27 November 2007

The evolution of money: theory and predictions

John Moore
Edinburgh and LSE
and

Nobuhiro Kiyotaki
Princeton University

problem:

money \& financial intermediation don't fit into standard framework

need to model: LIQUIDITY

two aspects of financial contracting:

- bilateral commitment
- multilateral commitment

two aspects of financial contracting:

- bilateral commitment
- multilateral commitment
both may be limited

limited bilateral commitment:

limit on how much borrower can credibly promise to repay initial lender

limited bilateral commitment:

limit on how much borrower can credibly promise to repay initial lender
limited multilateral commitment:
limit on how much borrower can credibly promise to repay any bearer of the debt

multilateral commitment is harder
 than bilateral commitment

- because the initial lender, as an insider, may become better informed about the borrower than outsiders

multilateral commitment is harder
 than bilateral commitment

- because the initial lender, as an insider, may become better informed about the borrower than outsiders
\Rightarrow adverse selection in secondary market for debt

borrower

initial lender

Tuesday

Thursday
 borrower

initial lender

$\theta=$ fraction of output that borrower can credibly commit to repay initial lender
θ less than 100\%, because of moral hazard

$\theta=$ fraction of output that borrower can credibly commit to repay initial lender
θ in part reflects legal structure; one simple measure of financial depth; captures degree of "trust" in economy

Wednesday

borrower
 initial lender

Wednesday

borrower

initial lender

new lender

Thursday

borrower

initial lender
new lender

Wednesday

borrower

Wednesday

borrower

Wednesday
borrower

ϕ indexes the efficiency of secondary market; another simple measure of financial depth; captures degree of "liquidity" in economy

3 types of paper

3 types of paper

blue paper \equiv non-circulating private paper
(sold on Tuesday: but cannot be resold on Wednesday)

3 types of paper

blue paper \equiv non-circulating private paper (sold on Tuesday: but cannot be resold on Wednesday)
red paper \equiv circulating private paper (can be resold on Wednesday: "inside money")

3 types of paper

blue paper \equiv non-circulating private paper (sold on Tuesday: but cannot be resold on Wednesday)
red paper \equiv circulating private paper (can be resold on Wednesday: "inside money")
green paper \equiv shells \& gold / fiat money ("outside money")

3 types of paper

blue paper \equiv non-circulating private paper Moore (sold on Tuesday: but cannot be resold on Wednesday)
red paper \equiv circulating private paper (can be resold on Wednesday: "inside money")
green paper \equiv shells \& gold / fiat money ("outside money")

3 types of paper

blue paper \equiv non-circulating private paper Moore (sold on Tuesday: but cannot be resold on Wednesday)
red paper \equiv circulating private paper
Branson (can be resold on Wednesday: "inside money")
green paper \equiv shells \& gold / fiat money ("outside money")

3 types of paper

blue paper \equiv non-circulating private paper Moore (sold on Tuesday: but cannot be resold on Wednesday)
red paper \equiv circulating private paper
Branson (can be resold on Wednesday: "inside money")
green paper \equiv shells $\&$ gold / fiat money King ("outside money")

mnemonic

blue paper - ice: illiquid

red paper - blood: liquid: circulates around economy

green paper - dollar bills ("greenbacks")
coming next ...

coming next ...

A Brief History of Money (very brief!)

A Brief History of Money (very brief!)

and also ...

coming next ...

A Brief History of Money (very brief!)

 and also ...A Vision of the Future
(two visions)

liquidity ϕ

liquidity ϕ

liquidity ϕ

THE MODEL

THE MODEL

discrete time $t=1,2,3, \ldots$
one homogenous good, corn, storable
(one for one)
no uncertainty
infinitely lived agents choose consumption path $\left\{\mathrm{c}_{\mathrm{t}}, \mathrm{c}_{\mathrm{t}+1}, \mathrm{c}_{\mathrm{t}+2}, \ldots\right\}$ to maximise

$$
\sum_{s=0}^{\infty} \beta^{s} \log c_{t+s} \quad 0<\beta<1
$$

each agent undertakes a sequence of projects

every 3 days, an agent starts a project that completes 2 days later:

each agent undertakes a sequence of projects

every 3 days, an agent starts a project that completes 2 days later:

each agent undertakes a sequence of projects

every 3 days, an agent starts a project that completes 2 days later:

each agent undertakes a sequence of projects

every 3 days, an agent starts a project that completes 2 days later:

to produce y corn on day $t+2$ requires input $G(y)$ corn on day t :

where $G(y) \propto y^{1 /(1-\lambda)} \quad 0<\lambda<1$

to produce y corn on day $\mathrm{t}+2$ requires

 input $G(y)$ corn on day t :where $\quad G(y) \propto y^{1 /(1-\lambda)} \quad 0<\lambda<1$
in a symmetric allocation, population is equally divided into 3 groups:
(normalise aggregate population = 3)

first-best (Arrow-Debreu):
efficient production: $G^{\prime}\left(y^{*}\right)=\beta^{2}$
smooth consumption: $c_{t} \equiv \frac{1}{3}\left[y^{*}-G\left(y^{*}\right)\right]$
first-best (Arrow-Debreu):
efficient production: $G^{\prime}\left(y^{*}\right)=\beta^{2}$
smooth consumption: $c_{t} \equiv \frac{1}{3}\left[y^{*}-G\left(y^{*}\right)\right]$

BUT, unlike in Arrow-Debreu, we assume

$$
\theta<1
$$

at start of a project, investing agent can credibly promise at most Θy of harvest y
liquidity ϕ

extreme case: $\theta=0$ (autarky; Robinson

 Crusoe)

$$
G^{\prime}(y)=\beta^{3} \quad=>\quad \begin{gathered}
y \text { below } y^{*} \\
\text { under-investment }
\end{gathered}
$$

extreme case: $\theta=0$ (autarky; Robinson

Crusoe)

not only is there under-investment, but there is also jagged consumption:

extreme case: $\theta=0$ (autarky; Robinson

 Crusoe)

Consumption

extreme case: $\theta=0$ (autarky; Robinson

 Crusoe)

Consumption
invest

extreme case: $\theta=0$ (autarky; Robinson

Crusoe)

Consumption

extreme case: $\theta=0$ (autarky; Robinson

Crusoe)

Consumption

extreme case: $\theta=0$ (autarky; Robinson

Crusoe)

Consumption

extreme case: $\theta=0$ (autarky; Robinson

 Crusoe)Investment

introduce outside money (green paper): same steady-state allocations as in autarky except that no corn need be tied up in storage (Samuelson, 1958)
less extreme: $\theta>0$
i.e. investing agent can issue private paper
but adverse selection causes the secondary market to break down ...
assume project comprises a large number of parts, some of which are lemons
assume project comprises a large number of parts, some of which are lemons
no-one can distinguish lemons on day of investment, day t
insiders privately learn which parts are lemons by day $\mathrm{t}+1$
outsiders remain uninformed until day $\mathrm{t}+2$
assume project comprises a large number of parts, some of which are lemons
no-one can distinguish lemons on day of investment, day t
insiders privately learn which parts are lemons by day $\mathrm{t}+1$
outsiders remain uninformed until day $\mathrm{t}+2$ but there is a remedy ...
at start of project (day t), investing agent can bundle parts together so that lemons cannot be separated out later (day $\mathrm{t}+1$)
at start of project (day t), investing agent can bundle parts together so that lemons cannot be separated out later (day $\mathrm{t}+1$)

bundling \equiv financial intermediation/banking

converts illiquid paper (blue paper) that cannot be resold at $\mathrm{t}+1$
into liquid paper (red paper) that can be resold at $\mathrm{t}+1$

cost of bundling a portion $z(\leq y)$ of output:

$$
\frac{1-\phi}{\phi} G(z) \quad 0<\phi<1
$$

cost of bundling a portion $z(\leq y)$ of output:

$$
\frac{1-\phi}{\phi} G(z) \quad 0<\phi<1
$$

costs are deadweight (no extra output)
cost of bundling a portion $z(\leq y)$ of output:

$$
\frac{1-\phi}{\phi} G(z) \quad 0<\phi<1
$$

costs are deadweight (no extra output)
(\Rightarrow in first-best, there is
no bundling, no banking
no inside money, no red paper)
$q=$ issue price of blue paper
(price in terms of day t corn of a credible claim to day $\mathrm{t}+2$ corn, that cannot be resold on day $\mathrm{t}+1$)
$\mathrm{p}^{2}=$ issue price of red paper
(price in terms of day t corn of a credible claim to day $t+2$ corn, that can be resold on day $t+1$, at price p)

basic inequalities:

$$
1 \geq \mathrm{p}^{2} \geq \mathrm{q} \underset{\text { result! }}{\geq} \beta^{2}
$$

if $p<1$ then green paper not used

in terms of overnight net returns:

$\underset{\text { green }}{\text { return on }} \leq \underset{\text { red }}{\text { return on }} \leq \underset{\text { blue }}{\text { return on }} \leq \begin{gathered}\text { subjective } \\ \text { return }\end{gathered}$
(zero) $\quad\left(\frac{1}{\mathrm{p}}-1\right) \uparrow\left(\frac{1}{\sqrt{ } \mathrm{q}}-1\right) \quad\left(\frac{1}{\beta}-1\right)$
liquidity
premium

in terms of overnight net returns:

$\underset{\text { green }}{\text { return on }} \leq \underset{\text { red }}{\text { return on }} \leq \underset{\text { blue }}{\text { return on }} \leq \begin{gathered}\text { subjective } \\ \text { return }\end{gathered}$
(zero) $\quad\left(\frac{1}{\mathrm{p}}-1\right) \uparrow\left(\frac{1}{\sqrt{ } \mathrm{q}}-1\right) \quad\left(\frac{1}{\beta}-1\right)$
liquidity
premium
$\frac{1}{\sqrt{q}}-\frac{1}{p}=$ Keynesian interest rate r

in terms of overnight net returns:

$\underset{\text { green }}{\text { return on }} \leq \underset{\text { red }}{\text { return on }} \leq \underset{\text { blue }}{\text { return on }} \leq \begin{gathered}\text { subjective } \\ \text { return }\end{gathered}$
(zero) $\quad\left(\frac{1}{\mathrm{p}}-1\right) \uparrow\left(\frac{1}{\sqrt{ } \mathrm{q}}-1\right) \quad\left(\frac{1}{\beta}-1\right)$
liquidity
premium
$\frac{1}{\sqrt{ } q}-\frac{1}{p}=$ Keynesian interest rate r
when green paper used $(p=1), r=\frac{1}{\sqrt{ } q}-1$
flow-of-funds constraints

flow-of-funds constraints

investment day:
$\mathrm{G}(\mathrm{y})+\frac{1-\phi}{\phi} \mathrm{G}(\mathrm{z})+\mathrm{c}+\mathrm{pm}+\mathrm{qn}$

$$
=p^{2} \theta z+q \theta(y-z)+m^{\prime \prime}+n^{\prime}
$$

flow-of-funds constraints

investment day:
$\begin{aligned} G(y) & +\frac{1-\phi}{\phi} G(z)+c+p m+q n \\ & =p^{2} \theta z+q \theta(y-z)+m^{\prime \prime}+n^{\prime}\end{aligned}$
growing day:

$$
\mathrm{c}^{\prime}+\mathrm{pm}^{\prime}+\mathrm{qn}^{\prime}=\mathrm{m}+\mathrm{n}^{\prime \prime}
$$

flow-of-funds constraints

investment day:
$\mathrm{G}(\mathrm{y})+\frac{1-\phi}{\phi} \mathrm{G}(\mathrm{z})+\mathrm{c}+\mathrm{pm}+\mathrm{qn}$

$$
=p^{2} \theta z+q \theta(y-z)+m^{\prime \prime}+n^{\prime}
$$

growing day:
$\mathrm{c}^{\prime}+\mathrm{pm}^{\prime}+\mathrm{qn}^{\prime}=\mathrm{m}+\mathrm{n}^{\prime \prime}$
harvest day:
$c^{\prime \prime}+p m^{\prime \prime}+q n^{\prime \prime}=(1-\theta) y+m^{\prime}+n$
liquidity ϕ

era 1

era 1

Investment

era 1

investment day:
$\begin{aligned} G(y)+ & \frac{1-\phi}{\phi} G(z)+c+p m+\not \chi^{\prime} \\ = & p^{2} \theta z+q \theta(y-z)+m^{\prime \prime}+\not \mathbb{R}^{\prime}\end{aligned}$
growing day:
$c^{\prime}+$ b $^{\prime \prime}+x^{\prime}=m+n^{\prime \prime}$
harvest day:
$\mathrm{c}^{\prime \prime}+\mathrm{pm}^{\prime \prime}+\mathrm{qn}^{\prime \prime}=(1-\theta) \mathrm{y}+2 \underline{\alpha}+\nless$

era 1

investment day:

growing day:
$c^{\prime} \quad=m+n^{\prime \prime}$
harvest day:
$c^{\prime \prime}+\mathrm{pm}^{\prime \prime}+\mathrm{qn}^{\prime \prime}=(1-\theta) \mathrm{y}$

era 1

Investment

era 1

Investment

Saving
blue paper competes with green paper (held twice)
$\Rightarrow \mathrm{q}=1$: no liquidity premium
\Rightarrow no bundling: no red paper

era 1

investment day:

growing day:
$c^{\prime} \quad=m+n^{\prime \prime}$
harvest day:
$\mathrm{c}^{\prime \prime}+\mathrm{pm}^{\prime \prime}+\mathrm{qn}^{\prime \prime}=(1-\theta) \mathrm{y}$

era 2

era 2

Investment

Saving

era 2

investment day:
$\begin{aligned} G(y)+ & \frac{1-\phi}{\phi} G(z)+c+p x \\ & =p^{2} \theta z+q \theta(y-z)+m^{\prime \prime}\end{aligned}$
growing day:
c^{\prime}

$$
=x+n^{\prime \prime}
$$

harvest day:
$\mathrm{c}^{\prime \prime}+\mathrm{pm}^{\prime \prime}+\mathrm{qn}^{\prime \prime}=(1-\theta) \mathrm{y}$

era 2

investment day:
$\begin{aligned} G(y) & +\frac{1-\phi}{\phi} G(z) \\ & =c \\ & =p^{2} \theta z+q \theta(y-z)+m^{\prime \prime}\end{aligned}$
growing day:
c^{\prime}

$$
=\quad n^{\prime \prime}
$$

harvest day:
$\mathrm{c}^{\prime \prime}+\mathrm{pm}^{\prime \prime}+\mathrm{qn}^{\prime \prime}=(1-\theta) \mathrm{y}$

era 2

Investment

Saving

back to the history of money:

era 3

era 3

Investment

era 3

Investment

era 3

investment day:
$\begin{aligned} & \mathrm{G}(\mathrm{y})+\frac{1-\phi}{\phi} \mathrm{G}(\mathrm{z})+\mathrm{c} \\ & \quad=\mathrm{p}^{2} \theta \mathrm{z}+\mathrm{q} \theta(\mathrm{y}-\mathrm{z})+\mathrm{m}^{\prime \prime}+\mathrm{n}^{\prime}\end{aligned}$
growing day:
$\mathrm{c}^{\prime} \quad+\mathrm{qn}^{\prime}=\mathrm{n}^{\prime \prime}$
harvest day:
$\mathrm{c}^{\prime \prime}+\mathrm{pm}^{\prime \prime}+\mathrm{qn}^{\prime \prime}=(1-\theta) \mathrm{y}$

era 3

\Rightarrow great weight on paper markets

era 3 is a nice example of the power of Adam Smith's "invisible hand":
to create double-coincidences-of-wants in dated goods,
to wriggle round the inflexibility of
illiquid paper
era 3 is a nice example of the power of Adam Smith's "invisible hand":
to create double-coincidences-of-wants in dated goods,
to wriggle round the inflexibility of illiquid paper
indeed, with enough trust (θ close to 1), first-best is achieved
(in the limit $\theta=1$, Arrow-Debreu)
overview of the 3 eras:

recall the history of money:

and now, the future:

the RED FUTURE:

the BLUE FUTURE:

