27 November 2007

The evolution of money: theory and predictions

John Moore Edinburgh and LSE

and

Nobuhiro Kiyotaki Princeton University problem:

money & financial intermediation don't fit into standard framework

need to model: LIQUIDITY

two aspects of financial contracting:

bilateral commitment

multilateral commitment

two aspects of financial contracting:

bilateral commitment

multilateral commitment

both may be limited

limited bilateral commitment:

limit on how much borrower can credibly promise to repay *initial lender*

limited bilateral commitment:

limit on how much borrower can credibly promise to repay *initial lender*

limited multilateral commitment:

limit on how much borrower can credibly promise to repay *any bearer* of the debt

multilateral commitment is harder than bilateral commitment

 because the initial lender, as an insider, may become better informed about the borrower than outsiders

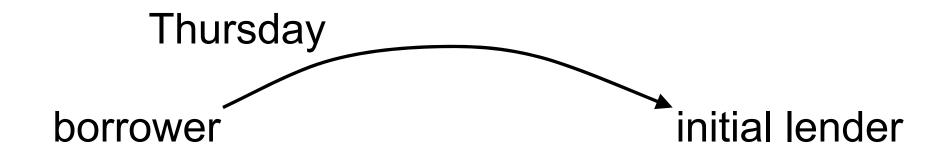
multilateral commitment is harder than bilateral commitment

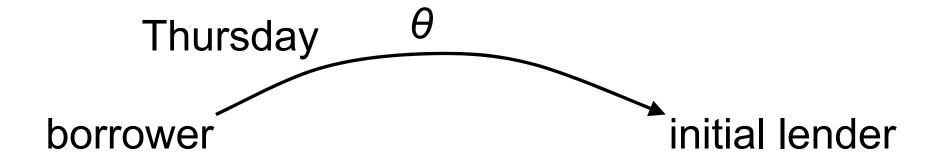
 because the initial lender, as an insider, may become better informed about the borrower than outsiders

⇒ adverse selection in secondary market for debt

borrower initial lender

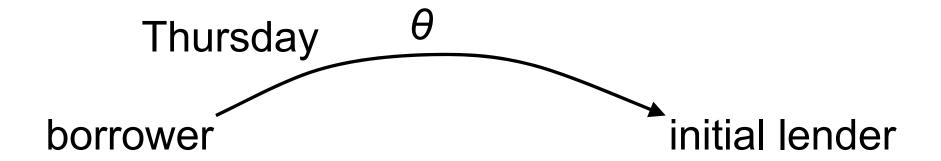
Tuesday





 θ = fraction of output that borrower can credibly commit to repay initial lender

θ less than 100%, because of moral hazard



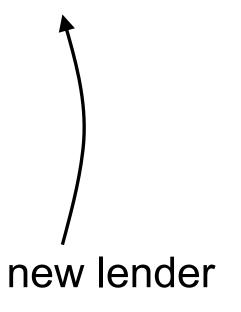
 θ = fraction of output that borrower can credibly commit to repay initial lender

θ in part reflects legal structure; one simple measure of financial depth; captures degree of "trust" in economy

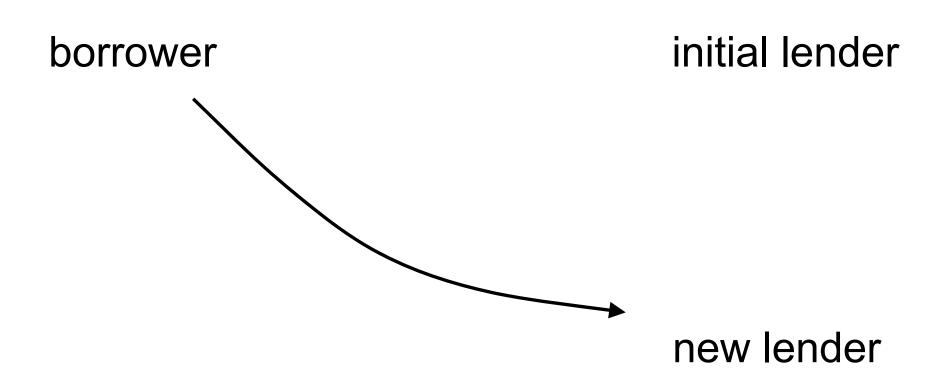
borrower initial lender

borrower

initial lender

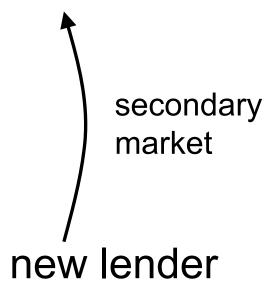


Thursday

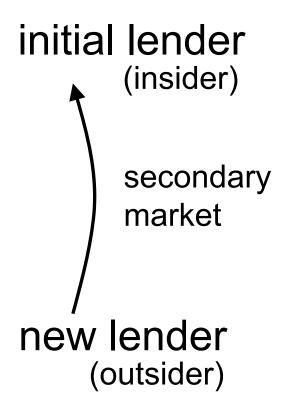


borrower

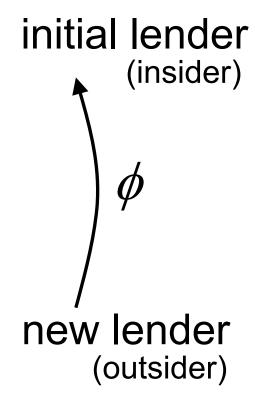
initial lender



borrower



borrower



 ϕ indexes the efficiency of secondary market; another simple measure of financial depth; captures degree of "liquidity" in economy

blue paper ≡ non-circulating private paper (sold on Tuesday: but cannot be resold on Wednesday)

blue paper ≡ non-circulating private paper (sold on Tuesday: but cannot be resold on Wednesday)

red paper ≡ circulating private paper
(can be resold on Wednesday:
"inside money")

blue paper ≡ non-circulating private paper (sold on Tuesday: but cannot be resold on Wednesday)

red paper ≡ circulating private paper
(can be resold on Wednesday:
"inside money")

green paper ≡ shells & gold / fiat money ("outside money")

blue paper ≡ non-circulating private paper

Moore (sold on Tuesday: but

cannot be resold on Wednesday)

```
red paper ≡ circulating private paper
(can be resold on Wednesday:
"inside money")
```

green paper ≡ shells & gold / fiat money ("outside money")

blue paper ≡ non-circulating private paper

Moore (sold on Tuesday: but

cannot be resold on Wednesday)

```
red paper ≡ circulating private paper

Branson

(can be resold on Wednesday:

"inside money")
```

green paper ≡ shells & gold / fiat money ("outside money")

blue paper ≡ non-circulating private paper

Moore (sold on Tuesday: but

cannot be resold on Wednesday)

```
red paper ≡ circulating private paper

Branson

(can be resold on Wednesday:

"inside money")
```

green paper ≡ shells & gold / fiat money King ("outside money")

mnemonic

blue paper - ice: illiquid

red paper – blood: liquid: circulates around economy

green paper – dollar bills ("greenbacks")

A Brief History of Money (very brief!)

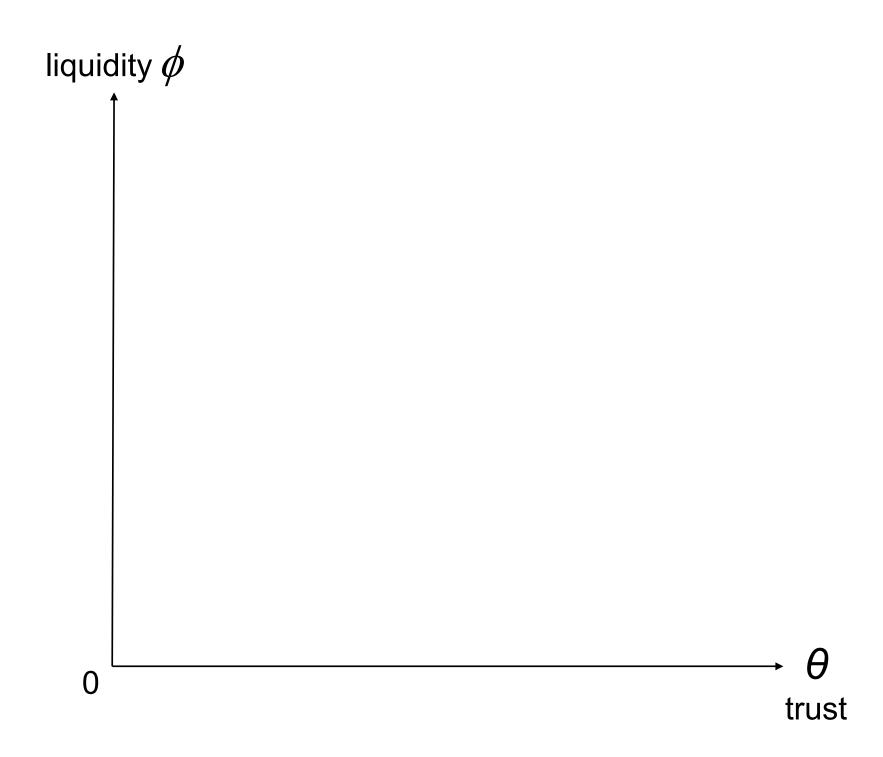
A Brief History of Money (very brief!)

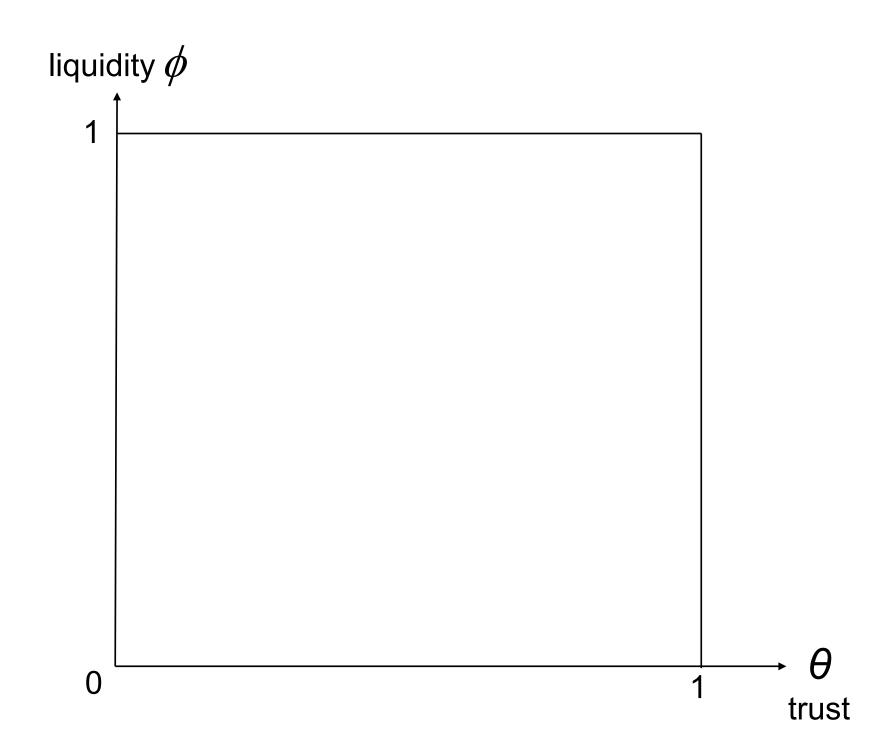
and also ...

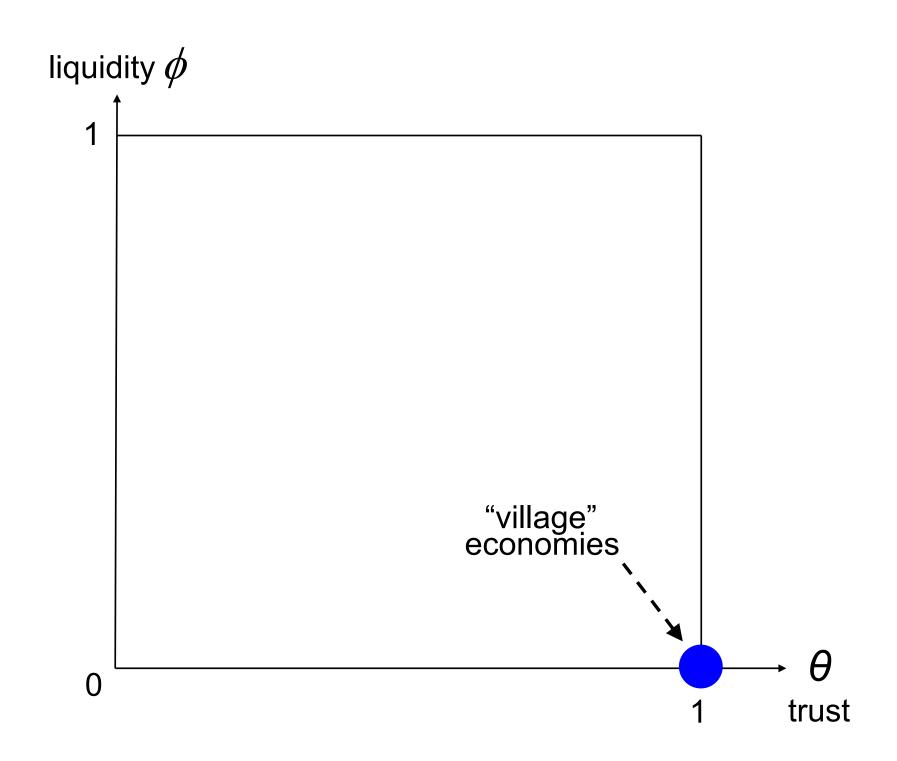
A Brief History of Money (very brief!)

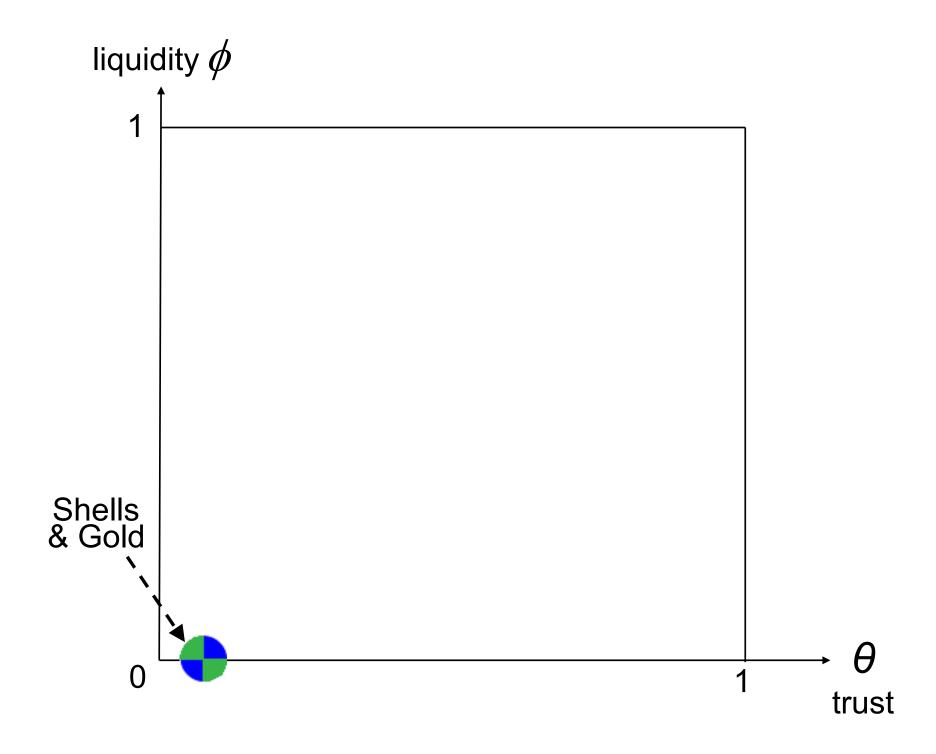
and also ...

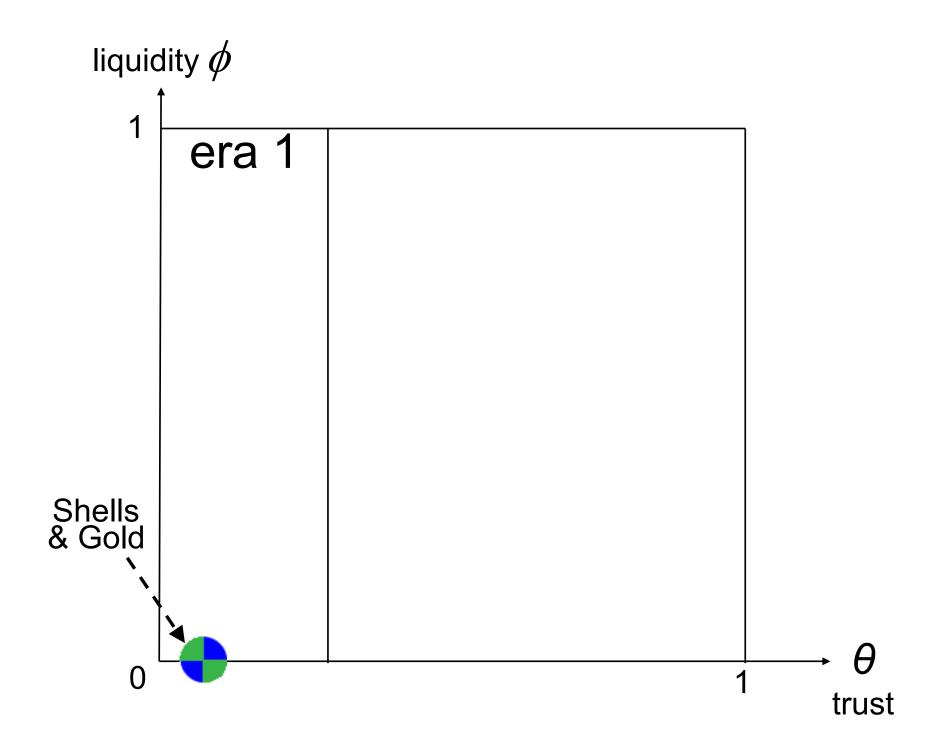
A Vision of the Future (two visions)

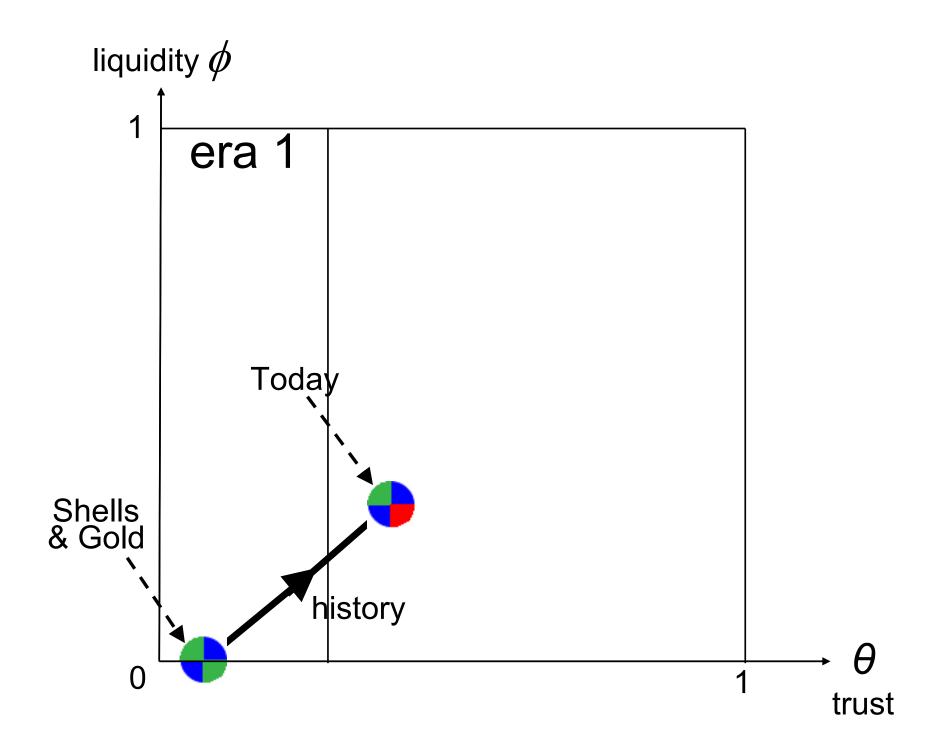


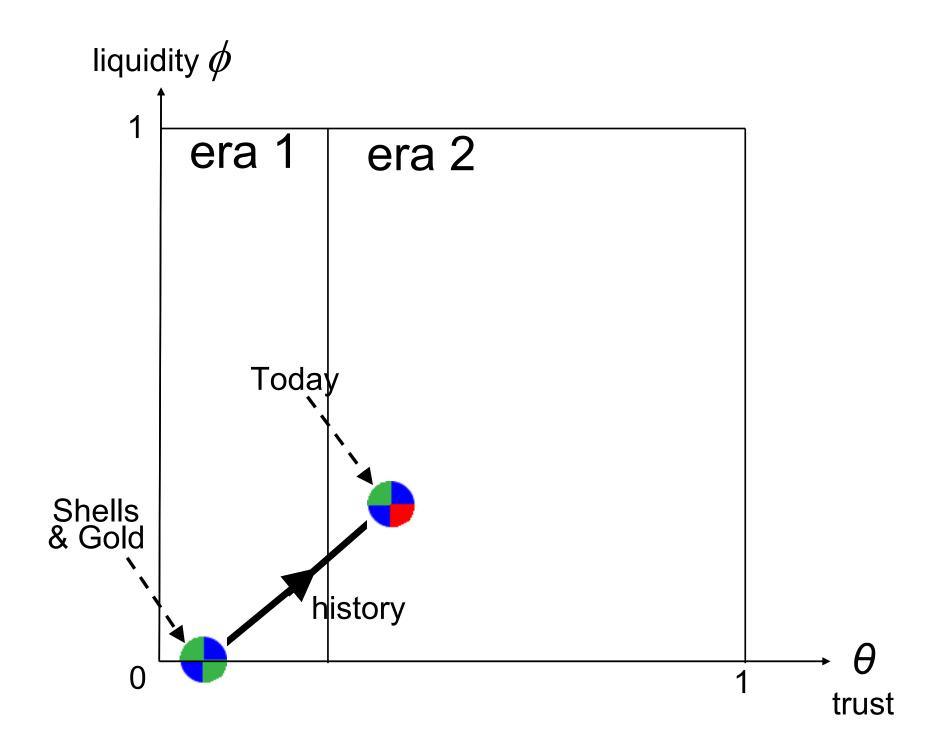


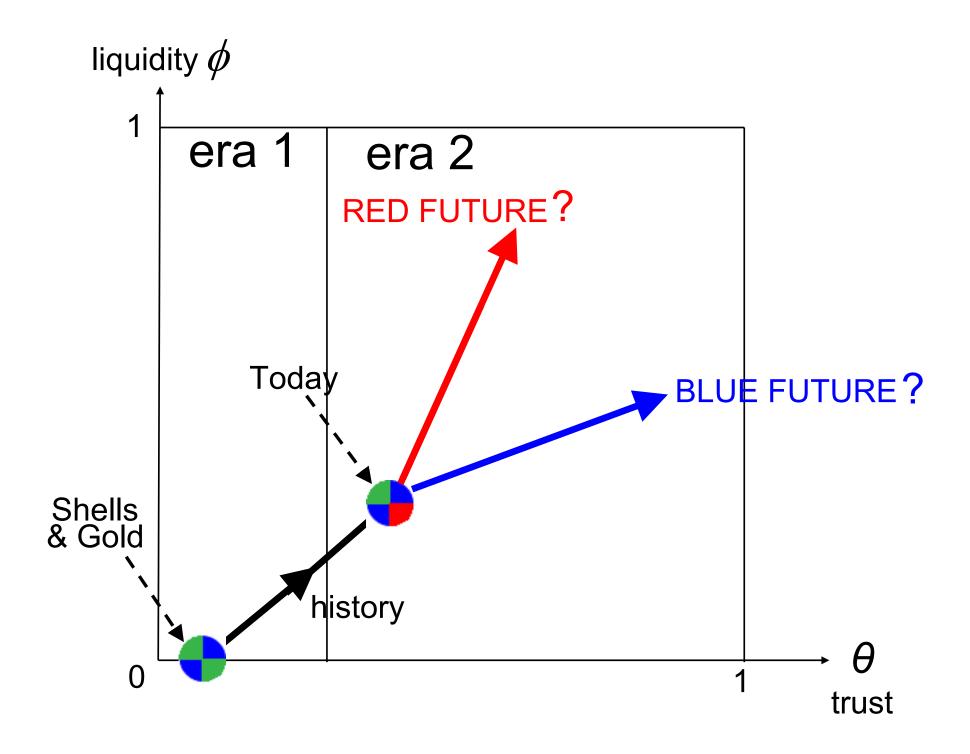


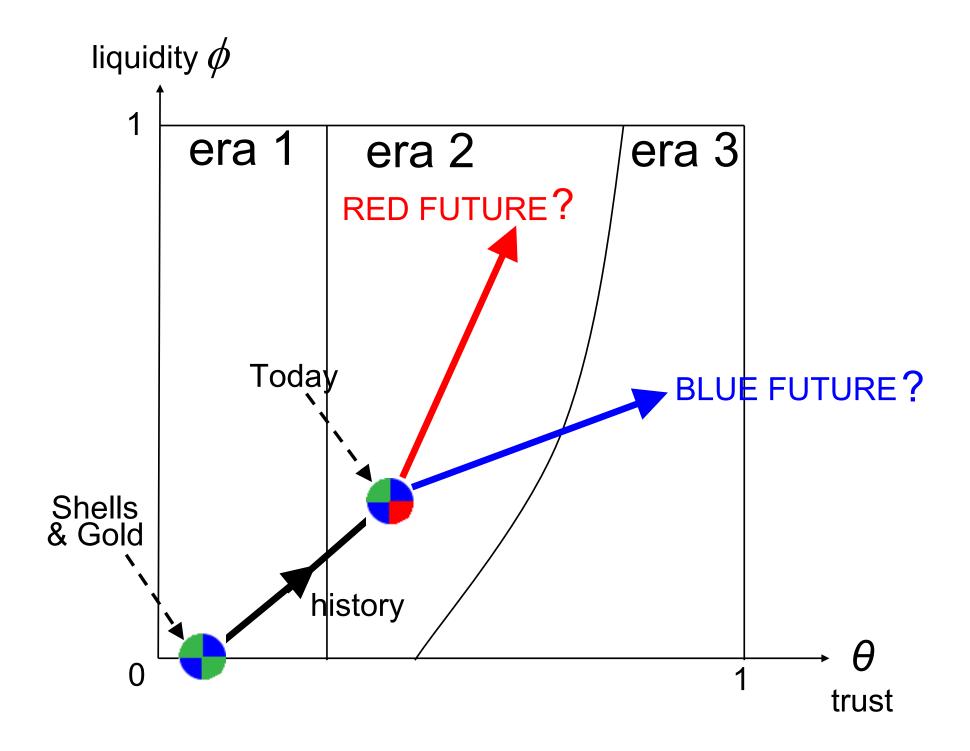


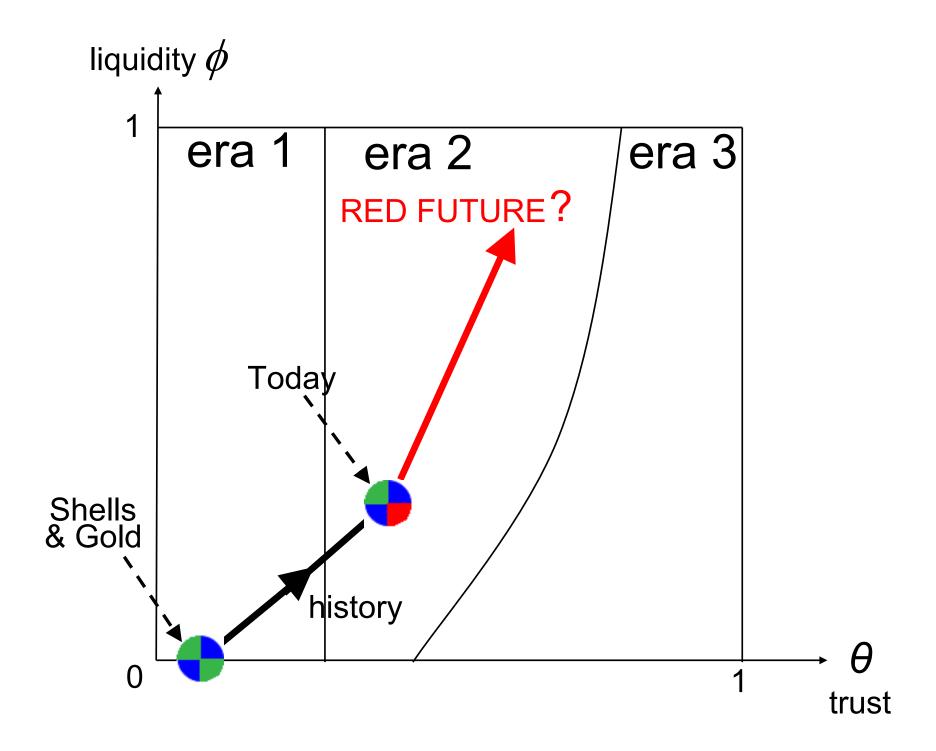


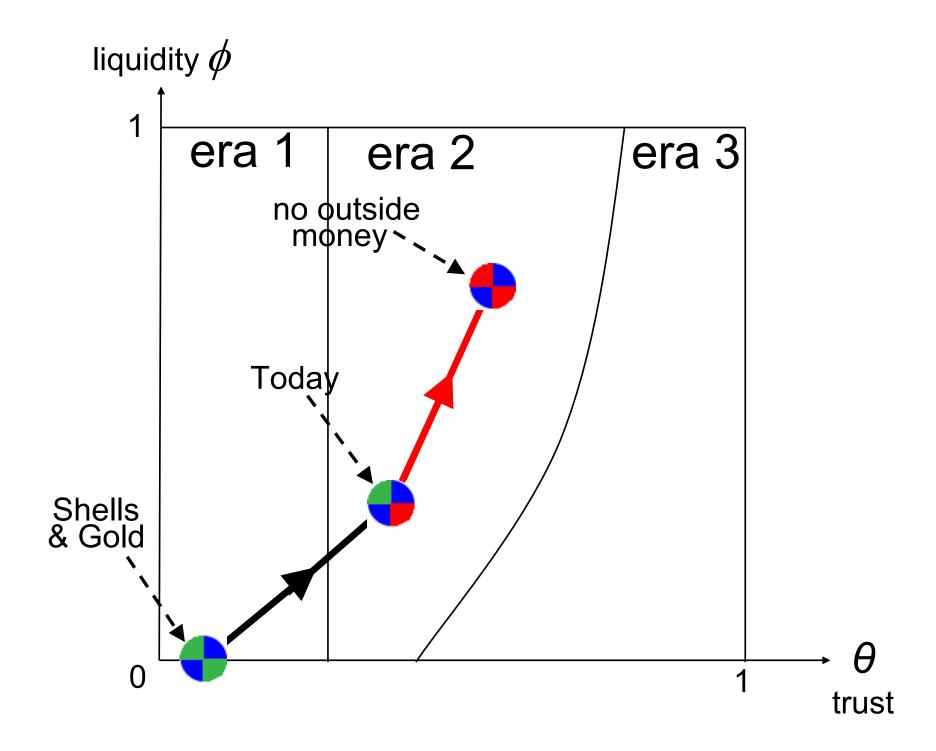


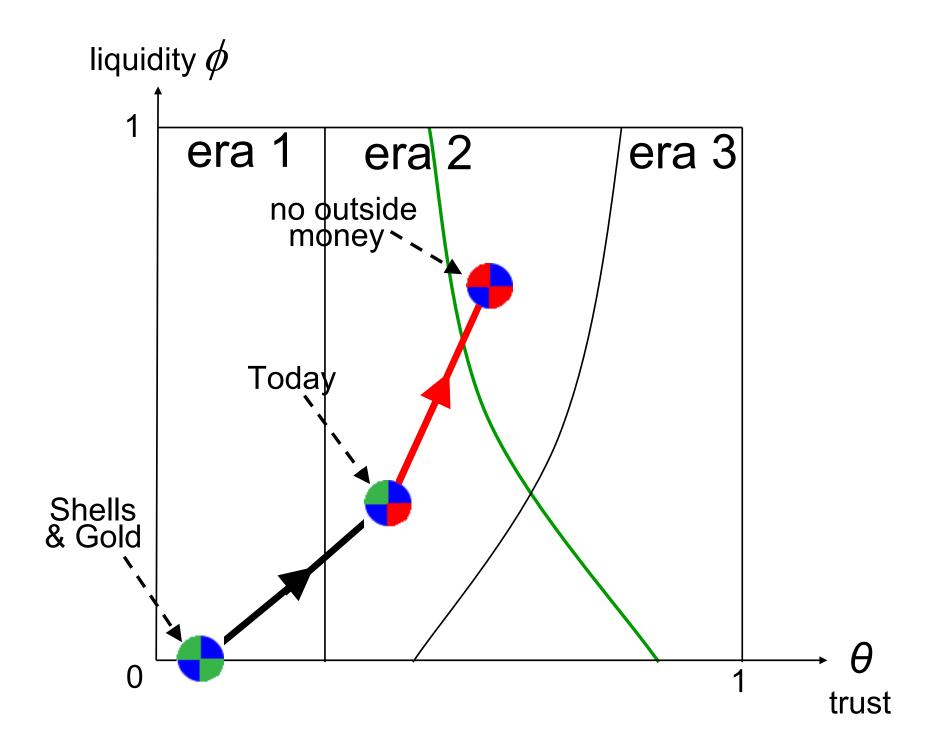


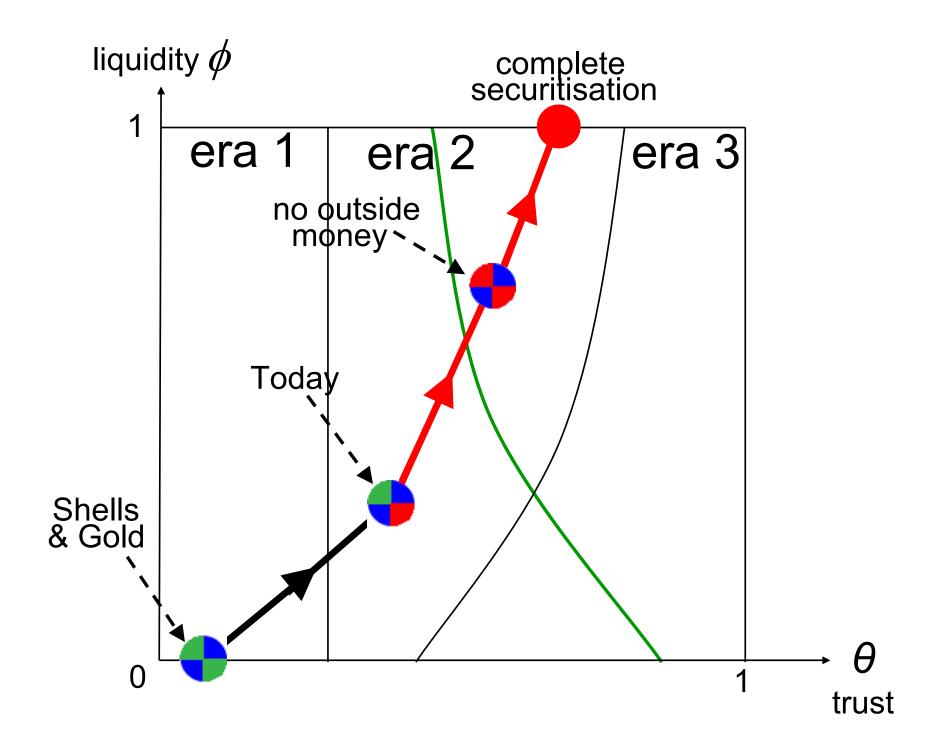


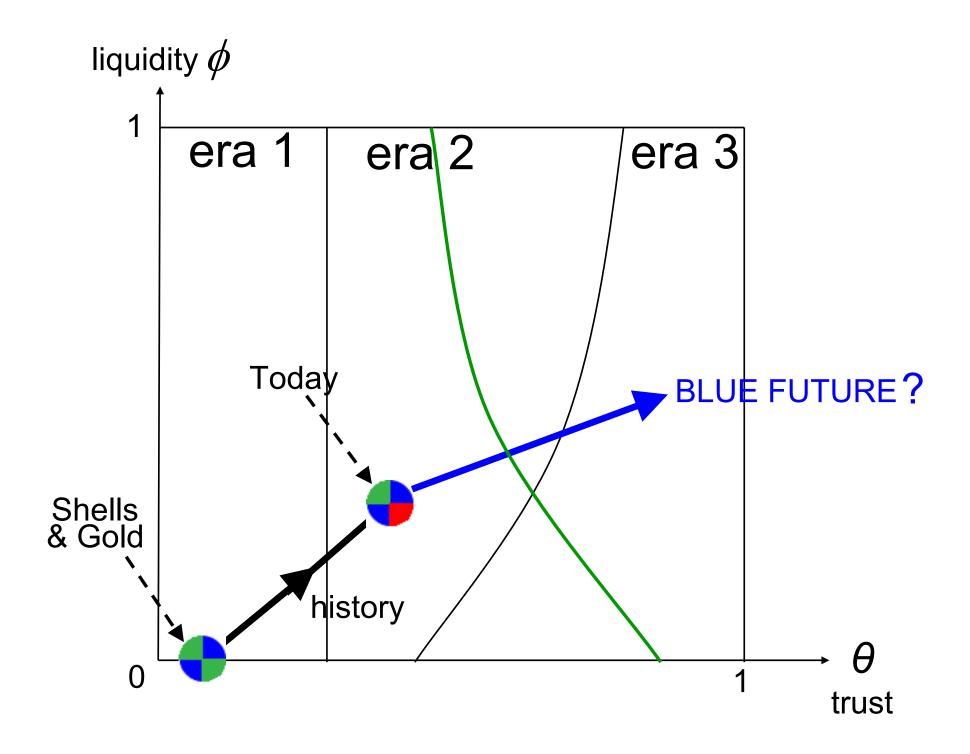


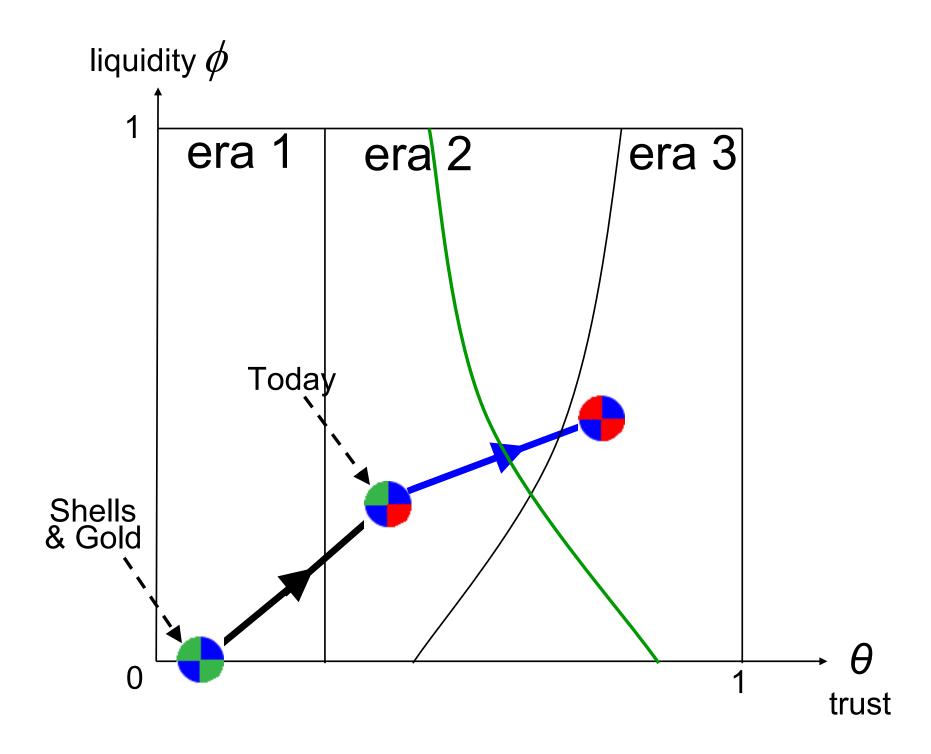


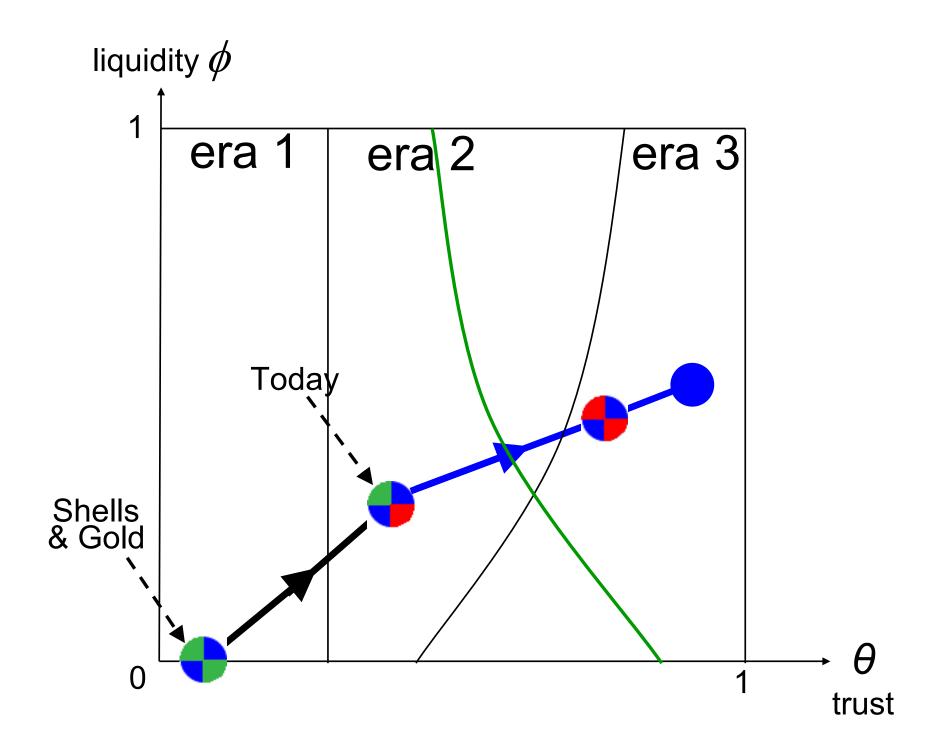


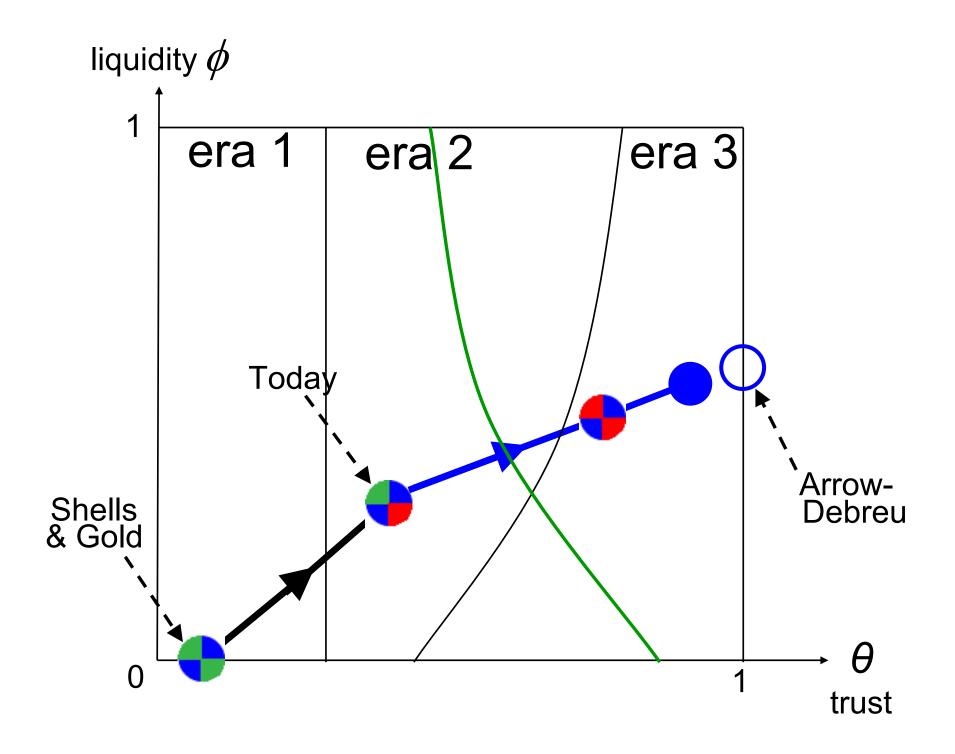


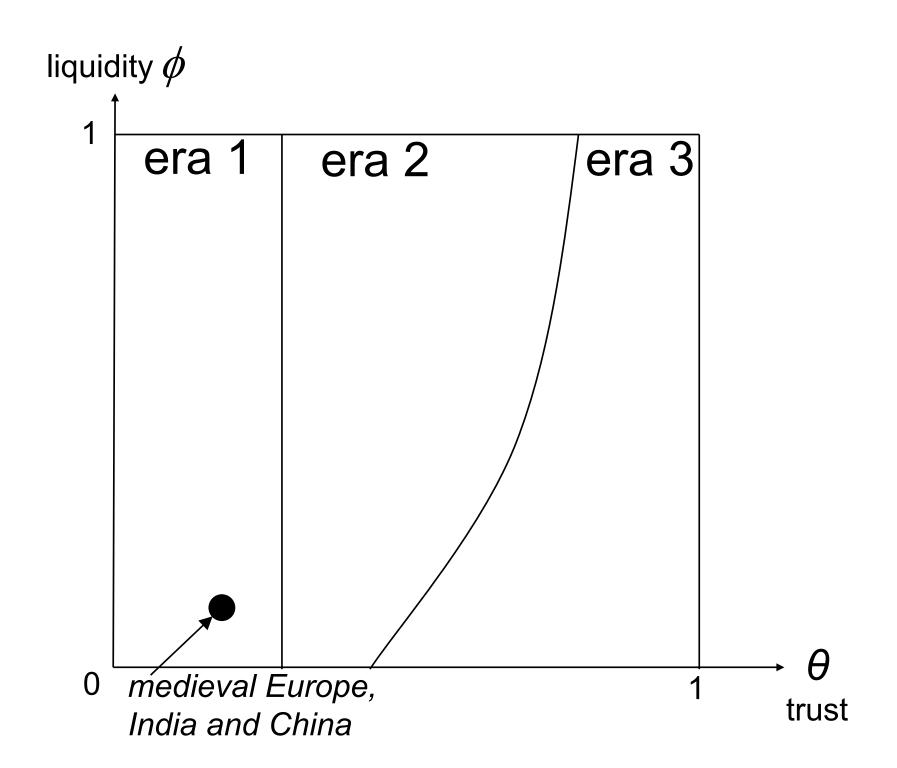


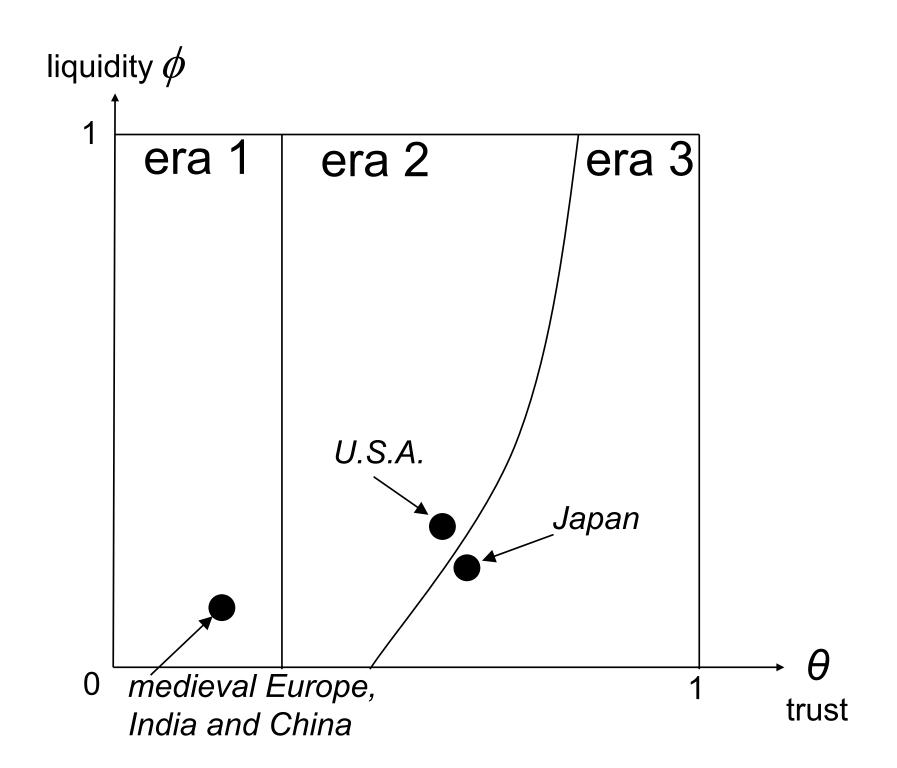












THE MODEL

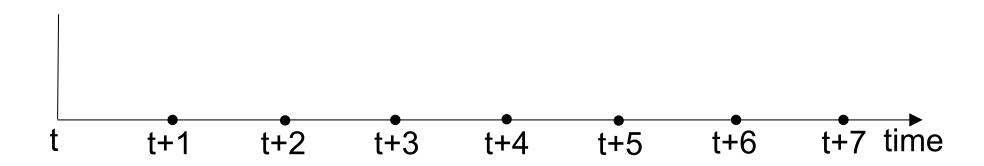
THE MODEL

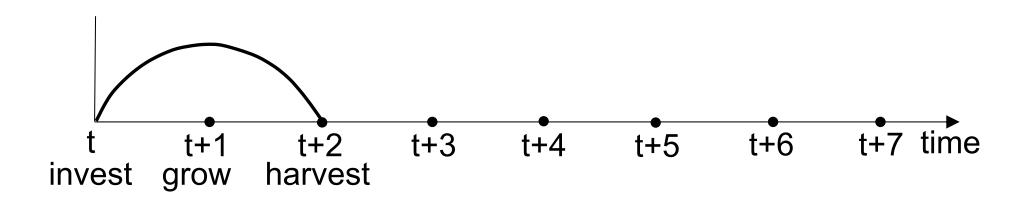
discrete time t = 1, 2, 3, ...

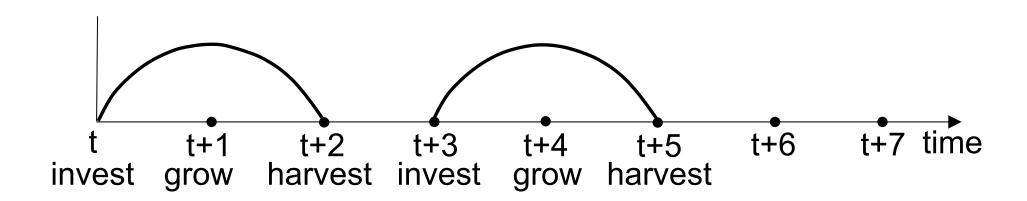
one homogenous good, corn, storable (one for one) no uncertainty

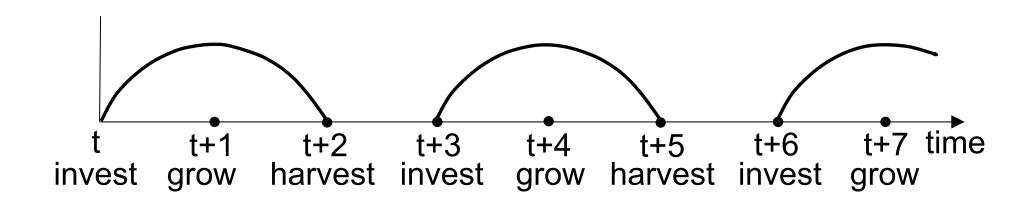
infinitely lived agents choose consumption path $\{c_t, c_{t+1}, c_{t+2}, ...\}$ to maximise

$$\sum_{s=0}^{\infty} \beta^s \log c_{t+s} \qquad 0 < \beta < 1$$









to produce y corn on day t+2 requires input G(y) corn on day t:

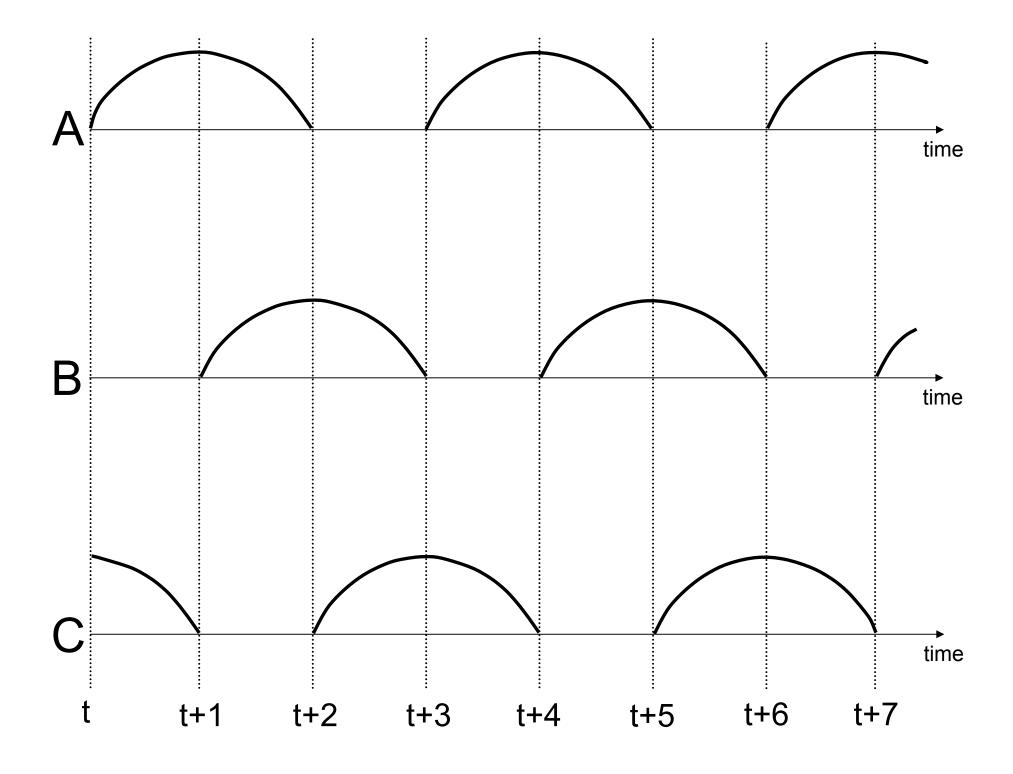
where
$$G(y) \propto y^{1/(1-\lambda)}$$
 $0 < \lambda < 1$

to produce y corn on day t+2 requires input G(y) corn on day t:

where
$$G(y) \propto y^{1/(1-\lambda)}$$
 $0 < \lambda < 1$

in a symmetric allocation, population is equally divided into 3 groups:

(normalise aggregate population = 3)



first-best (Arrow-Debreu):

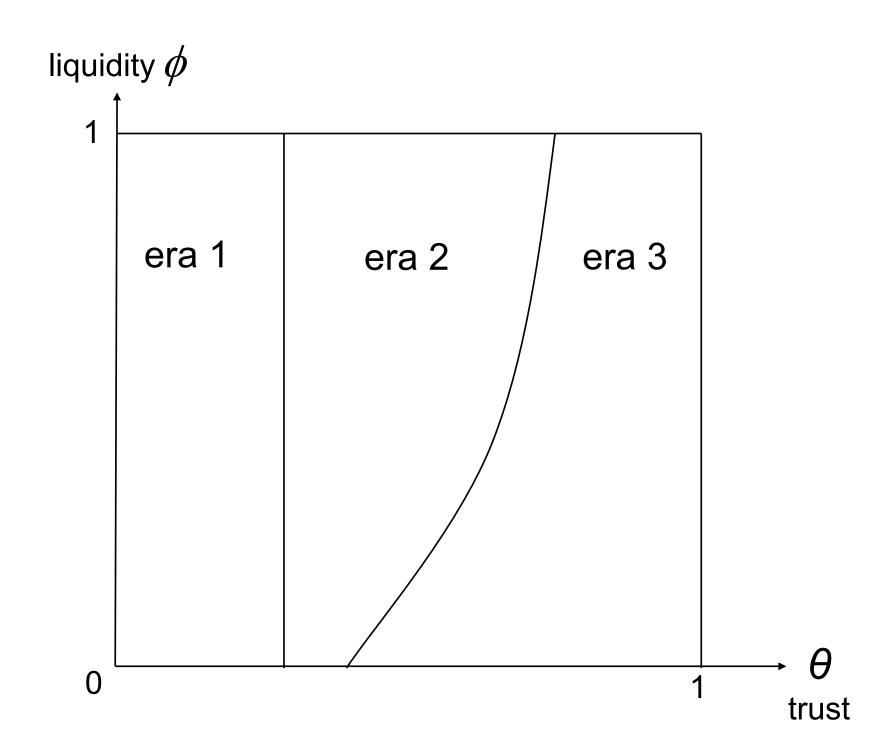
efficient production: $G'(y^*) = \beta^2$ smooth consumption: $c_t \equiv \frac{1}{3} [y^* - G(y^*)]$ first-best (Arrow-Debreu):

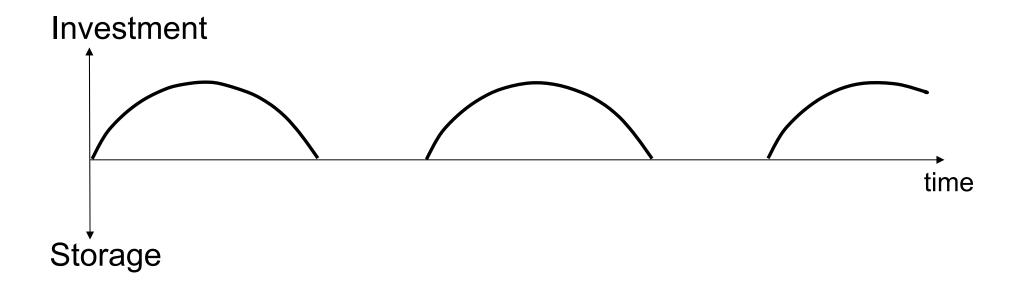
efficient production: $G'(y^*) = \beta^2$ smooth consumption: $c_t \equiv \frac{1}{3} [y^* - G(y^*)]$

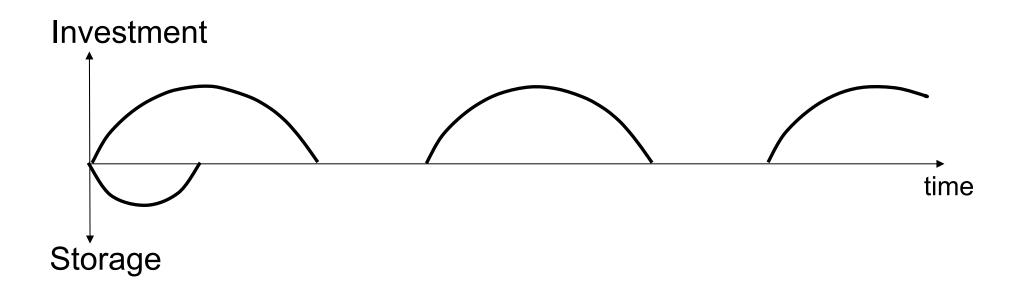
BUT, unlike in Arrow-Debreu, we assume

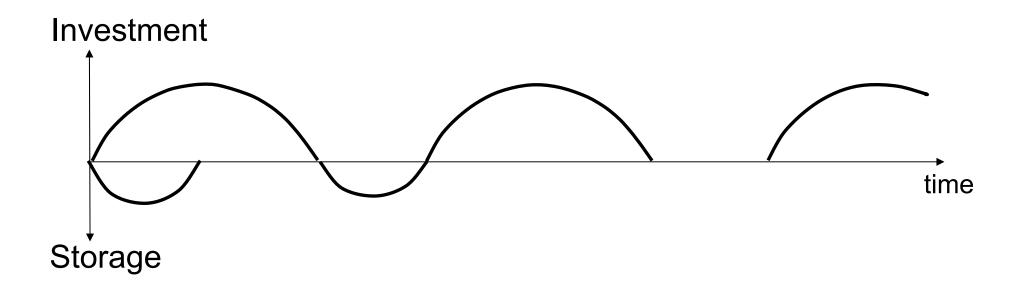
$$\theta < 1$$

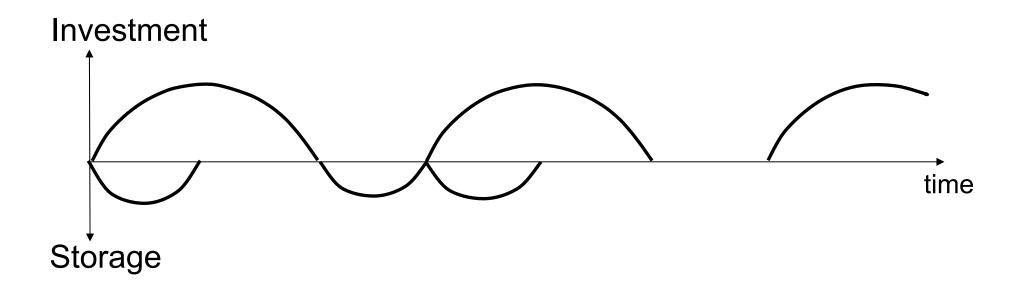
at start of a project, investing agent can credibly promise at most θy of harvest y

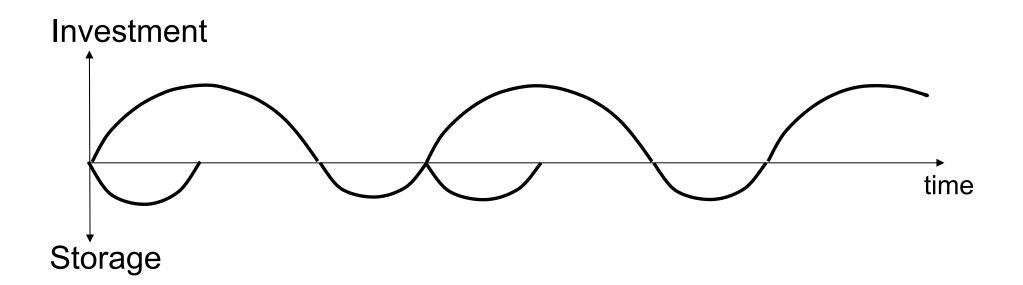


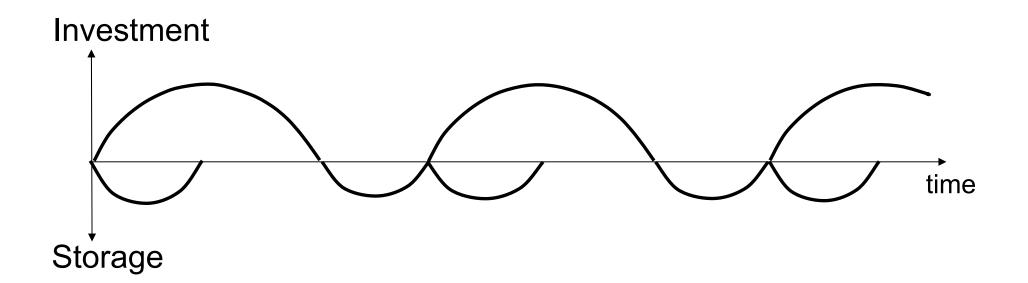


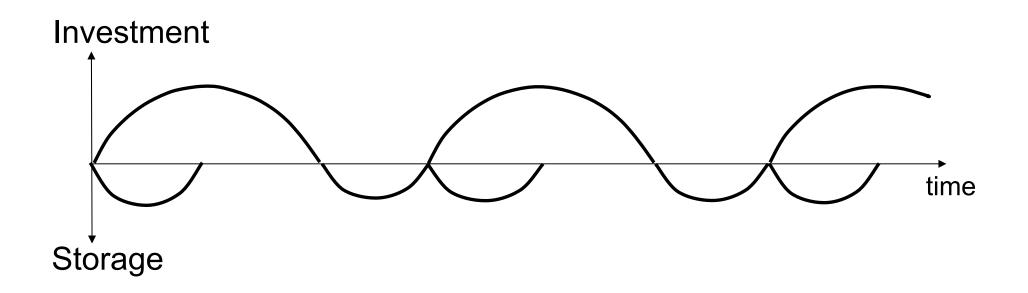




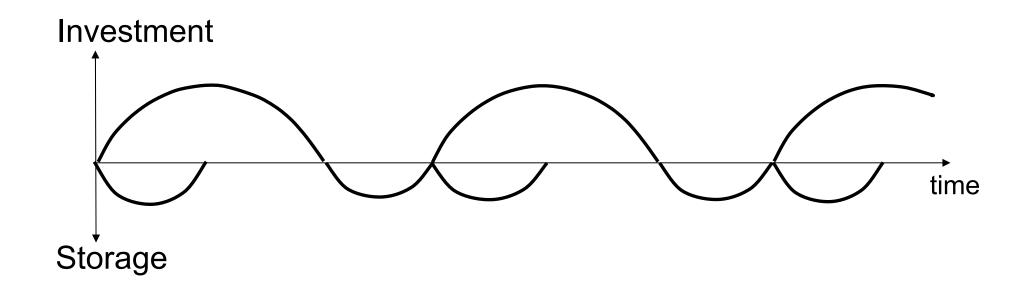




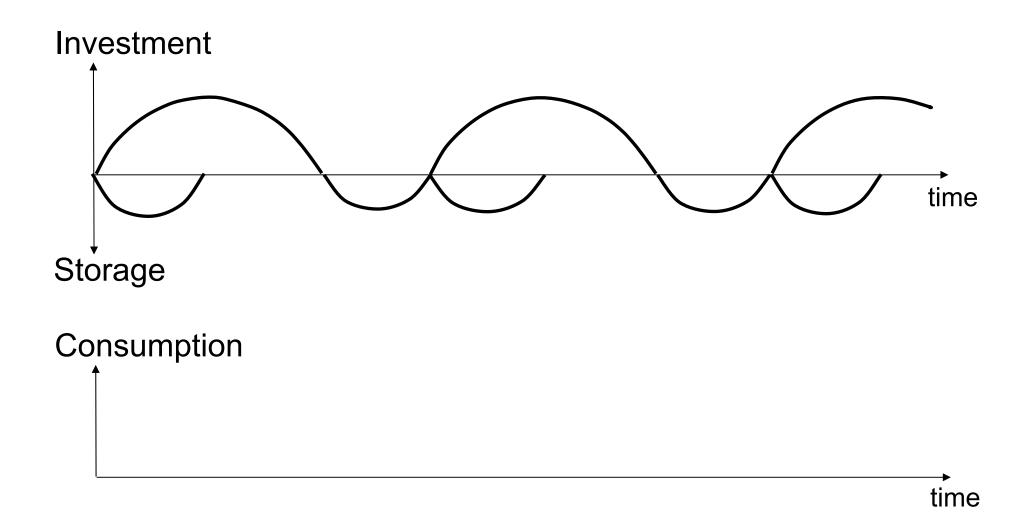


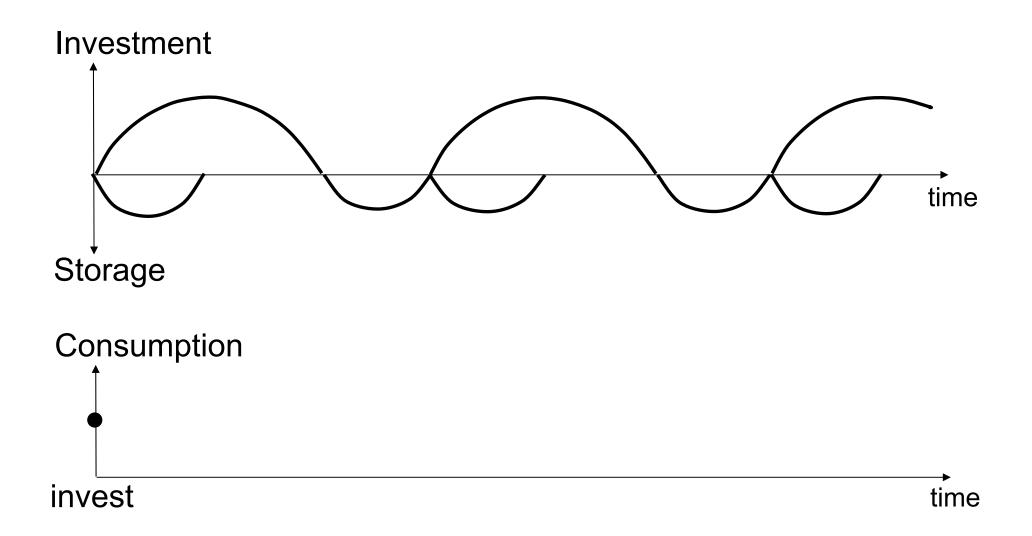


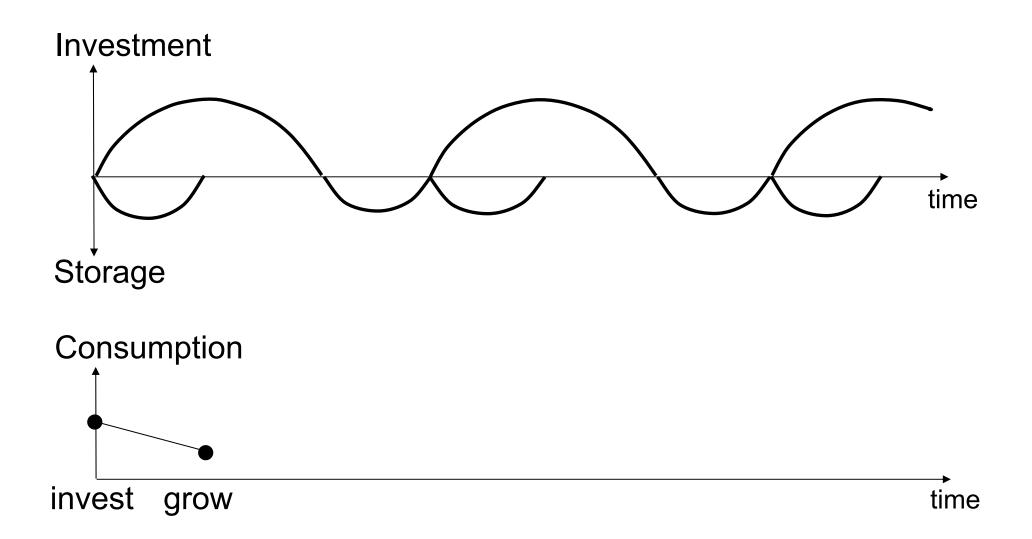
$$G'(y) = \beta^3$$
 => y below y* under-investment

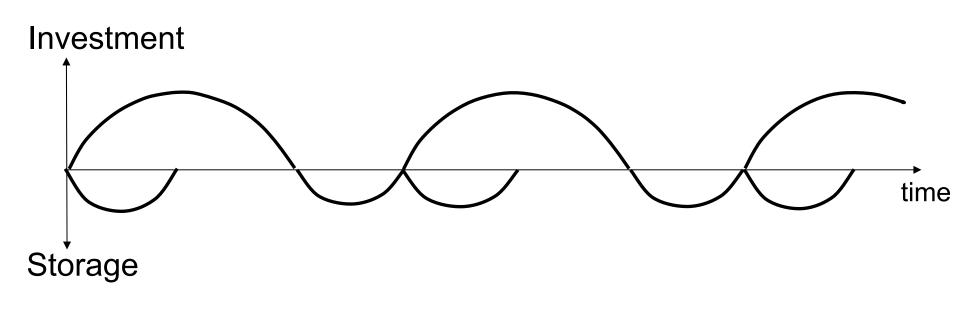


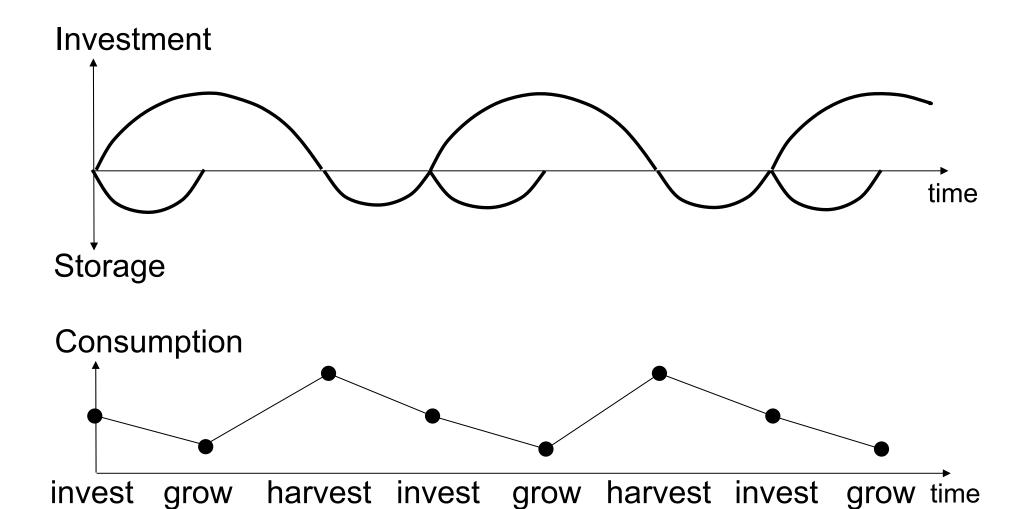
not only is there under-investment, but there is also jagged consumption:

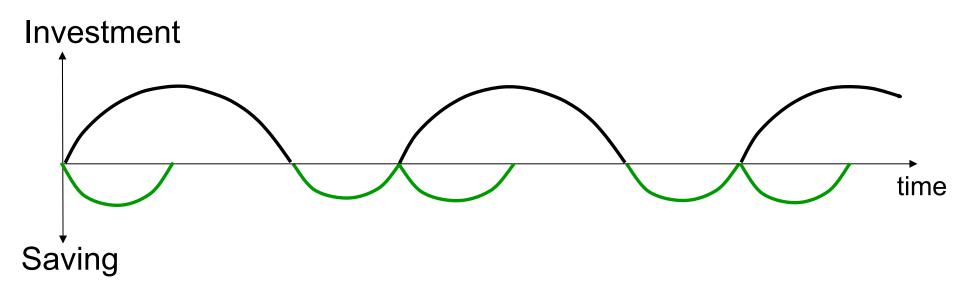












introduce outside money (green paper): same steady-state allocations as in autarky except that no corn need be tied up in storage (Samuelson, 1958)

less extreme: $\theta > 0$

i.e. investing agent can issue private paper

but adverse selection causes the secondary market to break down ...

assume project comprises a large number of parts, some of which are lemons

assume project comprises a large number of parts, some of which are lemons

no-one can distinguish lemons on day of investment, day t

insiders privately learn which parts are lemons by day t+1

outsiders remain uninformed until day t+2

assume project comprises a large number of parts, some of which are lemons

no-one can distinguish lemons on day of investment, day t

insiders privately learn which parts are lemons by day t+1

outsiders remain uninformed until day t+2

but there is a remedy ...

at start of project (day t), investing agent can bundle parts together so that lemons cannot be separated out later (day t+1) at start of project (day t), investing agent can bundle parts together so that lemons cannot be separated out later (day t+1)

bundling = financial intermediation/banking

converts illiquid paper (blue paper)
that cannot be resold at t+1

into liquid paper (red paper)
that can be resold at t+1

cost of bundling a portion $z \leq y$ of output:

$$\frac{1-\phi}{\phi} G(z) \qquad 0 < \phi < 1$$

cost of bundling a portion $z \leq y$ of output:

$$\frac{1-\varphi}{\varphi} G(z) \qquad 0 < \varphi < 1$$

costs are deadweight (no extra output)

cost of bundling a portion $z \leq y$ of output:

$$\frac{1-\varphi}{\varphi} G(z) \qquad 0 < \varphi < 1$$

costs are deadweight (no extra output)

 $(\Rightarrow$ in first-best, there is

no bundling, no banking no inside money, no red paper)

q = issue price of blue paper

(price in terms of day t corn of a credible claim to day t+2 corn, that cannot be resold on day t+1)

 p^2 = issue price of red paper

(price in terms of day t corn of a credible claim to day t+2 corn, that can be resold on day t+1, at price p)

basic inequalities:

if p < 1 then green paper not used

in terms of overnight net returns:

$$\begin{array}{ll} \text{return on} & \leq & \text{return on} \\ \text{green} & \leq & \text{return on} \\ \text{(zero)} & (\frac{1}{p}-1) & \begin{pmatrix} \frac{1}{\sqrt{q}}-1 \end{pmatrix} & (\frac{1}{\beta}-1) \\ & & \\ &$$

in terms of overnight net returns:

$$\begin{array}{ll} \text{return on} & \leq & \text{return on} \\ \text{green} & \leq & \text{return on} \\ \text{(zero)} & (\frac{1}{p}-1) & \Big(\frac{1}{\sqrt{q}}-1) & (\frac{1}{\beta}-1) \\ & & \\ &$$

$$\frac{1}{\sqrt{q}} - \frac{1}{p}$$
 = Keynesian interest rate r

in terms of overnight net returns:

$$\begin{array}{ll} \text{return on} & \leq & \text{return on} \\ \text{green} & \leq & \text{return on} \\ \text{(zero)} & (\frac{1}{p}-1) & \begin{pmatrix} \frac{1}{\sqrt{q}}-1 \end{pmatrix} & (\frac{1}{\beta}-1) \\ & & \\ &$$

$$\frac{1}{\sqrt{q}} - \frac{1}{p}$$
 = Keynesian interest rate r

when green paper used (p=1), $r = \frac{1}{\sqrt{q}} - 1$

investment day:

G(y) +
$$\frac{1-\phi}{\phi}$$
G(z) + c + pm + qn
= $p^2\theta z$ + $q\theta(y-z)$ + m" + n'

investment day:

G(y) +
$$\frac{1-\phi}{\phi}$$
G(z) + c + pm + qn
= $p^2\theta z$ + $q\theta(y-z)$ + m" + n'

growing day:

$$c' + pm' + qn' = m + n''$$

investment day:

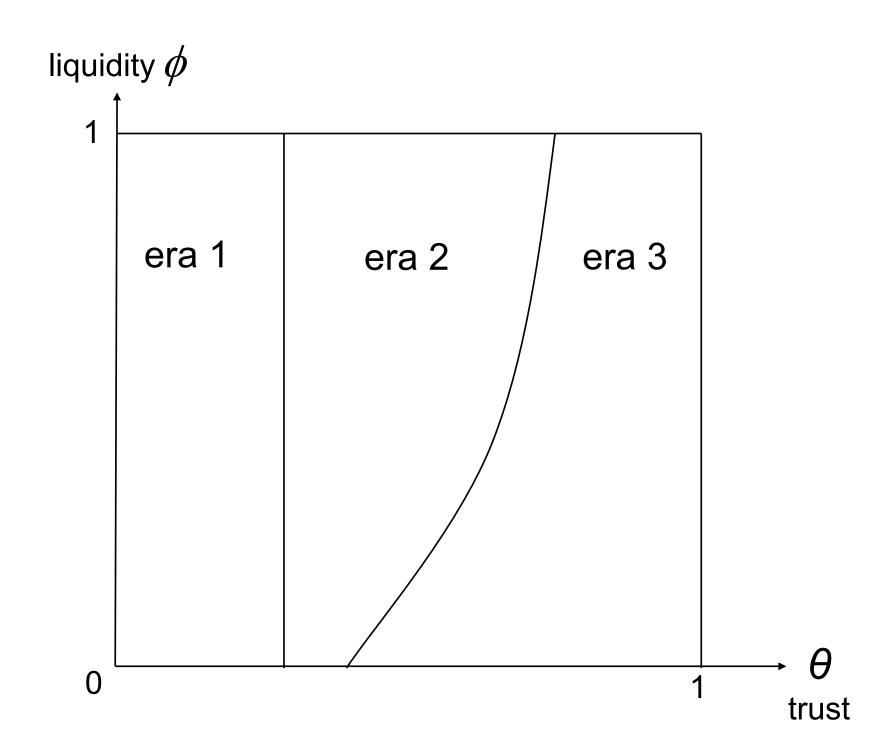
G(y) +
$$\frac{1-\phi}{\phi}$$
G(z) + c + pm + qn
= $p^2\theta z$ + $q\theta(y-z)$ + m" + n'

growing day:

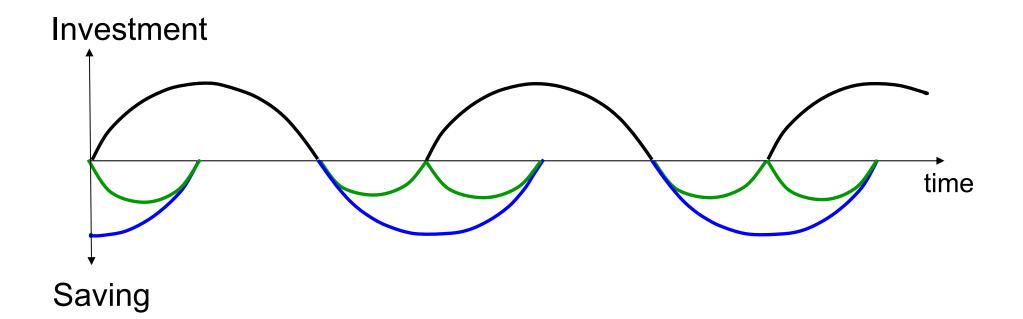
$$c' + pm' + qn' = m + n''$$

harvest day:

$$c'' + pm'' + qn'' = (1 - \theta)y + m' + n$$



<u>era 1</u>



investment day:

G(y) +
$$\frac{1-\phi}{\phi}$$
G(z) + c + pm + $\frac{\phi}{\phi}$
= $p^2\theta z$ + $q\theta(y-z)$ + m'' + $\frac{\phi}{\phi}$

growing day:

$$c' + pxn' + qxn' = m + n''$$

harvest day:

$$c'' + pm'' + qn'' = (1 - \theta)y + pq' + pq'$$

investment day:

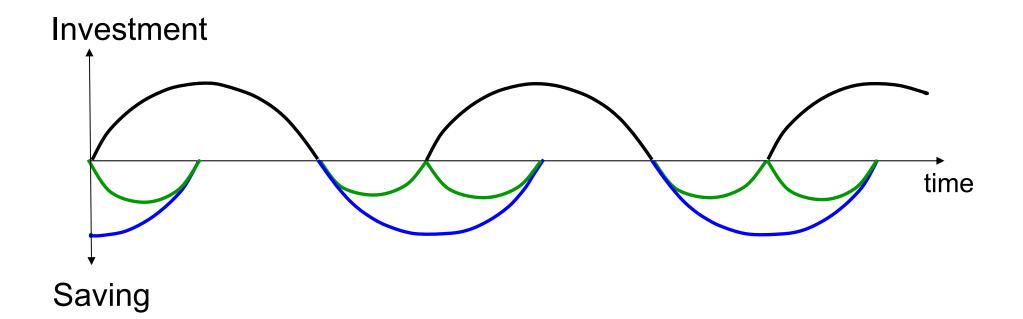
G(y) +
$$\frac{1-\phi}{\phi}$$
G(z) + c + pm
= $p^2\theta z + q\theta(y-z) + m''$

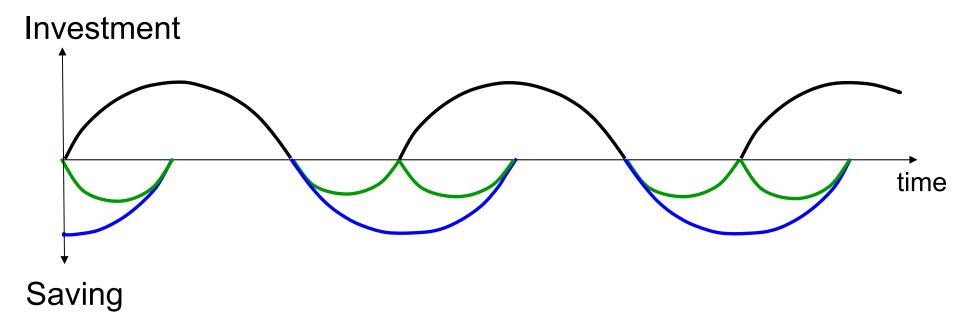
growing day:

$$c' = m + n''$$

harvest day:

$$c'' + pm'' + qn'' = (1 - \theta)y$$





blue paper competes with green paper (held twice)

- \Rightarrow q = 1: no liquidity premium
- ⇒ no bundling: no red paper

investment day:

$$G(y) + \frac{1}{G(z)} + c + pm$$

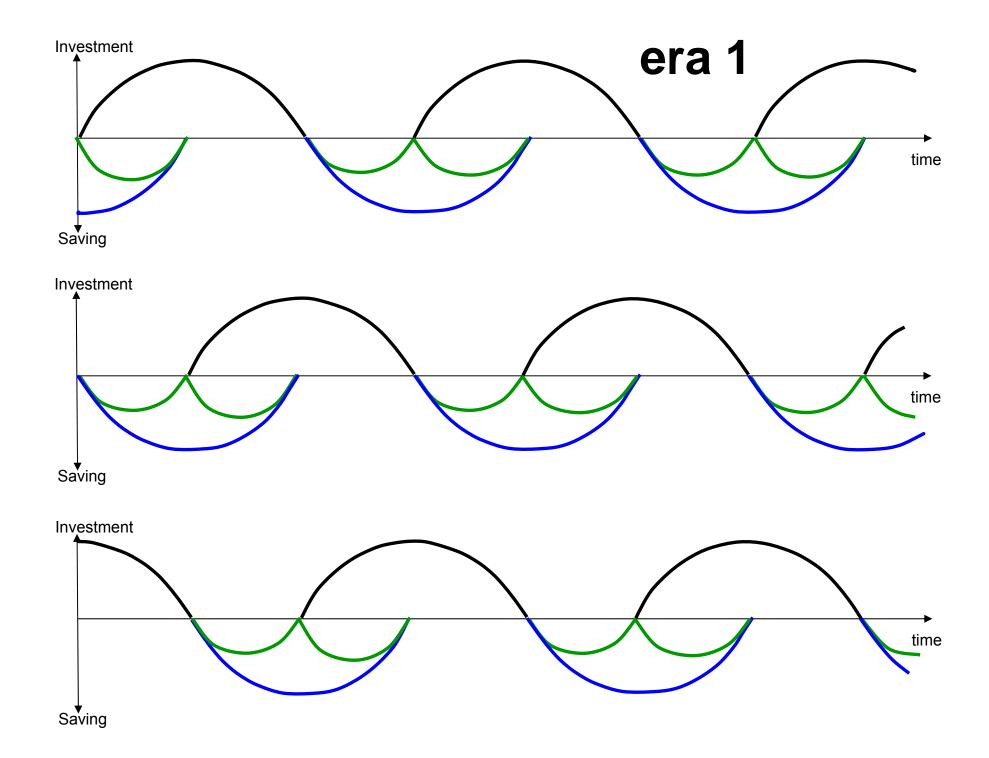
$$= p^{2}\theta z + q\theta(y - x) + m''$$

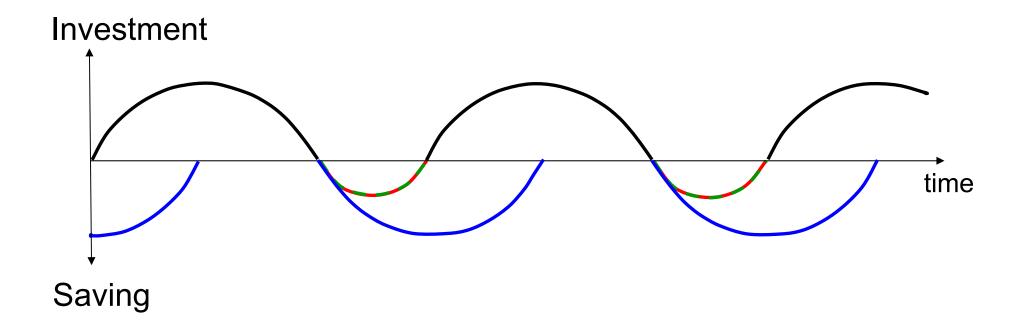
growing day:

$$c' = m + n''$$

harvest day:

$$c'' + pm'' + qn'' = (1 - \theta)y$$





investment day:

$$G(y) + \frac{1-\phi}{\phi}G(z) + c + pxn$$

$$= p^2\theta z + q\theta(y-z) + m''$$

growing day:

$$c' = m + n''$$

harvest day:

$$c'' + pm'' + qn'' = (1 - \theta)y$$

investment day:

$$G(y) + \frac{1-\phi}{\phi}G(z) + c$$

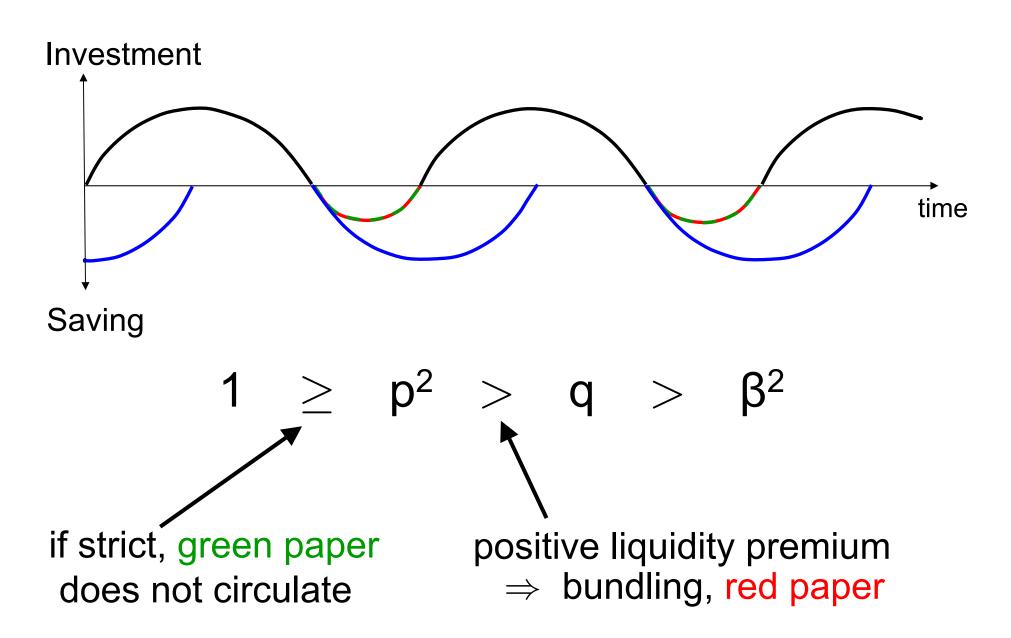
$$= p^2\theta z + q\theta(y-z) + m''$$

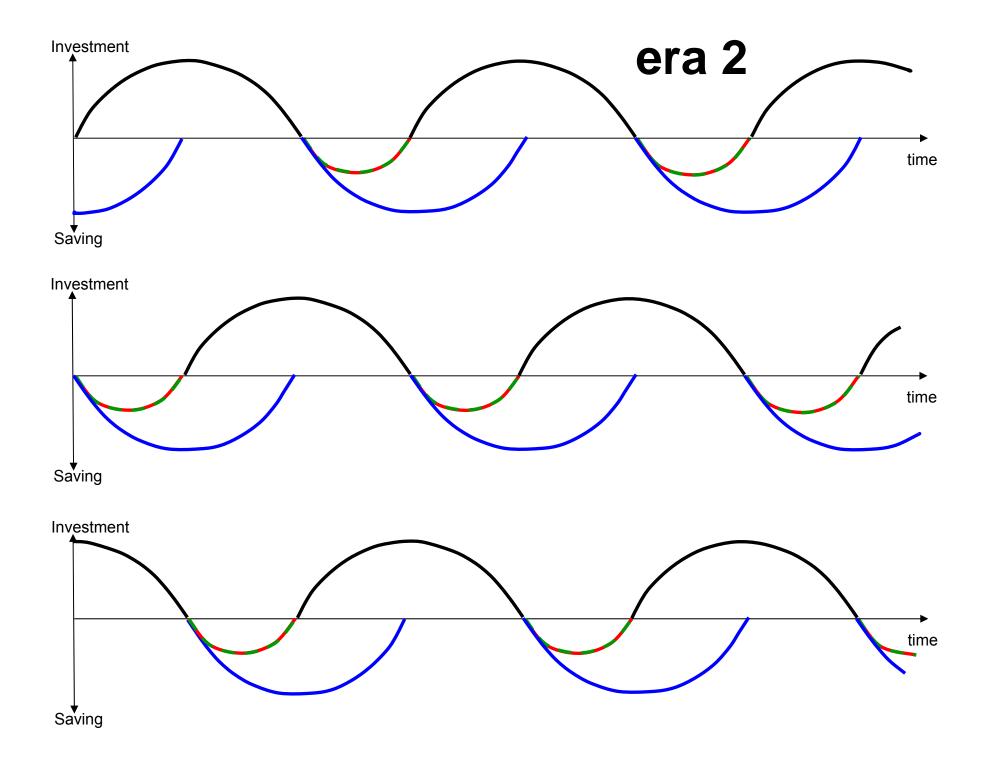
growing day:

$$c' = n''$$

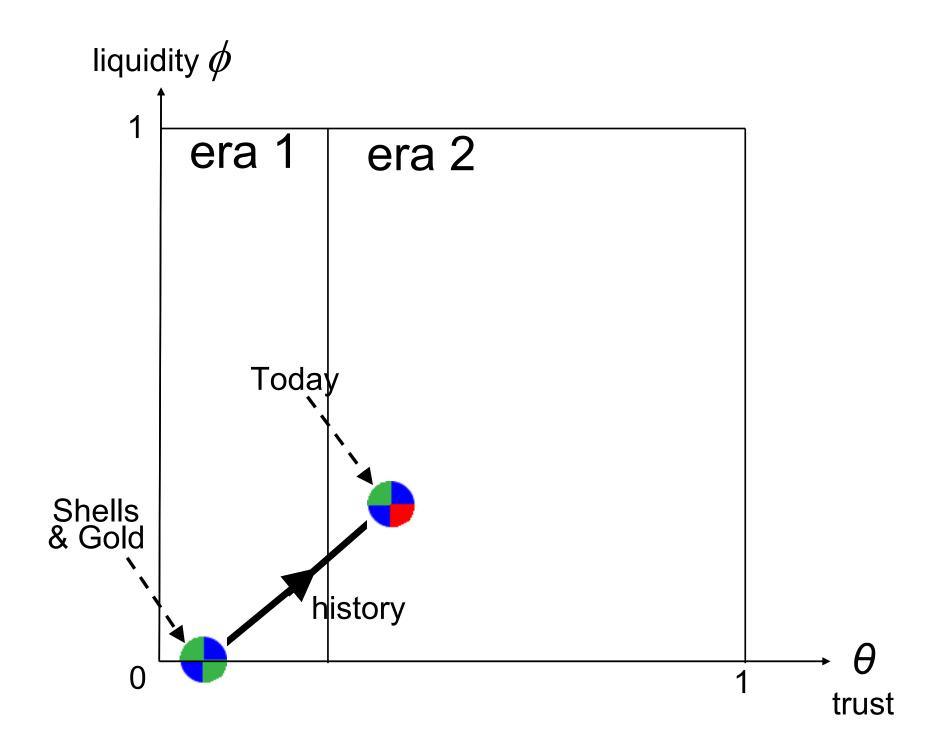
harvest day:

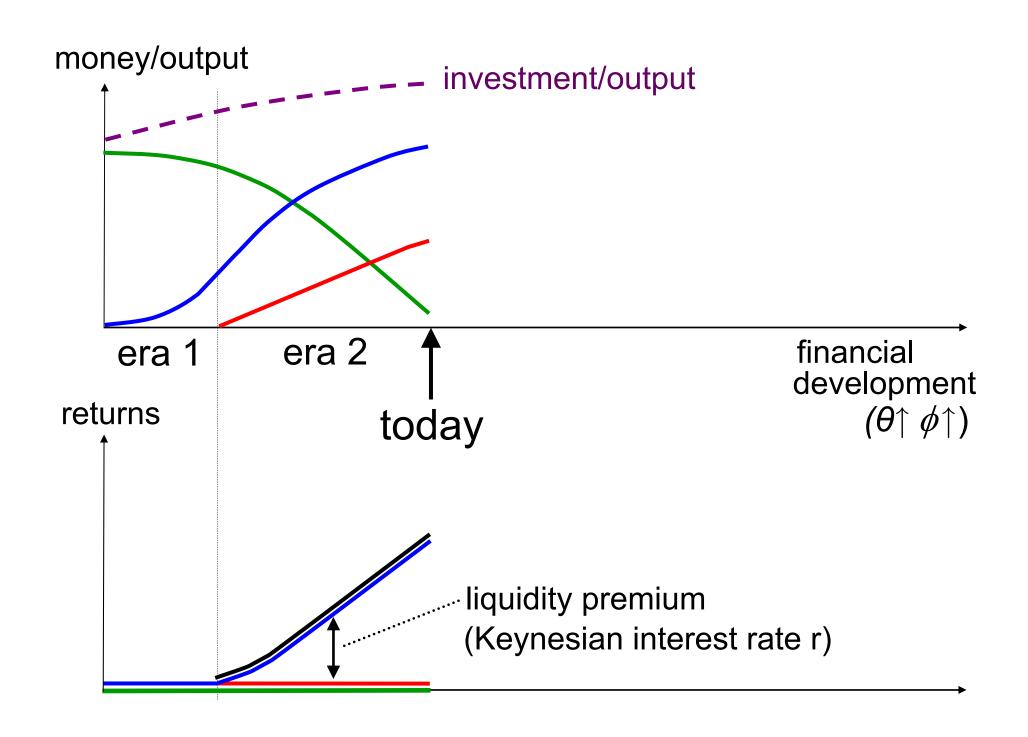
$$c'' + pm'' + qn'' = (1 - \theta)y$$



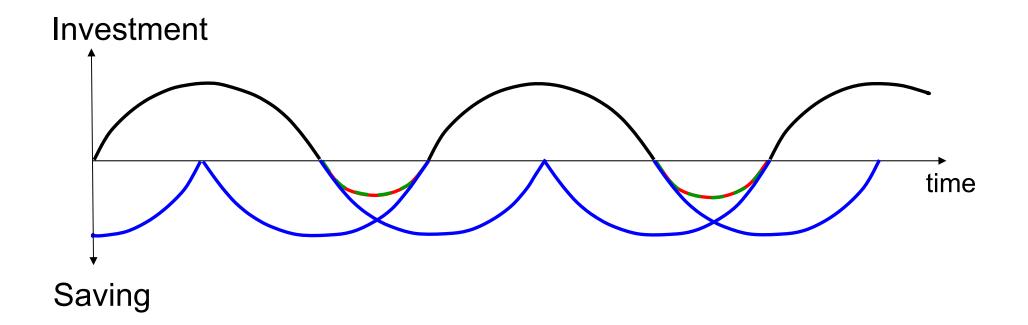


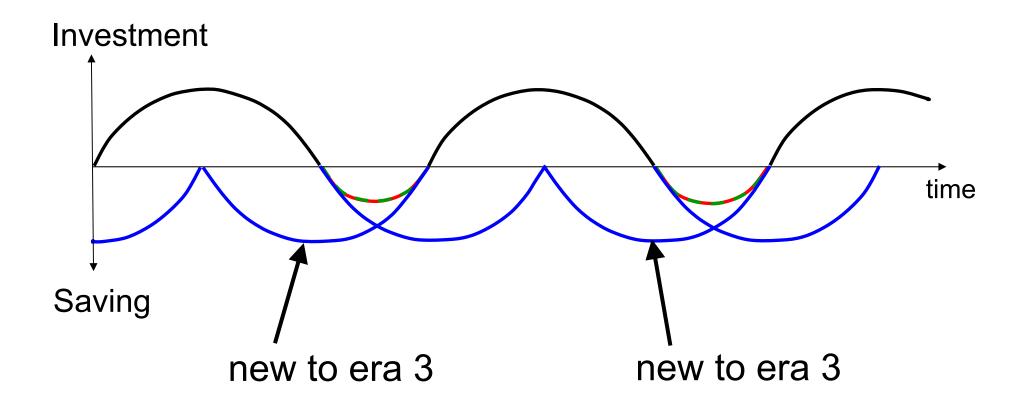
back to the history of money:





<u>era 3</u>





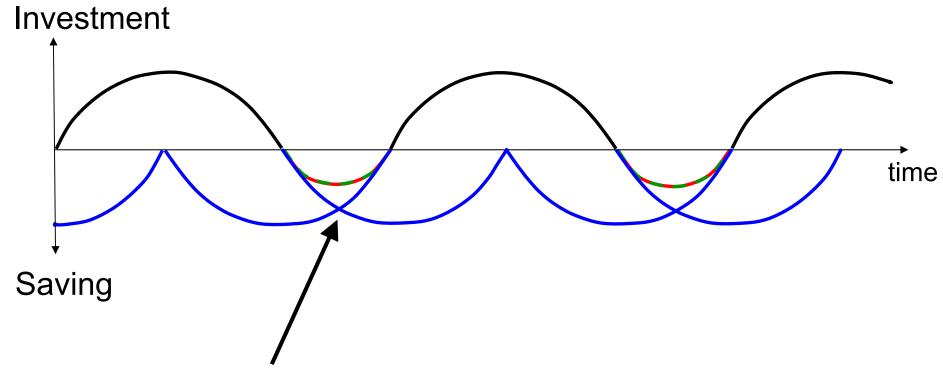
investment day:

$$G(y) + \frac{1-\phi}{\phi}G(z) + c$$

$$= p^{2}\theta z + q\theta(y-z) + m'' + n'$$
growing day:
$$c' + qn' = n''$$

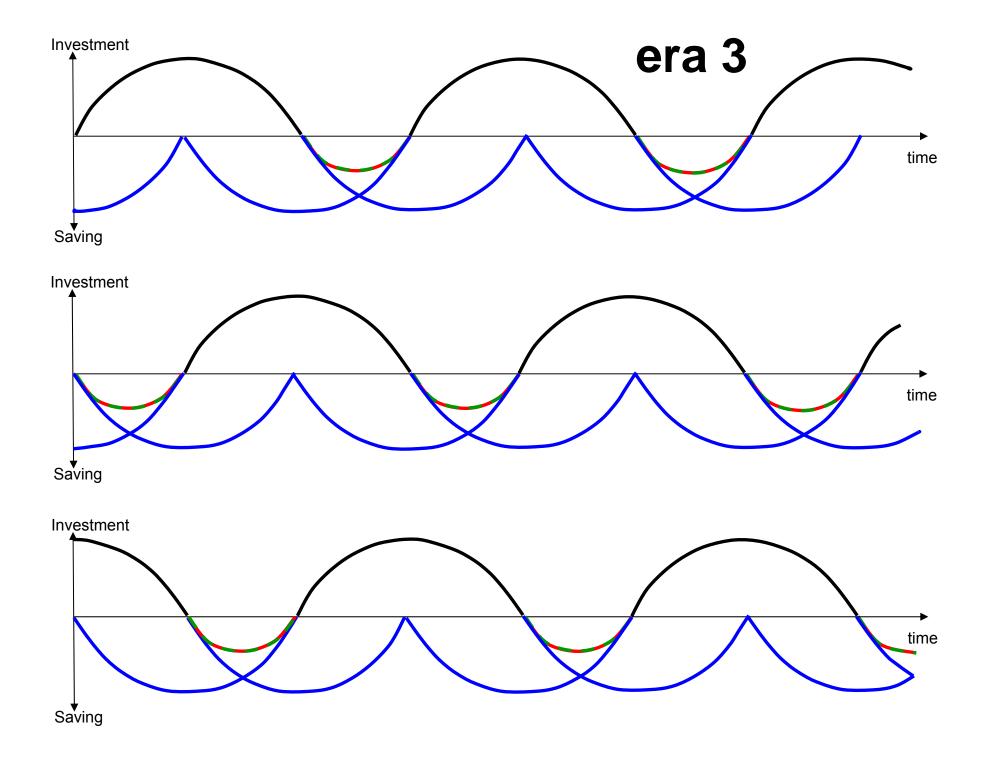
harvest day:

$$c'' + pm'' + qn'' = (1 - \theta)y$$



between projects, agent holds illiquid (blue) paper of different vintages

⇒ great weight on paper markets



era 3 is a nice example of the power of Adam Smith's "invisible hand":

to create double-coincidences-of-wants in dated goods,

to wriggle round the inflexibility of illiquid paper

era 3 is a nice example of the power of Adam Smith's "invisible hand":

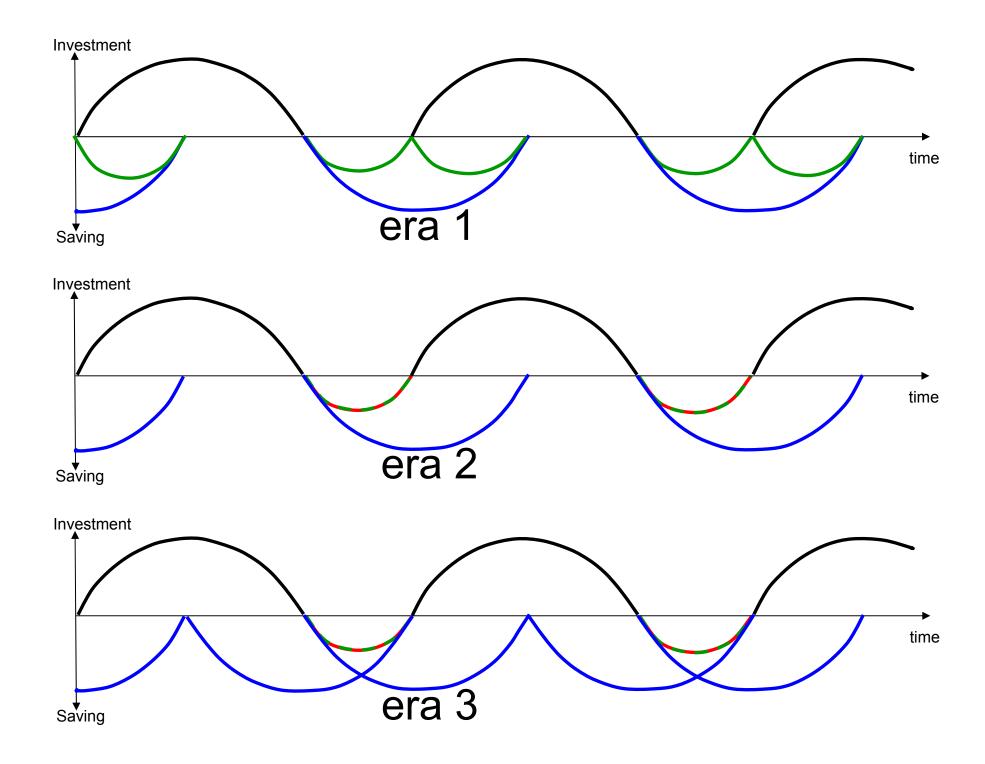
to create double-coincidences-of-wants in dated goods,

to wriggle round the inflexibility of illiquid paper

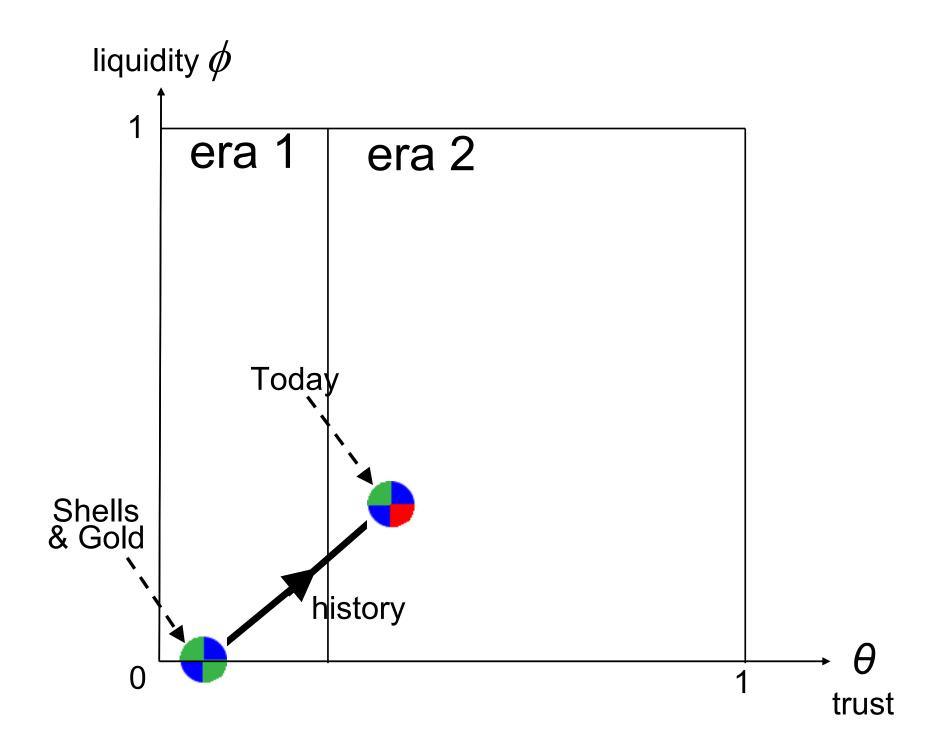
indeed, with enough trust (θ close to 1), first-best is achieved

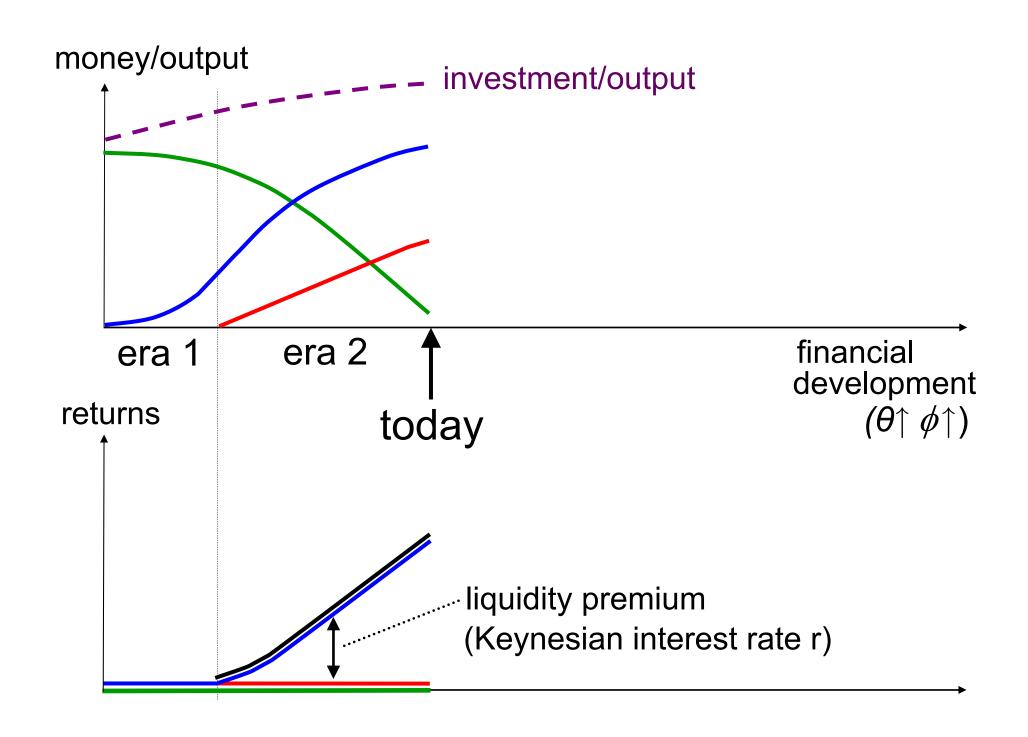
(in the limit $\theta = 1$, Arrow-Debreu)

overview of the 3 eras:

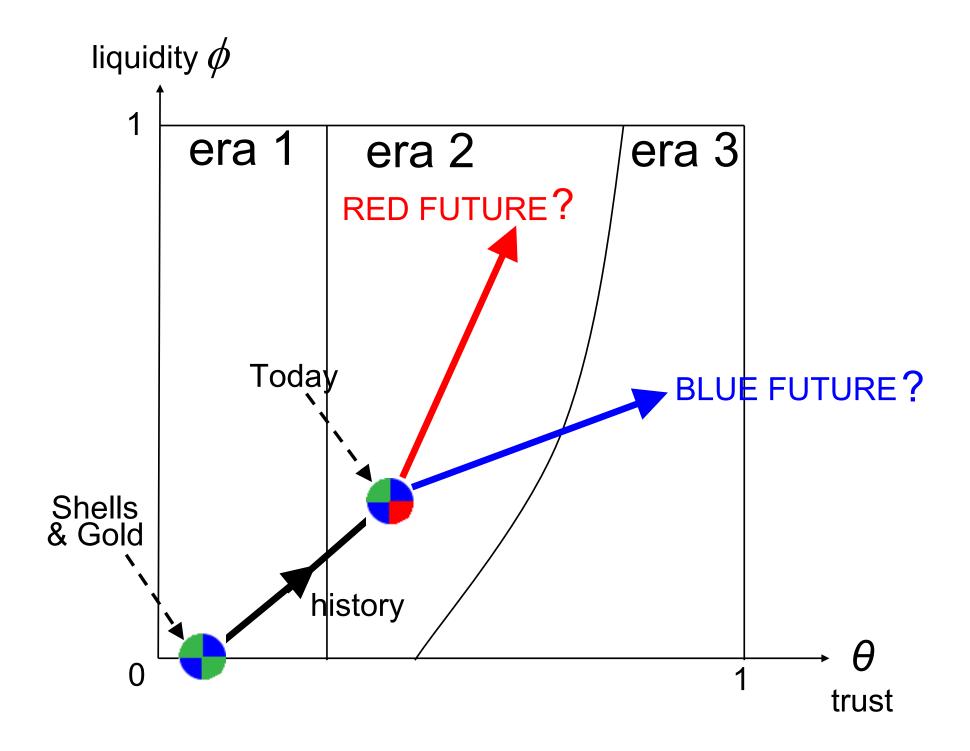


recall the history of money:

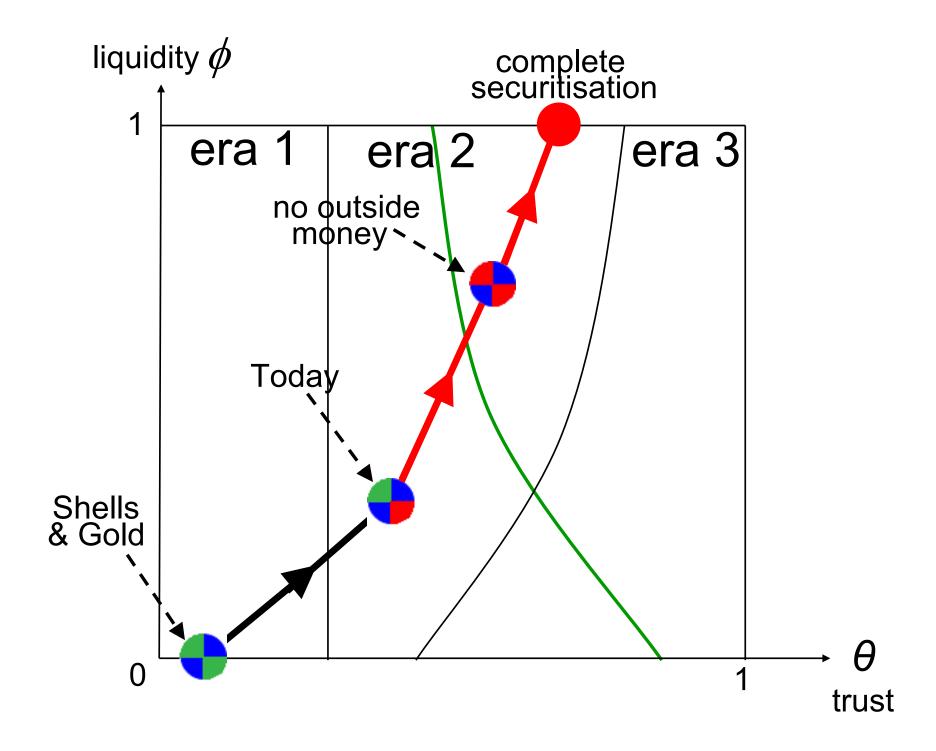


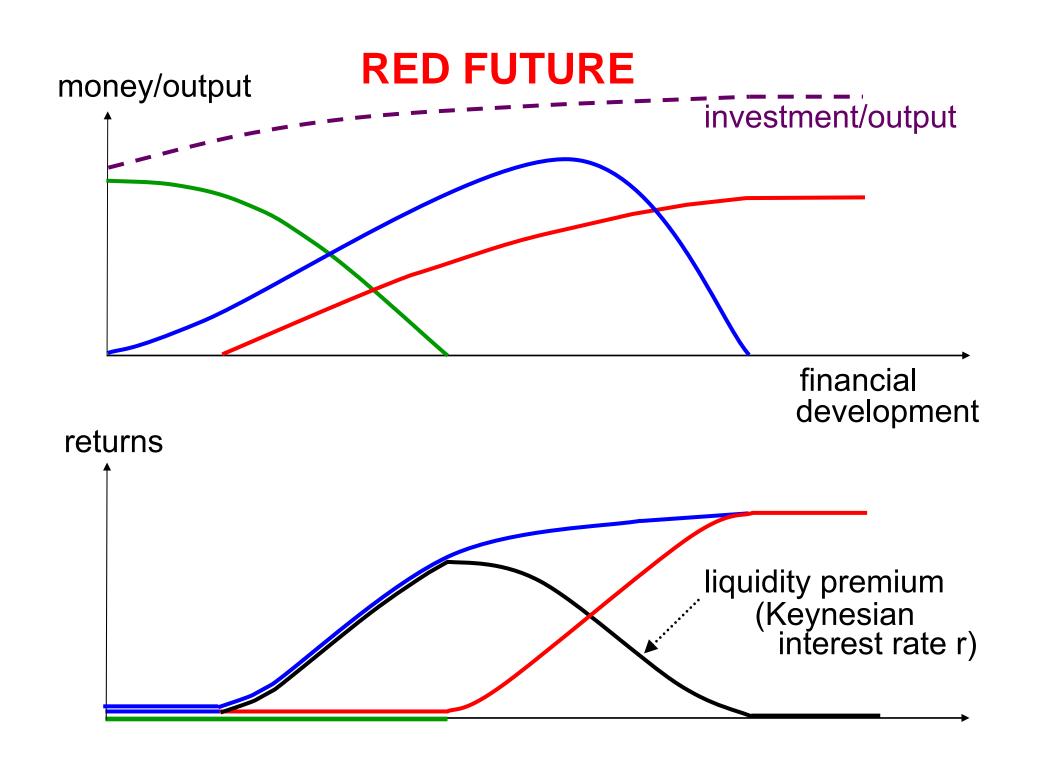


and now, the future:



the RED FUTURE:





the BLUE FUTURE:

