufficient to price the cross-section of stock returns and, vice versa,
information from the stock market is not sufficient to price the cross-section of corporate bond
excess returns.
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Figure IA.13: Pricing out-of-sample stocks and bonds with BMA-SDF and KNS.

This figure plots the distributions of R2
GLS , R2

OLS , RMSE and MAPE in Panels A, B, C and D, respectively,
across 16,383 possible OS bond and stock cross-sections using the 14 sets of bond and stock test assets (214−1 =
16, 383). KNS stands for the SDF estimation of Kozak, Nagel, and Santosh (2020), with tuning parameter and
number of factors chosen by twofold cross-validation. The models are first estimated using the baseline IS test
assets and the resulting SDF is then used to price (with no additional parameter estimation) each set of the
16,383 OS combinations of test assets. The BMA-SDF is computed with a prior Sharpe ratio value set to 80%
of the ex post maximum Sharpe ratio of the IS test assets. All data is standardized, that is, pricing errors are
in Sharpe ratio units. The sample period is 1986:01 to 2022:12 (T = 444).
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Figure IA.14: Pricing 127 sets of out-of-sample bond portfolios with BMA-SDF and DFPS.

This figure plots the distributions of R2
GLS , R2

OLS , RMSE and MAPE in Panels A, B, C and D, respectively,
across 127 possible bond cross-sections using the 7 sets of bond test assets (27 − 1 = 128). DFPS stands for the
Dick-Nielsen et al. (2025) five-factor corporate bond model that includes the following factors (all formed with
bond returns): bond market, bond age, 1-year firm CAPEX growth, stock momentum and within-firm value.
The models are first estimated using the baseline set of IS test assets and then used to price (with no additional
parameter estimation) each set of the 127 combinations of corporate bond test assets. The green distributions
correspond to the pricing performance of the DFPS model. The red (blue) distributions correspond to the
pricing performance of the co-pricing (corporate bond only) BMA-SDF. The BMA-SDFs are computed with
a prior Sharpe ratio value set to 80% of the ex post maximum Sharpe ratio of the IS test assets. All data
are standardized, that is, pricing errors are in Sharpe ratio units. The sample period is 1986:01 to 2022:12
(T = 444).
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Figure IA.15: Pricing millions out-of-sample bond portfolios with BMA-SDF and DFPS.

This figure plots the distributions of R2
GLS , R2

OLS , RMSE and MAPE in Panels A, B, C and D, respectively,
across one million possible combinations of corporate bond portfolios formed with the Jensen et al. (2023)
characteristics without re-estimating the respective SDFs. Each combination of corporate bond OS test assets
is set to have N = 50. DFPS stands for the Dick-Nielsen et al. (2025) five-factor corporate bond model that
includes the following factors (all formed with bond returns): bond market, bond age, 1-year firm CAPEX
growth, stock momentum and within-firm value. The models are first estimated using the baseline set of IS test
assets and then used to price (with no additional parameter estimation) each set of the one million OS corporate
bond test assets. The green distributions correspond to the pricing performance of the DFPS model. The red
(blue) distributions correspond to the pricing performance of the co-pricing (corporate bond only) BMA-SDF.
The BMA-SDFs are computed with a prior Sharpe ratio value set to 80% of the ex post maximum Sharpe ratio
of the IS test assets. All data are standardized, that is, pricing errors are in Sharpe ratio units. The sample
period is 1986:01 to 2022:12 (T = 444). 38
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Figure IA.16: Separate out-of-sample pricing of bond and stock excess returns.

This figure plots the distributions of R2
GLS (Panels A and C) and R2

OLS (Panels B and D) across 127 possible
bond (Panels A and B) and stock (Panels C and D) cross-sections using the 7 sets of bond and stock test assets
(27 − 1 = 128), respectively. All BMA-SDFs are first estimated using the baseline set of the respective IS test
assets described in Section 1 for the co-pricing, bond and stock factor zoos respectively. The BMA-SDFs are
then used to price (with no additional parameter estimation) each set of the 127 OS combinations of test assets.
The red distributions corresponds to the pricing performance of the co-pricing BMA-SDF. The blue (yellow)
distribution corresponds to the pricing performance of the bond and stock only BMA-SDFs, respectively. The
BMA-SDFs are computed with a prior Sharpe ratio value set to 80% of the ex post maximum Sharpe ratio of
the IS test assets. All data is standardized, that is, pricing errors are in Sharpe ratio units. The sample period
is 1986:01 to 2022:12 (T = 444).
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IA.3.3 The saliency of factors over time

In this section we provide additional results to complement the analysis in Section 3.1.3 of
the paper. To investigate the importance of factors over time, we split our sample in half for
two sub-samples with 222 monthly observations each. We first estimate the model for the first
subsample spanning July 1986 to June 2004 and then re-estimate every year adding twelve new
observations at each iteration. Similarly, we go backwards in time starting with the second
subsample from July 2004 to December 2022 and add one year of data at every step. We follow
our methodology described in Section 2 and, throughout, we fix the shrinkage at 80% of the
corresponding ex post maximum Sharpe ratio for the respective window.

While Figure 6 presents the top factors based on their posterior probability, Figure IA.17
provides the rankings based on the market prices of risk estimates. In Figures IA.18 (forward
estimation) and IA.19 (backward estimation) we plot the time series of posterior probabilities
(top panel) and market prices of risk (bottom panel) for the most and least likely factors in
Figure 2. Overall, the results remain very consistent over time.

IA.3.4 Commonality in pricing

We gauge the degree of commonality in pricing implications of the factors in the zoo by per-
forming a principal component analysis on the matrix CTC (in the OLS case, or CTΣ−1C in
the GLS case). In the cross-sectional layer of our estimation method (encoded by the likelihood
function in equation (2)), the “regressors” are the loadings in the N ×K matrix of covariances
between test assets and factors (C). CTC captures how factors project onto the space of returns
(and vice versa), and its PCs are closely related to the Canonical Correlation Analysis (CCA)
of returns and factors. The SVD of C (properly normalized) yields the canonical variables,
and the eigendecomposition of C⊤C yields the squared canonical correlations (as eigenvalues)
and canonical directions for the factors. Since in the SVD of C we get linear combinations of
the returns as the left singular vectors, and linear combinations of the factors as right singular
vectors, the PCA of C⊤C is really about finding the linear combinations of returns and factors
that are maximally correlated with each other. This is a natural approach for identifying the
footprint of common sources of priced risks in standard asset pricing settings (as, e.g., in Ross
(1976), Chamberlain and Rothschild (1983), and Giglio and Xiu (2021)), as the common risks
would manifest themselves as exploding eigenvalues in both returns and factors. The results of
the analysis are summarized in Figure IA.20 and they are striking. The largest five principal
components of the factor loadings explain more than 99% of their cross-sectional variation (in
the OLS case, and more than 80% in the GLS case). This highlights that the factor zoo is akin
to a jungle of noisy proxies of common underlying sources of risk.
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Figure IA.17: Time-varying factor importance based on the market price of risk

The figure highlights the top five factors over time, ordered by their posterior market prices of risk E[λj,t|datat],
and the number of times they are present in the top five, estimated using expanding samples going forward
(Panel A) and backward (Panel B) in time. We use half of the sample as the initial window (T = 222) and
then re-estimate the model every year with an expanding sample. The factors are ordered by the total number
of times they are present in the ‘top five.’ The results are shown for prior level of Sharpe ratio shrinkage set to
80% of the ex post maximum up until year t.
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A: Expanding forward estimation – time-varying posterior probabilities.
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B: Expanding forward estimation – time-varying market prices of risk (MPR).

Figure IA.18: Time-varying posterior probabilities and market prices of risk (forward expan-
sion).

Time-varying posterior probabilities, E[γj,t|datat] (Panel A), and the posterior mean of (annualized) risk prices,
E[λj,t|datat] (Panel B), of the most (least) likely five factors estimated with an expanding window (forward
in time). We use half of the sample as the initial window (T = 222), implying the first estimation begins in
July 2004. The model is re-estimated every 12-months. The results are shown for prior level of Sharpe ratio
shrinkage set to 80% of the ex-post maximum. The prior for each factor inclusion is a Beta(1, 1), yielding a
prior expectation for γj of 50%. The test assets are the 83 bond and stock portfolios and 40 tradable bond and
stock factors described in Section 1.
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A: Expanding backward estimation – time-varying posterior probabilities.

0.189

0.130

0.076

0.055

0.026

-0.05

0.00

0.05

0.10

0.15

0.20

19
86

-0
1

19
87

-0
7

19
88

-0
7

19
89

-0
7

19
90

-0
7

19
91

-0
7

19
92

-0
7

19
93

-0
7

19
94

-0
7

19
95

-0
7

19
96

-0
7

19
97

-0
7

19
98

-0
7

19
99

-0
7

20
00

-0
7

20
01

-0
7

20
02

-0
7

20
03

-0
7

20
04

-0
7

M
ar

ke
t p

ric
e 

of
 r

is
k 

(M
P

R
)

Most likely

PEADB
PEAD
IVOL
CREDIT
YSP

Least likely

MKTBD
RMW
DUR
HMLB
DEF

B: Expanding backward estimation – time-varying market prices of risk.

Figure IA.19: Time-varying posterior probabilities and market prices of risk (backward ex-
pansion).

Time-varying posterior probabilities, E[γj |data] (Panel A), and the posterior mean of (annualized) risk prices,
E[λj |data] (Panel B), of the most (least) likely five factors estimated with an expanding window (backward
in time). We use half of the sample as the initial window (T = 222), implying the first estimation begins in
July 2004. The model is re-estimated every 12 months. The results are shown for a prior level of Sharpe ratio
shrinkage set to 80% of the ex post maximum. The prior for each factor inclusion is a Beta(1, 1), yielding a
prior expectation for γj of 50%. The test assets are the 83 bond and stock portfolios and 40 tradable bond and
stock factors described in Section 1.
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D: GLS, OS assets

Figure IA.20: The factor jungle: Commonality in cross-sectional pricing.

Principal component decomposition of the matrix H = Ĉ⊤W Ĉ where Ĉ ∈ RN×K denotes the posterior mean
of the covariance matrix of factors and returns, and W is either an identity matrix (OLS case) or the inverse of
the (posterior mean of the) covariance matrix of the test assets (GLS case). Since in the SVD of Ĉ we get linear
combinations of the returns as the left singular vectors, and linear combinations of the factors as right singular
vectors, the PCA of C⊤C finds the linear combinations of returns and factors that are maximally correlated
with each other. We estimate H with the in- and out-of-sample co-pricing test assets and the factor zoo with
self-pricing as in the main text. The IS test assets in Panels A and C are the 83 bond and stock portfolios and
40 tradable bond and stock factors. The OS test assets in Panels B and D are the combined 154 bond and stock
portfolios. Throughout, we use the co-pricing factor zoo comprising the 40 tradable and 14 nontradable factors.
All are described in Section 1. The sample period is 1986:01 to 2022:12 (T = 444).
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IA.4 The PEAD factor

Recent work by Martineau (2022) documents that, in the time series, the (stock) PEAD effect
has diminished in recent years. While the author raises interesting points regarding the decay
in time series predictability of PEAD, he does not comment on the robustness of using PEAD
to form long-short portfolios (i.e., the cross-sectional predictability of PEAD within a portfolio
context). In this section, we document that this dimension of the PEAD factor remains robust
and is not driven purely by micro-cap stocks. In addition, we confirm the same result for the
corporate bond version of the PEAD factor (i.e., PEADB).

To form the bond and stock PEAD factors, we first form tercile portfolios based on firm
market capitalization. Thereafter, within each size tercile, we create quintile portfolios sorted on
earnings announcement returns, AnnouncementReturn, obtained from Open Asset Pricing.
Each PEAD factor is long in Q5 (high PEAD) and short Q1 (low PEAD), within each size
tercile.5 We denote the small, mid and large cap PEAD factor as Small, Mid and Large
respectively.

Table IA.XIII reports the monthly average returns, alphas, Sharpe ratios and Information
ratios. In Panel A and C, we exclude “micro-cap” stocks, by filtering out any stocks in portfolio
formation month t, which have a market capitalization below the 20th percentile in that month.
Across all subsamples, the small- and mid-cap PEAD factors yield large monthly premia, alphas
and Sharpe ratios. The cross-sectional ‘anomaly decay’ effect in PEAD for small caps is not
present, regardless of whether micro-cap stocks are filtered out or not. For mid-cap stocks,
the premia are reduced, but still economically large and statistically significant for the latter
part of the sample. The large-cap PEAD factor yields a statistically significant five-factor
alpha with equal weights once micro-cap stocks are excluded. Performance of the large-cap
PEAD factor is diminished over later parts of the sample consistent with large-cap anomaly
decay. In Panels B and D, where we include micro-cap stocks, the small-cap PEAD premium
is marginally increased. The mid- and large-cap PEAD is materially unaffected. Overall, our
results strongly confirm the efficacy of the PEAD factor across time and in the cross-section.
Notably, the PEAD effect is still strongly present in both small- and mid-cap stocks even after
excluding micro-caps.

Finally, in Table IA.XIV, we repeat the same analyses for the PEADB factor. Across all
subsamples and size terciles, the PEADB factor exhibits large average returns, MKTB factor
alphas, as well as Sharpe and information ratios.

5Daniel et al. (2020) are conservative with their choice of portfolio breakpoints and form PEAD with a
two-by-three sort on size and earnings-announcement returns.
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Table IA.XIII: Stock post-earnings announcement drift (PEAD) factors

1986:01–2022:12 1986:01–1999:12 2000:01–2022:12

Small Mid Large Small Mid Large Small Mid Large

Panel A: Excluding micro-cap stocks (value weighted)

Ave. Ret 1.34 0.95 0.45 1.32 1.50 0.84 1.35 0.61 0.20
t-stat (11.45) (8.46) (3.14) (10.27) (10.66) (4.57) (7.88) (3.92) (1.03)
Alpha 1.30 0.98 0.54 1.25 1.54 0.83 1.32 0.60 0.27
t-stat (9.29) (7.01) (3.90) (9.64) (11.26) (4.67) (6.54) (3.75) (1.54)
SR 0.54 0.40 0.15 0.79 0.82 0.35 0.47 0.24 0.06
IR 0.55 0.43 0.19 0.77 0.87 0.35 0.49 0.25 0.09

Panel B: Including micro-cap stocks (value weighted)

Ave. Ret 1.26 0.78 0.44 1.45 1.40 0.85 1.15 0.41 0.20
t-stat (11.23) (7.28) (3.25) (11.87) (10.41) (4.72) (6.98) (2.74) (1.04)
Alpha 1.24 0.87 0.52 1.46 1.45 0.84 1.09 0.48 0.25
t-stat (9.68) (6.67) (3.98) (13.67) (12.61) (4.87) (6.16) (3.12) (1.52)
SR 0.53 0.35 0.15 0.92 0.80 0.36 0.42 0.16 0.06
IR 0.55 0.40 0.19 0.94 0.87 0.37 0.43 0.21 0.08

Panel C: Excluding micro-cap stocks (equally weighted)

Ave. Ret 1.25 1.08 0.52 1.20 1.61 1.03 1.28 0.75 0.21
t-stat (10.19) (9.77) (4.77) (8.20) (11.84) (7.45) (7.26) (4.88) (1.37)
Alpha 1.18 1.10 0.62 1.10 1.67 1.11 1.22 0.73 0.29
t-stat (7.68) (7.95) (5.43) (6.98) (12.07) (7.75) (5.58) (4.71) (2.26)
SR 0.48 0.46 0.23 0.63 0.91 0.57 0.44 0.29 0.08
IR 0.48 0.49 0.29 0.60 0.98 0.65 0.44 0.31 0.13

Panel D: Including micro-cap stocks (equally weighted)

Ave. Ret 1.26 0.82 0.42 1.41 1.48 0.90 1.17 0.42 0.13
t-stat (11.28) (7.56) (3.97) (11.81) (10.78) (6.50) (7.11) (2.82) (0.88)
Alpha 1.26 0.89 0.50 1.41 1.54 0.98 1.15 0.46 0.18
t-stat (9.91) (6.65) (4.76) (13.64) (12.55) (6.55) (6.48) (3.13) (1.48)
SR 0.54 0.36 0.19 0.91 0.83 0.50 0.43 0.17 0.05
IR 0.56 0.40 0.24 0.93 0.91 0.57 0.46 0.20 0.08

This table presents the performance of Post-Earnings Announcement Drift (PEAD) factors across different mar-
ket capitalization groups (Small, Mid, Large) and sample periods. For each size group, stocks are conditionally
sorted into quintiles based on PEAD. The respective PEAD factor is long Q5 and short Q1. Panel A and C
exclude micro-cap stocks (bottom 20% by market cap) at the portfolio formation month t, while Panel B and
D include all stocks. Panels A and B use value-weights by market capitalization, while Panels C and D use
equal-weights. Ave. Ret is the average monthly return in percent. Alpha is the monthly Fama-French five-factor
alpha in percent. t-statistics are reported in parentheses and are adjusted using the Newey-West procedure with
4 lags, chosen as the integer component of T 1/4 following Greene (2012). SR is the monthly Sharpe ratio. IR
is the monthly information ratio (alpha divided by residual volatility).
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Table IA.XIV: Corporate bond post-earnings announcement drift (PEADB) factors

1986:01–2022:12 1986:01–1999:12 2000:01–2022:12

Small Mid Large Small Mid Large Small Mid Large

Panel A: Excluding micro-cap bonds (equally weighted)

Ave. Ret 0.25 0.18 0.16 0.16 0.11 0.11 0.30 0.22 0.19
t-stat (5.60) (6.29) (5.79) (4.17) (3.74) (4.00) (4.50) (5.24) (4.64)
Alpha 0.30 0.19 0.18 0.16 0.11 0.10 0.37 0.24 0.22
t-stat (5.35) (5.54) (5.70) (3.99) (3.70) (3.66) (4.54) (4.87) (4.99)
SR 0.27 0.30 0.27 0.32 0.29 0.31 0.27 0.32 0.28
IR 0.33 0.33 0.32 0.33 0.27 0.29 0.35 0.36 0.35

Panel B: Including micro-cap bonds (value weighted)

Ave. Ret 0.20 0.18 0.15 0.16 0.11 0.11 0.23 0.23 0.17
t-stat (5.65) (6.84) (5.35) (3.95) (3.78) (3.78) (4.37) (5.81) (4.23)
Alpha 0.23 0.20 0.17 0.16 0.11 0.10 0.26 0.25 0.21
t-stat (5.29) (6.20) (5.54) (3.77) (4.15) (3.27) (4.32) (5.40) (4.81)
SR 0.27 0.32 0.25 0.30 0.29 0.29 0.26 0.35 0.25
IR 0.31 0.36 0.29 0.30 0.29 0.27 0.32 0.40 0.31

Panel C: Excluding micro-cap bonds (equally weighted)

Ave. Ret 0.25 0.18 0.16 0.14 0.11 0.09 0.31 0.22 0.20
t-stat (4.64) (6.13) (6.13) (3.43) (3.57) (4.25) (3.82) (5.12) (5.04)
Alpha 0.30 0.19 0.18 0.14 0.11 0.09 0.39 0.24 0.23
t-stat (4.83) (5.46) (5.43) (3.10) (3.52) (3.92) (4.26) (4.81) (4.89)
SR 0.22 0.29 0.29 0.26 0.28 0.33 0.23 0.31 0.30
IR 0.28 0.32 0.35 0.27 0.26 0.32 0.31 0.36 0.38

Panel D: Including micro-cap bonds (equally weighted)

Ave. Ret 0.20 0.19 0.15 0.16 0.12 0.09 0.23 0.23 0.18
t-stat (5.71) (6.83) (5.60) (4.07) (3.88) (3.90) (4.42) (5.75) (4.54)
Alpha 0.23 0.20 0.17 0.15 0.12 0.09 0.27 0.25 0.22
t-stat (5.31) (6.27) (5.23) (3.78) (4.36) (3.35) (4.36) (5.38) (4.69)
SR 0.27 0.32 0.27 0.31 0.30 0.30 0.27 0.35 0.27
IR 0.31 0.36 0.32 0.31 0.30 0.29 0.32 0.39 0.35

This table presents the performance of the Corporate Bond Post-Earnings Announcement Drift (PEADB) factors
across different bond market capitalization groups (Small, Mid, Large) and sample periods. For each size group,
bonds are conditionally sorted into quintiles based on PEAD. The respective PEAD factor is long Q5 and short
Q1. Panel A and C exclude micro-cap bonds (bottom 20% by market cap) at the portfolio formation month t,
while Panel B and D include all bonds. Panels A and B use value-weights by bond market capitalization, while
Panels C and D use equal-weights. Ave. Ret is the average monthly return in percent. Alpha is the monthly
bond market one-factor alpha in percent. t-statistics are reported in parentheses and are adjusted using the
Newey-West procedure with 4 lags, chosen as the integer component of T 1/4 following Greene (2012). SR is the
monthly Sharpe ratio. IR is the monthly information ratio (alpha divided by residual volatility).
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IA.5 Discount rate and cash-flow news decomposition

In this section we provide additional results to complement the analysis in Section 3.1.4. We also
provide details on the decomposition of tradable factor returns into discount rate vs. cash-flow
news.

IA.5.1 Tradable factor return decomposition

Vuolteenaho (2002), Cohen et al. (2002), and others decompose unexpected asset returns into
an expected return (discount rate) component on the one hand and a cash-flow component on
the other hand:

rt+1 − Etrt+1 = ∆Et+1

∞∑
j=0

ρjet+1+j −∆Et+1

∞∑
j=1

ρjrt+1+j,

where ∆Et+1 denotes the change in expectations from t to t + 1 (i.e., Et+1(·) − Et(·)), et+1

the aggregate return on equity (ROE), and rt+1 the log asset return. ρ is determined by the
data, and in our setting is equal to 0.979, although any value between 0.95 and 1.00 does not
materially affect the results. As argued by Vuolteenaho (2002), using ROE as the measure
of firm cash flows is more appropriate in our case since we are dealing with both debt and
equity-based tradable factors, and many firms do not pay cash-based dividends.

We define the two return components as discount rate (Nr, DR) and cash-flow news (Ncf ,
CF), respectively:

Nr,t+1 = ∆Et+1

∞∑
j=1

ρjrt+1+j, Ncf,t+1 = ∆Et+1

∞∑
j=0

ρjet+1+j.

IA.5.2 Implementation using the VAR methodology

To empirically estimate equation IA.5.1, we implement a parsimonious vector autoregression
(VAR). The behavior of the tradable factors is captured by a vector, zi,t of state variables. The
first variable is always the tradable bond or stock factor, whilst the remaining variables could be
any set of predictors that are associated with future stock or bond returns. In this respect, we
use predictors that are standard in the literature. We define the vector, zt = [rt, roet, bmt, gzt],
where rt is the tradable factor return, roet is the log of aggregate return on equity (ROE),
bmt is the log of the aggregate book-to-market ratio, and gzt is the first difference of the
log of the Gilchrist and Zakrajšek (2012) aggregate credit spread (GZ). Aggregate ROE is the
equally-weighted average of firm-level net income (NI) scaled by one-quarter lagged book equity.
Aggregate book-to-market is from Amit Goyal’s data repository available here. The GZ credit
spread is computed as in Gilchrist and Zakrajšek (2012).6

The vector of state variables, zt is assumed to follow a first-order VAR,

zt+1 = Azt + ut+1

6We thank Yoshio Nozawa for making this data available to us.
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Figure IA.21: Tradable factors decomposition: Discount rate and cash-flow news.

Ordered ratios of the variance of the discount rate news component to total variance of residuals, V(Ndr)/V(u),
for each bond and stock tradable factor (estimated using equation (IA.17) in Internet Appendix IA.5). The
dashed horizontal line denotes the median value of the ratio (0.39). Bond factors are displayed in blue while
stock factors are displayed in red on the x-axis.

From the VAR, we estimate discount rate news as,

Ndrt+1 = (Et+1 − Et)
∞∑
j=1

ρjrt+1+j = e′1

∞∑
j=1

ρjAjut+1

= e′1ρA(I − ρA)−1ut+1 = λ′ut+1, (IA.17)

where λ′ = e′1ρA(I − ρA)−1 and e1 is a vector whose first element is equal to one and zero
otherwise. The cash-flow news component is computed as the residual of the total unexpected
factor return and discount rate news,

Ncft+1 = rt+1 − Etrt+1 +Ndr = (e′1 + λ′)ut+1.

VAR with principal components. Given the criticisms of the VAR methodology outlined
in Chen and Zhao (2009) and Chen et al. (2013), we also implement a VAR using the first five
principal components extracted from 37 predictors in Amit Goyal’s data library.

Thousands VARs. Finally, we perform a further extensive robustness exercise to alleviate
concerns about potential data uncertainty by first fixing the number of predictors in the VAR
to three. Then, we estimate 7,700 possible combinations of VARs with the set of 37 predictors.
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IA.5.3 Factor decomposition

We now implement the VARs and decompose each tradable factor into the component related
to either discount rate or cash-flow news across the three methods discussed above. Following
Vuolteenaho (2002) and Cohen, Gompers, and Vuolteenaho (2002) we compute the variance of
the discount rate news component, V(Ndr) and the ratio of the discount rate news variance
to total unexpected factor return variance V(Ndr)

V(u) . To pin down a relative classification of
the factors into a discount rate or cash-flow news category, we use the median level of V(Ndr)

V(u)
as a break-point. Factors above the break-point are classified (relatively) as more likely to
capture discount rate news as opposed to cash-flow rate news. In Table IA.XV we present
the V(Ndr)

V(u) and the classification (DR/CF) and the ‘Match’ column which displays a number
out of three, illustrating how often the methods predict the same classification. Importantly,
the classification remains consistent across all three approaches we consider. We focus on the
‘Vuolteenaho’ column, since these results pertain to the baseline results presented in Section
3.1.4.

We present the results of the Vuolteenaho (2002) decomposition in Figure IA.21. The y-axis
of the figure shows the proportion of residual variance of each factor estimated from the VAR
model that represents discount rate news. Overall, 10 of the 16 bond factors (62%) are driven
relatively more by discount rate news as opposed to cash-flow news shocks. In contrast, slightly
more stock factors (14/26=53%) are driven by cash-flow news shocks. However, it is important
to note that this classification is a function of our estimated VARs. Thus, just because a factor
is classified as (relatively) more either DR- or CF-based, does not mean that this factor cannot
capture other asset pricing phenomena.

The two most likely factors that ought to be included in the co-pricing BMA-SDF (i.e.,
PEAD and PEADB) are driven relatively more by discount rate news as opposed to cash-flow
news. For a discussion on how PEAD and PEADB could be linked to both news sources via
accounting (earnings) reports see Penman and Yehuda (2019). Most other behavioral-linked
factors such as MOMBS (bond factor formed with equity momentum), PERF and MGMT
(equity and management performance factor of Stambaugh and Yuan (2017)), are also classified
as relatively more discount rate news-based.
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Table IA.XV: Tradable factors decomposition: Discount rate and cash-flow news robustness
V(Ndr)
V(u) DR/CF classification

Factor Vuolteenaho PCA 7,770 VARs Vuolteenaho PCA 7,770 VARs Match

BAB 0.32 0.36 0.32 CF CF CF 3/3
CMA 0.32 0.66 0.33 CF CF CF 3/3
CMAs 0.47 1.15 0.41 DR DR DR 3/3
CPTLT 0.11 0.20 0.21 CF CF CF 3/3
CRF 0.27 0.43 0.25 CF CF CF 3/3
CRY 0.93 1.81 0.86 DR DR DR 3/3
DEF 0.30 0.93 0.71 CF DR DR 2/3
DRF 0.72 1.61 0.70 DR DR DR 3/3
DUR 0.60 0.93 0.29 DR DR CF 2/3
FIN 0.17 0.26 0.15 CF CF CF 3/3
HML 0.22 0.48 0.25 CF CF CF 3/3
HMLB 0.57 2.12 1.07 DR DR DR 3/3
HML_DEV 0.08 0.33 0.37 CF CF CF 3/3
HMLs 0.80 0.94 0.38 DR DR CF 2/3
LIQ 0.52 1.27 0.49 DR DR DR 3/3
LTREV 0.14 0.43 0.26 CF CF CF 3/3
LTREVB 0.14 0.81 0.47 CF DR DR 2/3
MGMT 0.57 0.99 0.43 DR DR DR 3/3
MKTB 1.42 2.34 0.89 DR DR DR 3/3
MKTBD 0.39 1.02 0.68 DR DR DR 3/3
MKTS 0.38 0.63 0.39 CF CF CF 3/3
MKTSs 1.19 1.98 0.89 DR DR DR 3/3
MOMB 0.41 0.74 0.41 DR CF CF 2/3
MOMBS 1.16 1.68 0.78 DR DR DR 3/3
MOMS 0.54 1.35 0.84 DR DR DR 3/3
PEAD 0.80 1.20 0.66 DR DR DR 3/3
PEADB 1.00 1.78 0.84 DR DR DR 3/3
PERF 0.93 1.36 0.58 DR DR DR 3/3
QMJ 0.67 0.99 0.38 DR DR CF 2/3
RMW 0.19 0.16 0.09 CF CF CF 3/3
RMWs 0.10 0.15 0.14 CF CF CF 3/3
R_IA 0.16 0.51 0.29 CF CF CF 3/3
R_ROE 0.18 0.68 0.38 CF CF CF 3/3
SMB 0.09 0.56 0.37 CF CF CF 3/3
SMBs 0.50 0.87 0.49 DR DR DR 3/3
STREV 0.12 0.10 0.11 CF CF CF 3/3
STREVB 0.27 0.76 0.38 CF CF CF 3/3
SZE 0.20 0.79 0.51 CF CF DR 2/3
TERM 0.43 0.73 0.43 DR CF DR 2/3
VAL 0.15 0.68 0.65 CF CF DR 2/3

This table presents variance decomposition results showing the variance of the discount rate news component to
total variance of the residuals, V(Ndr)/V(u) and classification (DR/CF) for each factor across three different
approaches. The factors are ordered alphabetically. ‘Vuolteenaho’ uses the method proposed by Vuolteenaho
(2002) using three predictors. The ‘PCA’ method follows the advice of Chen and Zhao (2009) and uses the first
five principal components estimated using 37 predictors from Amit Goyal’s website.. The ‘7,770 VARs’ method
estimates the average DR and CF components across 7,770 VARs with combinations of three predictors from
the total set of 37. The ‘Match’ column displays how often the three methods predict the same classification.
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IA.6 The Treasury component

Duration-adjusted corporate bond returns are computed for each bond i at each time t such
that the resultant bond return is in ‘excess’ of a portfolio of duration-matched U.S. Treasury
bond returns (van Binsbergen et al. (2025), Andreani et al. (2023)).

Start with the total return for corporate bond i in month t:

Ri t =
Bi t + AIi t + Couponi j t

Bi t−1 + AIi t−1

− 1,

where Bi t is the clean price of bond i in month t, AIi t is the accrued interest, and Couponi t is
the coupon payment, if any.

The bond duration-adjusted (or credit excess) return is the total bond return minus the
return on a hedging portfolio of U.S. Treasury securities that has the same duration as the bond
in month t. Thus, the duration-adjusted return isolates the portion of a bond’s performance
that is attributed to the credit risk of each bond (including other non-interest rate-related
risks).

In equation (10) we define the duration-adjusted return as

Rbond i,t −RTreasury
dur bond i,t︸ ︷︷ ︸

Duration-adjusted return

= Rbond i,t −Rf,t︸ ︷︷ ︸
Excess return

−
(
RTreasury

dur bond i,t −Rf,t

)
︸ ︷︷ ︸

Treasury component

where Rbond i,t is the return of bond i at time t, Rf,t denotes the short-term risk-free rate, and
RTreasury

dur bond i,t denotes the return on a portfolio of Treasury securities with the same duration as
bond i (constructed as in van Binsbergen et al. (2025)). The duration adjustment removes
the implicit Treasury component from the bond excess return, hence isolating the remaining
sources of risk compensation that investing in a given bond entails.

IA.6.1 Pricing duration-adjusted corporate bond returns

We use duration-adjusted returns to re-compute the tradable bond factor returns and returns
on bond test assets. In Section 3.3 we show that once corporate bond returns are adjusted for
duration, the BMA-SDF based only on equity information jointly prices (duration-adjusted)
corporate bond and stock returns as well as the co-pricing BMA-SDF that additionally includes
bond factors. That is, the information content of the bond factor zoo becomes largely irrelevant
for co-pricing once the Treasury component of bond returns is removed. In Table IA.XVI we
repeat the in- and out-of-sample cross-sectional asset pricing exercises from Tables 2 and 3,
respectively. That is, we estimate the co-pricing as well as the bond BMA-SDFs using duration-
adjusted corporate bond test portfolios and tradable corporate bond factors. The resulting
BMA-SDFs are then again used to price (with no additional parameter estimation) the OS test
assets. In Panel C the OS test assets are the combined 154 bond and stock portfolios and in
Panel D they are the 77 bond portfolios as described in Section 1. The results complement the
information in Figure 8 and show how our co-pricing and bond BMA-SDFs still outperform all
competitors out-of-sample.

In Table IA.XVII we repeat the analysis from Table IA.XII using duration-adjusted returns
to assess how the BMA-SDF performs vis-à-vis the additional set of bond and stock factor
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Table IA.XVI: Cross-sectional asset pricing performance: Duration-adjusted bond returns

BMA-SDF prior Sharpe ratio CAPM CAPMB FF5 HKM TOP KNS RPPCA

20% 40% 60% 80%

Panel A: In-sample co-pricing stocks and bonds

RMSE 0.203 0.197 0.186 0.174 0.326 0.297 0.278 0.324 0.294 0.157 0.219
MAPE 0.147 0.141 0.135 0.128 0.274 0.245 0.216 0.272 0.245 0.117 0.137
R2

OLS 0.106 0.157 0.246 0.339 −1.310 −0.913 −0.675 −1.282 −0.885 0.465 −0.047
R2

GLS 0.052 0.120 0.191 0.252 0.024 0.028 0.033 0.024 0.209 0.177 0.184

Panel B: In-sample pricing bonds

RMSE 0.169 0.138 0.112 0.101 0.201 0.217 0.179 0.183 0.198 0.117 0.162
MAPE 0.103 0.088 0.080 0.076 0.120 0.119 0.088 0.111 0.143 0.069 0.110
R2

OLS 0.093 0.396 0.601 0.676 −0.270 −0.484 −0.018 −0.059 −0.237 0.569 0.171
R2

GLS 0.057 0.187 0.324 0.430 0.003 0.036 0.068 0.019 0.412 0.262 0.243

Panel C: Out-of-sample co-pricing stocks and bonds

RMSE 0.178 0.158 0.138 0.125 0.121 0.168 0.106 0.120 0.342 0.159 0.112
MAPE 0.158 0.139 0.119 0.106 0.093 0.146 0.078 0.091 0.315 0.144 0.086
R2

OLS 0.045 0.246 0.423 0.528 0.558 0.143 0.658 0.568 −2.525 0.235 0.624
R2

GLS 0.030 0.058 0.078 0.097 0.024 0.002 0.023 0.025 −0.003 0.049 0.028

Panel D: Out-of-sample pricing bonds

RMSE 0.086 0.080 0.080 0.081 0.095 0.091 0.086 0.086 0.103 0.082 0.128
MAPE 0.066 0.059 0.057 0.057 0.074 0.070 0.067 0.067 0.075 0.057 0.096
R2

OLS 0.125 0.243 0.247 0.228 −0.070 0.014 0.120 0.119 −0.247 0.211 −0.936
R2

GLS 0.018 0.042 0.055 0.065 0.009 0.009 −0.028 0.015 −0.029 0.040 −0.080

The table presents the cross-sectional in and out-of-sample asset pricing performance of different models pricing
(duration-adjusted) bonds and stocks jointly (Panels A and C), and (duration-adjusted) bonds only (Panels B
and D), respectively. For the BMA-SDF, we provide results for prior Sharpe ratio values set to 20%, 40%, 60%
and 80% of the ex post maximum Sharpe ratio of the test assets. TOP includes the top five factors with an
average posterior probability greater than 50%. CAPM is the standard single-factor model using MKTS, and
CAPMB is the bond version using MKTB. FF5 is the five-factor model of Fama and French (1993), HKM is the
two-factor model of He et al. (2017). KNS stands for the SDF estimation of Kozak et al. (2020) and RPPCA
is the risk premia PCA of Lettau and Pelger (2020). Estimation details for the benchmark models are given in
Appendix D. Bond returns are computed in excess of a duration matched portfolio of U.S. Treasury bonds. In
Panels A and B the models are estimated with the respective factor zoos and test assets. The resulting SDF is
then used to price (with no additional parameter estimation) the two sets of the OS assets in Panels C and D.
IS test assets are the 83 bond and stock portfolios and the 40 tradable bond and stock factors (Panel A), and
the 50 bond portfolios and 16 tradable bond factors (Panel B), respectively. OS test assets are the combined
154 bond and stock portfolios (Panel C), as well as the 77 bond portfolios only (Panel D). All are described
in Section 1. All data is standardized, that is, pricing errors are in Sharpe ratio units. The sample period is
1986:01 to 2022:12 (T = 444).
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Table IA.XVII: Cross-sectional asset pricing performance: Additional models (duration-
adjusted bond returns)

BMA-SDF Bond factor models Stock factor models

BMA-80% BBW3 DCAPM DEFTERM MACRO CWW FFC4 HXZ4 FF52015 FF5∗ FF6

Panel A: In-sample co-pricing stocks and bonds

RMSE 0.174 0.305 0.275 0.219 0.276 0.272 0.264 0.252 0.249 0.251 0.223
MAPE 0.128 0.257 0.223 0.164 0.224 0.209 0.203 0.179 0.177 0.174 0.156
R2

OLS 0.339 −1.023 −0.643 −0.044 −0.660 −0.604 −0.518 −0.378 −0.350 −0.369 −0.084
R2

GLS 0.252 0.030 0.026 0.023 0.030 0.034 0.038 0.064 0.058 0.074 0.065

Panel B: Out-of-sample co-pricing stocks and bonds

RMSE 0.125 0.162 0.164 0.147 0.155 0.111 0.103 0.116 0.097 0.147 0.103
MAPE 0.106 0.138 0.142 0.124 0.132 0.082 0.077 0.091 0.075 0.124 0.079
R2

OLS 0.528 0.202 0.187 0.349 0.278 0.631 0.682 0.593 0.717 0.351 0.681
R2

GLS 0.097 0.002 0.010 0.004 0.002 0.020 0.034 0.039 0.057 0.044 0.059

Panel C: Out-of-sample pricing stocks

RMSE 0.077 0.121 0.117 0.114 0.119 0.105 0.080 0.086 0.092 0.098 0.078
MAPE 0.058 0.088 0.084 0.083 0.085 0.074 0.059 0.066 0.070 0.073 0.061
R2

OLS 0.618 0.056 0.117 0.160 0.091 0.288 0.590 0.522 0.463 0.383 0.615
R2

GLS 0.271 0.052 0.041 0.020 0.038 0.080 0.132 0.182 0.169 0.097 0.188

Panel D: Out-of-sample pricing bonds

RMSE 0.082 0.092 0.088 0.085 0.090 0.104 0.121 0.123 0.102 0.102 0.114
MAPE 0.061 0.071 0.067 0.065 0.070 0.080 0.094 0.097 0.079 0.080 0.089
R2

OLS 0.196 −0.009 0.084 0.140 0.038 −0.277 −0.735 −0.785 −0.226 −0.222 −0.546
R2

GLS 0.098 0.013 0.013 0.005 0.016 0.006 −0.055 −0.035 0.076 0.038 0.022

Panel A presents the cross-sectional in-sample asset pricing performance of different bond and stock asset pricing
models. Bond factor and test asset returns are duration adjusted as per equation (10). Panels B, C and D
present the out-of-sample asset pricing performance for the joint, bond and stock cross-sections, respectively.
For bonds we consider five models: (i) the modified three-factor model of Bai et al. (2019) including MKTB,
DRF, and CRF bond factors (BBW3), (ii) the two-factor decomposed bond market factor model from van
Binsbergen et al. (2025) (DCAPM), (iii) the DEFTERM model of Fama and French (1993), (iv) the MACRO
model of Bali et al. (2021b) comprising MKTB and macro economic uncertainty UNC, and (v) the six-factor
CWW model of Chung et al. (2019) that adds innovations to the VIX index as a sixth factor to the FF5 model
of Fama and French (1993). For stocks we consider six models: (i) the Carhart (1997) four-factor model that
adds MOMS to the Fama and French (1992) three-factor model (FFC4), (ii) the Hou et al. (2015) four-factor
model (HXZ4), (iii) the five-factor model of Fama and French (2015) which augments their three-factor model
with the RMW and CMA factors (FF52015), (v) the FF5∗ model of Daniel et al. (2020) which removes unpriced
risk from the original FF5 factors, and (vi) the FF6 model which augments the FF5 model with MOMS. IS
test assets are the 83 bond and stock portfolios and 40 tradable bond and stock factors. OS test assets are the
combined 154 bond and stock portfolios (Panel B), as well as the separate 77 bond and stock portfolios (Panels
C and D). All are described in Section 1. All models are first estimated using the baseline IS test assets (Panel
A) and then used to price (with no additional parameter estimation) each set of OS assets (Panels B to D). We
use GMM-GLS to estimate factor risk prices for bond and stock specific factor models. All data is standardized,
that is, pricing errors are in Sharpe ratio units. The sample period is 1986:01 to 2022:12 (T = 444).
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Figure IA.22: Posterior SDF dimensionality and Sharpe ratios: Treasury component.

Posterior distributions of the number of factors to be included in the bond SDF (top panel) and of the SDF-
implied Sharpe ratio (bottom panel), computed using the 14 nontradable and 16 tradable bond factors described
in Appendix A. The prior distribution for the jth factor inclusion is a Beta(1, 1), yielding a flat prior for the SDF
dimensionality depicted in the top panel. The prior Sharpe ratio is set to 80% of the ex post maximum Sharpe
ratio of the Treasury component of the 50 corporate bond portfolios and 16 bond tradable factors described in
Section 1. The sample period is 1986:01 to 2022:12 (T = 444).

models. Again, the BMA-SDFs outperform all additional models originally designed to price
the individual bond and stock cross-sections, respectively.

Table IA.XVIII: BMA-SDF dimensionality and Sharpe ratio decomposition for Treasury
component

Total prior SR Total prior SR
20% 40% 60% 80% 20% 40% 60% 80%

Nontradable factors Tradable factors

Mean 7.01 6.98 6.97 6.80 7.89 7.72 7.47 7.00
5% 4 4 4 4 5 4 4 4
95% 10 10 10 10 11 11 11 10
E[SRf |data] 0.15 0.32 0.52 0.84 0.28 0.48 0.64 0.80
E
[ SR2

f

SR2
m
|data

]
0.30 0.36 0.44 0.54 0.71 0.67 0.60 0.51

The table reports posterior means of number of factors (along with the 90% confidence intervals), implied Sharpe
ratios E[SRf |data], and the ratio of SR2

f to the total SDF-implied squared Sharpe ratio E
[
SR2

f/SR
2
m|data

]
,

of the 14 nontradable and 16 tradable bond factors described in Appendix A. Test assets are the Treasury
components of the 50 corporate bond portfolios described in Section 1. The sample period is 1986:01 to 2022:12
(T = 444).
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Figure IA.23: Posterior factor probabilities and risk prices: Treasury component.

Posterior probabilities (top panel), E[γj |data], and the corresponding posterior market prices of risk (bottom
panel), E[λj |data], of the 14 nontradable and 16 tradable bond factors described in Appendix A. The prior for
each factor inclusion is a Beta(1, 1), yielding a prior expectation for γj of 50%. The prior Sharpe ratio is set
to 80% of the ex post maximum Sharpe ratio of the Treasury components of the 50 corporate bond portfolios
described in Section 1. The sample period is 1986:01 to 2022:12 (T = 444).

IA.6.2 Pricing the Treasury component

As per equation (10), the duration adjustment of corporate bond returns also yields Treasury
components of corporate bond test assets that can be used for asset pricing exercises. In
particular, we can estimate “Treasury component BMA-SDFs” using either the bond or stock
factor zoos described in Appendix A (whereby the bond factors are not duration adjusted). For
both exercises we use the Treasury component of the 50 bond portfolios as IS test assets and we
do not impose self-pricing on the bond or stock factors, respectively. Figure 9 shows how the
Treasury component bond BMA-SDF can price the Treasury component IS while the Treasury
component stock BMA-SDF fails to do so. Mirroring the results presented in Section 3.1,
Figure IA.22 shows the posterior SDF dimensionality and the distribution of Sharpe ratios
when pricing the Treasury component using only the 14 nontradable and the 16 tradable bond
factors (again, without self-pricing). While the median number of factors is now much lower
than for the co-pricing BMA-SDF, the required SDF is still dense and low-dimensional factor
models remain misspecified with very high probability even for pricing the Treasury component
only. Moreover, the SDF is dense in both nontradable as well as tradable factors (see Table
IA.XVIII).

In Figure IA.23 we mirror the analysis in Section 3.1 and assess which factors are more likely
to price the Treasury component individually, and how factors should be optimally combined
to achieve a portfolio that captures the priced risks in these assets. The top and bottom panels
report the posterior factor probabilities and market prices of risk implied by the pricing of the
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Figure IA.24: Posterior factor probabilities and risk prices: Treasury component with DR
tilt.

Posterior probabilities (top panel), E[γj |data], and the corresponding posterior market prices of risk (bottom
panel), E[λj |data], of the 14 nontradable and 16 tradable bond factors described in Appendix A. We tilt the
prior for each factor inclusion via the κ vector discussed in Section 2.3 using weights informed by the CF and
DR news decomposition discussed in Internet Appendix IA.5 whereby DR (CF) classified factors are given a
positive (negative) weight. The prior Sharpe ratio is set to 80% of the ex post maximum Sharpe ratio of the
Treasury components of the 50 corporate bond portfolios described in Section 1. The sample period is 1986:01
to 2022:12 (T = 444).

Treasury component of corporate bond returns using the Treasury component of the corporate
bond factor zoo (the prior Sharpe ratio is set to 80% of the ex post maximum Sharpe ratio).
The first four factors with the highest posterior probability are nontradable. Furthermore,
largely, these factors are the same as those that appear most likely when co-pricing bonds and
stocks (the top three being YSP, CREDIT and LVL, followed by the IVOL factor). Moreover,
they command large market prices of risk and the probability of zero nontradable factors being
in the BMA-SDF that prices the Treasury component of corporate bond returns is virtually
zero (or 0.014%).

Given the nature of the Treasury component where, at least in nominal terms, cash flows
are known in advance, one would expect discount rate news to be the main driver of their
priced risk (Chen and Zhao (2009)). Thus, we implement a factor tilt (see Section 2.3) whereby
we assign a positive weight to DR factors and a negative weight to CF factors as given by the
decomposition discussed in Internet Appendix IA.5. The top and bottom panels of Figure IA.24
report the posterior factor probabilities and market prices of risk implied by the pricing of the
Treasury component of corporate bond returns using the corporate bond factor zoo without
self-pricing (the prior Sharpe ratio is set to 80% of the ex post maximum Sharpe ratio) and
the encoded prior belief about the relative importance of DR versus CF news. The tilt towards
DR factors makes them individually more likely, and for example pushes the likelihood of the
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MKTB factor above the prior value. However, the pricing results remain overall very similar
to the baseline estimation with the more diffuse prior encoding.

Table IA.XIX: IS and OS cross-sectional asset-pricing performance: Treasury component

In-sample Out-of-sample

20% 40% 60% 80% 20% 40% 60% 80%

Panel A: Baseline without factor tilt, GLS, λ̂ = (CTΣ−1
R C +D)−1CTΣ−1

R µR

RMSE 0.084 0.084 0.079 0.071 0.096 0.095 0.089 0.078
MAPE 0.064 0.064 0.060 0.053 0.076 0.074 0.068 0.059
R2

OLS −0.153 −0.169 −0.039 0.177 −0.084 −0.058 0.075 0.289
R2

GLS 0.045 0.087 0.131 0.194 0.081 0.134 0.186 0.259

Panel B: With DR-factor tilt, GLS, λ̂ = (CTΣ−1
R C +D)−1CTΣ−1

R µR

RMSE 0.084 0.084 0.079 0.070 0.096 0.095 0.089 0.078
MAPE 0.064 0.064 0.060 0.053 0.076 0.074 0.068 0.059
R2

OLS −0.155 −0.163 −0.019 0.193 −0.086 −0.056 0.092 0.309
R2

GLS 0.045 0.087 0.131 0.195 0.082 0.136 0.188 0.261

Panel C: BMA baseline, OLS, λ̂ = (CTC +D)−1CTµR

RMSE 0.056 0.037 0.030 0.027 0.075 0.060 0.054 0.051
MAPE 0.042 0.027 0.023 0.021 0.063 0.052 0.048 0.046
R2

OLS 0.479 0.774 0.850 0.881 0.342 0.586 0.660 0.694
R2

GLS −3.653 −6.475 −8.242 −9.518 0.402 0.442 0.456 0.463

Panel D: BMA with DR-factor tilt, OLS, λ̂ = (CTC +D)−1CTµR

RMSE 0.055 0.037 0.030 0.027 0.074 0.059 0.054 0.051
MAPE 0.041 0.027 0.023 0.021 0.062 0.052 0.048 0.046
R2

OLS 0.493 0.778 0.851 0.881 0.354 0.592 0.662 0.694
R2

GLS −3.707 −6.466 −8.222 −9.516 0.402 0.441 0.454 0.462

The table presents the cross-sectional in- and out-of-sample asset pricing performance of the Treasury component
bond BMA-SDF estimated with and without a DR-factor tilt. We provide results for prior Sharpe ratio values
set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the test assets. The models are
first estimated using the baseline IS test assets. The resulting SDF is then used to price (with no additional
parameter estimation) each set of the OS assets. Panel A provides the baseline estimation without any factor
tilt (κ = 0). In Panel B we tilt the prior for each factor inclusion via the κ vector discussed in Section 2.3 using
weights informed by the CF and DR news decomposition discussed in Internet Appendix IA.5 whereby DR
(CF) classified factors are given a positive (negative) weight. This implies DR (CF) factors explain a relatively
greater (smaller) share of the squared Sharpe ratio of the Treasury component under the prior. The IS test
assets are the Treasury components of the 50 corporate bond portfolios. The OS test assets are the 29 Treasury
portfolios of excess returns on Treasury securities with maturities 2 to 30 years. All are described in Section
1. All data is standardized, that is, pricing errors are in Sharpe ratio units. The sample period is 1986:01 to
2022:12 (T = 444).

This is highlighted in Table IA.XIX where we report in- and out-of-sample performance
measures for the Treasury component bond BMA-SDF without (Panel A) and with (Panel B)
the DR-factor tilt. The IS test assets are the Treasury components of the 50 corporate bond
portfolios and the OS test assets are the 29 Treasury portfolios with maturities ranging from
2 to 30 years. All are described in Section 1. The numbers do not change materially when
comparing the two panels in the table.

Finally, Table IA.XX provides the time series correlations between (the posterior means of)
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Table IA.XX: BMA-SDF time series correlations: 60% and 80% SR shrinkage

Co-pricingExc. BondExc. StockExc. T-BondBond T-BondStock Co-pricingDur. BondDur.

Co-pricingExc. 0.716 0.738 0.284 0.198 0.967 0.671
BondExc. 0.744 0.093 0.337 0.247 0.688 0.929
StockExc. 0.725 0.113 0.122 0.035 0.730 0.098
T-BondBond 0.402 0.439 0.172 0.379 0.213 0.229
T-BondStock 0.272 0.325 0.064 0.533 0.182 0.252
Co-pricingDur. 0.964 0.712 0.708 0.351 0.243 0.729
BondDur. 0.686 0.908 0.121 0.335 0.286 0.754

This table presents the time series correlation coefficients for the co-pricing (Co-pricing), bond (Bond), and stock
(Stock) BMA-SDFs estimated with excess (Exc.) and duration-adjusted (Dur.) returns, and the U.S. Treasury
Bond BMA-SDFs estimated with the bond (T-BondBond) or stock (T-BondStock) factor zoos, respectively. The
lower (upper) triangular of the table provides results for prior Sharpe ratio values set to 80% (60%) of the ex
post maximum Sharpe ratio of the test assets. The sample period is 1986:01 to 2022:12 (T = 444).

BMA-SDFs constructed with bond and stock factors, jointly and separately, to price (again
jointly and separately) bond and stock excess returns, duration-adjusted bond returns, and the
Treasury component of corporate bond returns.
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IA.7 Risk premia vs. market prices of risk

In this section, we show that testing a risk premium is not the same as testing a market price
of risk. In fact, a factor that is not part of the SDF might command a large risk premium just
because it correlates with the latter.

To show this, we report two-pass regression estimates of the risk premium attached to
MKTB as the sole factor, as well as linear SDF estimates of the market price of risk in the
CAPMB model used to price our baseline cross-section of corporate bonds and bond tradable
factors. Furthermore, we evaluate and report the risk premium and the market price of risk
from the CAPM model when pricing duration-adjusted corporate bond returns and factors. To
understand why the two types of estimations can lead to very different outcomes, let’s consider
a simple example with two (demeaned) tradable risk factors only, i.e. ft = [f1,t, f2,t]

⊤, and
suppose for simplicity that their covariance matrix is

Σ =

[
1 ρ
ρ 1

]
Suppose further that only the first factor is part of the SDF, and has a market price of risk
equal to κ. That is

Mt = 1− f⊤
t λf = 1− [f1,t, f2,t]

⊤
[
κ
0

]
= 1− f1,tκ

Denoting with µRP = [µRP,1, µRP,2]
⊤ the vector of risk premia of the factors, applying the

fundamental asset pricing equation to the returns generated by the factors, we have

µRP = Σλf =

[
1 ρ
ρ 1

] [
κ
0

]
=

[
κ
ρκ

]
.

That is, the second factor, that is not part of the SDF, commands nevertheless a non-zero risk
premium (equal to ρκ) as long as the factor has non-zero correlation (i.e., as long as ρ ̸= 0)
with the true risk factor—the one that is part of the SDF. This also implies that a two-pass
regression method that uses the second factor as the sole driver of a cross-section of asset returns
will estimate its ex post risk premium as being non-zero—in fact, the estimated risk premium
for the second factor will be inflated relative to its true value. This is due to the fact that the
estimated betas of f2 will be, in population, smaller than the ones of f1 by a factor equal to ρ.
Hence, in population, the two-pass regression will yield an estimated risk premium for f2 equal
to ρ−1κ (where |ρ| ≤ 1).

Example 1 (CAPMB pricing corporate bond excess returns.). To estimate the SDF of the
CAPMB model we rely on the Bayesian-SDF estimator in Definition 1 of Bryzgalova et al.
(2023). This is equivalent to the method presented in Section 2 under the null that MKTB
is the only factor in the SDF with probability one and that the model is true. To put the
comparison of market prices of risk and ex post risk premia estimates on the same footing, we
estimate the two-pass regression using the Bayesian implementation of the Fama and MacBeth
(1973) method in Bryzgalova et al. (2022). Posterior distributions of the two-pass regression ex
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Figure IA.25: CAPMB: Two-pass regression risk premium and market price of risk.

The figure plots the posterior distributions of the two-pass regression ex post risk premium (Panel A), and
SDF-based market price of risk (Panel B), of a model with MKTB as the only risk factor, i.e. CAPMB. Test
assets are the 50 bond portfolios and the 16 tradable bond factors described in Section 1. The prior Sharpe
ratio does not impose any shrinkage, being set to the ex post Sharpe ratio of the MKTB factor. The sample
period is 1986:01 to 2022:12 (T = 444).

post risk premium and SDF-based market price of risk are plotted, respectively, in Panels A and
B of Figure IA.25. The estimates suggest that, albeit MKTB carries a sizable and significant
risk premium, it is very unlikely that the data are generated by a “true” latent SDF with MKTB
as the only factor—the (Bayesian) p-value of its market price of risk being equal to zero is about
52.34%.7

Example 2 (CAPM pricing corporate bond duration-adjusted returns.). We follow a similar
procedure, using the same set of corporate bond portfolios and factors, computed with duration-
adjusted returns. Now, the null is defined such that MKTS (the stock market factor) is the only
factor in the SDF with probability one and that the model is true. Posterior distributions of
the two-pass regression ex post risk premium and SDF-based market price of risk are plotted,
respectively, in Panels A and B of Figure IA.26. The estimates suggest that MKTS, neither
carries a significant ex post risk premium (as in van Binsbergen et al. (2025, Table A8)) in
this heavily misspecified setting (given our results in the main text) nor it is likely that the
duration-adjusted bond return data are generated by a “true” latent SDF with the stock market
factor as the only factor—the (Bayesian) p-value of its market price of risk being equal to zero
is about 76.30%.

7This broadly confirms the results presented in Dickerson et al. (2023). These authors show that incremen-
tally, in a frequentist setting, other low dimensional models that they consider do not outperform the CAPMB.
However, in itself, they also show that the CAPMB is a poor model for describing the cross-section of expected
corporate bond excess returns (see their Fig. 2, on Page 11 of the published version of the paper and the RGLS

values reported in Table 3).
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Figure IA.26: CAPM: two pass-regression risk premium and market price of risk with
duration-adjusted bond returns.

The figure plots the posterior distributions of the two-pass regression ex post risk premium (Panel A), and
SDF-based market price of risk (Panel B), of a model with MKTS as the only risk factor, i.e. the CAPM. Test
assets are the 50 duration-adjusted bond portfolios and the 16 tradable bond factors (also duration adjusted)
described in Section 1. The prior Sharpe ratio does not impose any shrinkage, being set to the ex post Sharpe
ratio of the MKTS factor. The sample period is 1986:01 to 2022:12 (T = 444).

62



IA.8 Economic properties

In this section we provide additional results to complement the analysis in Section 3.4.
Panel A in Figure IA.27 shows that the BMA-SDF is highly predictable: virtually all of its

autocorrelation coefficients are statistically significant at the 1% level up to 20 months ahead,
and the p-value of the Ljung and Box (1978) test of joint significance is zero at this horizon.
Additionally, about one fifth of its time series variance is explained by its own lags (23% for
the best AR specification and 19% for the best ARMA specification according to the AIC and
the BIC).

Figure IA.28 shows the autocorrelations for a range of models discussed in Appendix D. As
is evident, none of the other models come close to displaying the same level of business cycle
variation and persistency as our BMA-SDF: the KNS SDF has about 11% of its time series
variation being predictable by its own history, while this number drops to 4% for RPPCA, and
its only 2% to 3%, for FF5 and CAPMB, and zero for HKM and CAPM.

Moreover, as shown in Panel A of Table IA.XXI, the SDFs with a higher degree of persis-
tency, KNS and RPPCA, are exactly the ones with the highest degree of correlation with the
BMA-SDF (0.78 and 0.55, respectively), and are the closest competitors for the BMA-SDF in
the pricing exercises in Section 3.1. Instead, SDFs that perform significantly worse in cross-
sectional pricing have both little time series persistency and correlations with the BMA-SDF
in the 0.16 to 0.29 range.

The GARCH(1,1) coefficient estimates in Figure 11 imply a highly persistent conditional
volatility, with deviations from the mean exhibiting a half-life of approximately 16.6 months. In
Figure IA.29 we show that the volatility patterns of the BMA-SDF are not simply driven by the

A: Co-pricing BMA-SDF predictability B: Squared forecast errors of BMA-SDF

Figure IA.27: Autocorrelation functions of co-pricing BMA-SDF and forecast errors.

In Panel A we show the autocorrelation coefficients of the co-pricing BMA-SDF and in Panel B we plot its
squared forecast errors. The BMA-SDF is obtained with 80% prior Sharpe ratio. The ARMA(3,1) conditional
mean process is selected via the AIC and the BIC. The Ljung and Box (1978) p-value tests the null of squared
autocorrelations being equal to zero. The sample period is 1986:01 to 2022:12 (T = 444).
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Figure IA.28: Autocorrelations functions of SDFs from alternative models.

The figure shows the autocorrelation coefficients of the SDFs estimated using KNS, RPPCA, CAPM, CAPMB,
FF5 and HKM (from left to right and top to bottom). CAPM is the standard single-factor model using MKTS,
and CAPMB is the bond version using MKTB. FF5 is the five-factor model of Fama and French (1993), HKM
is the two-factor model of He et al. (2017). KNS stands for the SDF estimation of Kozak et al. (2020) and
RPPCA is the risk premia PCA of Lettau and Pelger (2020). Estimation details for the benchmark models are
given in Appendix D. The ARMA mean process for each model is selected via the AIC and the BIC. The Ljung
and Box (1978) p-value tests the null of squared autocorrelations being equal to zero. The sample period is
1986:01 to 2022:12 (T = 444).
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Table IA.XXI: Correlation of SDF levels and volatilities

KNS RPPCA CAPM CAPMB FF5 HKM

Panel A: SDF levels

BMA 0.78 0.55 0.16 0.28 0.29 0.16
KNS 0.85 0.11 0.46 0.32 0.13
RPPCA 0.09 0.35 0.18 0.11
CAPM 0.42 0.70 0.98
CAPMB 0.70 0.41
FF5 0.66

Panel B: SDF estimated volatilities

BMA 0.76 0.70 0.74 0.52 0.56 0.74
KNS 0.71 0.64 0.55 0.55 0.65
RPPCA 0.54 0.18 0.24 0.56
CAPM 0.57 0.61 0.98
CAPMB 0.75 0.57
FF5 0.58

Panel A shows the correlation matrix of the SDFs from the co-pricing BMA-SDF, KNS, RPPCA, CAPM,
CAPMB, FF5 and HKM. Panel B shows the correlations for the same model of their filtered volatilities. The
BMA-SDF is obtained with 80% prior Sharpe ratio. CAPM is the standard single-factor model using MKTS,
and CAPMB is the bond version using MKTB. FF5 is the five-factor model of Fama and French (1993), HKM
is the two-factor model of He et al. (2017). KNS stands for the SDF estimation of Kozak et al. (2020) and
RPPCA is the risk premia PCA of Lettau and Pelger (2020). Estimation details for the benchmark models are
given in Appendix D. The BMA-SDF is obtained with 80% prior Sharpe ratio. The ARMA mean process for
each model is selected using the AIC and the BIC. Volatilities are estimated using a GARCH(1,1) model. The
Ljung and Box (1978) p-value tests the null of squared autocorrelations being equal to zero. The sample period
is 1986:01 to 2022:12 (T = 444).

tradable factors by removing them from the BMA-SDF and re-estimating the volatility process
of the new nontradable-only SDF. The resulting volatility process remains very persistent (with
a half-life of 12.3 months), with pronounced business cycle variation and reaction to periods
of heightened economic uncertainty. Moreover, the correlation of the two BMA-SDF volatility
time series in Figures 11 and IA.29 is around 62%. That is, both tradable and nontradable
components of the BMA-SDF are characterized by a very persistent volatility with a clear
business cycle pattern.

Panel B of Figure IA.27 reports the empirical autocorrelation function of the squared forecast
errors of the co-pricing BMA-SDF while the squared forecast errors for the SDFs of the KNS,
RPPCA, CAPM, CAPMB, FF5 and HKM models are reported in Figure IA.30. As mentioned
above, the conditional volatility of the co-pricing BMA-SDF is highly persistent, with deviations
from the mean exhibiting a half-life of approximately 16.6 months. Instead, Figure IA.30 for
example shows that the half-life of volatility shocks to the FF5 SDF model is only 4.21 months,
and for the CAPMB it is just 3 months. That is, the use of tradable factors in the SDF does
not mechanically deliver our findings for the BMA-SDF.

Finally, it seems that the alternative SDF models do not sufficiently capture business cy-
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Figure IA.29: Volatility of the co-pricing BMA-SDF with only nontradable factors.

The figure plots the annualized volatility of the co-pricing BMA-SDF estimated using only nontradable factors.
The volatility of the BMA-SDF is obtained by fitting an ARMA(3,1)-GARCH(1,1) to the posterior mean of
the co-pricing BMA-SDF whereby the specification is selected via the AIC and the BIC. The GARCH quasi-
maximum likelihood coefficient estimates are:

σ2
t+1 = ω + αϵ2t + βσ2

t

ω α β
Estimate 0.000202 0.142293 0.798533
Robust SE 0.000090 0.052041 0.047567

Shaded areas denote NBER recession periods. The sample period is 1986:01 to 2022:12 (T = 444).

cle variation and periods of high economic uncertainty. We show this by linearly projecting
the estimated volatility of our co-pricing BMA-SDF on the estimated volatilities of the KNS,
RPPCA, CAPM, CAPMB, FF5 and HKM models. Figure IA.31 plots the time series of the
residuals, revealing that they still show a very strong business cycle variation and they exhibit
similar spikes as the volatility series in Figure 11. Overall, the observed business cycle varia-
tions and predictability in both the first and second moments of the BMA-SDF would imply,
within a structural model, time-varying and predictable risk premia for tradable assets.
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Figure IA.30: Autocorrelations of SDF squared residuals.

The figure shows the autocorrelation coefficients of the squared residuals of SDFs estimated using KNS, RPPCA,
CAPM, CAPMB, FF5 and HKM (from left to right and top to bottom). CAPM is the standard single-factor
model using MKTS, and CAPMB is the bond version using MKTB. FF5 is the five-factor model of Fama and
French (1993), HKM is the two-factor model of He et al. (2017). KNS stands for the SDF estimation of Kozak
et al. (2020) and RPPCA is the risk premia PCA of Lettau and Pelger (2020). Estimation details for the
benchmark models are given in Appendix D. The ARMA mean process for each model is selected using the
BIC and reported in Figure IA.28. The Ljung and Box (1978) p-value tests the null of squared autocorrelations
being equal to zero. The sample period is 1986:01 to 2022:12 (T = 444).
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Figure IA.31: Residual volatility of the co-pricing BMA-SDF.

The figure Residuals of the linear projection of the BMA-SDF estimated volatility on the volatilities of CAPM,
CAPMB, KNS, RPPCA, FF5 and HKM SDFs CAPM is the standard single-factor model using MKTS, and
CAPMB is the bond version using MKTB. FF5 is the five-factor model of Fama and French (1993), HKM is the
two-factor model of He et al. (2017). KNS stands for the SDF estimation of Kozak et al. (2020) and RPPCA
is the risk premia PCA of Lettau and Pelger (2020). Estimation details for the benchmark models are given in
Appendix D. The sample period is 1986:01 to 2022:12 (T = 444).
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IA.9 Prior perturbation

In this section we provide additional results to complement the robustness analysis in Sections
4.1, 4.2 and 4.3 with regards to perturbations of the prior and removing the most important
factors in terms of posterior probabilities and market prices of risk, respectively.

IA.9.1 Factor tilting

First, we tilt the estimation of the co-pricing BMA-SDF in favor of bond factors by setting
κ = 0.5. This implies the belief that they explain a share of the squared Sharpe ratio of
the SDF that is 1+κ

1−κ
= 3 times as large as the share of stock factors. Thereafter, we tilt

toward stock factors. In Figure IA.32 we report the posterior factor probabilities estimated
with the tilted priors either in favor of bond (bars with diagonal lines) or stock (bars with dots)
factors, respectively. Overall, the likelihood of the data is quite informative for the posterior
probabilities, especially for the nontradable factors. Posterior probabilities for bond and stock
factors reflect the direction of the tilt.

Similarly, the posterior market prices of risk depicted in Figure IA.33 highlight that the set

Table IA.XXII: IS and OS cross-sectional asset pricing performance across κ tilts

In-sample Out-of-sample

20% 40% 60% 80% 20% 40% 60% 80%

Panel A: Baseline (κ = 0)

RMSE 0.214 0.203 0.185 0.167 0.114 0.102 0.095 0.090
MAPE 0.167 0.154 0.139 0.125 0.081 0.074 0.069 0.065
R2

OLS 0.155 0.240 0.367 0.487 0.357 0.489 0.557 0.603
R2

GLS 0.106 0.168 0.232 0.285 0.038 0.070 0.098 0.124

Panel B: Bond factor tilt (κ = 0.5)

RMSE 0.200 0.185 0.175 0.161 0.117 0.113 0.111 0.104
MAPE 0.152 0.139 0.130 0.119 0.085 0.090 0.091 0.085
R2

OLS 0.258 0.368 0.438 0.523 0.330 0.367 0.390 0.466
R2

GLS 0.106 0.168 0.224 0.272 0.040 0.072 0.096 0.119

Panel C: Stock factor tilt (κ = −0.5)

RMSE 0.240 0.229 0.209 0.183 0.122 0.116 0.112 0.105
MAPE 0.195 0.182 0.165 0.143 0.089 0.085 0.083 0.078
R2

OLS −0.063 0.035 0.195 0.382 0.271 0.337 0.384 0.453
R2

GLS 0.107 0.163 0.222 0.281 0.035 0.064 0.092 0.122

The table presents the cross-sectional in- and out-of-sample asset pricing performance of the co-pricing BMA-
SDF estimated with and without factor tilts. We provide results for prior Sharpe ratio values set to 20%, 40%,
60% and 80% of the ex post maximum Sharpe ratio of the test assets. The models are first estimated using the
baseline IS test assets. The resulting SDF is then used to price (with no additional parameter estimation) each
set of the OS assets. Panel A provides the baseline estimation without any factor tilt (κ = 0) as discussed in
Section 2.3. In Panel B we tilt the prior towards bond factors (κ = 0.5) and in Panel C towards stock factors
(κ = −0.5), respectively. The factor tilts imply bond (Panel B) and stock (Panel C) factors explain a 1+κ

1−κ = 3
times as large share of the squared Sharpe ratio than stock and bond factors, respectively. The IS test assets
are the 83 bond and stock portfolios and the 40 tradable bond and stock factors. The OS test assets are the
combined 154 bond and stock portfolios. All are described in Section 1. All data is standardized, that is, pricing
errors are in Sharpe ratio units. The sample period is 1986:01 to 2022:12 (T = 444).
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Table IA.XXIII: OS cross-sectional pricing performance for bonds and stocks across κ tilts

Stock test assets Bond test assets

20% 40% 60% 80% 20% 40% 60% 80%

Panel A: Baseline (κ = 0)

RMSE 0.102 0.087 0.080 0.076 0.122 0.115 0.108 0.101
MAPE 0.075 0.066 0.060 0.057 0.089 0.083 0.079 0.074
R2

OLS 0.330 0.513 0.591 0.629 0.064 0.171 0.267 0.354
R2

GLS 0.106 0.189 0.246 0.276 0.022 0.051 0.078 0.107

Panel B: Bond factor tilt (κ = 0.5)

RMSE 0.112 0.100 0.094 0.089 0.121 0.112 0.105 0.100
MAPE 0.082 0.073 0.069 0.065 0.088 0.081 0.076 0.073
R2

OLS 0.195 0.356 0.435 0.494 0.078 0.216 0.307 0.365
R2

GLS 0.088 0.148 0.187 0.216 0.036 0.073 0.097 0.118

Panel C: Stock factor tilt (κ = −0.5)

RMSE 0.095 0.080 0.073 0.070 0.123 0.118 0.112 0.103
MAPE 0.071 0.062 0.058 0.054 0.090 0.086 0.081 0.076
R2

OLS 0.419 0.591 0.655 0.687 0.050 0.116 0.215 0.334
R2

GLS 0.123 0.218 0.278 0.315 0.006 0.026 0.054 0.093

The table presents the cross-sectional out-of-sample asset pricing performance of the co-pricing BMA-SDF
estimated with and without factor tilts for bonds and stocks, respectively. We provide results for prior Sharpe
ratio values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the test assets. The models
are first estimated using the baseline IS test assets. The resulting SDF is then used to price (with no additional
parameter estimation) each set of the OS assets. Panel A provides the baseline estimation without any factor
tilt (κ = 0) as discussed in Section 2.3. In Panel B we tilt the prior towards bond factors (κ = 0.5) and in
Panel C towards stock factors (κ = −0.5), respectively. The factor tilts imply bond (Panel B) and stock (Panel
C) factors explain a 1+κ

1−κ = 3 times as large share of the squared Sharpe ratio than stock and bond factors,
respectively. The IS test assets are the 83 bond and stock portfolios and the 40 tradable bond and stock factors.
The OS test assets are the combined respective 77 bond and stock portfolios. All are described in Section 1. All
data is standardized, that is, pricing errors are in Sharpe ratio units. The sample period is 1986:01 to 2022:12
(T = 444).

of factors that features more prominently in the co-pricing BMA-SDF is largely unchanged,
albeit their individual posterior λs do vary in the expected directions. That is, market prices
of risk that are very small in absolute terms are not strongly affected by the factor tilt.

In Table IA.XXII we report in- and out-of-sample performance measures for the co-pricing
BMA-SDF without (Panel A) and with bond (Panel B) and stock (Panel C) factor tilts. As
in Tables 2 and 3 we first estimate the co-pricing BMA-SDF on the standard 123 test assets
and then use the resulting BMA-SDF to price the 154 OS test assets that are all described in
Section 1. The numbers do not change materially when comparing the two panels in the table.
Overall, the effect of the prior tilting is small and unambiguous in direction: as we tilt toward
either type of factor, the out-of-sample pricing ability deteriorates. This is very much in line
with the findings in Section 3.3: for the co-pricing of stock and bond excess returns, we need
information from both factor zoos. Consequently, over-reliance on either type of factor worsens
the BMA-SDF performance. This result is further reinforced in Table IA.XXIII where we
consider the separate pricing of bond and stock excess returns using the co-pricing BMA-SDF
estimated with and without factor tilts. The deterioration in out-of-sample pricing performance
is stronger for stocks when tilting the prior in favor of bond factors and vice versa, although
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it’s asymmetric, again suggesting a much more limited information content in the bond factor
zoo relative to the equity one.

Next, we apply the factor tilts to price duration-adjusted bond returns. As the results in
Section 3.3 suggest, once we account for the Treasury component of bond returns, the bond
factor zoo becomes largely redundant. This would imply that tilting the prior in favor of stock
(bond) factors should actually improve (worsen) the pricing ability of the BMA-SDF. Figure
IA.34 highlights this: as the prior is tilted away from bond factors (moving from κ = 0.5
towards κ = −0.5), the OS measures of cross-sectional fit improve for the models estimated
with duration-adjusted corporate bond returns.

Finally, an extreme tilt in favor of stock factors as implemented in Figure IA.35 maximizes
the pricing ability of the BMA-SDF for duration-adjusted returns but performs worse for the
standard corporate bond excess returns we use in our baseline analysis. Overall, this further
reinforces our previous findings: the bond factor zoo is largely redundant for co-pricing bond
and stock portfolios once the Treasury component of the latter is accounted for.
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Figure IA.32: Posterior factor probabilities across κ tilts.

The figure reports posterior probabilities, E[γj |data] with Sharpe ratio values set as 80% of the ex post maximum
including factor tilting induced by augmenting the κ parameter described in Section 2.3, of the 54 bond and
stock factors described in Appendix A. The labels are ordered by each factor’s average posterior probability
with κ set to 0 (no factor tilting). The bond (stock) factor tilt involves setting κ for the bond to values of
0.5(−0.5) respectively, which implies bond (stock) factors explain a 1+κ

1−κ = 3 times as large share of the squared
Sharpe ratio than stock (bond) factors. Factors with a posterior probability > 0.5, for any value of κ are in
bold face and include an asterisk. The prior distribution for the jth factor inclusion is a Beta(1,1), yielding a
50% prior expectation for γj . The sample period is 1986:01 to 2022:12 (T = 444).
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Figure IA.33: Posterior market prices of risk across κ tilts.

The figure reports posterior market prices of risk, E[λj |data] with Sharpe ratio values set as 80% of the ex-post
maximum including factor tilting induced by augmenting the κ parameter described in Section 2.3, of the 54
bond and stock factors described in Appendix A. The labels are ordered by each factor’s average posterior
probability, E[γj |data] with κ set to 0 (no factor tilting). The bond (stock) factor tilt involves setting κ to
values of 0.5(−0.5) respectively, which implies bond (stock) factors explain a 1+κ

1−κ = 3 times as large share of
the squared Sharpe ratio than equity (bond) factors. Factors with a posterior probability > 0.5, for any value
of κ are in bold face and include an asterisk. The prior distribution for the jth factor inclusion is a Beta(1,1),
yielding a 50% prior expectation for γj . The sample period is 1986:01 to 2022:12 (T = 444).
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Figure IA.34: OS cross-sectional asset pricing performance across κ tilts.

This figure plots out-of-sample R2
GLS (Panels A and B) and R2

OLS (Panels C and D) of the co-pricing BMA-SDF
pricing the joint cross-section of excess bond and stock returns (Panels A and C) as well as the joint cross-section
of duration-adjusted bond and stock excess returns (Panels B and D), respectively. The IS test assets are the
83 bond and stock portfolios and 40 tradable bond and stock factors. In Panels B and D all bond returns are
duration adjusted as per equation (10). The OS test assets are the combined 154 bond and stock portfolios and
40 tradable bond and stock factors (again calculated using duration-adjusted bond returns for Panels B and
D). All are described in Section 1. Each panel provides the measures of fit for the baseline estimation without
any factor tilt (κ = 0, grey bars), a bond-factor tilt (κ = 0.5, blue bars), and a stock-factor tilt (κ = −0.5, red
bars), as discussed in Section 2.3, respectively. The factor tilts imply bond and stock factors explain a 1+κ

1−κ =
3 times as large share of the squared Sharpe ratio than stock and bond factors, respectively.
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IA.9.2 Imposing sparsity

Our method not only allows tilting factors towards a certain group (bond vs. stock as discussed
in Section IA.9.1 or DR vs. CF news as discussed in Section IA.6.2) but also provides the
flexibility to encode beliefs about the density of the SDF through the Beta-distributed prior
probability of factor inclusion π(γj = 1|ωj) = ωj ∼ Beta(aω, bω). For our baseline estimations
we do not take an ex ante stance on whether the SDF should be sparse or dense. However,
since the extant literature overwhelmingly assumes a high degree of sparsity, typically favoring
factor models with approximately five factors, we now tweak the prior mean and variance to
mirror such a belief. In particular, by choosing the prior mean and variance of ωj, E[ωj] =

aω
aω+bω

and Var(ωj) = aωbω
(aω+bω)2(aω+bω+1)

we can form a prior on the model dimensions that is similar
to what is typically used in the literature. Setting aω ≈ 3.54 and bω ≈ 34.66 we get: (i) the
prior expectation of included factors, E[ωj]×K, yields the canonical five-factor model, and (ii)
the prior two standard deviation credible interval encompasses models with zero to ten factors
(since Var(ωj) = (2.5/K)2).

Table IA.XXIV shows that the factors with posterior probabilities exceeding the prior value
(that is, 9.26%) are essentially identical to those in our baseline estimates in Table A.2. The
only exception occurs under the lowest prior shrinkage, where PEAD’s posterior probability
drops below this threshold—an expected outcome given this prior’s reduced ability to control
confounding effects from weak factors. Moreover, as shown in Table IA.XXV, the pricing
performance of the co-pricing BMA-SDF a sparsity-favoring prior remains superior compared
to the list of models we consider in Appendix D, particularly out-of-sample. Finally, imposing
sparsity degrades the performance of the BMA-SDF compared to our baseline findings in Tables
2 and 3. This is not surprising as Figure 3 and Table 4 demonstrate that the data strongly
support a dense SDF.

IA.9.3 Estimation excluding the most likely factors

In this section we assess whether our BMA-SDF method provides a robust characterization of
the true latent SDF even when factors capturing fundamental risk sources are removed from
the candidate set. Thus, we remove the factors identified as most salient for characterizing the
true latent SDF and construct a BMA-SDF using the remaining factors. In Table IA.XXVI we
report the pricing ability of the resulting co-pricing BMA-SDF both in- and out-of-sample. In
Panel A we report the results from Tables 2 (IS) and 3 (OS). In Panel B we exclude PEADB,
PEAD, IVOL, CREDIT, and YSP, the top five factors in terms of probability from Table A.2.
In Panel C we exclude PEADB, PEAD, CRY, QMJ, and MOMBS, the top five factors in terms
of market price of risk from Table A.2. In Panel D we exclude the eight factors PEADB,
PEAD, IVOL, CREDIT, YSP, PEAD, CRY, QMJ, MOMBS, the union of the factors excluded
in Panels B and C.

The BMA-SDF constructed with the limited set of factors still strongly outperforms canon-
ical models from the literature both in- and out-of-sample.

Figures IA.36 to IA.38 present the posterior factor probabilities and market prices of risk
corresponding to Panels B through D in Table IA.XXVI. Removing the top factors from Table
A.2 results in increased posterior weights for E[λj|data] of several noisy proxies in the BMA-
SDF—precisely what our theoretical and simulation results in Section 2.4 predict.
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Figure IA.35: OS cross-sectional asset pricing performance: Favoring stock factors.

This figure plots out-of-sample R2
GLS (Panels A and B) and R2

OLS (Panels C and D) of the co-pricing BMA-SDF
pricing the joint cross-section of excess bond and stock returns (Panels A and C) as well as the joint cross-section
of duration-adjusted bond and stock excess returns (Panels B and D), respectively. The IS test assets are the
83 bond and stock portfolios and 40 tradable bond and stock factors. In Panels B and D all bond returns are
duration adjusted as per equation (10). The OS test assets are the combined 154 bond and stock portfolios
and 40 tradable bond and stock factors (again calculated using duration-adjusted bond returns for Panels B
and D). All are described in Section 1. Each panel provides the measures of fit for the baseline estimation
without any factor tilt (κ = 0, grey bars), as well as stock-factor tilts with increasing more negative κ-values
(κ = −0.5,−0.4,−2/3,−9/11, increasingly dark red bars). The κ-values imply stock factors explain

(
1+κ
1−κ

)−1
=

3, 4, 5 and 10 times (respectively) as large a share of the squared Sharpe ratio than bond factors.
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Table IA.XXIV: Posterior factor probabilities and risk prices imposing sparsity

Factor prob., E[γj|data] Price of risk, E[λj|data]

Total prior Sharpe ratio Total prior Sharpe ratio
Factors 20% 40% 60% 80% 20% 40% 60% 80%

IVOL 0.109 0.173 0.268 0.326 0.011 0.066 0.204 0.385
PEADB 0.157 0.212 0.191 0.152 0.060 0.164 0.186 0.176
YSP 0.094 0.106 0.110 0.127 0.003 0.014 0.034 0.075
CREDIT 0.099 0.121 0.123 0.104 0.008 0.034 0.063 0.076
LVL 0.091 0.088 0.088 0.079 0.001 0.002 0.005 0.010
INFLV 0.094 0.092 0.086 0.074 0.002 0.006 0.011 0.014
UNCr 0.089 0.086 0.077 0.067 0.001 0.003 0.006 0.011
INFLC 0.096 0.091 0.081 0.064 −0.001 −0.004 −0.008 −0.011
PEAD 0.103 0.114 0.095 0.064 0.027 0.064 0.070 0.064
EPUT 0.084 0.085 0.075 0.056 0.002 0.007 0.011 0.013
EPU 0.103 0.091 0.076 0.054 0.001 0.003 0.004 0.004
LIQNT 0.097 0.087 0.075 0.053 −0.003 −0.009 −0.015 −0.015
UNC 0.090 0.084 0.074 0.048 −0.001 −0.003 −0.004 −0.003
VIX 0.087 0.087 0.064 0.048 0.000 0.001 0.001 0.002
UNCf 0.093 0.079 0.062 0.041 −0.003 −0.007 −0.007 −0.005
CMAs 0.097 0.078 0.060 0.039 0.012 0.024 0.024 0.021
MKTSs 0.083 0.076 0.057 0.037 0.012 0.025 0.028 0.029
RMWs 0.089 0.077 0.054 0.034 0.018 0.032 0.030 0.029
MOMBS 0.089 0.067 0.046 0.030 0.032 0.042 0.039 0.048
SZE 0.080 0.064 0.050 0.030 0.005 0.010 0.010 0.009
BAB 0.090 0.073 0.048 0.030 0.017 0.027 0.025 0.024
LIQ 0.076 0.061 0.043 0.029 0.004 0.008 0.008 0.009
QMJ 0.093 0.066 0.042 0.027 0.037 0.042 0.039 0.058
MKTS 0.086 0.063 0.041 0.027 0.028 0.038 0.035 0.048
STREVB 0.084 0.062 0.044 0.025 0.003 0.005 0.004 0.003
LTREVB 0.078 0.058 0.039 0.025 0.009 0.014 0.012 0.012
MOMS 0.081 0.056 0.038 0.025 0.012 0.016 0.015 0.021
R_ROE 0.080 0.056 0.037 0.024 0.025 0.028 0.028 0.043
SMBs 0.083 0.058 0.041 0.024 0.002 0.003 0.003 0.002
CPTL 0.079 0.064 0.039 0.024 0.011 0.017 0.015 0.017
PERF 0.084 0.054 0.038 0.024 0.025 0.027 0.026 0.037
HMLs 0.082 0.055 0.040 0.023 0.003 0.005 0.004 0.004
STREV 0.075 0.058 0.038 0.023 0.006 0.010 0.009 0.009
MOMB 0.078 0.057 0.038 0.022 −0.001 −0.003 −0.002 −0.000
CPTLT 0.077 0.059 0.036 0.022 0.014 0.022 0.020 0.023
HMLB 0.075 0.058 0.037 0.021 0.020 0.027 0.025 0.028
CRY 0.076 0.052 0.035 0.021 0.023 0.029 0.030 0.039
LTREV 0.075 0.049 0.034 0.020 0.005 0.007 0.006 0.005
VAL 0.075 0.051 0.031 0.020 0.008 0.012 0.010 0.011
MGMT 0.080 0.050 0.032 0.020 0.027 0.026 0.027 0.041
DEF 0.070 0.047 0.032 0.020 0.000 0.001 0.001 −0.001
HML_DEV 0.073 0.047 0.030 0.019 0.002 0.005 0.003 0.001
CRF 0.069 0.045 0.031 0.019 0.006 0.009 0.009 0.014
TERM 0.074 0.048 0.030 0.019 0.014 0.015 0.014 0.022
MKTB 0.084 0.055 0.032 0.019 0.036 0.037 0.037 0.059
R_IA 0.069 0.049 0.027 0.018 0.015 0.018 0.016 0.025
CMA 0.072 0.048 0.031 0.018 0.014 0.015 0.014 0.019
SMB 0.060 0.041 0.028 0.018 0.002 0.004 0.004 0.005
RMW 0.071 0.045 0.027 0.016 0.016 0.015 0.014 0.021
FIN 0.064 0.040 0.024 0.015 0.015 0.014 0.015 0.025
HML 0.061 0.040 0.025 0.015 0.003 0.003 0.004 0.004
DRF 0.069 0.044 0.028 0.015 0.017 0.018 0.018 0.029
MKTBD 0.065 0.043 0.026 0.015 0.007 0.008 0.008 0.009
DUR 0.062 0.042 0.024 0.015 0.005 0.005 0.006 0.012

The table reports posterior probabilities, E[γj |data], and posterior means of annualized market prices of risk,
E[λj |data], of the 54 bond and stock factors described in Appendix A. We encode sparsity by choosing the prior
mean and variance of ωj , E[ωj ] =

aω

aω+bω
and Var(ωj) =

aωbω
(aω+bω)2(aω+bω+1) . We set aω ≈ 3.54 and bω ≈ 34.66

so that the prior expectation of how many of the K factors should be included in the SDF, E[ωj ] ×K, yields
the canonical five-factor model; and the prior two standard deviations credible interval includes models with
zero to ten factors (since Var(ωj) = (2.5/K)2). The prior for each factor inclusion is a Beta(3.54, 34.66),
yielding a prior expectation for γj of ∼9.25%. Results are tabulated for different values of the prior Sharpe
ratio,

√
Eπ[SR2

f | σ2], with values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the
test assets. The factors are ordered by the average posterior probability across the four levels of shrinkage. Test
assets are the 83 bond and stock portfolios and 40 tradable bond and stock factors described in Section 1. The
sample period is 1986:01 to 2022:12 (T = 444).
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Table IA.XXV: IS and OS cross-sectional asset pricing performance: Imposing sparsity

BMA-SDF prior Sharpe ratio CAPM CAPMB FF5 HKM TOP KNS RPPCA

20% 40% 60% 80%

Panel A: In-sample (co-pricing stocks and bonds)

RMSE 0.221 0.213 0.207 0.199 0.260 0.278 0.258 0.259 0.232 0.166 0.214
MAPE 0.175 0.171 0.167 0.159 0.194 0.221 0.198 0.192 0.180 0.126 0.144
R2

OLS 0.101 0.160 0.206 0.267 −0.244 −0.426 −0.233 −0.238 0.008 0.489 0.152
R2

GLS 0.093 0.116 0.131 0.153 0.078 0.083 0.087 0.078 0.249 0.176 0.220

Panel B: Out-of-sample (co-pricing stocks and bonds)

RMSE 0.125 0.120 0.117 0.111 0.224 0.154 0.139 0.223 0.172 0.160 0.109
MAPE 0.090 0.086 0.084 0.081 0.192 0.129 0.102 0.190 0.132 0.143 0.086
R2

OLS 0.229 0.286 0.323 0.390 −1.478 −0.161 0.053 −1.444 −0.461 −0.268 0.410
R2

GLS 0.029 0.042 0.057 0.078 0.028 0.034 0.036 0.028 0.099 0.065 0.030

The table presents the cross-sectional in- (Panel A) and out-of-sample (Panel B) asset pricing performance
of different models pricing bonds and stocks jointly whereby the BMA-SDF is estimated with a prior tilted
towards sparsity. We encode sparsity by choosing the prior mean and variance of ωj , E[ωj ] = aω

aω+bω
and

Var(ωj) =
aωbω

(aω+bω)2(aω+bω+1) . We set aω ≈ 3.54 and bω ≈ 34.66 so that the prior expectation of how many of
the K factors should be included in the SDF, E[ωj ] ×K, yields the canonical five-factor model; and the prior
two standard deviations credible interval includes models with zero to ten factors (since Var(ωj) = (2.5/K)2).
The prior for each factor inclusion is a Beta(3.54, 34.66), yielding a prior expectation for γj of ∼9.25%. For
the BMA-SDF, we provide results for prior Sharpe ratio values set to 20%, 40%, 60% and 80% of the ex post
maximum Sharpe ratio of the test assets. The models are first estimated using the baseline IS test assets. The
resulting SDF is then used to price (with no additional parameter estimation) each set of the OS assets. TOP
includes the top five factors based on the average posterior probability. CAPM is the standard single-factor
model using MKTS, and CAPMB is the bond version using MKTB. FF5 is the five-factor model of Fama and
French (1993), HKM is the two-factor model of He et al. (2017). KNS stands for the SDF estimation of Kozak
et al. (2020) and RPPCA is the risk premia PCA of Lettau and Pelger (2020). Estimation details for the
benchmark models are given in Appendix D. Bond returns are computed in excess of the one-month risk-free
rate of return. The IS test assets in Panel A are the 83 bond and stock portfolios and 40 tradable bond and
stock factors. The OS test assets in Panel B are the combined 154 bond and stock portfolios. Throughout, we
use the co-pricing factor zoo comprising the 40 tradable and 14 nontradable factors. All are described in Section
1. All data is standardized, that is, pricing errors are in Sharpe ratio units. The sample period is 1986:01 to
2022:12 (T = 444).
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Table IA.XXVI: IS and OS cross-sectional asset pricing performance: Exclusion of top factors

In-sample Out-of-sample

20% 40% 60% 80% 20% 40% 60% 80%

Panel A: Baseline

RMSE 0.214 0.203 0.185 0.167 0.114 0.102 0.095 0.090
MAPE 0.167 0.154 0.139 0.125 0.081 0.074 0.069 0.065
R2

OLS 0.155 0.240 0.367 0.487 0.357 0.489 0.557 0.603
R2

GLS 0.106 0.168 0.232 0.285 0.038 0.070 0.098 0.124

Panel B: Drop top 5 factors by their posterior probability

RMSE 0.200 0.196 0.192 0.186 0.115 0.105 0.100 0.098
MAPE 0.161 0.152 0.145 0.139 0.082 0.076 0.073 0.070
R2

OLS 0.177 0.210 0.242 0.288 0.344 0.458 0.504 0.525
R2

GLS 0.107 0.149 0.189 0.223 0.035 0.060 0.083 0.102

Panel C: Drop top 5 factors by their posterior market price of risk

RMSE 0.196 0.187 0.180 0.171 0.116 0.103 0.097 0.094
MAPE 0.157 0.144 0.134 0.125 0.082 0.074 0.070 0.068
R2

OLS 0.219 0.288 0.339 0.405 0.340 0.475 0.534 0.567
R2

GLS 0.098 0.140 0.174 0.205 0.033 0.056 0.077 0.101

Panel D: Drop union of excluded factors from Panels B and C

RMSE 0.197 0.190 0.186 0.181 0.116 0.104 0.099 0.099
MAPE 0.158 0.146 0.139 0.135 0.082 0.075 0.072 0.071
R2

OLS 0.210 0.265 0.300 0.337 0.336 0.467 0.513 0.520
R2

GLS 0.098 0.136 0.165 0.183 0.032 0.051 0.064 0.073

The table presents the cross-sectional in- and out-of-sample asset pricing performance of the co-pricing BMA-
SDF estimated using different sets of underlying factors, whereby we exclude the top five factors by their
posterior probability (Panel B), their absolute market price of risk (Panel C), and the union of the top five
factors by probability and market price of risk (dropping eight factors total, Panel D), respectively. We provide
results for prior Sharpe ratio values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of
the test assets. The models are first estimated using the baseline IS test assets. The resulting SDF is then
used to price (with no additional parameter estimation) each set of the OS assets. In Panel A we report the
baseline results from Tables 2 (IS) and 3 (OS). In Panel B we exclude PEADB, PEAD, IVOL, CREDIT, YSP; in
Panel C we exclude PEADB, PEAD, CRY, QMJ, MOMBS; and in Panel D we exclude PEADB, PEAD, IVOL,
CREDIT, YSP, CRY, QMJ, MOMBS. IS test assets are the 83 bond and stock portfolios and the respective
sets of tradable stock and bond factors accounting for the exclusions described above. OS test assets are the
combined 154 bond and stock portfolios. All are described in Section 1. All data is standardized, that is, pricing
errors are in Sharpe ratio units. The sample period is 1986:01 to 2022:12 (T = 444).
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(B)  Posterior market prices of risk

Figure IA.36: Posterior factor probabilities and risk prices excluding top factors based on
posterior probability.

The figure reports posterior probabilities, E[γj |data], and posterior means of annualized market prices of risk,
E[λj |data], of 49 bond and stock factors described in Appendix A. The following five factors are excluded based
on the posterior probability of inclusion in the BMA-SDF as per Table A.2: PEADB, PEAD, IVOL, CREDIT,
and YSP. The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation for γj of 50%. Results
are tabulated for different values of the prior Sharpe ratio,

√
Eπ[SR2

f | σ2], with values set to 20%, 40%, 60%
and 80% of the ex post maximum Sharpe ratio of the test assets. The factors are ordered by the average
posterior probability across the four levels of shrinkage. Test assets are the 83 bond and stock portfolios and
remaining 38 tradable bond and stock factors described in Section 1. The sample period is 1986:01 to 2022:12
(T = 444).
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Figure IA.37: Posterior factor probabilities and risk prices excluding top factors based on
market price of risk.

The figure reports posterior probabilities, E[γj |data], and posterior means of annualized market prices of risk,
E[λj |data], of 49 bond and stock factors described in Appendix A. The following five factors are excluded based
on the absolute value of the market price of risk as per Table A.2: PEADB, PEAD, CRY, QMJ, and MOMBS.
The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation for γj of 50%. Results are
tabulated for different values of the prior Sharpe ratio,

√
Eπ[SR2

f | σ2], with values set to 20%, 40%, 60% and
80% of the ex post maximum Sharpe ratio of the test assets. The factors are ordered by the average posterior
probability across the four levels of shrinkage. Test assets are the 83 bond and stock portfolios and remaining
38 tradable bond and stock factors described in Section 1. The sample period is 1986:01 to 2022:12 (T = 444).
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Figure IA.38: Posterior factor probabilities and risk prices excluding top factors.

The figure reports posterior probabilities, E[γj |data], and posterior means of annualized market prices of risk,
E[λj |data], of 46 bond and stock factors described in Appendix A. The following eight factors are excluded based
on the union of the top five factors ranked on the posterior probability of inclusion in the BMA-SDF and the
absolute value of the market price of risk as per Table A.2: PEADB, PEAD, IVOL, CREDIT, YSP, MOMBS,
QMJ, and CRY. The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation for γj of 50%.
Results are tabulated for different values of the prior Sharpe ratio,

√
Eπ[SR2

f | σ2], with values set to 20%, 40%,
60% and 80% of the ex post maximum Sharpe ratio of the test assets. The factors are ordered by the average
posterior probability across the four levels of shrinkage. Test assets are the 83 bond and stock portfolios and
remaining 35 tradable bond and stock factors described in Section 1. The sample period is 1986:01 to 2022:12
(T = 444).

82



IA.10 Estimation uncertainty

In this section we provide additional results to complement the robustness analysis in Section
4.4.

IA.10.1 Varying corporate bond data

We start by revisiting the different corporate bond datasets described in Internet Appendix
IA.1. In particular, we study the pricing performance of the co-pricing BMA-SDF estimated
using the baseline stock test assets, stock tradable factors, nontradable factors as well as bond
test assets and bond tradable factors constructed using five different sets of corporate bond
data: (i) our baseline LBFI/BAML ICE bond-level data, (ii) the LBFI/BAML ICE firm-level
data, (iii) the LBFI/BAML ICE bond-level data but using only quotes (i.e., removing matrix
prices), (iv) the transaction-based WRDS TRACE data, and (v) the transaction-based DFPS
TRACE data. That is, we re-estimate the co-pricing BMA-SDF using the 83 test assets and
54 tradable and nontradable factors. Across estimations, only the 50 IS bond test assets and
the tradable bond factors change.

Table IA.XXVII: Ex post Sharpe ratios by corporate bond data

Data type Sharpe ratio

20% 40% 60% 80% Max

LBFI/BAML ICE bond-level 1.05 2.10 3.14 4.19 5.24
LBFI/BAML ICE firm-level 0.98 1.96 2.94 3.92 4.90
LBFI/BAML ICE bond-level quotes 1.03 2.06 3.08 4.11 5.14
WRDS TRACE 1.02 2.05 3.07 4.10 5.12
DFPS TRACE 1.09 2.18 3.27 4.36 5.45

This table presents the prior Sharpe Ratios at different levels of shrinkage (20%, 40%, 60%, and 80%) and the ex
post maximum Sharpe ratio for the five corporate bond datasets: (i) our baseline LBFI/BAML ICE bond-level
data, (ii) the LBFI/BAML ICE firm-level data, (iii) the LBFI/BAML ICE bond-level data but using only quotes
(i.e., removing matrix prices), (iv) the transaction-based WRDS TRACE data, and (v) the transaction-based
DFPS TRACE data. The TRACE data before July 2002 is augmented using the baseline LBFI/BAML ICE
bond-level data. The 50 bond portfolios and 16 tradable bond factors are constructed using the respective bond
datasets. All joint datasets include the 33 stock portfolios and 24 tradable stock factors described in Section 1.
All values are annualized. The sample period is 1986:01 to 2022:12 (T = 444) except for DFPS TRACE where
the data ends in December 2021 (T = 432).
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A: Posterior factor probabilities (80% shrinkage) over corporate bond datasets
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B: Posterior risk prices (80% shrinkage) over corporate bond datasets

Figure IA.39: Varying corporate bond data.

This figure plots average, minimum and maximum posterior factor probabilities, E[γj | data] (Panel
A) and market prices of risk, E[λj | data] (Panel) for the 40 tradable and 14 nontradable factors
described in Appendix A. We use five corporate bond datasets as described in Table IA.XXVII.
Bond test assets are the 50 bond portfolios and 16 tradable bond factors constructed using the
respective bond datasets. Stock test assets are the 33 stock portfolios and 24 tradable stock factors.
All are described in Section 1. All results are for a level of shrinkage equal to 80% of the maximum
ex post Sharpe ratio. The sample period is 1986:01 to 2022:12 (T = 444) except for DFPS TRACE
where the data ends in December 2021 (T = 432).
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Figure IA.40: IS asset pricing performance with varying corporate bond data.

This figure plots average, minimum and maximum in-sample asset pricing performance metrics,
R2

GLS (Panel A) and R2
OLS (Panel B), of different models pricing bonds and stocks jointly, respec-

tively. For the BMA-SDF, we provide results for prior Sharpe ratio values set to 20%, 40%, 60%
and 80% of the ex post maximum Sharpe ratio of the test assets. TOP includes the top five factors
based on the average posterior probability. CAPM is the standard single-factor model using MKTS,
and CAPMB is the bond version using MKTB. FF5 is the five-factor model of Fama and French
(1993), HKM is the two-factor model of He et al. (2017). KNS stands for the SDF estimation of
Kozak et al. (2020) and RPPCA is the risk premia PCA of Lettau and Pelger (2020). Estimation
details for the benchmark models are given in Appendix D. Bond returns are computed in excess
of the one-month risk-free rate of return. For all estimations, we use five corporate bond datasets
as described in Table IA.XXVII. Bond test assets are the 50 bond portfolios and 16 tradable bond
factors constructed using the respective bond datasets. Stock test assets are the 33 stock portfolios
and 24 tradable stock factors. All are described in Section 1. The sample period is 1986:01 to
2022:12 (T = 444) except for DFPS TRACE where the data ends in December 2021 (T = 432).
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We replicate the results in Section 3.1.1 across the five data samples. For consistency, we fix

the sample period from January 1986 to December 2022, except for the DFPS TRACE data that

ends in December 2021. That means for the two TRACE data sets we augment the data with

our baseline LBFI/BAML ICE bond-level data January 1997 to July 2002 because TRACE is

only available thereafter. Before January 1997, we always use LBFI (with and without matrix

prices). For each dataset, the estimation yields posterior probabilities (given the data) of each

factor, (i.e., E[γj|data], ∀j) for different values of the prior Sharpe ratio achievable with the

BMA-SDF (expressed as a percentage of the ex post maximum Sharpe ratio). We set the

prior as a fraction (20%, 40%, 60% and 80%) of the ex post maximum Sharpe ratio given each

dataset, as reported in Table IA.XXVII.

Across all five datasets, the maximum achievable Sharpe ratio is similar, ranging from

4.90 (LBFI/BAML ICE firm-level) to 5.45 (DFPS TRACE augmented with LBFI/BAML ICE

bond-level). To concisely report which factors are the most likely components of the co-pricing

BMA-SDF in the economy across datasets, we focus on the posterior probabilities estimated

with 80% shrinkage, resulting in five 54×1 vectors of averaged posterior probabilities (given each

respective dataset). In Figure IA.39 we report the means along with minimum and maximum

values of posterior probabilities (Panel A) and market prices of risk (Panel B), ordered by

probabilities.

The average of the posterior probabilities across the five datasets yields a set of factors that

are most likely to be included in the SDF that are very similar to the baseline results reported

in Table C of the Appendix: eight out of ten and all top five most likely factors to be included

in the SDF remain the same.

Examining the tradable factors first, both PEADB and PEAD remain the most likely to be

included, with very tight min and max values. In fact, the minimum posterior probability for

PEADB across the five datasets is still above the next highest value (the maximum of PEAD).

Additionally, the ordering of the three most likely factors is identical to our baseline results

(i.e., PEADB, PEAD and then IVOL). Turning to the nontradable factors, CREDIT, YSP and

LVL are all in the top ten, again closely aligned with the results reported in the paper. Thus,

overall, even though some of the tradable bond factors marginally differ across the respective

datasets, this does not, on average, affect the results when considering factors individually.
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Figure IA.41: OS asset pricing performance with varying corporate bond data.

This figure plots average, minimum and maximum out-of-sample asset pricing performance metrics,
R2

GLS (Panel A) and R2
OLS (Panel B), of different models pricing bonds and stocks jointly, respec-

tively. For the BMA-SDF, we provide results for prior Sharpe ratio values set to 20%, 40%, 60%
and 80% of the ex post maximum Sharpe ratio of the test assets. TOP includes the top five factors
based on the average posterior probability. CAPM is the standard single-factor model using MKTS,
and CAPMB is the bond version using MKTB. FF5 is the five-factor model of Fama and French
(1993), HKM is the two-factor model of He et al. (2017). KNS stands for the SDF estimation of
Kozak et al. (2020) and RPPCA is the risk premia PCA of Lettau and Pelger (2020). Estimation
details for the benchmark models are given in Appendix D. Bond returns are computed in excess
of the one-month risk-free rate of return. For all estimations, we use five corporate bond datasets
as described in Table IA.XXVII. The IS test assets are the same as in Figure IA.40. OS bond test
assets are the 77 OS bond portfolios constructed using the respective bond datasets. Stock test
assets are the 77 OS stock portfolios. All are described in Section 1. The sample period is 1986:01
to 2022:12 (T = 444) except for DFPS TRACE where the data ends in December 2021 (T = 432).
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A: Posterior factor probabilities (80% shrinkage) over DFPS and JKP IS test assets
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B: Posterior risk prices (80% shrinkage) over DFPS and JKP IS test assets

Figure IA.42: Varying in-sample test assets using DFPS and JKP data.

This figure plots average, minimum and maximum posterior factor probabilities, E[γj | data] (Panel
A) and market prices of risk, E[λj | data] (Panel) for the 40 tradable and 14 nontradable factors
described in Appendix A. We use 100 different sets of 50 IS test asset portfolios, randomly sampling
25 equity anomalies from Jensen et al. (2023) and 25 bond anomalies from Dick-Nielsen et al. (2025).
Test assets per estimation then are the resulting 50 bond and stock portfolios plus the 40 tradable
bond and stock factors. All results are for a level of shrinkage equal to 80% of the maximum ex
post Sharpe ratio. Asterisks indicate factors also in the top-five using the baseline data as reported
in Table A.2 of Appendix C. The sample period is 1986:01 to 2021:12 (T = 431, with one missing
observation in August 2002).
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Furthermore, the in- and out-of-sample asset pricing results remain very similar to what

we report in Tables 2 and 3. The aggregated results across the five datasets are presented in

Figures IA.40 (IS) and IA.41 (OS). For each model we consider in Tables 2 and 3, we report

the average, minimum and maximum values for the R2
OLS (Panel A) and R2

GLS (Panel B)

asset pricing metrics. For the BMA-SDF, the spread in the metrics between minimum and

maximum values is very tight and the average BMA-SDF across all five datasets outperforms

the frequentist and latent (KNS and RPPCA) factor models both in- and out-of-sample for

higher percentages of shrinkage of the prior Sharpe ratio.

This result, given our estimation methodology, is expected. The BMA-SDF aggregates

factors to optimize the signal-to-noise ratio of the SDF. Although different datasets may alter

individual factors’ signal-to-noise ratios, the BMA-SDF recombines these factors to extract

common pricing information while minimizing noise effects, thereby mitigating concerns about

data uncertainty in our analysis.

IA.10.2 Varying in-sample cross-sections

In this section we fix the corporate bond data to construct the tradable bond factors to our

baseline LBFI/BAML ICE bond-level data. However, we vary the cross-sections of IS test

assets using publicly available corporate bond and stock anomaly portfolio data from Christian

Stolborg’s webpage (corporate bond data associated with Dick-Nielsen et al. (2025)) and the

Jensen et al. (2023) equity data repository from jkpfactors.com.

The DFPS bond data repository contains 153 corporate bond anomaly portfolios formed

with the underlying equity characteristics from JKP. The portfolios are long-short formed using

(3 × 3), rating × characteristic tercile sorts and span the sample period January 1984 to

December 2021, with a missing row of data in August 2002. We start the sample in January

1986 to align the start date of our baseline data, resulting in T = 431 observations in the

time series. We then extract the same 153 anomaly portfolios from the JKP data repository,

resulting in a total cross-section of 306 stock and bond anomaly portfolios.
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Figure IA.43: IS asset pricing performance with varying IS test assets.

This figure plots average, minimum and maximum in-sample asset pricing performance metrics,
R2

GLS (Panel A) and R2
OLS (Panel B), of different models pricing bonds and stocks jointly, respec-

tively. For the BMA-SDF, we provide results for prior Sharpe ratio values set to 20%, 40%, 60%
and 80% of the ex post maximum Sharpe ratio of the test assets. TOP includes the top five factors
based on the average posterior probability. CAPM is the standard single-factor model using MKTS,
and CAPMB is the bond version using MKTB. FF5 is the five-factor model of Fama and French
(1993), HKM is the two-factor model of He et al. (2017). KNS stands for the SDF estimation of
Kozak et al. (2020) and RPPCA is the risk premia PCA of Lettau and Pelger (2020). Estimation
details for the benchmark models are given in Appendix D. Bond returns are computed in excess of
the one-month risk-free rate of return. We perform 100 estimations for different sets of 50 IS test
asset portfolios, each time randomly sampling 25 equity anomalies from Jensen et al. (2023) and 25
bond anomalies from Dick-Nielsen et al. (2025). Test assets per estimation then are the resulting
50 bond and stock portfolios plus the 40 tradable bond and stock factors. All results are for a level
of shrinkage equal to 80% of the maximum ex post Sharpe ratio. C. The sample period is 1986:01
to 2021:12 (T = 431, with one missing observation in August 2002).
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To account for estimation uncertainty, we fix the size of our total co-pricing cross-section

to 50. That is, we randomly sample 25 anomalies (one bond and one stock) resulting in a

co-pricing cross-section of 50 test assets. We then repeat this process 100 times and apply our

hierarchical Bayesian method including the constant with Beta(1,1) priors as in Section 3. For

each estimation, we store the posterior factor probabilities, market prices of risk, and in-sample

asset pricing performance metrics. We also price the baseline 154 OS test assets described in

Section 1 using the estimated co-pricing BMA-SDF. For ease of exposition, we again focus on

an ex post Sharpe ratio shrinkage set to 80%.

Posterior probabilities and market prices of risk for hundreds of estimations. We

present the average posterior probabilities and market prices of risk with associated minimum

and maximum values across the 100 estimations in Panels A and B of Figure IA.42 with the

Sharpe ratio shrinkage set of 80% of the ex post maximum. On the x-axis, we denote factors

which are in the top five based on posterior probabilities in Table A.2 of Appendix C with a

leading asterisk. Affirming the results from Section 3, the factors which are most likely to be

included are very closely aligned with IVOL, PEADB and PEAD coming out on top. Other

factors which are in the top 10 most likely across both sets of estimations are MOMBS, YSP,

CREDIT, LVL and MKTS (i.e., 8 out of 10 are the same). These results strengthen the case of

these factors being likely candidates for inclusion in the SDF from estimations that use a very

different set of cross-sectional assets, with data prepared by external sources, different bond

data for the test assets (DFPS TRACE), and over a slightly shorter sample period.

Asset pricing results for hundreds of estimations. In Figure IA.43 we present the IS

mean, minimum and maximum R2
GLS (Panel A) and R2

OLS (Panel B) values across 100 esti-

mations for the BMA-SDF across our four Sharpe ratio shrinkage levels and other benchmark

models discussed in Appendix D. Based on the R2
GLS, the BMA-SDF with 60% and 80% shrink-

age as well as the TOP model including the top 5 most likely factors outperform KNS, RPPCA

and the frequentist asset pricing models by a wide margin. Using the R2
OLS as the performance

metric we observe similar results with the BMA-SDF using a shrinkage level of 80% and KNS

performing about the same while frequentist asset pricing models deliver negative R2
OLS values.
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Figure IA.44: OS asset pricing performance with varying IS test assets.

This figure plots average, minimum and maximum out-of-sample asset pricing performance metrics,
R2

GLS (Panel A) and R2
OLS (Panel B), of different models pricing bonds and stocks jointly, respec-

tively. For the BMA-SDF, we provide results for prior Sharpe ratio values set to 20%, 40%, 60%
and 80% of the ex post maximum Sharpe ratio of the test assets. TOP includes the top five factors
based on the average posterior probability. CAPM is the standard single-factor model using MKTS,
and CAPMB is the bond version using MKTB. FF5 is the five-factor model of Fama and French
(1993), HKM is the two-factor model of He et al. (2017). KNS stands for the SDF estimation of
Kozak et al. (2020) and RPPCA is the risk premia PCA of Lettau and Pelger (2020). Estimation
details for the benchmark models are given in Appendix D. Bond returns are computed in excess of
the one-month risk-free rate of return. The IS test assets and estimated BMA-SDFs are the same
as in Figure IA.43. OS test assets are the 154 bond and stock portfolios described in Section 1.
The sample period is 1986:01 to 2021:12 (T = 431, with one missing observation in August 2002).
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Table IA.XXVIII: IS and OS cross-sectional asset pricing performance: Switching IS and OS
test assets

BMA-SDF prior Sharpe ratio CAPM CAPMB FF5 HKM TOP KNS RPPCA

20% 40% 60% 80%

Panel A: Switch IS to OS test assets, in-sample pricing

RMSE 0.152 0.130 0.116 0.110 0.247 0.206 0.203 0.245 0.232 0.182 0.157
MAPE 0.106 0.090 0.083 0.081 0.203 0.152 0.144 0.199 0.172 0.116 0.099
R2

OLS 0.304 0.491 0.594 0.636 −0.843 −0.281 −0.240 −0.807 −0.628 −0.004 0.258
R2

GLS 0.191 0.227 0.257 0.278 0.183 0.186 0.187 0.183 0.302 0.048 0.240

Panel B: Switch IS to OS test assets, out-of-sample pricing

RMSE 0.195 0.190 0.184 0.175 0.199 0.220 0.189 0.202 0.207 0.199 0.194
MAPE 0.149 0.146 0.141 0.132 0.136 0.170 0.140 0.136 0.161 0.148 0.123
R2

OLS 0.173 0.211 0.262 0.337 0.137 −0.055 0.222 0.110 0.063 0.141 0.183
R2

GLS 0.057 0.104 0.138 0.159 −0.064 −0.033 −0.071 −0.062 −0.019 0.083 0.027

The table presents the cross-sectional in- (Panel A) and out-of-sample (Panel B) asset pricing performance of
different models pricing bonds and stocks jointly. For the BMA-SDF, we provide results for prior Sharpe ratio
values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the test assets. TOP includes
the top five factors with an average posterior probability greater than 50%. CAPM is the standard single-factor
model using MKTS, and CAPMB is the bond version using MKTB. FF5 is the five-factor model of Fama and
French (1993), HKM is the two-factor model of He et al. (2017). KNS stands for the SDF estimation of Kozak
et al. (2020) and RPPCA is the risk premia PCA of Lettau and Pelger (2020). Estimation details for the
benchmark models are given in Appendix D. Bond returns are computed in excess of the one-month risk-free
rate of return. The SDFs are estimated using the 154 OS bond and stock test assets described in Section 1 IS
test assets along with the 40 tradable bond and stock factors. The OS test assets in Panel B are the 83 bond
and stock portfolios used as IS test assets in Table 2. All data is standardized, that is, pricing errors are in
Sharpe ratio units. The sample period is 1986:01 to 2022:12 (T = 444).

The results carry over to the OS analysis presented in Figure IA.44 we use the SDFs esti-

mated on the 100 different cross-sections to price the baseline 154 OS test assets discussed in

Section 1. Based on R2
GLS (Panel A), the BMA-SDF with 60% and 80% shrinkage as well as

the TOP model outperform all other models, again confirming the results presented in Section

3 for a very different sets of IS test assets used to estimate the co-pricing BMA-SDF.

Switch in- to out-of-sample test assets. We further vary the IS test assets by swapping

IS and OS test assets from our baseline analysis in Section 3. Thus, the IS test assets now

comprise the combined 154 OS bond and stock portfolios discussed in Section 1 plus the 40

tradable bond and stock factors. The OS test assets are then the original 83 bond and stock

portfolios. The posterior factor probabilities and market prices of risk with 80% Sharpe ratio

shrinkage are reported in Figure IA.45. The most likely factors still remain very consistent

with IVOL, PEADB, YSP, and CREDIT and LVL, followed by PEAD. The corresponding IS
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Figure IA.45: Posterior factor probabilities and risk prices when switching OS to IS test
assets.

The figure reports posterior probabilities, E[γj |data], and posterior means of annualized market prices of risk,
E[λj |data], of the 54 bond and stock factors described in Appendix A. The prior for each factor inclusion is
a Beta(1, 1), yielding a prior expectation for γj of 50%. The 154 OS bond and stock test assets described in
Section 1 are used as IS test assets along with the 40 tradable bond and stock factors for the estimation of the
BMA-SDF. The prior Sharpe ratio is set to 80% of the ex post maximum Sharpe ratio of the test assets. The
sample period is 1986:01 to 2022:12 (T = 444).

and OS asset pricing results are reported in Table IA.XXVIII, the BMA-SDF outperforms the

competition both in- and out-of-sample.

IA.10.3 Varying out-of-sample cross-sections

Next we go back to the IS co-pricing BMA-SDFs from Section 3 that are estimated using our

baseline set of test assets. In addition, we again consider the additional benchmark models de-

scribed in Appendix D. Equipped with the IS SDFs, we price millions of possible combinations

of the Dick-Nielsen et al. (2025) and Jensen et al. (2023) bond and stock anomalies without

re-estimating the respective SDFs. We conduct the asset pricing tests using a bootstrap ap-

proach and summarize the results in Table IA.XXIX. As discussed earlier, the DFPS and JKP

dataset comprises 153 anomalies for bonds and stocks, resulting in 306 combined bond and

stock anomaly portfolios. We set the size of the OS cross-section to 50 portfolios in Panel A
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Table IA.XXIX: Millions of out-of-sample cross-sectional asset pricing tests

BMA Prior Sharpe Ratio CAPM CAPMB FF5 HKM TOP KNS RPPCA

20% 40% 60% 80%

Panel A: 50 OS portfolios using DFPS and JKP data

RMSE 0.309 0.303 0.290 0.272 0.359 0.362 0.344 0.368 0.230 0.278 0.317
[0.038] [0.035] [0.032] [0.029] [0.043] [0.046] [0.044] [0.046] [0.018] [0.035] [0.040]

MAPE 0.238 0.235 0.227 0.213 0.273 0.279 0.262 0.285 0.188 0.209 0.238
[0.025] [0.024] [0.023] [0.022] [0.032] [0.033] [0.030] [0.033] [0.017] [0.023] [0.029]

R2
OLS 0.047 0.080 0.155 0.255 −0.287 −0.310 −0.175 −0.351 0.453 0.228 −0.017

[0.049] [0.090] [0.111] [0.120] [0.119] [0.139] [0.093] [0.143] [0.144] [0.090] [0.190]
R2

GLS 0.086 0.149 0.215 0.281 −0.001 0.022 0.006 0.019 0.385 0.214 0.139
[0.047] [0.047] [0.050] [0.056] [0.062] [0.059] [0.061] [0.059] [0.099] [0.040] [0.072]

Panel B: 100 OS portfolios using DFPS and JKP data

RMSE 0.313 0.307 0.293 0.274 0.363 0.367 0.348 0.372 0.231 0.281 0.320
[0.025] [0.023] [0.020] [0.019] [0.028] [0.030] [0.029] [0.030] [0.012] [0.022] [0.026]

MAPE 0.240 0.237 0.228 0.215 0.274 0.281 0.264 0.287 0.189 0.210 0.239
[0.016] [0.015] [0.015] [0.014] [0.020] [0.021] [0.019] [0.021] [0.011] [0.014] [0.018]

R2
OLS 0.048 0.084 0.162 0.264 −0.285 −0.309 −0.176 −0.348 0.472 0.231 −0.004

[0.030] [0.055] [0.069] [0.075] [0.073] [0.083] [0.056] [0.086] [0.091] [0.055] [0.117]
R2

GLS 0.043 0.093 0.143 0.192 −0.019 −0.011 −0.019 −0.015 0.250 0.152 0.098
[0.050] [0.047] [0.046] [0.047] [0.062] [0.062] [0.061] [0.062] [0.068] [0.022] [0.052]

Using the in-sample SDFs estimated for different models pricing bonds and stocks jointly in Panel A of Table
2, we price one million of possible combinations of the Dick-Nielsen et al. (2025) and Jensen et al. (2023) bond
and stock anomalies without re-estimating the respective SDFs. For the BMA-SDF, we provide results for
prior Sharpe ratio values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the test
assets. TOP includes the top five factors based on the average posterior probability. CAPM is the standard
single-factor model using MKTS, and CAPMB is the bond version using MKTB. FF5 is the five-factor model of
Fama and French (1993), HKM is the two-factor model of He et al. (2017). KNS stands for the SDF estimation
of Kozak et al. (2020) and RPPCA is the risk premia PCA of Lettau and Pelger (2020). Estimation details
for the benchmark models are given in Appendix D. Bond returns are computed in excess of the one-month
risk-free rate of return. We conduct the pricing tests with a bootstrap approach. We set the total number of
OS test assets to 50 in Panel A and to 100 in Panel B. That is, for each bootstrap iteration we draw 25 or 50
unique anomalies from Jensen et al. (2023) (stock portfolios) and Dick-Nielsen et al. (2025) (bond portfolios),
respectively. We report the average asset pricing metrics (and their standard deviation in square brackets) for
the one million draws in Panels A and B. All data is standardized, that is, pricing errors are in Sharpe ratio
units. The sample period is 1986:01 to 2021:12 (T = 431, with one missing observation in August 2002).
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and to 100 portfolios in Panel B, implying that for each bootstrap iteration, we draw 25 and

50 unique anomalies, respectively. We then generate one million combinations for each cross-

section size and report the average asset pricing metrics along with their standard deviations

in square brackets. As in Panel A of Table 3, the BMA-SDF outperforms all other frequentist

models and the latent factor models RPPCA and KNS.

IA.10.4 Varying factor zoos and sample periods

Finally, we provide results to accompany the discussion in Section 4.4.3 where we vary the

factor zoos as well as the sample periods. First, we expand the set of stock and nontradable

factors by including all 51 stock factors considered in Bryzgalova et al. (2023) as well as their

IS test assets. To do so we have to consider a shorter sample period ending in December 2016.

Second, we extend the corporate bond factor zoo by adding the 13 Dick-Nielsen et al. (2025)

composite bond return factors formed with equity characteristics. Third, extend the corporate

bond factor zoo again, this time by including the tradable liquidity factor LRF from Bai et al.

(2019) as well as the two nontradable illiquidity factors from Lin et al. (2011). Here, we restrict

the sample period to the Trace era from 2002 onwards. Fourth, we estimate the models on the

maximally possible sample period starting in 1977 and resulting in a total of 549 observations

in the time series. Finally, we consider two sample splits and estimate the models (i) for the

pre- and post-Trace period (i.e., pre-/post-2002) and (ii) for the pre- and post-2000 period as

in van Binsbergen et al. (2025).

Extended stock and nontradable factor zoo following Bryzgalova et al. (2023). We

extend the cross-sectional dimension of our stock and nontradable factor zoo to match BHJ,

resulting in a time series spanning January 1986 to December 2016 for a total of 372 monthly

observations. The number of stock factors increases from 24 to 35, and the number of non-

tradable factors from 14 to 24. We also use the 51 equity test asset portfolios from Bryzgalova

et al. (2023). After combining their stock and nontradable factors with our co-pricing factor

zoo, the number of factors totals 75, resulting in 37.8 sextillion possible models. We apply

our hierarchical Bayesian method including the constant with Beta(1,1) priors as in Section 3

to the joint cross-section of stock and corporate bond excess returns. For brevity, we report
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Table IA.XXX: In-sample cross-sectional asset pricing performance: Robustness

BMA-SDF prior Sharpe ratio CAPM CAPMB FF5 HKM TOP KNS RPPCA

20% 40% 60% 80%

Panel A: Extended stock and nontradable factor zoo following Bryzgalova et al. (2023), 1986–2016

RMSE 0.281 0.237 0.198 0.165 0.330 0.292 0.277 0.331 0.295 0.168 0.203
MAPE 0.232 0.187 0.154 0.130 0.279 0.221 0.212 0.280 0.244 0.121 0.128
R2

OLS 0.229 0.451 0.619 0.735 −0.064 0.168 0.253 −0.071 0.149 0.724 0.597
R2

GLS 0.141 0.200 0.271 0.348 0.120 0.131 0.131 0.120 0.336 0.184 0.226

Panel B: Extended bond factor zoo following Dick-Nielsen et al. (2025), 1986–2021

RMSE 0.259 0.235 0.212 0.189 0.292 0.299 0.269 0.289 0.203 0.191 0.251
MAPE 0.212 0.185 0.165 0.145 0.221 0.233 0.202 0.218 0.161 0.142 0.167
R2

OLS 0.177 0.325 0.448 0.565 −0.041 −0.094 0.112 −0.025 0.496 0.553 0.230
R2

GLS 0.120 0.181 0.242 0.299 0.097 0.104 0.105 0.098 0.284 0.171 0.222

Panel C: Extended bond factor zoo using TRACE bond illiquidity factors, 2002–2022

RMSE 0.206 0.178 0.155 0.135 0.240 0.233 0.235 0.219 0.247 0.182 0.175
MAPE 0.158 0.132 0.113 0.097 0.173 0.180 0.181 0.159 0.194 0.132 0.118
R2

OLS 0.279 0.460 0.589 0.688 0.021 0.080 0.057 0.181 −0.035 0.438 0.479
R2

GLS 0.056 0.085 0.120 0.158 0.054 0.053 0.057 0.056 0.242 0.022 0.110

Panel D: Extended time-series back to 1977, 1977-2022

RMSE 0.206 0.209 0.197 0.179 0.264 0.304 0.325 0.265 0.332 0.145 0.227
MAPE 0.151 0.148 0.137 0.124 0.203 0.259 0.271 0.205 0.300 0.115 0.140
R2

OLS −0.015 −0.047 0.069 0.233 −0.675 −1.213 −1.525 −0.678 −1.642 0.495 −0.230
R2

GLS 0.062 0.147 0.237 0.322 0.018 0.016 0.031 0.019 0.239 0.338 0.237

The table presents the cross-sectional in-sample asset pricing performance of different models pricing bonds
and stocks jointly. For the BMA-SDF, we provide results for prior Sharpe ratio values set to 20%, 40%, 60%
and 80% of the ex post maximum Sharpe ratio of the test assets. TOP includes the top five factors with an
average posterior probability greater than 50%. CAPM is the standard single-factor model using MKTS, and
CAPMB is the bond version using MKTB. FF5 is the five-factor model of Fama and French (1993), HKM is
the two-factor model of He et al. (2017). KNS stands for the SDF estimation of Kozak et al. (2020). If the
time series dimension is smaller than the number of assets, T < N , we allow a small degree of overlap in the
two cross-validation samples. RPPCA is the risk premia PCA of Lettau and Pelger (2020). Estimation details
for the benchmark models are given in Appendix D. Bond returns are computed in excess of the one-month
risk-free rate of return. By panel the models are estimated with the respective factor zoos and test assets. In
Panel A we use the 75 bond and stock factors described in Appendix A and the Appendix of Bryzgalova et al.
(2023). Test assets are the 50 bond portfolios and 16 tradable bond factors described in Section 1 as well as the
26 stock anomalies and 35 tradable stock factors from Bryzgalova et al. (2023). The sample period is 1986:01
to 2016:12 (T = 372). In Panel B we use the 54 bond and stock factors described in Appendix A as well as
the 13 composite bond factors of Dick-Nielsen et al. (2025). The 13 composite bond excess return factors are
formed with the underlying equity characteristic data. Test assets are the 83 stock and bond portfolios and
the 40 tradable factors described in Section 1 as well as the 13 composite DFPS factors. The sample period is
1986:01 to 2021:12 (T = 432). In Panel C we use the 54 bond and stock factors described in Appendix A plus
the tradable liquidity factor LRF of Bai et al. (2019) and the two nontradable illiquidity factors AMD and PSB
of Lin et al. (2011). Test assets are the 83 stock and bond portfolios and the 40 tradable factors described in
Section 1 plus the tradable LRF bond factor. The sample period is 2002:10 to 2022:12 (T = 243). In Panel D
we use the 54 bond and stock factors described in Appendix A. Test assets are the 83 stock and bond portfolios
and the 40 tradable factors described in Section 1. The sample period is 1977:01 to 2022:12 (T = 549). All data
is standardized, that is, pricing errors are in Sharpe ratio units.
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Table IA.XXXI: Out-of-sample cross-sectional asset pricing performance: Robustness

BMA-SDF prior Sharpe ratio CAPM CAPMB FF5 HKM TOP KNS RPPCA

20% 40% 60% 80%

Panel A: Extended stock and nontradable factor zoo following Bryzgalova et al. (2023), 1986–2016

RMSE 0.147 0.116 0.103 0.097 0.293 0.141 0.183 0.293 0.180 0.144 0.113
MAPE 0.111 0.083 0.073 0.069 0.262 0.113 0.148 0.263 0.148 0.124 0.086
R2

OLS 0.422 0.642 0.717 0.751 −1.296 0.468 0.104 −1.301 0.129 0.447 0.656
R2

GLS 0.048 0.083 0.121 0.157 0.037 0.052 0.041 0.038 0.117 0.090 0.069

Panel B: Extended bond factor zoo following Dick-Nielsen et al. (2025), 1986–2021

RMSE 0.125 0.105 0.099 0.095 0.277 0.152 0.158 0.275 0.186 0.146 0.115
MAPE 0.091 0.075 0.072 0.069 0.249 0.128 0.123 0.246 0.157 0.128 0.090
R2

OLS 0.428 0.596 0.643 0.665 −1.833 0.153 0.081 −1.785 −0.271 0.221 0.514
R2

GLS 0.044 0.079 0.107 0.131 0.036 0.047 0.046 0.037 0.099 0.085 0.033

Panel C: Extended bond factor zoo using TRACE bond illiquidity factors, 2002–2022

RMSE 0.121 0.120 0.117 0.114 0.175 0.187 0.130 0.159 0.290 0.149 0.102
MAPE 0.096 0.097 0.095 0.093 0.149 0.161 0.098 0.134 0.259 0.126 0.075
R2

OLS 0.030 0.048 0.100 0.143 −1.030 −1.308 −0.112 −0.671 −4.553 −0.475 0.312
R2

GLS 0.008 0.022 0.036 0.048 0.005 0.004 0.012 0.010 −0.041 0.016 0.015

Panel D: Extended time-series back to 1977, 1977–2022

RMSE 0.114 0.115 0.106 0.102 0.132 0.178 0.094 0.134 0.293 0.122 0.100
MAPE 0.097 0.101 0.091 0.088 0.106 0.161 0.064 0.108 0.268 0.111 0.076
R2

OLS −0.191 −0.210 −0.016 0.047 −0.587 −1.876 0.192 −0.639 −6.775 −0.359 0.089
R2

GLS 0.040 0.086 0.118 0.138 0.021 0.015 0.030 0.019 −0.007 0.113 0.012

The table presents the cross-sectional out-of-sample asset pricing performance of different models pricing bonds
and stocks jointly. For the BMA-SDF, we provide results for prior Sharpe ratio values set to 20%, 40%, 60%
and 80% of the ex post maximum Sharpe ratio of the test assets. TOP includes the top five factors with an
average posterior probability greater than 50%. CAPM is the standard single-factor model using MKTS, and
CAPMB is the bond version using MKTB. FF5 is the five-factor model of Fama and French (1993), HKM is
the two-factor model of He et al. (2017). KNS stands for the SDF estimation of Kozak et al. (2020). If the time
series dimension is smaller than the number of assets, T < N , we allow a small degree of overlap in the two
cross-validation samples. RPPCA is the risk premia PCA of Lettau and Pelger (2020). Estimation details for
the benchmark models are given in Appendix D. Bond returns are computed in excess of the one-month risk-free
rate of return. By panel, the models are first estimated using the respective IS test assets and sample periods
as per Table IA.XXX. The resulting SDF is then used to price (with no additional parameter estimation) each
set of the OS assets. OS test assets are the combined 154 bond and stock portfolios described in Section 1. All
data is standardized, that is, pricing errors are in Sharpe ratio units.

98



Prior probability

0.0

0.2

0.4

0.6
P

os
te

rio
r 

pr
ob

ab
ili

ty

(A)  Posterior probabilities

0.0

0.2

0.4

0.6

S
TO

C
K

_I
S

S
D

U
R

LT
R

E
V

B
A

S
S

_G
ro

w
th

C
O

M
P

_I
S

S
U

E
R

O
A

S
M

B
C

R
F

D
IS

S
T

R
F

IN
D

R
F

O
_S

C
O

R
E

P
E

R
F

V
A

L
B

A
B

M
G

M
T

M
K

T
B

D
H

M
L

H
M

LB
IN

V
_I

N
_A

S
S

LT
R

E
V

G
R

_P
R

O
F

H
M

L_
D

E
V

H
M

Ls
M

O
M

S
S

M
B

s
C

M
A

R
_I

A
R

M
W

T
E

R
M

S
T

R
E

V
D

E
F

M
K

T
B

M
O

M
B

S
T

R
E

V
B

LI
Q

C
P

T
LT

S
Z

E
C

P
T

L
M

K
T

S
s

R
_R

O
E

A
C

C
R

S
K

E
W

R
M

W
s

M
K

T
S

E
P

U
E

P
U

T
C

M
A

s
U

N
C

f
N

et
O

A
V

IX
IN

F
LV

S
E

R
V

Q
M

J
H

JT
Z

_I
S

E
N

T
U

N
R

AT
E

N
O

N
D

U
R

U
N

C
LI

Q
N

T
D

el
ta

S
LO

P
E

LV
L

U
N

C
r

Y
S

P
D

IV
IN

F
LC

C
R

Y O
il

P
E

IP
G

ro
w

th
M

O
M

B
S

C
R

E
D

IT
B

W
_I

S
E

N
T

P
E

A
D

P
E

A
D

B
IV

O
L

P
os

te
rio

r 
M

P
R

 (
an

nu
al

)

Non−traded factors
Bond factors
Equity factors

(B)  Posterior market prices of risk

Figure IA.46: Posterior factor probabilities and risk prices: Extending the stock factor zoo.

The figure reports posterior probabilities, E[γj |data], and posterior means of annualized market prices of risk,
E[λj |data], of the 75 bond and stock factors described in Appendix A and the Appendix of Bryzgalova et al.
(2023). The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation for γj of 50%. The prior
Sharpe ratio is set to 80% of the ex post maximum Sharpe ratio of the 50 bond portfolios and 16 tradable bond
factors described in Section 1 as well as the 26 stock anomalies and 35 tradable stock factors from Bryzgalova
et al. (2023). The sample period is 1986:01 to 2016:12 (T = 372).

the posterior factor probabilities and market prices of risk with 80% Sharpe ratio shrinkage in

Figure IA.46. Confirming the main results, the top five factors are displayed in Panel A are

IVOL, PEADB, PEAD, BWI_SENT, and CREDIT (four out of five match those from Table

A.2 in Appendix C). These factors also yield large posterior market prices of risk in Panel B.

In addition, the BWI_SENT sentiment nontradable factor of Baker and Wurgler (2006) is a

likely candidate for inclusion in the co-pricing BMA-SDF using the extended factor zoo.

The corresponding in- and out-of-sample asset pricing results are reported in Panel A of

Tables IA.XXX and IA.XXXI. The BMA-SDF with a 80% Sharpe ratio shrinkage and the TOP

model (comprising the factors IVOL, PEADB, PEAD, BWI_SENT and CREDIT) outperform

all other models by a wide margin, both in- as well as out-of-sample.

Extended bond factor zoo following Dick-Nielsen et al. (2025). We now extend the

corporate bond factor zoo to include the 13 bond factor clusters (aggregated factors) formed
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with underlying equity characteristic data from DFPS.8 The sample spans the period January

1986 to December 2021 for a total of 432 monthly observations. The posterior factor probabil-

ities and market prices of risk with 80% Sharpe ratio shrinkage are reported in Figure IA.47.

Results again closely align with those reported in Section 3. Only 2 of the 13 DFPS aggregate

factors are likely candidates for inclusion to the BMA-SDF. These include the composite bond

factors formed with equity short-reversal, DFPS_STREV and momentum, DFPS_MOM eq-

uity characteristics. This overlaps with the factors already included in our baseline bond factor

zoo (MOMBS and PEADB), both of which are formed with prior equity return data.

The corresponding in- and out-of-sample asset pricing results are reported in Panel B of

Tables IA.XXX and IA.XXXI. Again, the BMA-SDF with a 80% Sharpe ratio shrinkage and

the TOP model (comprising the factors IVOL, PEAD, DFPS_MOM, PEADB, and CRY)

outperform all other models by a wide margin, both in- as well as out-of-sample.

Extended bond factor zoo including TRACE bond illiquidity factors. We again

tweak the bond factor zoo by including three additional illiquidity factors computed using

TRACE transaction data. In particular, we include the tradable liquidity risk factor LRF from

Bai et al. (2019) and the Amihud (2002) (AMD) and Pástor and Stambaugh (2003) (PSB)

nontradable risk factors from Lin et al. (2011). The sample is restricted to the TRACE era

from October 2002 to December 2022 for a total of 243 monthly observations (with two months

lost to compute the illiquidity factors). The set of IS test assets remains the largely same, we

only add the tradable LRF factor. The posterior factor probabilities and market prices of risk

with 80% Sharpe ratio shrinkage are reported in Figure IA.48. None of the illiquidity factors

are likely candidates for inclusion in the BMA-SDF. Notably, the LRF factor is the least likely

bond factor to be included with a market price of risk close to zero. Likewise, nontradable

AMD factor is the least likely nontradable factor for inclusion. Our results echo those of, e.g.,

Richardson and Palhares (2019) who document a very limited illiquidity premium in corporate

bond returns using characteristic portfolio sorts. The corresponding in- and out-of-sample asset

pricing results are again reported in Panel C of Tables IA.XXX and IA.XXXI.

8This data is available for download here.
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(B)  Posterior market prices of risk

Figure IA.47: Posterior factor probabilities and risk prices: Extending the bond factor zoo I.

The figure reports posterior probabilities, E[γj |data], and posterior means of annualized market prices of risk,
E[λj |data], of the 54 bond and stock factors described in Appendix A as well as the 13 composite bond factors
of Dick-Nielsen et al. (2025). The 13 composite bond excess return factors are formed with the underlying
equity characteristic data. The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation for γj
of 50%. The prior Sharpe ratio is set to 80% of the ex post maximum Sharpe ratio of the 83 stock and bond
portfolios and the 40 tradable factors described in Section 1 as well as the 13 composite DFPS factors. The
sample period is 1986:01 to 2021:12 (T = 432).

Extending the time series back to 1977. Using the full span of the LBFI database we

extend the sample period back to January 1977 resulting in a maximum sample span of 549

monthly observations. It is important to note that the vast majority of bonds present in the

data over the early period we exclude for our analysis in Section 3 are exclusively investment

grade with matrix prices as opposed to quotes. Prior to 1977, the U.S. high-yield corporate

bond market was primarily composed of “fallen angels,” bonds originally issued as investment

grade but subsequently downgraded. As such, the percentage of bonds classified as “high-yield”

was lower than 5% of the total U.S. corporate bond market in terms of market capitalization

before 1980. The U.S. high-yield bond market only began to truly take root in the early 1980s

when large investment banks (Lehman and Drexel Burnham Lambert) began both underwriting

and trading these bond issues.9 The posterior factor probabilities and market prices of risk with

9See Taggart (1987) for further discussion.
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(B)  Posterior market prices of risk

Figure IA.48: Posterior factor probabilities and risk prices: Extending the bond factor zoo
II.

The figure reports posterior probabilities, E[γj |data], and posterior means of annualized market prices of risk,
E[λj |data], of the 54 bond and stock factors described in Appendix A plus the tradable liquidity factor LRF of
Bai et al. (2019) and the two nontradable illiquidity factors AMD and PSB of Lin et al. (2011). The prior for
each factor inclusion is a Beta(1, 1), yielding a prior expectation for γj of 50%. The prior Sharpe ratio is set
to 80% of the ex post maximum Sharpe ratio of the 83 stock and bond portfolios and the 40 tradable factors
described in Section 1 plus the tradable LRF bond factor. The sample period is 2002:10 to 2022:12 (T = 243).

80% Sharpe ratio shrinkage are reported in Figure IA.49. Despite the flaws in market structure,

result remain unaffected compared to what we report in Section 3. The top five factors in terms

of posterior probabilities are PEADB, PEAD, CRY, MOMBS, and CREDIT. Other factors

outside the top five but with a posterior probability > 50% include LVL, IVOL and YSP, again

aligning with the baseline results. These factors also yield relatively large posterior market

prices of risk. The corresponding in- and out-of-sample asset pricing results are again reported

in Panel D of Tables IA.XXX and IA.XXXI.

Varying subsamples. Finally, we present the in- and out-of-sample cross-sectional asset

pricing performance for two sample splits in Tables IA.XXXII and IA.XXXIII. In particular,

we first estimate the models for the pre- and post-TRACE era, i.e., before and after July 2002

(respective Panels A and C). Second, we also split the sample into a pre- and post-2000 period
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Figure IA.49: Posterior factor probabilities and risk prices: Extending the sample to 1977.

The figure reports posterior probabilities, E[γj |data], and posterior means of annualized market prices of risk,
E[λj |data], of the 54 bond and stock factors described in Appendix A. The prior for each factor inclusion is
a Beta(1, 1), yielding a prior expectation for γj of 50%. The prior Sharpe ratio is set to 80% of the ex post
maximum Sharpe ratio of the 83 stock and bond portfolios and the 40 tradable factors described in Section 1.
The sample period is 1977:01 to 2022:12 (T = 549).

as in van Binsbergen et al. (2025) (respective Panels B and D).

The results from the full sample estimation in Tables 2 and 3 carry over to the subsamples,

the BMA-SDF and TOP models outperform the other competitor models. Note, however, that

the OS pricing exercise in Table IA.XXXIII is more stringent than the one in Table 3. For the

full sample, only the test assets are out-of-sample. Once we have two sample splits, we perform

the OS pricing not only in the cross-section but also the time series. That is, we estimate the

BMA-SDF using the IS test assets for the respective sample period and then use the resulting

SDF to price (with no additional parameter estimation) each set of the OS test assets over the

remaining sample.
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Table IA.XXXII: In-sample cross-sectional asset pricing performance across sample splits

BMA-SDF prior Sharpe ratio CAPM CAPMB FF5 HKM TOP KNS RPPCA

20% 40% 60% 80%

Panel A: Pre-TRACE, 1986:01–2002:07

RMSE 0.318 0.308 0.295 0.279 0.362 0.391 0.365 0.359 0.364 0.263 0.357
MAPE 0.237 0.229 0.220 0.210 0.259 0.315 0.276 0.257 0.276 0.201 0.243
R2

OLS 0.118 0.171 0.240 0.317 −0.149 −0.336 −0.163 −0.126 −0.158 0.396 −0.115
R2

GLS 0.078 0.098 0.120 0.144 0.086 0.088 0.090 0.086 0.189 0.097 0.156

Panel B: Pre-2000, 1986:01–1999:12

RMSE 0.423 0.409 0.395 0.380 0.405 0.444 0.398 0.407 0.521 0.258 0.318
MAPE 0.303 0.292 0.281 0.271 0.295 0.350 0.300 0.296 0.423 0.203 0.223
R2

OLS 0.063 0.122 0.183 0.244 0.138 −0.035 0.170 0.131 −0.423 0.651 0.471
R2

GLS 0.125 0.136 0.149 0.165 0.185 0.185 0.187 0.186 0.251 0.100 0.250

Panel C: Post-TRACE, 2002:08–2022:12

RMSE 0.206 0.175 0.153 0.133 0.239 0.232 0.237 0.216 0.240 0.180 0.171
MAPE 0.163 0.133 0.114 0.098 0.175 0.180 0.182 0.157 0.186 0.133 0.116
R2

OLS 0.283 0.480 0.604 0.700 0.029 0.086 0.047 0.210 0.020 0.452 0.505
R2

GLS 0.046 0.075 0.108 0.146 0.040 0.041 0.044 0.042 0.231 0.018 0.100

Panel D: Post-2000, 2000:01–2022:12

RMSE 0.198 0.172 0.146 0.122 0.261 0.290 0.279 0.261 0.239 0.147 0.195
MAPE 0.151 0.131 0.110 0.092 0.196 0.231 0.216 0.196 0.174 0.104 0.133
R2

OLS 0.234 0.423 0.585 0.708 −0.337 −0.644 −0.527 −0.332 −0.113 0.580 0.256
R2

GLS 0.033 0.081 0.132 0.185 0.008 0.015 0.020 0.008 0.234 0.115 0.097

The table presents the cross-sectional in-sample asset pricing performance of different models pricing bonds and
stocks jointly for different sample splits. For Panels A and C we split the sample into a pre- and post-TRACE
period (1986:01–2002:07 and 2002:08–2022:12), in Panels B and D we show results for the pre- and post-2000
period (1986:01–1999:12 and 2000:01–2022:12). For the BMA-SDF, we provide results for prior Sharpe ratio
values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the test assets. TOP includes
the top five factors with an average posterior probability greater than 50%. CAPM is the standard single-factor
model using MKTS, and CAPMB is the bond version using MKTB. FF5 is the five-factor model of Fama and
French (1993), HKM is the two-factor model of He et al. (2017). KNS stands for the SDF estimation of Kozak
et al. (2020). If the time series dimension is smaller than the number of assets, T < N , we allow a small degree
of overlap in the two cross-validation samples. RPPCA is the risk premia PCA of Lettau and Pelger (2020).
Estimation details for the benchmark models are given in Appendix D. Bond returns are computed in excess of
the one-month risk-free rate of return. All models are estimated on the baseline IS test assets. Test assets are
the 83 bond and stock portfolios and the 40 tradable bond and stock factors described in Section 1. All data is
standardized, that is, pricing errors are in Sharpe ratio units.
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Table IA.XXXIII: Out-of-sample cross-sectional asset pricing performance across sample
splits

BMA-SDF prior Sharpe ratio CAPM CAPMB FF5 HKM TOP KNS RPPCA

20% 40% 60% 80%

Panel A: Pre-TRACE

RMSE 0.117 0.114 0.114 0.130 0.158 0.186 0.190 0.167 0.163 0.157 0.821
MAPE 0.093 0.092 0.094 0.110 0.131 0.160 0.155 0.138 0.128 0.137 0.738
R2

OLS 0.073 0.129 0.121 −0.139 −0.682 −1.325 −1.440 −0.887 −0.786 −0.657 −44.455
R2

GLS 0.001 0.008 0.014 0.017 −0.004 −0.003 −0.015 −0.008 −0.120 0.014 −0.284

Panel B: Pre-2000

RMSE 0.134 0.116 0.099 0.091 0.290 0.141 0.357 0.284 0.267 0.157 0.386
MAPE 0.105 0.089 0.076 0.070 0.261 0.115 0.330 0.251 0.223 0.126 0.328
R2

OLS 0.225 0.420 0.578 0.641 −2.656 0.139 −4.540 −2.486 −2.099 −0.073 −5.469
R2

GLS 0.037 0.050 0.062 0.074 0.044 0.055 0.031 0.045 −0.126 −0.018 −0.305

Panel C: Post-TRACE

RMSE 0.235 0.217 0.213 0.225 0.369 0.196 0.271 0.381 0.284 0.191 0.500
MAPE 0.177 0.164 0.162 0.175 0.312 0.141 0.209 0.321 0.216 0.135 0.454
R2

OLS 0.157 0.279 0.305 0.226 −1.078 0.414 −0.121 −1.218 −0.230 0.440 −2.830
R2

GLS 0.009 0.018 0.023 0.023 0.006 0.009 0.007 0.005 −0.155 0.011 0.021

Panel D: Post-2000

RMSE 0.190 0.184 0.194 0.216 0.241 0.233 0.204 0.242 0.297 0.220 0.278
MAPE 0.138 0.132 0.141 0.163 0.181 0.198 0.164 0.182 0.233 0.190 0.246
R2

OLS 0.126 0.181 0.094 −0.126 −0.398 −0.308 −0.008 −0.408 −1.132 −0.173 −0.864
R2

GLS 0.006 0.010 0.013 0.015 0.007 0.007 0.006 0.007 −0.007 0.015 0.012

The table presents the cross-sectional out-of-sample asset pricing performance of different models pricing bonds
and stocks jointly for different sample splits. For Panels A and C we split the sample into a pre- and post-TRACE
period (1986:01–2002:07 and 2002:08–2022:12), in Panels B and D we show results for the pre- and post-2000
period (1986:01–1999:12 and 2000:01–2022:12). For the BMA-SDF, we provide results for prior Sharpe ratio
values set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the test assets. TOP includes
the top five factors with an average posterior probability greater than 50%. CAPM is the standard single-factor
model using MKTS, and CAPMB is the bond version using MKTB. FF5 is the five-factor model of Fama and
French (1993), HKM is the two-factor model of He et al. (2017). KNS stands for the SDF estimation of Kozak
et al. (2020). If the time series dimension is smaller than the number of assets, T < N , we allow a small
degree of overlap in the two cross-validation samples. RPPCA is the risk premia PCA of Lettau and Pelger
(2020). Estimation details for the benchmark models are given in Appendix D. Bond returns are computed in
excess of the one-month risk-free rate of return. The models are first estimated using the baseline IS test assets
from Table IA.XXXII for the IS training period. The resulting SDF is then used to price (with no additional
parameter estimation) each set of the OS assets for the out-of-sample period in the time series. OS test assets
are the combined 154 bond and stock portfolios described in Section 1. All data is standardized, that is, pricing
errors are in Sharpe ratio units.
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IA.11 The nontradable CREDIT factor

The nontradable CREDIT factor is defined as the difference between aggregate corporate bond

yield indices made available by FRED (the BAA index minus the AAA index), using data

constructed by Moody’s. The CREDIT factor is consistently included as a top factor (large

posterior probability) with a sizable market price of risk across all of our estimations.

A wider BAA−AAA spread indicates that investors are less willing to bear credit risk.

That is, before (i.e., in the build-up to) a recession, investor portfolios are re-allocated to

“safer” securities, implying they are more concerned about bearing credit risk, rendering the

CREDIT factor not only a useful indicator of the health of the economy, but a likely candidate

for inclusion in the SDF.

Potential issues with the CREDIT factor. Unfortunately, the data made available from

Moody’s is opaque, and perhaps more concerning, only two firms (Microsoft and Johnson &

Johnson) are included in the AAA yield index (Boyarchenko and Shachar, 2020) toward the end

of the sample. Given that the data filtering process used by Moody’s is not publicly available,

we reached out to the economics department at Moody’s Analytics. The full (and unedited)

response from the Moody’s economics department is provided below:

We don’t currently publish a detailed methodology but it is summarized as: “Yield in-

dex for US investment grade nonfinancial corporate bonds with long-term maturities.

Based on seasoned bonds with remaining maturities of at least 20 Years. Derived

from pricing data on a regularly-replenished population of over 100 seasoned corpo-

rate bonds in the US market, each with current outstandings over $100 million. The

bonds have maturities as close as possible to 30 years, with an average maturity of

28 years; they are dropped from the list if their remaining life falls below 20 years

or if their ratings change. Bonds with deep discounts or steep premiums to par are

generally excluded. All yields are yield-to-maturity calculated on a semi-annual com-

pounding basis. Each observation is an unweighted average, with Average Corporate

Yields representing the unweighted average of the corresponding Average Industrial

and Average Public Utility observations.” For Aaa you are correct that we currently
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only have bonds from MSFT and JNJ in the actively traded list. We periodically

update a master list of eligible bonds in each ratings bucket and then exclude bonds

from the active list whose ratings no longer match the bucket or other criteria.10

A custom made CREDIT factor. To address the core issues above, (i) opaque data filtering

rules and (ii) only two firms being present in the AAA index toward the end of the sample,

we re-construct our own “custom-made” high grade and BAA indices with our core dataset

comprising the Lehman Brothers and ICE/BAML corporate bond datasets.

We apply the following filters to our data, which ensures a reasonable sample whilst trying

to adhere to the filters supposedly applied by Moody’s:

(i) Remove bonds with a market capitalization less than $100 million.

(ii) Remove bonds with a credit spread less that 0 or greater than 5,000 bps.

(iii) Remove bonds which are classified as “financials.”

When constructing the AAA yield index, we include all bonds rated Aaa to Aa3, e.g., those

rated Prime and High Grade with maturities from 20 to 30 years. For the BAA yield index,

we keep all bonds rated Baa1 to Baa3, e.g., those rated Lower Medium Grade with maturities

from 20 to 30 years. This construction method implies we have 24 unique firms rated Aaa to

Aa3 toward the end of the sample (as opposed to only two firms). On average, from 1986 to

2022, the high grade (Aaa to Aa3) index contains 24 firms, with an average number of bonds

equaling 54. For the BAA index, the sample contains an average of 123 firms with an average

number of bonds equaling 255. Toward the end of the sample, the BAA index contains 198

firms.

We plot the time-series of the CREDIT factor constructed by Moody’s and ourselves in

Figure IA.50. The unconditional time-series correlation is equal to 0.89. The average spread

for Moody’s and our custom factor is 97 and 87 bps, respectively. Even though the two CREDIT

factors are computed with different data filtering rules and an expanded subset of investment

grade bonds for the custom version of the AAA index, the time-series dynamics are similar.

10We thank David Mena from Moody’s Analytics, Inc for helping us with the data.
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Corr: 0.89

Mean Custom CREDIT: 87.0 bp

Mean Moody's CREDIT: 97.3 bp
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Figure IA.50: The nontradable CREDIT factor.

This figure depicts the time series of the CREDIT nontradable factor constructed with data from FRED which
uses Moody’s corporate bond yield data and our own data (discussed in Section IA.11 of the Internet Appendix).
The Moody’s CREDIT factor, CREDIT Moody’s, is defined as the difference between the BAA and AAA cor-
porate bond yield indices from Moody’s. The exact computation of this series, and it’s underlying constituent
bond sample is not made available by Moody’s. The Moody’s sample (BAA and AAA) roughly comprises (as
per Moody’s Economics Department), “seasoned bonds with remaining maturities of at least 20 Years ... Derived
from pricing data on a regularly-replenished population of over 100 seasoned corporate bonds in the US market,
each with current outstandings over $100 million. The bonds have maturities as close as possible to 30 years,
with an average maturity of 28 years; they are dropped from the list if their remaining life falls below 20 years or
if their ratings change. Bonds with deep discounts or steep premiums to par are generally excluded. All yields are
yield-to-maturity calculated on a semi-annual compounding basis. Each observation is an unweighted average,
with Average Corporate Yields representing the unweighted average of the corresponding Average Industrial and
Average Public Utility observations.” Our custom made CREDIT factor, CREDIT Custom attempts to broadly
follow the guidance of Moody’s. We, (i) exclude bonds from the financials sector, (ii) keep bonds with amount
outstanding values greater than $100 million, (iii) Remove bonds with a credit spread less than 0 or greater
than 5000 bps. For the AAA yield index, we keep all bonds rated Aaa to Aa3, e.g., those rated Prime and High
Grade with maturities from 20-30 years. For the BAA yield index, we keep all bonds rated Baa1 to Baa3, e.g.,
those rated Lower Medium Grade with maturities from 20-30 years. The sample period is 1986:01 to 2022:12
(T = 444).
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Table IA.XXXIV: IS and OS cross-sectional asset pricing performance: CREDIT factor
robustness

In-sample Out-of-sample

20% 40% 60% 80% 20% 40% 60% 80%

Panel A: Baseline with Moody’s BAA-AAA Yield Index

RMSE 0.214 0.203 0.185 0.167 0.114 0.102 0.095 0.090
MAPE 0.167 0.154 0.139 0.125 0.081 0.074 0.069 0.065
R2

OLS 0.155 0.240 0.367 0.487 0.357 0.489 0.557 0.603
R2

GLS 0.106 0.168 0.232 0.285 0.038 0.070 0.098 0.124

Panel B: With our corporate bond yield data, BAA−(AAA+AA)

RMSE 0.214 0.203 0.186 0.169 0.114 0.102 0.095 0.091
MAPE 0.167 0.154 0.140 0.127 0.081 0.075 0.069 0.066
R2

OLS 0.151 0.240 0.361 0.476 0.357 0.486 0.551 0.593
R2

GLS 0.106 0.167 0.229 0.281 0.037 0.069 0.096 0.120

The table presents the cross-sectional in- and out-of-sample asset pricing performance of the co-pricing BMA-
SDF with the baseline CREDIT factor from Moody’s (Panel A) and the custom-made CREDIT factor using
our own yield data (Panel B). Our custom made CREDIT factor CREDIT Custom attempts to broadly follow
the guidance of Moody’s. That is, we (i) exclude bonds from the financials sector, (ii) keep bonds with amount
outstanding values greater than $100 million, (iii) remove bonds with a credit spread less than 0 or greater than
5000 bps. For the AAA yield index, we keep all bonds rated Aaa to Aa3, e.g., those rated Prime and High
Grade with maturities from 20-30 years. For the BAA yield index, we keep all bonds rated Baa1 to Baa3, e.g.,
those rated Lower Medium Grade with maturities from 20-30 years. The sample period is 1986:01 to 2022:12
(T = 444). The posterior probabilities and the market prices of risk are included below.

Total prior Sharpe ratio

20% 40% 60% 80%

Panel A: With Moody’s BAA−AAA Yield Index

E[γj |data] 0.498 0.497 0.530 0.557
E[λj |data] 0.002 0.009 0.024 0.055

Panel B: With corp. yields, BAA−(AAA+AA)

E[γj |data] 0.487 0.494 0.517 0.518
E[λj |data] 0.001 0.006 0.015 0.034

In Panel B, CREDIT remains a factor in the top five most likely to be included in the SDF.

The BMA-SDF with the custom CREDIT factor. We now re-estimate our baseline

results with the custom made CREDIT factor. We report the in-and-out-of-sample asset pricing

results over the four levels of SR shrinkage in Table IA.XXXIV. Included in the table caption

are the posterior probabilities and the MPR for the estimation with Moody’s (Panel A) and

the custom CREDIT factor (Panel B). First, the in and out-of-sample asset pricing results are

close to identical with numbers changing only at the third decimal place. Second, the table in

the caption documents that both the posterior probabilities and the MPRs are closely aligned,
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confirming results in the main text using Moody’s CREDIT factor. In unreported results, we

also re-estimate the BMA-SDF with the GZ spread (as opposed to the CREDIT spread) from

Gilchrist and Zakrajšek (2012) and document very similar results.11

Why are the results so consistent? Our theoretical and simulation results (see Section

2.4) show that stability is expected from our robust inference method. Since individual fac-

tors contain both signals about fundamental risk sources and noise, the BMA-SDF optimally

aggregates them to maximize the signal-to-noise ratio. While data perturbations may affect

individual factors (such as the CREDIT factor), the BMA-SDF largely mitigates this impact.

11We thank Yoshio Nozawa for making the GZ spread data available to us.
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