Looking at the tail: price-based measures of systemic importance

Chen Zhou – DNB Nikola Tarashev – BIS

Systemic Risk Centre, 28 Nov 2013

Views expressed do not necessarily reflect official positions of DNB or BIS

This paper

- A price-based measure of systemic importance
- Make good use of tail observations
 - Tail dispersion: LGD approximation
 - Tail dependence: systemic linkage
- Check the usefulness of such measure
 - Distinctiveness in the cross-section
 - Time variation with respect to drivers
 - Predictable from exogenous information
 - Reaction from market participants

Systemic importance

- Top-down concept
 - System-wide risk
 - Systemic risk of one institution
- Measurement
 - Contribution: the impact for causing a systemic event
 - Participation: the impact during a systemic event
- We take the latter approach

Price-based measures

- Why price-based?
 - High frequency observations, thus high frequency measure
 - Reflect market perception on SI
 - Market may not be good at perceive systemic risk on the time dimension
 - But good in distinguish in cross-section
 - At least, they react on their perception

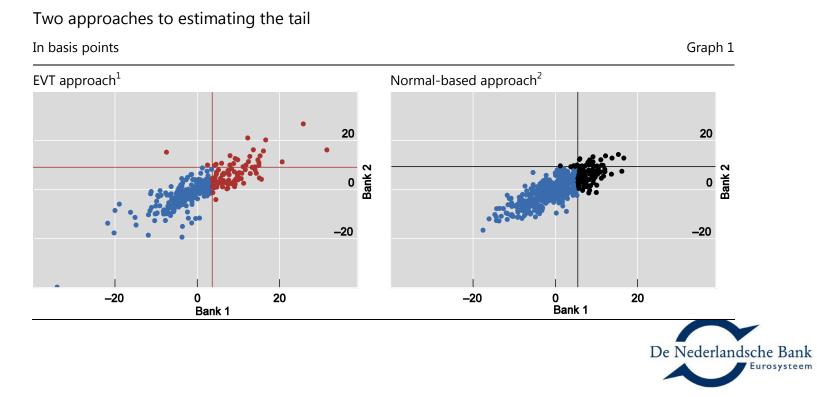
De Nederlandsche Bank

Subject to all critiques on such measures

The construction

- DIP (Huang, X, H Zhou and H Zhu (2009))
- The expected contribution to the extreme losses of a credit portfolio of the system
- Credit portfolio of the system $\sum_{j=1}^{N} Size_j \cdot LGD_j \cdot I_j$
- Systemic event: $\sum_{j=1}^{N} Size_i \cdot LGD_i \cdot I_i > \alpha \sum_{j=1}^{N} Size_j$
- Systemic importance

 $SI_i = Size_i \cdot LGD_i \cdot Pr(I_i = 1 | Systemic Event).$


Data

- Recall the formula (in a brief version) SI=Size*LGD*PDS
- PDS: the PD given a systemic event
 - Unconditional PD: EDF
- Size: Total Liability (Deposit)
- LGD, PDS, estimated from CDS spreads
 - LGD: tail dispersion in a single CDS series
 - PDS: tail dependence in multiple CDSes

Tail properties: a graphical view

- Focus on observations above a threshold determined by EDF
- LGD: the dispersion above threshold
- PDS: the co-occurence above thresholds

The LGD

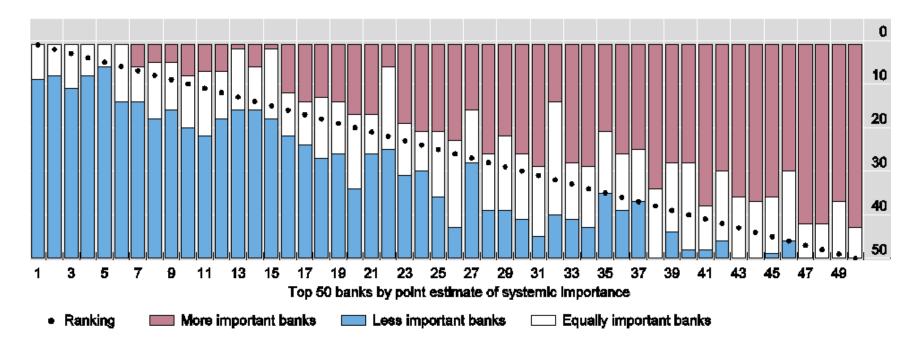
- We consider LGD as the depth in a tail event
 - The ES above a high threshold (VaR)
 - LGD is approximated by (ES-VaR)/ES
 - Always in between zero and one
- Under a heavy-tailed setup $Pr(X > x) \sim Ax^{-\alpha}$
 - (ES-VaR)/ES has the limit $1/\alpha$
- We estimate the tail index of daily CDS spread changes and normalize the average LGD to 0.5

The PDS

- We use extrapolation idea in multivariate EVT
 - Estimation window: 2 years (520 obs)
 - Threshold for each bank
 - Unconditional PD: according to EDF
 - Extrapolation factor: amplifying PD
 - Identifying systemic events from definition
 - PDS: counting the occurrences
- The factors used: EDF, Size, LGD, CDS(es)

Empirical setup

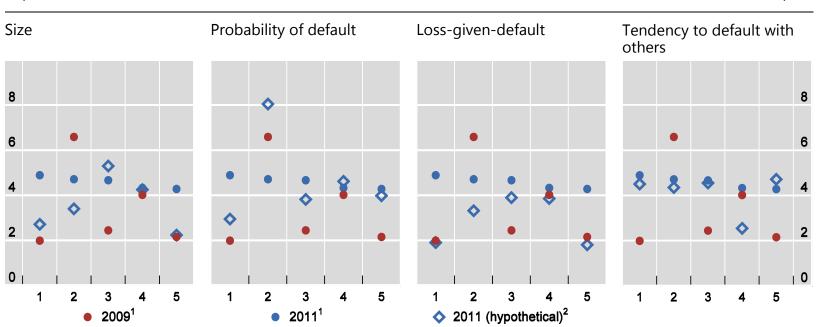
- Banks: 50 large global banks
 - 24 EU, 8 US, 5 Japan, 4 Australia, 9 EM
- Time horizon: 2007-2011
 - First estimate: Nov 2007
 - Monthly moving till end 2011
- An initial experiment
 - EVT v.s. normal: average rank changes: 5-7
 - It is necessary to consider the tail properties


Results

- Cross-sectional distinctiveness
 - Snapshot with confidence intervals
- Time variation with respect to drivers
 - Dynamic when fixing one of the four drivers
- Predictable by exogenous drivers
 - Regress on past balance sheet information
- Reaction from market participants
 - Correlation with future CDS spreads

Cross-sectional comparison

• Differentiating based on the measure



Strength of endogenous drivers

Strength of different drivers

In per cent

Graph 4

Significance on the drivers

- The average rank changes when controlling for one driver
- The number of banks for which the driver is a (only) significant driver

Drivers of systemic importance

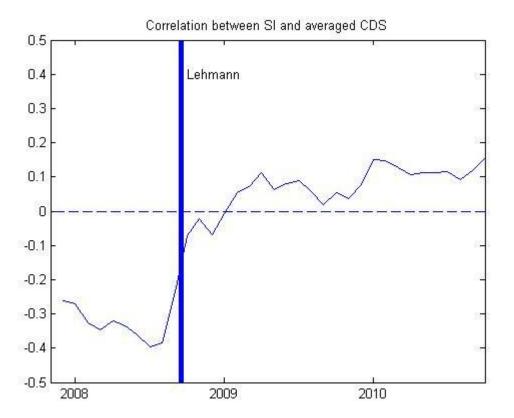
Table 1

	Average ra	ank change ¹	Impact on relative systemic importance ²		
	All 50 banks	Top 25 banks	Significant impact ³	Only significant driver ⁴	
Size	8	6	29	7	
Probability of default	7	7	39	12	
Loss-given-default	8	6	25	2	
Tendency to default with others	8	7	1	0	

Exogenous drivers

• Balance sheet characteristics

• TL, TA/TE, OE/TNI, NII/TNI, SF/TL, IA/TA


Simple bank characteristics and probability of default in a systemic event¹ Table 2

	Bivariate relationships ²				Multivariate regression: decomposing the goodness of fit ³					
	2007	2008	2009	2010	2011	2007	2008	2009	2010	2011
Size	0.29**	0.19	0.25*	0.47***	0.36**	0.03	0.03	0.05	0.18***	0.08**
Leverage	0.41***	0.07	0.18	0.33**	0.41***	0.09	0.00	0.03	0.07*	0.13***
Cost-to-income	0.41***	0.25*	0.33**	0.43***	0.50***	0.12**	0.06*	0.09**	0.14***	0.21***
Interest income	-0.28*	-0.06	-0.09	-0.24*	-0.26*					
Stable funding	-0.01	-0.21	-0.18	-0.20	-0.33**					
Interbank links	0.18	0.36**	0.13	0.31**	0.30**					
Total R-squared						0.24	0.09	0.17	0.39	0.42

Correlation with future CDS spreads

- Average CDS spreads: one year after estimation
- Cross-sectional Spearman's correlation

Conclusions

- Use tail observations properly when constructing price-based measures on systemic importance
- Price-based measures can distinguish systemic importance on the cross-section
- Tail properties play crucial role in the dynamics
- Price-based measures agree with regulatory measures in terms of identifying SIFIs
- Before Lehmann, SIFIs benefit from higher perceived systemic importance

