Asset Management Contracts and Equilibrium Prices

ANDREA M. BUFFA

Boston University

DIMITRI VAYANOS London School of Economics, CEPR and NBER PAUL WOOLLEY

London School of Economics

FCA/LSE/SEBI Conference on "Paying for Effective and Efficient Markets"

London, 22-23 March 2019

- Most wealth invested in financial markets is managed professionally.
 - Individual investors held only 21.5% of US stocks in 2007 (French 2008).
- Agency problem between investors and asset managers.
- Questions:
 - What are optimal contracts between investors and asset managers?
 - What are the implications for managers' portfolio choices?
 - What are the implications for equilibrium asset prices?

- Static model of optimal contracting between investors and managers.
 - Moral hazard arising from managers' effort to acquire information.
 - Adverse selection arising from:
 - Information that managers acquire.
 - Managers' preferences.
- Result 1: Optimal contract involves risk limits.
 - Risk of managers' portfolio is kept within bounds.
 - Optimal portfolio given managers' private information may exceed the bounds.
- Intuition:
 - Investors pay managers a high fee for high return to induce information acquisition by skilled manager types.
 - This induces unskilled manager types to gamble for the high fee.

• Embed contracting model into dynamic asset-pricing model.

- One riskless and multiple risky assets.
- Random demand by noise traders \rightarrow Mispricing.
- Skilled manager types can observe noise-trader demand.
- <u>Result 2:</u> Risk limits generate risk-return inversion.
 - Overvalued assets have high volatility.
- <u>Result 3:</u> Risk limits generate overvaluation bias.
 - Overvalued assets become more overvalued and undervalued assets become more undervalued.
 - Effect on overvalued assets dominates, biasing aggregate market upward.

Risk-Return Inversion

- Overvalued assets have high volatility because of an amplification effect.
 - Positive news to asset fundamentals
 - $\bullet \ \rightarrow$ Managers' positions become larger and risk limits become more binding
 - ullet ightarrow Managers cut down on their positions
 - $\bullet \to$ Managers buy overvalued assets (since they short/underweigh them to begin with).

• Amplification effect concerns distortions during bubbles rather than crises.

- BIS (2003): "... Overvalued assets/stocks tend to find their way into major indices, which are generally capitalization-weighted and therefore will more likely include overvalued securities than under-valued securities. Asset managers may therefore need to buy these assets even if they regard them as overvalued; otherwise they risk violating agreed tracking errors..."
- IMF (2015): "... Another source of friction capable of amplifying bubbles stems from the captive buying of securities in momentum-biased market capitalization-weighted benchmarks. Underlying constituents that rise most in price will see their benchmark weights increase irrespective of fundamentals, inducing additional purchases from fund managers seeking to minimize benchmark tracking error..."

- Risk limits exacerbate mispricings in both directions because they prevent managers from absorbing noise-trader demand.
- Effect on overvalued assets dominates because risk limits are more likely to bind for those assets.
 - Overvalued assets have higher share price and volatility than undervalued assets.
 - \rightarrow Risk limits are more likely to bind for a short position in an overvalued asset than for a long position of an equal number of shares in an undervalued asset.

• <u>Common theme</u>: Corrective forces in asset markets are weaker during bubbles than during crises.

Static Contracting Model

Model

- Two periods, 0 and 1.
- Riskless rate is zero.
- One risky asset.
 - Price S in period 0.
 - Payoff S + d or S d in period 1. Prior probability of S + d is $\frac{1}{2}$.
- Investor:
 - Risk-averse with utility $-\exp^{-\rho W}$.
 - Can invest in the risky asset by employing manager.
- Manager can be of two types:
 - Risk-averse with utility $-\exp^{-\bar{\rho}\bar{W}}$. Can observe signal about asset payoff.
 - Signal costs K to observe and yields posterior probability $\pi \in [1-ar{\pi},ar{\pi}]$ for
 - S + d. π is distributed symmetrically around $\frac{1}{2}$ with density $h(\pi)$.
 - $\bullet\,$ Risk-neutral and cannot observe signal. Probability $\lambda.$
- Extend contracting model to asymmetric distributions.
 - Required for equilibrium asset pricing model.

Contracting

- Investor pays fee f(W) to manager.
- f(W) general function of W, except for:
 - Limited liability: $f(W) \ge 0$.
 - Monotonicity:
 - $f(W_1) f(W_2) \ge \epsilon(W_1 W_2)$ for all (W_1, W_2) that can arise in equilibrium, where $\epsilon > 0$. Take limit $\epsilon \to 0$.
 - Manager cannot gain by reducing W.
- Investor chooses f(W) to maximize utility.
- Incentive compatibility constraints for manager:
 - Whether or not to observe signal.
 - Which position z in the risky asset to choose.

Incentive Compatibility: Position Choice

- Risk-averse type:
 - Position $z(\pi)$ when posterior probability for S + d is π .
 - Symmetry $\rightarrow z(\pi) = z(1 \pi)$.
 - Incentive compatibility → Fee difference Δ(π) ≡ f(z(π)d) − f(−z(π)d) is non-decreasing.
 - Monotonicity $\rightarrow z(\pi)$ is non-decreasing.
- Risk-neutral type:
 - Symmetry \rightarrow Indifferent between position $\hat{z} \ge 0$ and $-\hat{z}$.
 - Investor ensures $\hat{z} \leq z(\bar{\pi})$. (Can set f(W) = 0 for $W > z(\bar{\pi})d$.)
 - Monotonicity $o \hat{z} < z(ar{\pi})$ only if $\hat{\Delta} \equiv f(\hat{z}d) f(-\hat{z}d) < \Delta(ar{\pi})$.
 - Uninformed risk-neutral type chooses a less variable fee profile than most informed risk-averse types.

- Manager observes signal only if $\Delta(\bar{\pi})$ exceeds a bound, which increases in K.
 - Investor pays manager a high fee for high return to induce information acquisition.
- For K sufficiently large, $\hat{z} = z(\bar{\pi})$.
 - High fee for high return attracts risk-neutral type.
 - Uninformed risk-neutral type is pooled with most informed risk-averse types.

Optimal Contract

- Risk-neutral type is pooled with interval of risk-averse types.
 - Maximum long position is chosen by risk-neutral type and interval [π^{*}, π
] of most optimistic risk-averse types.
 - Maximum short position is chosen by risk-neutral type and interval $[1 \bar{\pi}, 1 \pi^*]$ of most pessimistic risk-averse types.
- Pooling threshold π^* is unique solution in $[\pi^*, \bar{\pi}]$ of

$$\underbrace{2(1-\lambda)\int_{\pi^*}^{\bar{\pi}}(\pi-\pi^*)h(\pi)d\pi}_{=} \qquad \underbrace{\lambda\left(\pi^*-\frac{1}{2}\right)}_{=}$$

Cost of tighter risk limit Benefit of tighter risk limit

- Optimal positions:
 - Separation for $\pi \in [\frac{1}{2}, \pi^*)$:

$$z(\pi) = rac{1}{2
ho d} \log\left(rac{\pi}{1-\pi}
ight) + rac{\Delta(\pi)}{2d}$$

• Pooling for $\pi \in [\pi^*, \bar{\pi}]$:

$$z(ar{\pi}) = rac{1}{2
ho d} \log\left(rac{\pi^*}{1-\pi^*}
ight) + rac{\Delta(ar{\pi})}{2d}.$$

- Manager's risk-aversion coefficient $\bar{\rho}$ is much larger than investor's.
 - Fee f(W) is small relative to investor's wealth W.
- Uncertainty *d* is small. Probability π is $\frac{1}{2} + \mu d$.
 - Embed model in continuous time.
- Equivalence to reduced-form model without manager.
 - With probability 1λ : Investor optimizes knowing μ , but with risk limit $|z| \leq \frac{\mu^*}{\rho}$. When risk limit does not bind, optimal position is $z = \frac{\mu}{\rho}$.
 - With probability λ : Investor randomizes between L and -L.

Dynamic Asset-Pricing Model

Model

- Continuous time $t \in [0, \infty)$.
- Riskless asset, exogenous return r.
- Risky asset.
 - Dividend flow Dt follows squared-root process

$$dD_t = \kappa \left(ar{D} - D_t
ight) dt + \sigma \sqrt{D_t} dB_t$$

where $(\kappa, \overline{D}, \sigma)$ are positive and dB_t is Brownian motion.

- Dividends are always positive.
- Volatility of dividend per share increases with dividend level. (Important)
- Endogenous price S_t.
- Supply of θ shares. Can result from the asset issuer or from noise traders.
 - $\theta < 0$: Demand from noise traders exceeds supply from asset issuer.

Investors

- Overlapping generations living over infinitesimal periods.
- Continuum with measure 1.
- Utility $-\exp(-\rho dW_t)$. Equivalent to mean-variance objective

$$\mathbb{E}_t(dW_t) - rac{
ho}{2} \mathbb{V}\mathrm{ar}_t(dW_t)$$

- Expert investors:
 - Observe (θ, D_t) and invest on their own.
 - Measure 1 − x ∈ (0, 1].
- Non-expert investors:
 - Do not observe (θ, D_t) and can only invest through managers. Previous model and reduced form.
 - Adapt previous model to asymmetric distributions for π .
 - Modify beliefs of risk-neutral types so that their positions cancel out in equilibrium.

- All investors choose same position in risky asset. $z_{1t} = z_{2t} = z_t$ shares.
- First-order condition:

$$\mathbb{E}_t(dR_t^{sh}) = \rho z_t \mathbb{V}\mathrm{ar}_t(dR_t^{sh}),$$

where $dR_t^{sh} \equiv D_t dt + dS_t - rS_t dt$ is asset's return per share.

• Using market-clearing $(1 - x)z_{1t} + x(1 - \lambda)z_{2t} = \theta$ and Ito's lemma on $S_t = S(D_t)$, write FOC as

$$D_t + \kappa(\overline{D} - D_t)S'(D_t) + rac{1}{2}\sigma^2 D_t S''(D_t) - rS(D_t) = rac{
ho heta}{1 - \lambda x}\sigma^2 D_t S'(D_t)^2.$$

Equilibrium – Binding Risk Limit

- Position z_{1t} of experts satisfies FOC.
- Position z_{2t} of non-experts meets risk limit

$$\sqrt{rac{\mathbb{V}\mathrm{ar}(z_{2t}dR_t^{sh})}{dt}} = |z_{2t}|\sigma\sqrt{D_t}S'(D_t) \leq rac{\mu^*}{
ho}$$

with equality.

• Previous calculation yields

$$D_t + \kappa (\bar{D} - D_t) S'(D_t) + \frac{1}{2} \sigma^2 D_t S''(D_t) - rS(D_t) = \rho z_{1t} \sigma^2 D_t S'(D_t)^2.$$

- Using market-clearing $(1 x)z_{1t} + x(1 \lambda)z_{2t} = \theta$, rewrite as $D_t + \kappa(\bar{D} - D_t)S'(D_t) + \frac{1}{2}\sigma^2 D_t S''(D_t) - rS(D_t) = \frac{\rho\theta}{1 - x}\sigma^2 D_t S'(D_t)^2 - \frac{\operatorname{sign}(\theta)(1 - \lambda)x\mu^*}{1 - x}\sigma\sqrt{D_t}S'(D_t).$
- Two non-linear second-order ODEs, with free boundary. Smooth-pasting at boundary.

ODE Solution – No Risk Limit

• Proposition: If $\mu^* = \infty$ (suboptimal contract), then $S(D_t) = a_0 + a_1D_t$ (affine price), with

$$a_0 = \frac{\kappa}{r} a_1 \overline{D},$$

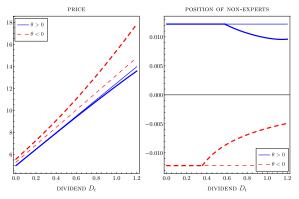
$$a_1 = \frac{2}{r + \kappa + \sqrt{(r + \kappa)^2 + 4\frac{\rho\theta}{1 - \lambda \kappa}\sigma^2}}.$$

- Price S_t decreases in supply θ .
 - Low-supply assets trade at high price (overvalued).
 - High-supply assets trade at low price (undervalued).

• Volatility
$$\sqrt{\mathbb{V}\mathrm{ar}_t(dR_t)} = \sqrt{\mathbb{V}\mathrm{ar}_t(\frac{dS_t}{S_t})}$$
 is independent of θ .

- <u>Theorem</u>: If $\mu^* < \infty$ (optimal contract), then
 - $S(D_t)$ is convex and lies above affine solution for $\theta < 0$.
 - $S(D_t)$ is concave and lies below affine solution for $\theta > 0$.
- $\bullet\,$ Comparison of solutions \to Risk limits exacerbate mispricings in both directions.
- $\bullet \ \ \mbox{Convexity} \rightarrow \ \mbox{Amplification}.$
- Proposition: Volatility $\sqrt{\mathbb{V}ar_t(dR_t)}$ is larger for $\theta < 0$ than for $\theta > 0$.
 - Overvaluation and high volatility go together.

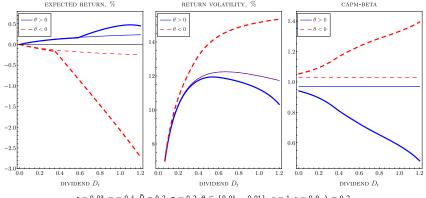
Numerical Example: Prices and Positions



 $r = 0.03, \ \kappa = 0.1, \ \bar{D} = 0.2, \ \sigma = 0.2, \ \theta \in \{0.01, -0.01\}, \ \rho = 1, \ x = 0.9, \ \lambda = 0.2.$

- Risk limits exacerbate mispricing.
- Risk limits have a larger effect on prices and positions when $\theta < 0$ than when $\theta > 0$.

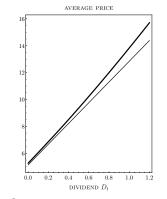
Numerical Example: Return Moments



 $r = 0.03, \ \kappa = 0.1, \ \bar{D} = 0.2, \ \sigma = 0.2, \ \theta \in \ \{0.01, \ -0.01\}, \ \rho = 1, \ x = 0.9, \ \lambda = 0.2.$

- Overvaluation and high volatility go together.
- Same result when replace volatility by CAPM beta.
 - Compute CAPM beta in multi-asset extension of the model.
 - Assets have independent payoffs and managers specialize in different assets.

Numerical Example: Aggregate Market



 $r = 0.03, \ \kappa = 0.1, \ \bar{D} = 0.2, \ \sigma = 0.2, \ \theta \in \{0.01, -0.01\}, \ \rho = 1, \ x = 0.9, \ \lambda = 0.2.$

• Risk limits raise average price.

Extensions and Conclusion

• Replace risk limit

$$|z_{2t}|\sigma\sqrt{D_t}S'(D_t)\leq rac{\mu^*}{
ho}$$

by

$$|z_{2t}-\eta|\sigma\sqrt{D_t}S'(D_t)\leq \frac{\mu^*}{
ho}.$$

- Bound concerns volatility of position relative to *benchmark* position.
- Results carry through identical provided that all comparisons between θ and zero are replaced by ones between θ and η .
- Can contracting model be extended to derive risk limit relative to benchmark?

- Joint determination of asset management contracts and equilibrium prices.
- Contracting results: Optimal contract involves risk limits.
- Asset-pricing results:
 - Risk limits generate risk-return inversion.
 - Risk limits generate overvaluation bias.
- Future research: Normative and policy implications.
 - How do privately optimal and socially optimal risk limits compare?
 - Should asset management contracts be designed differently?