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Motivation

Most wealth invested in financial markets is managed professionally.

Individual investors held only 21.5% of US stocks in 2007 (French 2008).

Agency problem between investors and asset managers.

Questions:

What are optimal contracts between investors and asset managers?
What are the implications for managers’ portfolio choices?
What are the implications for equilibrium asset prices?
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This Paper – Optimal Contracts

Static model of optimal contracting between investors and managers.

Moral hazard arising from managers’ effort to acquire information.
Adverse selection arising from:

Information that managers acquire.
Managers’ preferences.

Result 1: Optimal contract involves risk limits.

Risk of managers’ portfolio is kept within bounds.

Optimal portfolio given managers’ private information may exceed the bounds.

Intuition:

Investors pay managers a high fee for high return to induce information
acquisition by skilled manager types.

This induces unskilled manager types to gamble for the high fee.
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This Paper – Equilibrium Asset Prices

Embed contracting model into dynamic asset-pricing model.

One riskless and multiple risky assets.

Random demand by noise traders → Mispricing.

Skilled manager types can observe noise-trader demand.

Result 2: Risk limits generate risk-return inversion.

Overvalued assets have high volatility.

Result 3: Risk limits generate overvaluation bias.

Overvalued assets become more overvalued and undervalued assets become
more undervalued.

Effect on overvalued assets dominates, biasing aggregate market upward.
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Risk-Return Inversion

Overvalued assets have high volatility because of an amplification effect.

Positive news to asset fundamentals

→ Managers’ positions become larger and risk limits become more binding

→ Managers cut down on their positions

→ Managers buy overvalued assets (since they short/underweigh them to
begin with).

Amplification effect concerns distortions during bubbles rather than crises.
BIS (2003): “... Overvalued assets/stocks tend to find their way into major indices,
which are generally capitalization-weighted and therefore will more likely include
overvalued securities than under-valued securities. Asset managers may therefore
need to buy these assets even if they regard them as overvalued; otherwise they risk
violating agreed tracking errors...”

IMF (2015): “... Another source of friction capable of amplifying bubbles stems from
the captive buying of securities in momentum-biased market capitalization-weighted
benchmarks. Underlying constituents that rise most in price will see their benchmark
weights increase irrespective of fundamentals, inducing additional purchases from
fund managers seeking to minimize benchmark tracking error...”
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Overvaluation Bias

Risk limits exacerbate mispricings in both directions because they prevent
managers from absorbing noise-trader demand.

Effect on overvalued assets dominates because risk limits are more likely to
bind for those assets.

Overvalued assets have higher share price and volatility than undervalued
assets.

→ Risk limits are more likely to bind for a short position in an overvalued asset
than for a long position of an equal number of shares in an undervalued asset.

Common theme: Corrective forces in asset markets are weaker during bubbles
than during crises.
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Static Contracting Model



Model

Two periods, 0 and 1.

Riskless rate is zero.

One risky asset.
Price S in period 0.

Payoff S + d or S − d in period 1. Prior probability of S + d is 1
2
.

Investor:
Risk-averse with utility − exp−ρW .

Can invest in the risky asset by employing manager.

Manager can be of two types:

Risk-averse with utility − exp−ρ̄W̄ . Can observe signal about asset payoff.
Signal costs K to observe and yields posterior probability π ∈ [1− π̄, π̄] for
S + d . π is distributed symmetrically around 1

2
with density h(π).

Risk-neutral and cannot observe signal. Probability λ.

Extend contracting model to asymmetric distributions.
Required for equilibrium asset pricing model.
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Contracting

Investor pays fee f (W ) to manager.

f (W ) general function of W , except for:

Limited liability: f (W ) ≥ 0.
Monotonicity:

f (W1)− f (W2) ≥ ε(W1 −W2) for all (W1,W2) that can arise in equilibrium,
where ε > 0. Take limit ε→ 0.
Manager cannot gain by reducing W .

Investor chooses f (W ) to maximize utility.

Incentive compatibility constraints for manager:

Whether or not to observe signal.
Which position z in the risky asset to choose.
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Incentive Compatibility: Position Choice

Risk-averse type:

Position z(π) when posterior probability for S + d is π.

Symmetry → z(π) = z(1− π).

Incentive compatibility → Fee difference ∆(π) ≡ f (z(π)d)− f (−z(π)d) is
non-decreasing.

Monotonicity → z(π) is non-decreasing.

Risk-neutral type:

Symmetry → Indifferent between position ẑ ≥ 0 and −ẑ .

Investor ensures ẑ ≤ z(π̄). (Can set f (W ) = 0 for W > z(π̄)d .)

Monotonicity → ẑ < z(π̄) only if ∆̂ ≡ f (ẑd)− f (−ẑd) < ∆(π̄).

Uninformed risk-neutral type chooses a less variable fee profile than most
informed risk-averse types.
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Incentive Compatibility: Information Acquisition

Manager observes signal only if ∆(π̄) exceeds a bound, which increases in K .

Investor pays manager a high fee for high return to induce information
acquisition.

For K sufficiently large, ẑ = z(π̄).

High fee for high return attracts risk-neutral type.

Uninformed risk-neutral type is pooled with most informed risk-averse types.
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Optimal Contract

Risk-neutral type is pooled with interval of risk-averse types.
Maximum long position is chosen by risk-neutral type and interval [π∗, π̄] of
most optimistic risk-averse types.

Maximum short position is chosen by risk-neutral type and interval
[1− π̄, 1− π∗] of most pessimistic risk-averse types.

Pooling threshold π∗ is unique solution in [π∗, π̄] of

2(1− λ)

∫ π̄

π∗
(π − π∗)h(π)dπ︸ ︷︷ ︸

Cost of tighter
risk limit

= λ

(
π∗ − 1

2

)
.︸ ︷︷ ︸

Benefit of tighter
risk limit

Optimal positions:
Separation for π ∈ [ 1

2
, π∗):

z(π) =
1

2ρd
log

(
π

1− π

)
+

∆(π)

2d
.

Pooling for π ∈ [π∗, π̄]:

z(π̄) =
1

2ρd
log

(
π∗

1− π∗

)
+

∆(π̄)

2d
.
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Special Case

Manager’s risk-aversion coefficient ρ̄ is much larger than investor’s.

Fee f (W ) is small relative to investor’s wealth W .

Uncertainty d is small. Probability π is 1
2 + µd .

Embed model in continuous time.

Equivalence to reduced-form model without manager.

With probability 1− λ: Investor optimizes knowing µ, but with risk limit
|z | ≤ µ∗

ρ
. When risk limit does not bind, optimal position is z = µ

ρ
.

With probability λ: Investor randomizes between L and −L.
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Dynamic Asset-Pricing Model



Model

Continuous time t ∈ [0,∞).

Riskless asset, exogenous return r .

Risky asset.

Dividend flow Dt follows squared-root process

dDt = κ
(
D̄ − Dt

)
dt + σ

√
DtdBt

where (κ, D̄, σ) are positive and dBt is Brownian motion.

Dividends are always positive.
Volatility of dividend per share increases with dividend level. (Important)

Endogenous price St .
Supply of θ shares. Can result from the asset issuer or from noise traders.

θ < 0: Demand from noise traders exceeds supply from asset issuer.
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Investors

Overlapping generations living over infinitesimal periods.

Continuum with measure 1.

Utility − exp(−ρdWt). Equivalent to mean-variance objective

Et(dWt)−
ρ

2
Vart(dWt)

Expert investors:

Observe (θ,Dt) and invest on their own.

Measure 1− x ∈ (0, 1].

Non-expert investors:
Do not observe (θ,Dt) and can only invest through managers. Previous model
and reduced form.

Adapt previous model to asymmetric distributions for π.
Modify beliefs of risk-neutral types so that their positions cancel out in
equilibrium.
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Equilibrium – Non-Binding Risk Limit

All investors choose same position in risky asset. z1t = z2t = zt shares.

First-order condition:

Et(dR
sh
t ) = ρztVart(dRsh

t ),

where dRsh
t ≡ Dtdt + dSt − rStdt is asset’s return per share.

Using market-clearing (1− x)z1t + x(1− λ)z2t = θ and Ito’s lemma on
St = S(Dt), write FOC as

Dt + κ(D̄ − Dt)S
′(Dt) +

1

2
σ2DtS

′′(Dt)− rS(Dt) =
ρθ

1− λx
σ2DtS

′(Dt)
2.
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Equilibrium – Binding Risk Limit

Position z1t of experts satisfies FOC.

Position z2t of non-experts meets risk limit√
Var(z2tdRsh

t )

dt
= |z2t |σ

√
DtS

′(Dt) ≤
µ∗

ρ

with equality.

Previous calculation yields

Dt + κ(D̄ − Dt)S
′(Dt) +

1

2
σ2DtS

′′(Dt)− rS(Dt) = ρz1tσ
2DtS

′(Dt)
2.

Using market-clearing (1− x)z1t + x(1− λ)z2t = θ, rewrite as

Dt + κ(D̄ − Dt)S
′(Dt) +

1

2
σ2DtS

′′(Dt)− rS(Dt) =
ρθ

1− x
σ2DtS

′(Dt)
2

− sign(θ)(1− λ)xµ∗

1− x
σ
√
DtS

′(Dt).

Two non-linear second-order ODEs, with free boundary. Smooth-pasting at
boundary.
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ODE Solution – No Risk Limit

Proposition: If µ∗ =∞ (suboptimal contract), then S(Dt) = a0 + a1Dt

(affine price), with

a0 =
κ

r
a1D̄,

a1 =
2

r + κ+
√

(r + κ)2 + 4 ρθ
1−λx σ

2
.

Price St decreases in supply θ.

Low-supply assets trade at high price (overvalued).

High-supply assets trade at low price (undervalued).

Volatility
√
Vart(dRt) =

√
Vart( dSt

St
) is independent of θ.
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ODE Solution – Risk Limit

Theorem: If µ∗ <∞ (optimal contract), then

S(Dt) is convex and lies above affine solution for θ < 0.

S(Dt) is concave and lies below affine solution for θ > 0.

Comparison of solutions → Risk limits exacerbate mispricings in both
directions.

Convexity → Amplification.

Proposition: Volatility
√
Vart(dRt) is larger for θ < 0 than for θ > 0.

Overvaluation and high volatility go together.
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Numerical Example: Prices and Positions
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r = 0.03, κ = 0.1, D̄ = 0.2, σ = 0.2, θ ∈ {0.01,−0.01}, ρ = 1, x = 0.9, λ = 0.2.

Risk limits exacerbate mispricing.

Risk limits have a larger effect on prices and positions when θ < 0 than when
θ > 0.
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Numerical Example: Return Moments
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r = 0.03, κ = 0.1, D̄ = 0.2, σ = 0.2, θ ∈ {0.01,−0.01}, ρ = 1, x = 0.9, λ = 0.2.

Overvaluation and high volatility go together.
Same result when replace volatility by CAPM beta.

Compute CAPM beta in multi-asset extension of the model.
Assets have independent payoffs and managers specialize in different assets.
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Numerical Example: Aggregate Market
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r = 0.03, κ = 0.1, D̄ = 0.2, σ = 0.2, θ ∈ {0.01,−0.01}, ρ = 1, x = 0.9, λ = 0.2.

Risk limits raise average price.
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Extensions and Conclusion



Benchmarks

Replace risk limit

|z2t |σ
√
DtS

′(Dt) ≤
µ∗

ρ

by

|z2t − η|σ
√
DtS

′(Dt) ≤
µ∗

ρ
.

Bound concerns volatility of position relative to benchmark position.

Results carry through identical provided that all comparisons between θ and
zero are replaced by ones between θ and η.

Can contracting model be extended to derive risk limit relative to benchmark?
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Concluding Remarks

Joint determination of asset management contracts and equilibrium prices.

Contracting results: Optimal contract involves risk limits.

Asset-pricing results:

Risk limits generate risk-return inversion.
Risk limits generate overvaluation bias.

Future research: Normative and policy implications.

How do privately optimal and socially optimal risk limits compare?
Should asset management contracts be designed differently?

26 / 25


