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Abstract

Financial linkages smooth the shocks faced by individual components of the system,

but they also create a wedge between ownership and decision-making. The classical

intuition on the role of pooling risk in raising welfare is valid when ownership is evenly

dispersed. However, when the ownership of some agents is concentrated in the hands of

a few others, greater integration and diversification can lead to excessive risk taking and

volatility and result in lower welfare. We also show that individuals undertake too little

(too much) risk relative to the first best if the network is homogeneous (heterogeneous),

and study optimal networks.
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1 Introduction

Cross-ownership linkages across corporations and banks is a prominent feature of modern

economies. Such linkages have the potential to smooth the shocks and uncertainties faced by

individual components of the system. But they also create a wedge between ownership on the

one hand and control and decision making on the other hand. We wish to understand how

such network affect volatility and welfare, and more generally what are the properties of an

ideal ownership network.

To study these questions we develop a model in which a collection of agents, interconnected

through financial obligations, make a portfolio choice decision. The network reflects the claims

that each agent has on others: so a link from A to B specifies the claims of A on the value

of B. Agents have mean-variance preferences. Every agent i can invest his endowment in a

risk-free asset (with return r) or in a (distinct) risky asset i (with mean µi > r and variance

σ2
i ).

1 The portfolio choices of agents and the network of cross-ownerships together define the

distribution of individual payoffs.

We begin by deriving a summary measure that aggregates all direct and indirect claims

induced by the financial cross-holdings: we refer to this as ownership. Thus every cross-

holdings network induces a ownership adjacency matrix Γ. In this matrix, the entry γAB

summarizes all the direct and indirect claims that A has on the economic returns of B. The

entry γAA is referred to as self-ownership of agent A: it captures the extent to which A bears

the wealth effects of his portfolio choice. Our first observation is that optimal investment in a

risky asset is inversely related to self-ownership. It follows that, other things being equal, the

expected value and variance are higher for agents with greater ownership of low self-ownership

agents, as these are the high risk takers.

Equipped with these basic results, we turn to the effects of changes in networks. Networks

with low self-ownership induce higher investments in risky assets and, therefore, exhibit a

higher mean but also higher volatility in value. This means that, a priori, the welfare effects

of changes in networks are unclear. Inspired by the literature on finance, we explore changes in

networks using the concepts of integration and diversification. A network S is said to be more

integrated than network S ′ if every link in S is weakly stronger and some are strictly stronger.

A network S is more diversified than network S ′ if every agent in S has a more diversified profile

of ownerships. We find that the effects of integration and diversification depend crucially on

1For example, an agent may be a bank that can invest in government bonds or finance local entrepreneurs’
risky projects.
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the topology of the network. Here we discuss integration; similar observations apply to the

effects of diversification.

A regular network is one in which all nodes have a similar cross-ownership pattern. We

show in such networks an increase in integration leads to higher aggregate utilities. However,

greater integration in heterogenous networks – where ownership patterns differ widely across

agents – actually lowers aggregate utilities. In symmetric networks, self-ownership is bounded

from below, and this, in turn, sets an upper bound on the level of risky investment and, hence,

on the costs of volatility.

In heterogenous networks by contrast integration can sharply lower the self-ownership of

some agents: this raises their risky investment disproportionately. This, in turn, pushes up

volatility for everyone and may lower aggregate utilities; in fact, it may decrease the utility

of all agents. We illustrate this argument through an analysis of a class of networks that are

empirically salient: the core-periphery networks. Core-periphery networks consist of a core

and a periphery group of nodes. Every node in the core is connected to all other core nodes.

Every peripheral node is connected all nodes in the core. Figure 1 illustrates a core-periphery

network. Inter-bank networks have a core-periphery structure, and empirical work suggests

that this finding holds for different definitions of financial obligations and different levels of

aggregations, see Soramaki et al. (2007), Martinez-Jaramillo et al (2014), Craig and von

Peter (2014). Vitali et al. (2011) report that transnational corporations form a giant bow-tie

structure and that a large portion of control flows to a small tightly-knit core of financial

institutions.

Our theoretical predictions on risk taking and volatility appear to be broadly consistent

with recent empirical results on these networks. We show that there may be greater volatility

and lower welfare with growing integration in core-periphery networks. Our key result that

core banks take more risk than periphery banks is consistent with recent empirical studies on

inter-bank networks, e.g.,van Lelyveld and Veld (2012) and Langfield, Liu and Ota (2014).

We then turn to a normative study of networks. Given a fixed network, we derive the

socially optimal portfolio of investments. This characterization clarifies the externality gen-

erated by financial linkages: an agent focuses exclusively on his own risk exposure, whereas

the collective optimum entails a trade-off between expected returns and the sum of own and

others’ variance. The general insight here is that an agent will take too much risk relative

to what is collectively desirable when his ownership is concentrated in a few hands. By con-

trast, investment in risky assets is too low relative to what is collectively desirable when

cross-ownerships are widely dispersed.
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Finally, we study optimal network design. Deeper and more extensive ties smooth returns,

but, by lowering self-ownership, they also raise investments in risky assets. This raises both

expected returns and the variance. Our analysis of optimal networks clarifies that deepening

the linkages in a symmetric way resolves the tension. Regardless of whether the planner can

choose agents’ risky investments, the best network is a complete network in which every agent

owns exactly 1/n of everyone else.

We now locate the paper in the context of the literature. We build on two important

strands of research. The first line of work is the research on cross-holdings and linkages

(Brioschi, Buzzacchi, and Colombo (1989), Eisenberg, and Noe (2001), Fedenia, Hodder, and

Triantis (1994) and the recent work of Elliott, Golub abd Jackson (2014)). The second line

of work is the distinction between ownership and control; here, we draw on the long and

distinguished tradition that began with the classic work of Berle and Means (1932) and on

the more recent work by Fama and Jensen (1983) and Shleifer and Vishnu (1989).2 To the

best of our knowledge, the present paper is the first to study the implications of portfolio

choice for financial integration and diversification and the optimal design of networks within

a common framework.

An important assumption of our model is that, when studying the implication of the

wedge between ownership and control in risk taking, we take the cross-ownership structure,

and therefore the exposure to financial markets, as given. So one way to interpret our analysis

is that we study how exogenous regulations and rigidities in the investments in stocks of

other firms will affect the level of investment of a firm in a risky project that is not directly

accessible to other firms. This is in line with a large literature that has focussed on situations

in which not all the elements of a firms balance sheet can be chosen. In particular, Rochet

(1992) reevaluates the work of Koehn and Santomero (1980) and Kim and Santomero (1988)

in a model in which the bank equity capital is fixed, in the short run over which the model

spans; this reflects the real distinction in the way equity capital can be altered in the short

run relative to other securities.

We next turn to our model of portfolio choice. In a complete markets setting, any uncer-

tainty on returns is washed out and only expected value matters. However, whenever access is

restricted or markets are incomplete, risk matters. As stressed by Rochet (1992), “it is hard

to believe that a deep understanding of the banking sector can be obtained within the set-up

2“The property owner who invests in a modern corporation so far surrenders his wealth to those in control
of the corporation that he has exchanged the position of independent owner for one in which he may become
merely recipient of the wages of capital” (Berle and Means (1932), page 355).
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of complete contingent markets, essentially because of the Modigliani-Miller indeterminacy

principle”. This motivates a richer model of bank behavior: we build on a prominent strand

of the literature that has used the portfolio model of Pyle (1971) and Hart and Jaffee (1974)

to study banks. Within this framework, banks are assumed to behave as competitive portfolio

managers, taking prices and yields as given and choosing their portfolio (composition of their

balance sheets and liabilities) in order to maximize the expected utility of the bank’s financial

net worth.3

In the recent work on contagion in financial networks, attention has focused on the role of

the distribution of shocks and the architecture of networks, see e.g., Allen and Gale (2000),

Babus (2015), Farboodi (2014), Gottardi and Vega-Redondo (2011), Elliott, Golub and Jack-

son (2014), Elliott and Hazell (2015), Greenwood, Landier, and Thesmar (2015) and Gai and

Kapadia (2010). For a survey, see Cabrales, Gale and Gottardi (2015). The distinguishing

feature of our work is that the origin of the shocks – the investments in risky assets – is itself

an object of individual decision making. Thus, the focus of our work is, first, on how the

network of linkages shapes the level of risk taking by agents and, second, on how it spreads

the rewards of the risky choices across different parts of the system. Therefore, our work on

the effects of integration and diversification and on optimal network design should be seen as

complementary to the existing body of work.4

Section 2 introduces the model. Section 3 presents our characterization of risk taking in a

network, and Section 4 studies the effects of changes in networks on welfare. Section 5 studies

first-best investments and Section 6 examines optimal networks. Section 7 presents our study

of a model with correlations across returns of risky assets. Section 8 summarizes the main

results and discusses extensions of the model. The proofs of the results are presented in the

Appendix.

3The portfolio choice banking model has been successfully used to evaluate the effect of capital regulations
on risk taking, see e.g., Koehn and Santomero (1980), Kim and Santomero (1988), Keeley and Furlong (1990),
Zhou (2013) and Gersbach and Rochet (2012).

4In a recent paper, Belhaj and Deroian (2012) study risk taking by agents located within a network. There
are two modeling differences: they assume positive correlation in returns to risky assets and bilateral output
sharing with no spillovers in ownership. So, with independent assets, there are no network effects in their
model. Our focus is on the effects of integration and diversification and the design of optimal networks (with
weights on systemic risk). These issues are not addressed in their paper.
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2 Model

There are N = {1, ..., n}, n ≥ 2 agents. Agent i has has an endowment wi ∈ R and chooses

to allocate it between a safe asset, with return r > 0, and a (personal) risky project i, with

return zi. We assume that zi is normally distributed with mean µi > r and variance σ2
i . For

simplicity, in the basic model, we assume that the n risky projects are uncorrelated. Section 7

discusses the case of assets with correlated returns. Investments by agent i in the risky asset

and the safe asset are denoted by βi ∈ [0, wi] and ωi − βi, respectively. Let β = {β1, ..., βn}
denote the profile of investments.

Agents are embedded in a network of cross-holdings; we represent the network as an n×n
matrix S, with sii = 0, sij ≥ 0 and

∑
j∈N sji < 1 for all i ∈ N . We interpret sij as the claim

that agent i has on agent j’s economic value Vj.

Let D be a n×n diagonal matrix, in which the ith diagonal element is 1−
∑

j∈N sji. Define

Γ = D[I − S]−1. Observe that since for every i ∈ N ,
∑

j∈N sji < 1, it follows that we can

write Γ = D
∑∞

k=0 S
k. Therefore, the γij cell is obtained by summing up all weighted paths

from i to j in the cross-holdings network S– i.e., for every i 6= j,

γij = [1−
∑
j∈N

sji]

[
0 + sij +

∑
k

sikskj + ..

]
.

It is then natural to interpret γij as i’s ownership of j. Finally, note that Γ is column-

stochastic, γii = 1 −
∑

j 6=i γji. We borrow the formulation of cross-holdings from Brioschi,

Buzzacchi, and Colombo (1989), Fedenia, Hodder, and Triantis (1994), and, more recently,

Elliott, Golub and Jackson (2014) and Elliott and Hazell (2015). Following Elliott, Golub and

Jackson (2014) we interpret this formulation as a linear approximation of an underlying set

of contracts linking financial institutions.5

Empirical work has highlighted the prominence of a core-periphery structure in financial

networks (Bech and Atalay (2010), Afonso and Lagos (2012), McKinsey Global Institute

(2014), Van Lelyveld I., and t’ Veld (2012)). We present the ownership matrix for this network.

Example 1 Ownership in the core-periphery network

There are np peripheral agents and nc central agents, np+nc = n; ic and ip refer to the (generic)

central and peripheral agent. A link between two central agents has strength sicjc = s, and a

5For every S, we can obtain a corresponding Γ; however, the converse is not always the case. For sufficient
conditions on Γ that guarantee the existence of corresponding S, see Elliot, Golub and Jackson (2014).
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Figure 1: Core-periphery Network, nc = 4, np = 10.

link between a central and a peripheral agent has strength sicip = sipic = ŝ, and there are no

other links. Figure 1 presents such a network.

Computations presented in the Appendix show that the self-ownership of a central node

ic and a peripheral node are, respectively,

γic,ic =
[1− (nc − 1)s− npŝ][1− (nc − 2)s− ncnpŝ2 + npŝ

2]

(s+ 1)[1− s(nc − 1)− ncnpŝ2]
,

γip,ip =
[1− ncŝ][1− (nc − 1)s− ncŝ2(np − 1)]

1− s(nc − 1)− ncnpŝ2
.

Similarly, the cross-ownerships are given by:

γic,jp =
[1− (nc − 1)s− npŝ]ŝ
1− s(nc − 1)− ncnpŝ2

and γjp,ic =
[1− ncŝ]ŝ

1− s(nc − 1)− ncnpŝ2
,

γic,jc =
[1− (nc − 1)s− npŝ][s+ npŝ

2]

(s+ 1)(1− s(nc − 1)− ncnpŝ2)
and γip,jp =

[1− ncŝ]ncŝ2

1− s(nc − 1)− ncnpŝ2
.

We note that the complete network (np = 0) and the star network (np = n− 1) constitute

special cases of the core-periphery network. �

We now define the economic value Vi. For a realization zi and agent i’s investments

(βi, wi − βi), the returns generated by i are given by

Wi = βizi + (wi − βi)r. (1)
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It then follows that the economic value of agent i is

Vi =
∑
j

γijWj. (2)

We now turn to the choice problem for agents. We assume that agents seek to maximize

a mean-variance utility function:6

Ui(βi, β−i) = E[Vi(β)]− α

2
V ar[Vi(β)].

Using expressions (1) and (2), we can rewrite expected utility as

Ui(βi, β−i) =
∑
j∈N

γij[wjr + βj(µj − r)]−
α

2

∑
j∈N

γ2ijβ
2
jσ

2
j . (3)

Let β∗ = (β1, .., βn) denote the vector of optimal choices.

3 Risk-taking in networks

We begin by characterizing optimal agent investments and then elaborate on the implications

for utility and systemic risk.

Agents’ utility is given by (3); observe that the cross partial derivatives with respect to

investments are zero.7 So, the optimal investment by agent i may be written as:

β∗i = arg max
βi∈[0,wi]

γii[wir + βi(µi − r)]−
α

2
γ2iiβ

2
i σ

2
i .

If agent i has no cross-holdings –i.e., sij = sji = 0 for all i 6= j ∈ N – then γii = 1, and,

therefore, the optimal investment is

β̂i =
µi − r
ασ2

i

.

We shall refer to β̂i as agent i’s autarchy investment. With this definition in place, we state

our characterization result on optimal risk taking.

6For a discussion of the foundations of mean-variance utility, see Gollier (2001).
7This means that agents’ investment choices can be studied independently; this independence sets our

paper apart from the literature on network games, which has been recently reviewed by Bramoulle and
Kranton (2015) and Jackson and Zenou (2015).
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Proposition 1 The optimal investment of agent i is:

β∗i = min

{
wi,

β̂i
γii

}
. (4)

In an interior solution, expected value and variance for agent i are:

E[Vi] = r
∑
j∈N

γijwj +
∑
j∈N

β̂j(µj − r)
γij
γjj

V ar[Vi] =
∑
j∈N

β̂2
jσ

2
j

(
γij
γjj

)2

. (5)

Note that for sufficiently large wi the optimal investment if i is interior, i.e., β∗i = β̂i/γii.

Hereafter we assume that wi is large for every i and so optimal investments are interior.

Proposition 1 yields a number of insights about the network determinants of risk taking.

First, relative to autarky, cross-holdings raise agents’ propensity to take risk: agent i’s risk-

taking investment is negatively related to his self-ownership, as captured by γii. Thus, if two

agents face similarly risky projects, µi = µj and σ2
i = σ2

j , then agent i invests more than agent

j in the risky project if, and only if, γii < γjj. This result follows from the agency problem

that cross-holding networks generate: agent i optimizes the mean-variance utility of γiiWi,

and not of Wi.

The simplicity of optimal investment policy allows us to develop a relationship between

networks and expected returns, volatility and correlations across agents’ economic values. An

inspection of the expressions E[Vi] and V ar[Vi] reveals that agents with higher volatility and

higher expected value are those with higher ownership of agents with low self-ownership, as

the latter invest more in their risky project. For example, if σ2
i = σ2

j , and µi = µj, for all i, j,

then the variance of Vi is higher than the variance of Vj if, and only if,

∑
l∈N

(
γil − γjl
γll

)2

> 0.

4 Integration and Diversification

Empirical research shows that financial linkages have deepened over the past three decades

–e.g., Kose, Prasad, Rogoff and Wei (2006), Lane and Milesi-Ferretti (2003). Motivated by

this work, we will study two types of changes in networks: integration and diversification.

For expositional simplicity, in this section, we assume that agents are ex-ante identical–i.e.,
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µi = µ, σ2
i = σ2 and wi = w. We start by developing some general results on how changes in

networks affect aggregate welfare.

Recall that an agent’s investment in autarchy is given by β̂ = (µ− r)/ασ2. We can write

agent utility under optimal investment as

Ui(S) = wr
∑
j

γij + β̂(µ− r)
∑
j

[
γij
γjj
− 1

2

γ2ij
γ2jj

]
.

Aggregate welfare is the sum of agent utilities:

W (S) =
∑
i

[
wr
∑
j

γij + β̂(µ− r)
∑
j

[
γij
γjj
− 1

2

γ2ij
γ2jj

]]

= wrn+
(µ− r)2

ασ2

∑
i

∑
j

[
γij
γjj
− 1

2

γ2ij
γ2jj

]
,

where we have used the fact that Γ is column stochastic. We then obtain that W (S) > W (S ′),

if, and only if,

∑
j∈N

[
1

γjj(S)
− 1

γjj(S ′)

]
>

1

2

∑
j

∑
i∈N

[
γ2ij(S)

γ2jj(S)
−
γ2ij(S

′)

γ2jj(S
′)

]
. (6)

The expression
∑

j∈N 1/γjj may be seen as a measure of the aggregate level of risk taking

in the network. It is proportional to the aggregate expected returns generated by a network:

low self-ownership generates high aggregate expected returns. The term

∑
j∈N

γ2ij(S)

γ2jj(S)

reflects the costs of aggregate volatility. The inequality expresses the costs and benefits of

changes in expected returns vis-a-vis changes in variance in terms of the ownership matrix Γ.8

We will apply this inequality to compare welfare across different cross-holding networks.

In general, the relation between S and Γ can be quite complicated; to make progress, we

8To get a sense of how the network structure affects the two sides of the inequality, consider two scenarios:
1) where j’s ownership is evenly distributed γij = 1/n for all i ∈ N ; and 2) where γ′jj = 1/n, and the
remaining ownership of every j is concentrated in the hands of a single agent 1, γ′1j = (n− 1)/n and γ′ij = 0
for all i 6= 1, j. Inequality (6) tells us that the left-hand side is 0, but the right-hand side is higher by a factor
n(n− 1).
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focus first on first- and second-order effects of changes in the linkages, and then we investigate

comparative statics in core-periphery networks.

4.1 Thin networks

We assume that the strength of each link in S is sufficiently small–i.e., the network of cross-

holdings S is thin. Define ηini =
∑

j∈N sji and ηouti =
∑

j∈N sij as the in-degree and out-degree

of i ∈ N , respectively. For thin networks, we can then write the terms in Γ as:

γii ' 1− ηini +
∑
l

silsli and γij ' sij(1− ηini ) +
∑
l

silslj. (7)

This, in turn, implies that

γii
γij
' sij +

∑
l

silslj and
γ2ii
γ2ij
' s2ij. (8)

With these simplifications in hand, we are ready to state our first result on thin networks.

Proposition 2 Assume that σ2
i = σ2, µi = µ and wi = w. There exist w > 0 and s̄ > 0 so

that if w > w and ||S||max < s̄ and ||S ′||max < s̄, then W (S) > W (S ′) if

∑
i∈N

[
ηouti (S)(1 + ηini (S))− ηouti (S ′)(1 + ηini (S ′))

]
>

1

2

∑
i∈N

∑
j∈N

[
s2ij − s

′2
ij

]
. (9)

Note that the reverse implication “only if” holds when the inequality in (9) is not strict

(i.e., ≥). The inequality in the Proposition follows from substituting the ratios (8) in equation

(6), and rearranging terms.

We now formally define integration and diversification in networks. For a vector si =

{si1, ..., sin}, define the variance of si as σ2
si

=
∑

j(sij − ηouti /(n− 1))2.

Definition 1 Integration We say that S is more integrated than S ′ if sij ≥ s′ij ∀i, j ∈ N ,

and sij > s′ij for some i, j ∈ N .

The definition of integration reflects the idea that links between entities have become stronger.

Definition 2 Diversification We say that S ′ is more diversified than S if ηouti (S ′) = ηouti (S)

and σ2
s′i
≤ σ2

si
∀i ∈ N , and σ2

s′i
< σ2

si
for some i ∈ N .
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Figure 2: Changes in Networks

The definition of diversification reflects the idea that an existing sum of strength of ties is

more evenly spread out. Figure 2 illustrates these definitions. These definitions of integration

and diversification capture ideas that are similar to those used in the literature. For example,

our notion of integration implies the definition of integration of Golub, Elliott and Jackson

(2014). Our definitions are easier to apply in the model we study, but the effects we point out

are not specific to these definitions.

Our next result builds on Proposition 2 to draw out the effects of greater integration and

diversification on aggregate utility.

Corollary 1 Assume that σ2
i = σ2, µi = µ and wi = w. There exist w > 0 and s̄ > 0 so that

if w > w and ||S||max < s̄ and ||S ′||max < s̄, the following holds:

1. If S is more integrated than S ′, then W (S) > W (S ′).

2. If S is more diversified than S ′, then W (S) > W (S ′) if

2
∑
i

ηouti (S ′)
[
ηini (S ′)− ηini (S)

]
<
∑
i

[σ2
s′i
− σ2

si
]. (10)

In the second part of the Corollary, the reverse implication “only if” holds when the

inequality in (10) is not strict (i.e., ≤). An increase in integration lowers self-ownership

and pushes up investment in risky assets. Higher investment in risky assets, in turn, raises

expected returns and variability in returns. However, the costs of the increased variability are
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second-order and, in thin networks, are dominated by the benefits of higher expected returns.9

We now take up diversification: consider the case of a network in which some agents

have high in-degree and some agents have low in-degree. In a thin network, the former

have low self-ownership and, therefore, make large risky investments; by contrast, the latter

group of agents have a high self-ownership and invest less in the risky asset. An increase in

diversification leads to a reallocation away from high in-degree nodes to low in-degree nodes.

Since investment in the risky project is proportional to 1/γii, high in-degree agents lower

their risky investment more than the low in-degree agents raise it. Hence, both aggregate

volatility and expected returns decline. Condition (10) in Proposition 1 clarifies the relative

magnitude of these changes. In particular, the right-hand side reflects the decrease in the cost

of the variance due to diversification; since S is more diversified than S ′, the right-hand side

is always positive. The left-hand side represents the change in the expected aggregate returns

due to diversification.

We illustrate the trade-offs involved in diversification with the help of two simple examples.

Example 2 Diversification, heterogeneous networks and welfare.

Suppose n = 4 and network S is defined as: s′12 = s′43 = ε and s′13 = s′42 = 2ε, and all other

links are zero. Next, define network S as: s12 = s43 = s13 = s42 = 3ε/2, and all other links are

zero. Note that S is more diversified than S ′, but the in-degree of each agent is the same in

S and in S ′. Let ε be small so that the network is thin. Thus, the left-hand side of condition

(10) equals zero, and the right-hand side is positive. It follows that aggregate welfare is higher

under the more diversified network S.

Suppose that n = 3, and network S ′ is defined as follows: s′12 = s′21 = ε and all other links

are 0. The network S is defined as s12 = s13 = ε/2, and s21 = s′21. This is a thin network

for sufficiently small ε. Note that the left-hand side of condition (10) is equal to ε2, and the

right-hand side is equal to ε2/2. Aggregate welfare is lower in the more diversified network S.

�

4.2 Core periphery networks

Recall that in a core periphery network, there are np peripheral agents and nc core agents.

We now provide comparative statics results for two extreme form of core-periphery networks,

9The effects of integration on agent utilities will vary: if A owns a much larger part of B, then the ownership
and, hence, the utility of B will typically go down, while the utility of A will go up.
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the complete network, and the star network. In the former, each agent is in the core and the

network is symmetric, i.e.g, nc = n; in contrast, in the star there is only one agent in the core,

and all other agents are peripheral, i.e., nc = 1 and np = n− 1.

Proposition 3 Assume σ2
i = σ2, µi = µ and that wi = w is large for all i. Consider that S

is a complete network, i.e., sij = s for all i 6= j. When s increases each agent invests more in

the risky project and earns a higher utility.

Recall that the ownership matrix Γ in a complete network is

γij =
s

s+ 1
and γii = 1− (n− 1)γij.

Greater s lowers self-ownership and, from Proposition 1, we know that this means that all

agents raise their investment in risky assets. As a consequence, both the expected value E[Vi]

and the variance V ar[Vi] increase in s. Substituting the ownerships in expression (3) tells us

that the expected utility of each agent is increasing in s. Overall, Proposition ?? shows that

in symmetric networks deeper integration increases aggregate utilities even in thick networks

We now move to asymmetric networks. In Example 1, we get the star network if we set

nc = 1. The self-ownerships of central and peripheral agents are, respectively:

γicic =
1− npŝ
1− npŝ2

and γipip =
[1− ŝ][1− ŝ2(np − 1)]

1− npŝ2
.

Proposition 4 Assume σ2
i = σ2, µi = µ and that wi = w is large for all i. Consider that S

is a star network and i∗ is the center, i.e., si∗j = sji∗ = ŝ ∈ [0, 1/(n− 1)] for all j 6= i∗.

• The central agent makes larger investments in the risky asset relative to the other agents.

Furthermore, an increase in ŝ increases the investment in the risky asset of each agent.

• There exists 0 < s < s̄ < 1/np so that an increase in ŝ increases aggregate utilities if

ŝ < s and it decreases aggregate utilities if ŝ > s̄.

It is possible to verify that γicic < γipip and, from Proposition 1, this implies that the

central agent makes larger investments in the risky asset.

We now turn to utilities. For small ŝ, each agent has high self-ownership, and, there-

fore, investments in the risky projects are limited. An increase in ŝ increases investment in

risky assets which leads to an increase in expected returns and in the costs of the variance.
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Since investments are small, the costs of the variance is effectively shared, mainly, by the

peripheral agents. Overall, aggregate utilities increase. However, when ŝ is high, the cen-

tral player has very little self-ownership and very little ownership of peripheral players. In

contrast, the peripheral players have positive and large ownership of the central player. As

a consequence, peripheral players absorb the large risky investments that the central player

undertakes. Hence, an increase in ŝ has a large negative externalities on peripheral agents

and aggregate utilities decline.

It is worth emphasizing that the above patterns for the star network are obtained in more

general core-periphery networks with several central agents and numerical analysis is available

from the authors upon request. Furthermore, we have obtained these results in a setting

where the nodes are ex-ante identical in terms of endowment and the links are symmetric.

In empirically observed financial networks, the core nodes have larger endowments than the

periphery nodes: this will further amplify the negative effects of integration on volatility of

the system. On the issue of links, in some empirical contexts, such as international flows, the

strength of the link from the periphery to the core has grown: this will further strengthen the

decline in self-ownership of core nodes and amplify the effects we identify.10

Overall, the results in this section illustrate the powerful effects of network architecture

on portfolio choice and welfare. They motivate a normative analysis of networks.

5 Optimal investments and the nature of externalities

This section presents a characterization of first-best investments in networks and then exam-

ines the difference between first-best and individually optimal investments. This leads us to

study the costs of decentralization across networks.

We suppose that the ‘planner’ seeks to maximize aggregate utilities:

W P (β, S) =
∑
i∈N

E[Vi]−
α

2

∑
i∈N

V ar[Vi]. (11)

For a given S, the planner chooses investments in risky assets, βP = {βP1 , βP2 , .., βPn }, to

maximize (11). We obtain:

10A variety of financial networks have been empirically studied in recent years; see the introduction for
references to this literature.
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Proposition 5 The optimal investment of the social planner in risky project i = 1, ..., n is

given by

βPi = min

[
wi,

1∑
j∈N γ

2
ji

β̂i

]
. (12)

In order to understand the externalities created by the network of holdings, we compare

the marginal utility of increasing βi for agent i, with the marginal utility of the utilitarian

planner. We have:

∂Ui
∂βi

= (µi − r)γii − ασ2
i βiγ

2
ii,

∂W (S)

∂βi
= (µi − r)− ασ2

i βi
∑
j∈N

γ2ji.

The agent ignores the impact of his risky investment on the aggregate expected returns and

also on the sum of the agent’s variance. In particular, an agent underestimates the impact

of his investment on the aggregated expected value by (1− γii), and on the sum of variances

by
∑

j 6=i γ
2
ji. Note that

∑
j 6=i γ

2
ji is higher when the ownership of agent i is concentrated in a

few other agents. This yields the following general insight: when the cross-holding network of

agent i is highly concentrated, agent i’s investment in risky assets is too high relative to what

is collectively optimal. The converse is true if agent i’s cross-holdings are widely dispersed.

Corollary 2 Assume that wi is large for all i ∈ N . Agent i over-invests as compared to the

planner, βi > βPi if, and only if,

γii <
∑
j∈N

γ2ji.

We now consider how the network affects the cost of decentralization. Given a network S,

the cost of decentralization is defined as

K(S) = W (βP , S)−W (β∗, S).

Using Proposition 1 and Proposition 5, we obtain

K(S) =
(µ− r)2

ασ2

[∑
j

(
1∑
l γ

2
lj

− 1

γjj

)
− 1

2

∑
i

∑
j

(
γ2ij

1

(
∑

l γ
2
lj)

2
− 1

γ2jj

)]
.

15



We would like to order networks in terms of this cost of decentralization. While it is

difficult to obtain a result when comparing arbitrary networks, we are able to make progress

if we restrict attention to thin networks.

Proposition 6 Assume that σ2
i = σ2, µi = µ and wi = w for all i ∈ N . Suppose that S and

S ′ are both thin networks. There exist w > 0 and s̄ > 0 so that if w > w and ||S||max < s̄ and

||S ′||max < s̄, the cost of decentralization is higher under S than under S ′ if, and only if,∑
j

ηinj (S)2 >
∑
j

ηinj (S ′)2. (13)

Note that if S is more integrated than S ′, then ηini (S) ≥ ηini (S ′) for all i ∈ N , and the

inequality is strict for some i, which implies that condition (13) holds. That is, the cost of

decentralization is higher in more-integrated networks. Intuitively, by increasing integration,

agents’ self-ownership decreases, and, therefore, the agency problem is stronger.

On the other hand, take two network S and S ′ for which the sum of in-degrees across

agents is constant. Then, condition (13) tells us that the cost of decentralization is higher

in networks in which in-degrees are concentrated on a few nodes, as in the core-periphery

network. In these networks, it follows from Corollary 2, that the few agents with a large

in-degree over-invest in the risky asset, creating far too much variability among the connected

agents.

6 Optimal Network Design

This section considers the nature of the optimal network. It is useful to separately develop

both a first-best and a second-best analysis. In the first-best analysis, the planner designs the

network S to maximize objective (11) and dictates collectively optimal investments according

to (12). In the second-best analysis, the planner designs the network S to maximize objective

(11) but takes into account that, for a given S, agents choose investments according to (4).

The following result summarizes our analysis.

Proposition 7 Assume that wi is large for all i ∈ N . The first-best network design and the

second-best network design is the complete network with maximum link strength sij = 1/(n−1)

for all i 6= j.
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To solve the first-best and second-best design problem, we first derive the optimal Γ, and

then we derive the network S that induces the optimal Γ. We start by establishing that

homogeneous networks – where links and weights are spread evenly across nodes - dominate

heterogeneous networks. This is because agents are risk-averse, and concentrated and unequal

ownership exacerbates the costs of variance. This leads to a preference for homogeneous

networks: networks where, for every i, γji = γj′i for all j, j′ 6= i.

In the first-best, within homogeneous networks, stronger links are better, as they allow

for greater smoothing of shocks, and this is welfare-improving due to agents’ risk aversion.

In the second-best design problem, within homogeneous network, the designer can replicate

the first best outcome by setting the same network as in the first-best design. In fact, when

sij = 1/(n− 1) for all i 6= j, then γij = 1/n for all i, j, and therefore equilibrium investment

coincides with socially optimal investments.

7 Correlations

We relax the assumption that the returns of projects are uncorrelated. We show existence of

an equilibrium; we provide sufficient conditions for uniqueness and for existence of an interior

equilibrium. Finally, we provide an example in the extreme case in which projects are positive

perfectly correlated; this example shows that in asymmetric networks some individuals over-

invest in risk taking; in this sense our insights in the basic model carry over to a setting with

correlations.

Recall that each project zi is normally distributed with mean µi and variance σ2
i and

therefore z = {z1, ..., zn} is a multivariate normal distribution. Let Ω be the covariance

matrix. Under the assumption that z is a non-degenerate multivariate normal distribution, it

follows that Ω is positive definite. Note that

Ui(βi, β−i) =
∑
j∈N

γij(wr + βj(µi − r))−
α

2

∑
j∈N

∑
j′∈N

γijβjγij′βj′σ
2
jj′ , (14)

and the sign of ∂2Ui/(∂βi∂βj) is the same as the sign of −σij; that is, investments in risky

asset i and j are strategic substitutes (resp. strategic complement) whenever the returns from

the two projects are positively correlated (negatively correlated).

Let ◦ be the Hadamard product. Let also b be a n dimensional vector where the i-th

element is (µi − r).
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Proposition 8 There always exists an equilibrium and the equilibrium is unique if
∑

j sij <

1/2 for all i ∈ N . Furthermore, there exists a w̄ > 0 and a s̄ > 0 so that if w > w̄ and

||S||max < s̄ the unique equilibrium is interior and takes the following form β = {β1, ..., βn}:

β =
1

α
[Γ ◦ Ω]−1b.

Existence and uniqueness follows by verifying the sufficient conditions developed by Rosen

(1965). The analysis becomes easier when we take the case of projects that are positively

perfectly correlated. This environment is equivalent to assume that there is only one risky

project and all individuals can invest in such project.11 Recall that ηini =
∑

j sji

Proposition 9 Assume projects are perfectly positive correlated, that µi = µ for all i ∈ N
and that w is large. An interior equilibrium exists if, and only if, 1

1−ηini
−
∑

j
sij

1−ηinj
> 0 for all

i. In an interior equilibrium

βi =
µ− r
σ2α

[
1

1− ηini
−
∑
j

sij
1− ηinj

]
, (15)

Note that in an interior equilibrium each individual is exposed to the same amount of risky

investment in the sense that for each individual i and j it must be the case that
∑

l γilβl =∑
l γjlβl. Furthermore, this amount is the same as the one that an individual will choose

in isolation, i.e.,
∑

l γilβl =
∑

l γjlβl = (µ−r)2
ασ2 . This fact, together with the fact that Γ is

column stochastic, implies that the sum of risky investment across individuals equals the sum

of investment in the risky asset across individuals in the case where the network is empty.

From the explicit characterization of Proposition 9, it is easy to provide the following

comparative statics:

Proposition 10 Assume projects are perfectly positive correlated. In an interior equilibrium:

1.) a change in the network increases the utility of individual i if and only if it increases his

total ownership
∑

j γij; 2.) a change in the network has not impact on aggregate utilities; 3.)

equilibrium investments are socially efficient

11In fact, the insights we provide in this section will also carry over to an environment where there are n
assets, whose returns are i.i.d, and each individual can invest in each of these assets. In the equilibrium of
these models, each individual i will choose a total investment in risky assets, say βi, and then spread such
investment equally across the n assets, i.e., individual i invests βis = βi/n on each asset s. It is easy to show
that the equilibrium investment βi in this model with n assets is the same as the one that we derived here for
one asset.
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We conclude by showing that, when the networks are heterogenous, the equilibrium is not

interior, and this leads to over-investment in risky assets.

Example 3 Two-individuals case and over-investment.

Note first that, with two agents, S is characterised by s12 and s21, and it is immediate to

derive: γii = (1 − sji)/(1 − sijsji) and γji = 1 − γii, for all i = 1, 2 and j 6= i. Second, we

provide a full characterisation of equilibrium. From Proposition 9 we know that an interior

equilibrium exists if, and only if, 1
1−ηini

−
∑

j
sij

1−ηinj
> 0 for all i, which, in this example, reads

as γii > 1/2 for i = 1, 2. We now characterise non-interior equilibrium. It is immediate to see

that the marginal returns to agent i are strictly positive at βi = βj = 0; therefore β1 = β2 = 0

cannot be equilibrium. Consider the case where βi = 0 and βj > 0. Given βi = 0, the FOC

for j leads to

βj =
µ− r
ασ2

1− sijsji
1− sij

,

and since βi = 0, it has to be the case that the marginal utility of i at βi = 0 and βj =
µ−r
ασ2

1−sijsji
1−sij is non-positive, which holds, if, and only if, µ − r − αγiiβjσ2 ≤ 0, if, and only if,

γjj < 1/2. Combining these results we have that the equilibrium is unique and that there are

three regions, which are the same as the one depicted in figure 3. In Region 1, γ11 > 1/2 and

γ22 > 1/2, both agents invest positively in the risky asset and their investment is specified in

Proposition 9. In Region 2 (resp. Region 3), where γ11 < 1/2 and γ22 > 1/2 (resp. γ11 > 1/2

and γ22 < 1/2), agent 2 (resp. agent 1) does not invest in the risky project and agent 1 (resp.

agent 2) invests β1 = µ−r
ασ2

1−s21s12
1−s21 (resp. β2 = µ−r

ασ2
1−s21s12
1−s12 ).

Third, we provide a full characterisation of the social optimum. If the optimum is interior,

then we know from part 3 of Proposition 10 that β̂i equals expression (15), which, in this

example reads

β̂i =
µ− r
σ2α

[
1− 2sij + sijsji
(1− sij)(1− sji)

]
(16)

and, it is easy to verify that, β̂1 > 0 and β̂2 > 0 if and only if: γ11 > 1/2 and γ22 > 1/2. The

social welfare that is generated is 2wr + (µ−r)2
σ2α

. Consider now that β̂i = 0 and β̂j > 0. Then

the FOC for j must hold which leads to

β̂j =
µ− r
σ2α

1

γ2ij + γ2jj

and the social welfare generated is 2wr + (µ−r)2
σ2α

1
2[γ2ij+γ

2
jj ]

.
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Figure 3: Equilibrium and first best investments.

It is easy to see that 2[γ2ij +γ2jj] ≥ 1, and the inequality is strict whenever γjj 6= 1/2, which

implies that the social welfare when β̂1 and β̂2 are both positive is higher than when one of

them is 0. So, whenever γ22 > 1/2 and γ11 > 1/2 the optimal solution is interior. Next, note

that the welfare associate to β̂1 = 0 and β̂2 > 0 is higher than the welfare associated to β̂1 > 0

and β̂2 = 0 if and only if γ212 + γ222 < γ221 + γ211, which is satisfied if, and only if, γ22 < 1/2 and

γ11 > 1/2. Finally, by comparing the optimal investment βj when γjj > 1/2 and γii < 1/2,

with the equilibrium investment, it is easy to check that individual j over invests relative to

the social planner.

Finally, the comparison between equilibrium and social optimum is summarised in Figure

3. It shows that when the cross-holding network is asymmetric then we have over-investment

of some of the agents, which is similar to the case of independent projects.

8 Conclusion and remarks on model

We have developed a model in which the network of financial obligations mediates agents’

risk taking behavior. The framework allows us to discuss the costs and benefits of greater

integration and greater diversification and how they depend on the underlying network’s

characteristics.

In the basic model, we have taken the view that ownership does not translate into control
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in a straightforward way. For expositional purposes, we assume that ownership and control

are completely separate. We now discuss two different ways of bringing ownership more in

line with decision rights. An online Appendix contains supplementary material that covers

technical results.

Suppose that γij signifies that agent i has control over γij fraction of agent j’s initial

endowment wj. One way of interpreting this control is to say that agent i can invest γijwj in

the risk-free asset or in the risky project i. In this interpretation, γijwj is a transfer from j to

i that occurs before shocks are realized. Therefore, Γ redefines the agents’ initial endowments.

Since, under the mean-variance preferences, initial endowments do not influence risk taking

(unless the solution is corner), the network plays no important role.

In an alternative scenario, suppose that ownership conveys control, but the control is

‘local’: agent i can invest wγij in the risk-free asset and in the risky project of agent j. The

choice of agent i is, then, a vector of investments βi = {βi1, ..., βin}, where βij is the investment

in risky project j of endowment wij = γijwj, and βij ∈ [0, γijwj]. It is possible to show that, in

this case, individually optimal investment levels are independent of the network, and agents’

choices mimic those of a central planner with mean-variance preferences over aggregate returns

V =
∑

i Vi.

These two examples illustrate that whenever ownership gives control in a ”frictionless”

way, the role of the network in shaping risk taking is uninteresting.

9 Appendix

Derivation of Γ matrix for core-periphery matrix: We first derive the Γ matrix for a

core-periphery matrix, S. In a core-periphery network there are np peripheral individuals and

nc central individuals, np + nc = n; ic is a (generic) central individual and ip is a peripheral

individual. A link between two central individuals is sicjc = s and a link between a central

and a peripheral individual sicip = sipic = ŝ, and there are no other links.

Denote by kt(ic, ic) the element [St]ii where i is a core player, kt(ip, ip) the element [St]ii

where i is a peripheral player, kt(ic, jc) the element [St]ij where i and j, i 6= j are core players,

kt(ip, jp) the element [St]ij where i and j, i 6= j are peripheral players, kt(ic, jp) the element

[St]ij where i is a core player and j is a peripheral player. It is easy to verify that for every
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t ≥ 1 we have  kt(ic, ic)

kt(ic, jc)

kt(ic, jp)

 =

 0 (nc − 1)s npŝ

s (nc − 2)s npŝ

ŝ (nc − 1)ŝ 0


 kt−1(ic, ic)

kt−1(ic, jc)

kt−1(ic, jp)


and kt(ip, ip) = kt(ip, jp) = ncŝk

t(ic, jp), where k0(ic, jc) = 0, k0(ic, jp) = 0, k0(ic, ic) = 1.

This is a homogenous system of difference equation with initial conditions k1(ic, jc) = s,

k1(ic, jp) = ŝ, k1(ic, ic) = 0. So, to solve it suffices to derive the eigenvalues of the matrix of

coefficients and the respective eigenvectors. To derive eigenvalues note that∣∣∣∣∣∣∣
−λ (nc − 1)s npŝ

s (nc − 2)s− λ npŝ

ŝ (nc − 1)ŝ −λ

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
−λ− s 0 0

s (nc − 1)s− λ npŝ

ŝ ncŝ −λ

∣∣∣∣∣∣∣ = (−λ−s)

∣∣∣∣∣ (nc − 1)s− λ npŝ

ncŝ −λ

∣∣∣∣∣ = 0

if and only if λ = −s or λ2 − λ(nc − 1)s − npncŝ2 = 0. Call λ1 = −s, and λ2 > λ3 the two

solutions to the quadratic equation. Let the eigenvector associated to λi be denoted by vi =

[xi, yi, zi]. Simple calculation implies that v1 = [x1,−x1/(nc−1), 0] and v2 = [x2, x2, ncŝx2/λ2],

v3 = [x3, x3, ncŝx3/λ3]. Recalling that

kt(ic, ic) = c1x1λ
t
1 + c2x2λ

t
2 + c3x3λ

t
3,

kt(ic, jc) = c1y1λ
t
1 + c2y2λ

t
2 + c3y3λ

t
3,

kt(ic, jp) = c1z1λ
t
1 + c2z2λ

t
2 + c3z3λ

t
3,

and using the derived eigenvalues and eigenvectors we obtain

kt(ic, ic) = c1x1(−s)t + c2x2λ
t
2 + c3x3λ

t
3,

kt(ic, jc) = −c1x1
1

nc − 1
(−s)t + c2x2λ

t
2 + c3x3λ

t
3,

kt(ic, jp) = c2ncŝx2λ
t−1
2 + c3ncŝx3λ

t−1
3 .

Imposing the initial conditions, we obtain c1x1 = (nc − 1)/nc, c2x2 = 1
nc

[
(nc−1)s−λ3
λ2−λ3

]
and
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c3x3 = 1
nc

[
[λ2−(nc−1)s

λ2−λ3

]
. And so, after some algebra,

kt(ic, ic) =
nc − 1

nc
(−1)tst +

1

(λ2 − λ3)nc
[
(nc − 1)s(λt2 − λt3)− λ2λ3(λt−12 − λt−13 )

]
,

kt(ic, jc) = − 1

nc
(−1)tst +

1

(λ2 − λ3)nc
[
(nc − 1)s(λt2 − λt3)− λ2λ3(λt−12 − λt−13 )

]
,

kt(ic, jp) =
ncŝ

(λ2 − λ3)nc
[
(nc − 1)s(λt−12 − λt−13 )− λ2λ3(λt−22 − λt−23 )

]
.

We can now derive the matrix Γ. Note that

∞∑
t=1

kt(ic, ic) =
(nc − 1)s2 + ncnpŝ

2s+ npŝ
2

(s+ 1)[1− s(nc − 1)− ncnpŝ2]
,

and since γic,ic = (1− dc)[1 +
∑∞

t=1 k
t(ic, ic)] we have

γic,ic =
[1− (nc − 1)s− npŝ][1− (nc − 2)s− ncnpŝ2 + npŝ

2]

(s+ 1)[1− s(nc − 1)− ncnpŝ2]
.

We can repeat the same steps for the other cases and straight algebra leads to following

expressions that we have reports in example 1. Furthermore, if we set np = 0 we get the Γ

for the complete network with nc = n nodes. If we set np = n − 1, we get the Γ for the star

network.

Proof of Proposition 1: Suppose that the solution is interior. As the objective function

is concave, the first-order condition is sufficient. Taking derivatives in (3) with respect to βi

and setting it equal to 0, immediately yields the required expression for optimal investments.

Substituting the optimal investments in the expressions for the expected value and variance

yields the expressions in the statement of the result. �

Proof of Proposition 2. We start with the derivation of the second-order approximation

of Γ for thin networks. Define the indicator function δij = 1, if i = j and δij = 0, otherwise.

First, note that:
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γij = (1−
∑
p 6=i

spi)

(
δij + sij +

∑
p6=i,j

sipspj +
∑

p 6=i,q 6=j,p6=q

sipspqsqj + ...

)
' δij + sij +

∑
p

sipspj −
∑
p

spi(δij + sij),

which yields to

γii ' 1− ηini +
∑
p

sipspi and γij ' sij − sijηini +
∑
p

sipspj.

We can then write:

γij
γjj

'
sij +

∑
p sipspj − sij

∑
p spj

1−
(∑

p spj −
∑

p sjpspj

)
'

(
sij +

∑
p

sipspj − sij
∑
p

spj

)(
1 +

∑
p

spj −
∑
p

sjpspj +

(∑
p

spj

)(∑
h

shj

))
' sij +

∑
p

sipspj − sij
∑
p

spj + sij
∑
p

spj = sij +
∑
p

sipspj,

and, similarly,
γ2ij
γ2jj
' s2ij.

Therefore
γij
γjj
− 1

2

γ2ij
γ2jj
' sij +

∑
p

sipspj −
1

2
s2ij

Using expression (6), we obtain that in thin networks,
∑

i Ui(S) >
∑

i Ui(S
′) if

∑
i

∑
j

[
sij +

∑
p

sipspj −
1

2
s2ij

]
>
∑
i

∑
j

[
s′ij +

∑
p

s′ips
′
pj −

1

2
s
′2
ij ,

]

and using the definition of ηini and ηouti , this condition can be rewritten as condition (10) in

the Proposition. The “only if” part also follows. �

Proof of Corollary 1: If S is more integrated than S ′ then ηouti (S) ≥ ηouti (S ′) and the

inequality is strict for some i. This implies that moving from S ′ to S there is a positive first
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order effect in aggregate utilities. Therefore, for s̄ small enough, aggregate utility is higher in

S and than S ′. Next, the proof of the second part of the Corollary follows by Proposition 2

after noticing that ηouti (S) = ηouti (S ′) for all i ∈ N and using the definition of σ2
si

. �

Proof of Proposition 3. Setting np = 0 and calling nc = n, we get the complete network,

with link strength s ≤ 1/(n − 1). The element of Γ are therefore γij = s/(s + 1) and

γii = 1 − (n − 1)γij. Individual investment is negatively related to γii, which is clearly

decreasing in s, for s ∈ [0, 1/(n− 1)]. Next, observe that

E[Vi] = wr
∑
j∈N

γij +
(µ− r)2

ασ2

∑
j∈N

γij
γjj

= wr +
(µ− r)2

ασ2

[
1 + s

1− (n− 2)s

]
.

It is straightforward to see that E[Vi] is increasing in s. Similar computation shows that

V ar[Vi] =
(µ− r)2

α2σ2

[
1 +

(n− 1)s2

[1− (n− 2)s]2

]
,

and it is immediate to see that it is increasing in s. Next, the expected utility of i reads as

Ui = E[Vi]−
α

2
V ar[Vi] = wr +

(µ− r)2

2ασ2

[
1 +

s[2− s(2n− 3)]

[1− (n− 2)s]2
(n− 1)

]
,

and

∂Ui
∂s

=
(n− 1)(µ− r)2

ασ2

[1− s(n− 1)]

[1− (n− 2)s]3
> 0,

where the last inequality follows by noticing that, by assumption, s(n− 1) < 1. Finally, it is

easy to check the result on the covariance. �

Proof of Proposition 4. Obtain Γ for the star network by setting nc = 1 and np = n − 1.

Part 1 follows by inspection of the net ownership expressions derived for the star network.

We now prove part 2. Aggregate utilities in a star network is

W (S) = −1

2
+

1

γicic
+

1

γipip
− np

2

[(
γicip
γipip

)2

+

(
γipic
γicic

)2

+ (n− 2)

(
γipjp
γipip

)2
]
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and

∂W (s)

∂ŝ
=

∂(1/γicic)

∂ŝ
+
∂(1/γipip)

∂ŝ
− np

[
γicip
γipip

∂(γicip/γipip)

∂ŝ

]
−

− (n− 1)

[
γipic
γicic

∂(γipic/γicic)

∂ŝ
+ (n− 2)

γipjp
γipip

∂(γipjp/γipip)

∂ŝ

]

It is easy to verify that ∂W (s)
∂ŝ

is continuous in ŝ ∈ [0, 1/np]. Furthermore, when ŝ goes to

0, then ∂(1/γicic )

∂ŝ
goes to np and all the other terms goes to 0 and therefore ∂W (s)

∂ŝ
goes to np.

When ŝ goes to 1/np the terms
∂(1/γipip )

∂ŝ
, (n− 2)

γipjp
γipip

∂(γipjp/γipip )

∂ŝ
,
γicip
γipip

∂(γicip/γipip )

∂ŝ
converges to

a final number. However the terms ∂(1/γicic )

∂ŝ
and

γipic
γicic

∂(γipic/γicic )

∂ŝ
both converge to +∞. Hence

sign lim
ŝ→1/np

∂W (s)

∂ŝ
= = lim

ŝ→1/np

∂(1/γicic)

∂ŝ
− np

γipic
γicic

∂(γipic/γicic)

∂ŝ

= lim
ŝ→1/np

[
np[1− 2s+ nps

2]

[1− npŝ]2
− (1− s)nps

1− nps
[1− 2s+ nps

2]

[1− nps]2

]
= lim

ŝ→1/np

[1− 2s+ nps
2]np

[1− nps]2

[
1− (1− s)s

1− nps

]
< 0

�

Proof of Proposition 5: Rewriting the objective function of the planner (11) we obtain

that

W (S) = r
∑
i∈N

wi +
∑
i∈N

βi(µi − r)−
α

2

∑
i∈N

βiσ
2
iAi, (17)

where Ai ≡
∑

j∈N γ
2
ji. Suppose the optimum is interior. Then, under the assumption that

projects are independent, we obtain that for every i ∈ N , the first order condition is

(µi − r)− σ2
i βiαAi = 0. (18)

We obtain that the optimal level of investment of the social planner is, for every i,

βPi = min

[
wi, β̂i

1

Ai

]
. (19)

�
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Proof of Proposition 6. Recall that, given a network S, the cost of decentralization is

K(S) =
(µ− r)2

ασ2

[∑
j∈N

(
1∑

l∈N γ
2
lj

− 1

γjj

)
− 1

2

∑
i∈N

∑
j∈N

γ2ij

(
1

(
∑

l∈N γ
2
lj)

2
− 1

γ2jj

)]
.

First, using the approximation of γij we derive

n∑
h=1

γ2hj '
n∑
h6=j

(
shj +

∑
p

shpspj − shjηinj

)2

+

(
1− ηinj +

∑
p

sjpspj

)2

' 1− 2ηinj + 2
∑
p

sjpspj +
(
ηinj
)2

+

(∑
h

s2hj

)
.

Therefore

1∑n
h=1 γ

2
hj

' 1 + 2ηinj − 2
∑
p

sjpspj −
(
ηinj
)2 −(∑

h

s2hj

)
+ 4

(
ηinj
)2

= 1 + 2ηinj − 2
∑
p

sjpspj −

(∑
h

s2hj

)
+ 3

(
ηinj
)2
,

and
1

γjj
' 1 + ηinj −

∑
p

sjpspj +
(
ηinj
)2
.

We obtain:

1∑n
h=1 γ

2
hj

− 1

γjj
' ηinj −

∑
p

sjpspj + 2
(
ηinj
)2 −(∑

h

s2hj

)
.

On the other hand

1(∑n
p=1 γ

2
pj

)2 − 1

γ2jj
'

[
1 + 2ηinj − 2

∑
p

sjpspj −

(∑
h

s2hj

)
+ 3

(
ηinj
)2]2

−

[
1 + ηinj −

∑
p 6=j

sjpspj +
(
ηinj
)2]2

' 2ηinj − 2
∑
p

sjpspj + 7
(
ηinj
)2 − 2

(∑
h

s2hj

)
.
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Then

∑
i

∑
j

γ2ij

 1(∑n
p=1 γ

2
pj

)2 − 1

γ2jj

 '
∑
i

∑
j 6=i

(
sij +

∑
p

sipspj − sijηinj

)2
 1(∑

p γ
2
pj

)2 − 1

γ2jj

 ,

and after some algebra we obtain

∑
i

∑
j

γ2ij

 1(∑n
p=1 γ

2
pj

)2 − 1

γ2jj

 '
∑
i

[
2ηini − 2

∑
p

sipspi + 3(ηini )2 − 2

(∑
h

s2hi

)]
.

Putting together these expressions we get an expression for the cost of decentralization:

K(S)
(µ−r)2
ασ2

'
∑
j

[
ηinj −

∑
p

sjpspj + 2
(
ηinj
)2 −(∑

h

s2hj

)]
−

−1

2

∑
j

[
2ηinj − 2

∑
p

sjpspj + 3
(
ηinj
)2 − 2

(∑
h

s2hj

)]

=
1

2

∑
j

(
ηinj (S)

)2
.

It is now straightforward to complete the proof of Proposition 6. �

Proof of Proposition 7:

First-best design problem. We start by considering the first best design problem. Substituting

in expression (17) the centralised solution βP = {βP1 , ..., βPn }, we obtain that

W (S, βP ) = r
∑
i∈N

wi +
1

2

∑
i∈N

β̂i(µi − r)
1

Ai

Recall that Ai =
∑

j∈N γ
2
ji and therefore Ai only depends on {γ1i, ..., γni}. Moreover, if we fix

i, the expresson

β̂i(µi − r)
1

Ai

is declining in Ai. Next note that if, for some i, γli > γki for some l 6= i and k 6= i, then, we

can always find a small enough ε > 0 so that, by making the local change γ′li = γli − ε and

γ′ki = γki + ε, we strictly decrease Ai, without altering Aj for all j 6= i. Hence, such a local
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change strictly increases welfare. This implies that at the optimum γli = γki for all l, k 6= i.

Set γli = γki = γ; hence,γii = 1− (n− 1)γ. Then, W is maximized when Ai is minimized, or,

equivalently, γ minimizes

(n− 1)γ2 + [1− γ(n− 1)]2

which implies that γ = 1/n. Note that Γ such that γij = 1/n for all i and for all j is obtained

when S is complete and sij = 1/(n− 1) for all i and for all j =6= i.

Second-best design problem. Note that by setting sij = 1/(n− 1) for all i 6= j, we obtain that

γij = 1/n for all i, j and that, as a consequence β∗ coincides with the socially optimal choice.

Hence, the planner can replicate the firs best outcome just by setting sij = 1/(n − 1) for all

i 6= j. �

Proof Proposition 8. Recall that

Ui(βi, β−i) =
∑
j∈N

γij(wr + βj(µi − r))−
α

2

∑
j∈N

∑
j′∈N

γijβjγij′βj′σ
2
jj′ , (20)

and note that Ui(βi, β−i) is continuous in (βi, β−i) and it is concave in βi. Moreover, the

strategy space is from a convex and bounded support. Hence, existence follows from Rosen

1965.

The sufficient condition for uniqueness also follows from Rosen 1965. For some positive

vector r, let g(β, r) be a vector where element i is ri
∂Ui

∂βi
. Let G(β, r) be the Jacobian of g(β, r).

Rosen (1965) shows that a sufficient condition for uniqueness is that there exists a positive

vector r such that for every β and β′ the following holds

(β − β′)Tg(β′, r) + (β′ − β)Tg(β, r) > 0.

Moreover, a sufficient condition for the above condition to hold is that there exists a positive

vector r such that the symmetric matrix G(β, r) + G(β, r)T is negative definite. In our case,

by fixing r to be the unit vector, we have that

G(β, 1) +G(β, 1)T = −α[Γ + ΓT ] ◦ Ω

So, it is sufficient to show that [Γ + ΓT ] ◦ Ω is positive definite. It is well known that the

Hadamard product of two positive definite matrix is also a positive definite matrix. Since Ω

is positive definite, it is sufficient to show that [Γ + ΓT ] is positive definite. Since the sum of
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positive definite matrix is a positive definite matrix, it is sufficient to show that Γ is positive

definite. The condition that
∑

j sij < 1/2, implies that Γ is a strictly diagonally dominant,

and therefore positive definite.

The characterization of an interior equilibrium follows by taking the FOCs. It remains to

show that there exists a s̄ > 0 so that if ||S||max < s̄ the equilibrium is interior. For this note

that taking the derivative of Ui(βi, β−i) with respect to βi we have

∂Ui(βi, β−i)

∂βi
= γii

[
(µi − r)− α

∑
j

γijβjσ
2
ji

]
. (21)

If the equilibrium is non-interior, then there exists a i with βi = 0 which implies that

(µi − r)− α
∑
j 6=i

γijβjσ
2
ji ≤ 0,

but as we take ||S||max smaller and smaller we have that
∑

j 6=i γijβjσ
2
ji becomes as small as

we wish and therefore we get a contradiction (we can do that because we can make each γij

small enough for each i 6= j and because βj is bounded above by w).

�

Proof of Proposition 9 The characterization of equilibrium behavior follows immediately

from Proposition 8 by setting σ2
ij = σ2 for all i, j. It is immediate to check that in an interior

equilibrium
∑

i βi = nµ−r
ασ2 . Furthermore, the condition for interior equilibrium follows from

inspection of expression (15). We next derive the expression for the equilibrium expected

utility of player i. Recall that E[Vi] = wr
∑

j γij + (µ− r)
∑

j γijβj; in an interior equilibrium

we have that, for every i, µ− r − ασ2
∑

j γijβj = 0, and, therefore,

E[Vi] = wr
∑
j

γij +
(µ− r)2

ασ2
.

Similarly, V ar[Vi] = σ2
[∑

j γijβj

]2
, and using the equilibrium conditions we have that:

V ar[Vi] =
(µ− r)2

α2σ2
.
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The equilibrium expected utility of i is therefore

E[Ui] = wr
∑
j

γij +
(µ− r)2

ασ2
− α

2

(µ− r)2

α2σ2

= wr
∑
j

γij +
1

2

(µ− r)2

ασ2
.

This concludes the proof of Proposition 9. �

Proof of proposition 10. Part 1 follows by noticing that the equilibrium expected utility

of i is

Ui(β
∗, S) = wr

∑
j

γij +
(µ− r)2

ασ2
− α

2

(µ− r)2

α2σ2

= wr
∑
j

γij +
1

2

(µ− r)2

ασ2
.

Part 2 follows by noticing that
∑

i Ui(β
∗, S) is independent of S.

Finally, we prove part 3. First we assume that the socially optimal is interior and show that

it coincides with the equilibrium behavior. We then show that the social welfare is concave in

β. Under perfect positive correlation, we can write the social welfare as

W (βi, β−i) = nwr +
∑
i∈N

∑
j∈N

γijβj(µ− r)−
ασ2

2

∑
i∈N

[∑
j∈N

γijβj

]2
.

Taking the derivative with respect to βl we have

dW

dβl
=

∑
i∈N

[
(µ− r)γil − ασ2γil

∑
j∈N

γijβj

]
= µ− r − ασ2

∑
i∈N

γil
∑
j∈N

γijβj,

and given the assumption that the optimum is interior, we have that for every l it must to

hold ∑
i∈N

γil
∑
j∈N

γijβj =
µ− r
ασ2

.

Note that the equilibrium solution derived in Proposition 9 also solves the above problem.
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Indeed, the equilibrium solution has the property that, for every i,
∑

j γijβj = µ−r
ασ2 . It is also

immediate to see that there is a unique solution to the above linear system.

We now show that the social welfare is concave in β. To see this note that the Hessian is

−σ2αΓTΓ, and therefore we need to show that ΓTΓ is positive definite. This is true because

xTΓT = {x1γ11, .., xnγ1n; ....;x1γn1, ..., xnγnn} and Γx = (xTΓT )T

and so

xTΓTΓx = [x1γ11 + ..+ xnγ1n]2 + ....+ [x1γn1, ..., xnγnn]2 > 0,

where the strict inequality follows because xi 6= 0 for some i and because for each i, γij > 0

for some j. �

For Online Pubblication: Ownership and Control

We discuss the case in which ownership leads to control in decision making. For simplicity

we assume that wi = w, µi = µ and σ2
i = σ2 for all i ∈ N . We assume that γij signifies that

individual i has control over a percentage γij of j’s initial endowment w. That is, individual

i unilaterally decides the investment of γijw. We propose two natural scenario and study the

consequences for optimal risk taking.

First Scenario. Assume that individual i can invest γijw in the risk-free asset or in risky

project i. In this case, γijw is a transfer from j to i that occurs before shocks’ realization.

Hence, Γ simply re-defines initial endowment of individuals: if we start from a situation where

wi = w for all i, then Γ leads that a new distribution ŵ = {ŵ1, ..., ŵn} of endowment, where

ŵi =
∑

j γijw. Since, under mean-variance preferences, initial endowment doest not affect the

portfolio choice of an individual (as long as the solution is interior), the network S plays no

major role in the analysis.

Second Scenario. Suppose that individual i can invest γijw in the risk free asset or in risky

project j. This is a model where γij conveys control to i over γijw, but the control is local,

in the sense that individual i can only invest γijw in risky project j. In this case, individual

i chooses βi = {βi1, ..., βin}, where βij is the investment in risky project j of endowment

wij = γijw. Of course, βij ∈ [0, γijw]. It is immediate that individual i’s optimal investment
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is

βij = max ∈
{
γijw,

(µ− r)
ασ2

j

}
.

For a given Γ, takes w sufficiently high so that βij is interior for all ij. This is always possible.

Then we can calculate sum of utilities

Ui = wr
∑
j

γij +
1

2

(µ− r)2

α

∑
j

1

σ2
j

,

and therefore ∑
i

Ui = n

[
wr +

1

2

(µ− r)2

α

∑
j

1

σ2
j

]
.

We now observe that this outcome is equivalent to the outcome choosen by a planner with

mean variance utility with regard to aggregate output. Indeed,

Vi =
∑
j

γijwr +
∑
j

γijβij(zj − r),

and

V = nwr +
∑
i

∑
j

γijβij(zj − r).

the optimal investment plan of the planner that maximizes E[V ]− α
2
V ar[V ] is then the same

as the decentralized solution derived above.
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