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Abstract   
 

When a bank experiences a negative shock to its equity, one way to return to target leverage 
is to sell assets. If asset sales occur at depressed prices, then one bank’s sales may impact other 
banks with common exposures, resulting in contagion. We propose a simple framework that 
accounts for how this effect adds up across the banking sector. Our framework explains how the 
distribution of bank leverage and risk exposures contributes to a form of systemic risk. We compute 
bank exposures to system-wide deleveraging, as well as the spillover of a single bank’s deleveraging 
onto other banks. We use the model to evaluate a variety of crisis interventions, such as mergers of 
good and bad banks, and equity injections. We apply the framework to European banks vulnerable to 
sovereign risk in 2010 and 2011. 
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 I.  Introduction 
 

Financial stress experienced by banks can contaminate other banks and spiral into a shock 

that threatens the broader financial system: this is systemic risk. The measurement of systemic risk 

has been high on financial regulators’ priority list since the 2008 collapse of Lehman Brothers, 

which triggered widespread financial distress among large US financial institutions. The recent 

sovereign debt crisis and corresponding concerns about the solvency of European banks system have 

only made the need to measure system-wide stability more acute.  

Recent literature has emphasized two main channels by which the linkages between financial 

institutions can create contagion. The first relies on contractual dependencies: when two banks write 

a financial contract such as a swap agreement, a negative shock to one bank can transmit to the other 

party as soon as one of the banks is unable to honor the contract (e.g., Allen and Babus 2009, Gorton 

and Metrick 2010, Giglio, 2011). Bilateral links of this kind can propagate distress, because the 

creditor bank may in turn lack the funds needed to deliver on its on its obligations to third parties 

(Duffie 2010, Kallestrup et al., 2011).1  

A second type of linkage comes from fire-sale spillovers: when a bank is forced to sell 

illiquid assets, the sale may depress prices because of a lack of unconstrained buyers, which in turn 

can prompt financial distress at other banks that hold the same assets. Liquidation spirals of this sort 

have been explored in an extensive theoretical literature.2 In a system of greater complexity, such 

spirals are believed by numerous economists and policy-makers to have become an important 

contributor to systemic risk over recent years.  

                                                 
1 Kalemli-Ozcan(2011) investigate the impact of inter-bank linkages on business cycle synchronization. 
2 See for instance Shleifer and Vishny (1992, 2010), Gromb and Vayanos (2007), Brunnermeier and Pedersen (2009), 
Allen, Babus, and Carletti (2011), Wagner (2011). 
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This paper puts forth a simple model of fire-sales spillovers that can be readily estimated 

using available data. The model takes as given (1) the asset holdings of each financial institution, (2) 

an adjustment rule applied by institutions when they are hit by adverse shocks and (3) the liquidity 

of these assets on the secondary market (i.e., the ability of banks to sell these assets quickly with 

little price discount). Our main objective is to develop simple formulas of how fire sale spillovers 

add up across the financial sector, and how susceptible individual banks are to episodes of 

deleveraging by other banks. 

 An appealing feature of our approach is that we distinguish between a bank’s contribution to 

financial sector fragility (which we call its “systemicness”), and a bank’s vulnerabilty to 

deleveraging by other banks. Our model allows us to compute formulas for both. To see the 

difference, consider a small but highly levered bank with a portfolio of risky assets. Such a bank 

may be quite vulnerable to financial sector deleveraging, yet is unlikely to be systemic. This is 

because asset sales triggered by its potential distress will be modest in size, thus not triggering much 

in the way of spillovers. 

The model delivers a number of intuitive properties concerning how the distribution of 

leverage and risk exposures across banks determines systemic risk. For instance, consider a negative 

return shock experienced by an asset that is held by relatively levered banks. This shock has a larger 

aggregate impact than if the same asset was held by the less levered institutions. More generally, we 

show that the banking system is less stable to shocks when asset classes that are large in dollar terms 

are also held by the most levered banks. If the goal is to reduce fire sale spillovers, then assets that 

are both volatile and illiquid should be dispersed across banks, since the same shocks generate less 

price impact in a deleveraging cycle. In contrast, if illiquid assets have low price volatility, then it is 



 3

better to isolate these assets in separate banks, so that they are not contaminated by other assets, 

which in turn are subject to larger shocks. 

Though the model is highly stylized, we can use it to simulate the outcome of various 

policies to reduce fire sale spillovers in the midst of a crisis. The model takes as exogenous bank 

reaction functions to net worth shocks, and therefore there is no presumption that bank capital 

structures are optimal ex ante.3 Nevertheless, the model can help predict how deleveraging can play 

out once banks are up against binding leverage constraints.  As an example of policy analysis, 

consider a forced bank merger between two vulnerable banks—Sorkin (2009) suggests this was one 

of the initiatives entertained by the New York Federal Reserve during the US financial crisis. Such a 

policy may affect systemic risk because it redistributes existing assets across banks, which may have 

different exposures to shocks, different sizes, or different leverage ratios. As another example, 

consider the policy question of how to distribute a fixed amount of equity across a large set of 

distressed banks. It should not be surprising that stabilization policies that aim to fix insolvency at 

individual banks can be inferior to policies that directly target the cross-bank spillovers.  

We apply the model to European banks during the 2010-2011 sovereign debt crisis. For a 

large set of these banks, we have measures of sovereign bond exposures derived from the European 

Banking Authority's (EBA) July 2011 stress tests. We then use these exposures to estimate the 

potential spillovers which could occur during bank deleveraging precipitated by sovereign 

downgrades or defaults. Using the risk exposures as inputs, we document a correlation between our 

estimates of bank vulnerability and equity drawdowns experienced by European banks in 2010 and 

2011. We then use our data to evaluate various policy interventions. We find that size caps, or forced 

mergers among the most exposed banks do not reduce systemic risk very much. However, we show 

                                                 
3 For example, it may be optimal for banks to retain a buffer stock so that they are less subject to small shocks. 
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that modest equity injections, if distributed appropriately between the most systemic banks, can cut 

the vulnerability of the banking sector to deleveraging by more than half. 

The remainder of the paper is organized as follows. We first develop the model, solve it, and 

build intuition for financial sector stability under different configurations of leverage and risk 

exposure across the banks. In Section III, we explain how our approach fits into, and contributes to, 

a growing literature on systemic risk. In Section IV, we use commercial bank exposures provided by 

the EBA’s July 2011 stress tests to compute the vulnerability of European banks to sovereign 

defaults. Section V explains how the model can be adapted to monitor vulnerability on a more 

dynamic basis using factor exposures. The final section concludes.  

 

II.  A Model of Bank Deleveraging 

 We start by describing the framework. We then use it to derive easy-to-implement measures 

of systemic risk, at the bank and aggregate levels.  

A. Setup 

There are two periods t=1,2, and N banks. Each bank n is financed with a mix of debt dnt and 

equity ent. At is the N×N diagonal matrix of banks’ assets so that each diagonal term ant = ent + dnt at 

date t. B is the N×N diagonal matrix of leverage ratios, such that each diagonal term bn=dnt/ent.  

Each bank n holds a portfolio of K assets: mnk is the weight of asset k in bank n’s portfolio. M 

is the N×K matrix of these weights. In each period, the vector of banks’ unlevered returns is given 

by: 

Rt=MFt,
 (1)  

where the K×1 vector Ft denotes asset net returns. 
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Assumption 1: Asset trading in response to bank return shock 

Suppose banks receive an exogenous shock R1 to their assets at t=1. Because banks are 

levered, these shocks move banks away from their current leverage. We assume that banks respond 

by scaling up or down their total assets in period 2 so as to maintain a fixed target leverage. Such 

leverage-targeting is in line with empirical evidence in Adrian and Shin (2010), who show that banks 

manage leverage to offset shocks to asset values.4 Adrian and Shin's evidence implicitly suggests 

that banks do not raise equity in response to a negative shock.5 However, the analysis that follows 

does not change much if we instead assume that banks return to target leverage using a combination 

of asset sales and equity issues in fixed proportion.  

If banks target leverage ratios given by the matrix B, then the N×1 vector of dollar net asset 

increases is simply A1BR1. When R1<0, banks with negative asset returns have to sell assets to 

deleverage. When R1>0, banks with positive returns need to borrow more to preserve leverage. The 

intuition of this formula is simple: suppose a bank with equity of 1 and debt of 9 experiences a 10% 

return on its assets, bringing its equity to 2. The bank will have to borrow an additional 9 and buy 

assets to return to the prior leverage of 9-to-1.6 In practice, banks will have more flexibility in 

dealing with a positive shock to bank equity, and so our model will be more useful for thinking 

about dynamics following negative  

                                                 
4 They provide evidence that commercial banks target a constant leverage ratio, while investment banks have procyclical 
leverage, which means that their leverage adjustments more than offset the changes in leverage induced by shocks to 
asset values. 
5 In situations where debt overhang is severe, issuing equity dilutes existing shareholders as the gains from the reduction 
in risk accrue disproportionately to debt holders. 
6 Essentially we are treating banks as similar to leveraged exchange traded funds (ETFs), which must readjust to their 
target leverage at the close of trading each day. See Greenlaw, Hatzius, Kashyap, and Shin (2008) and Adrian and Shin 
(2009) for further discussion of this point and related evidence. 
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If some elements of R1 are negative and very large, then it is possible that the A1BR1 vector 

may have some negative elements that are bigger in absolute value than banks’ assets. This happens 

if the initial shock is large enough to wipe out all of the equity of the bank, in which case no amount 

of asset sales will return the bank to target leverage. To prevent this from happening, we can modify 

the vector of net asset increases by replacing it by A1.max(BR1,-1-R1), where “max” is the point-wise 

maximum matrix operator, defined by max(X,Y)=(max(Xn,Yn)). In Section IV we use this modified 

formula, because the shocks we consider in Europe are large enough to wipe out some banks. But to 

simplify the exposition that follows, for now we keep the simpler linear formula. 

 

Assumption 2: Target exposures remain fixed in percentage terms 

Second, we must describe how banks sell individual assets to return to target leverage. We 

make the simplest assumption that banks sell assets so as to keep their exposures constant in a 

proportional sense. More formally, this means that they sell assets in such a way as to hold the M 

matrix constant between dates 1 and 2. This assumption has been widely used in the mutual fund 

literature: investor flows have been shown to cause mutual funds to scale up and down their 

portfolios, but otherwise keep their portfolio weights constant (see Coval and Stafford, 2007, 

Greenwood and Thesmar, 2011, and Lou, 2011). Let  be the K×1 vector of net asset (dollar) 

purchases by all banks in period 2. If banks keep their portfolios constant, then: 

=M' A1BR1.           (2) 

To see the intuition, consider a bank with holdings of 10 percent cash, 20 percent in stocks and 70 

percent in mortgage backed securities. If the bank scales down its portfolio by ten units, it will sell 2 

units of stocks, 7 units of mortgage backed securities, and take its cash down by 1. Equation (2) 

describes this in matrix form, summed over all banks: for each bank n facing a shock R1n, total net 
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asset purchase (i.e., the increase in assets net of returns) will be given by anbnR1n. Net purchases of 

asset k by the bank will be proportional to its holdings of asset k, i.e., mnkanbnR1n. Equation (2) sums 

this expression across all n banks.  

We have experimented with variations of this assumption (which is admittedly strong), 

because in practice, banks may optimally sell their most liquid assets first. The constant portfolio 

assumption simplifies the algebra and the intuition below, but we show later (Section IV F) that the 

framework can be quite easily modified to account for more sophisticated liquidation rules.  

 

Assumption 3: Fire sales generate price impact 

Third, we assume that asset sales in the second period   generate price impact according to a 

linear model:
 

 F2=L ,           (3) 

where L is a matrix of price impact ratios, expressed in units of returns per dollar of net purchase.7 

We start by assuming that L is diagonal, meaning that fire sales in one asset do not directly affect 

prices in other assets.8  

 For assets with uncorrelated payoffs, equation (3) can be easily microfounded. Suppose there 

are outside investors with a fixed dollar amount of outside wealth W who provide liquidity to the 

banking sector during a fire sale, but trade off the returns to outside projects with the returns to 

investing in fire sold assets. In such a setting, the equilibrium discount will be an increasing function 

of the total dollar amount of fire sold assets (See Stein (2012)). 

                                                 
7 For instance, Pulvino (1998) estimates the discount associated with fire sales of commercial aircraft by distressed 
airlines. In equity markets, Coval and Stafford (2007) estimate the L coefficient using forced purchases and sales of stock 
by mutual funds (see also Ellul et al, 2011, and Jotikasthira et al, 2011 who use similar methodologies in other asset 
markets). Bank loans can also be sold on fairly liquid markets (Drucker and Puri, 2008). 
8 Greenwood (2005) develops a model in which price impact spreads across similar assets. To the extent that off-
diagonal elements are positive, this would further amplify the effects discussed below. 
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We combine equations (1), (2) and (3) to calculate the effect of bank unlevered asset returns 

in t=1 on returns in t=2: 

R2 =MF2=ML=(MLM'BA1)R1.
  (4) 

In principle, one can iterate multiple rounds of deleveraging following an initial shock, by further 

multiplying by the transition matrix MLM'BA1. Taken to the limit, the deleveraging process ends at a 

fixed point, which is a function of the eigenvalues of the transition matrix. For simplicity, we restrict 

our attention to the first round of deleveraging, because this delivers most of the useful intuitions 

about the relevant linkages between banks.  

 

B. Measuring Aggregate Exposures to Deleveraging (“Aggregate Vulnerability”) 

We start with a negative shock -F1=(-f1,...,-fn) to asset returns: this translates into dollar 

shocks to banks' assets given by A1MF1. The aggregate direct effect on all bank assets the quantity is 

then 1'A1MF1, where 1 is the N×1 vector of ones.  This direct effect does not involve any contagion 

between banks, it is simply the change in asset value.  

Following equation (4), To compute the dollar effect of shock F1 on bank assets through fire 

sales, we pre-multiply MLM'BA1MF1 by 1'A1. We normalize this by total bank equity pre-delevering 

E1 and define “aggregate vulnerability” as: 

  (5) 

AV measures the percentage of aggregate bank equity that would be wiped out by bank deleveraging 

if there was a shock F1 to asset returns. As a reminder, this formula omits the direct impact of the 

shock on net worth, emphasizing only the spillovers across banks. If all assets are perfectly liquid 

(i.e., all elements of the L matrix are zero), then AV=0: there is no contagion across banks because 

1 1 1

1

1' '
.

A MLM BA MF
AV

E
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delivering does not involve price impact, even though there is still a direct effect of the shock on 

banks asset values given by  1'A1MF1. 

To understand the intuition behind Eq. (5), using -R1=-MF1=(-r1t,...,-rnt)', we can rearrange 

terms slightly and expand: 

  (6) 

where  measures the “connectedness” of bank n. This is the extent to which 

bank n owns large (  large) or illiquid (lk large) asset classes. Where this is the case, one 

dollar of fire sales by bank n will lead to a larger amount of the banking system’s holdings, since it 

will reduce by more the price of larger asset classes.  

Equation (6) shows that the systemic risk is large when large banks (banks with large an1) are 

levered (large bn1), exposed to the shock in question (rn1), or connected (large n). These properties 

are intuitive: if large banks are levered and/or exposed, a given shock will trigger larger asset sales. 

In addition, if exposed banks hold assets that are illiquid and/or widely held, then price impact is 

large and the overall system is more vulnerable. More generally, the four elements of equation (6) – 

connectedness, leverage, size, and exposure – enter multiplicatively in determining AV. This means 

that the distribution of these elements across the financial system matters enormously for systemic 

risk. For example, the formula tells us that from the perspective of spillovers, the covariance 

between bank size and leverage is an important input.  

 
C. Contribution of each Bank to Deleveraging: “Systemicness” 

We can calculate the contribution that each bank has -- through contagion -- on the aggregate 

vulnerability of the banking system. To do this, we again focus on the impact of a shock F1, but 

1 1 1,n n n n
n

AV E b a r 

 n  ammmk
m










lkmnk

k



sk  an mnk
n
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assume it only affects bank n. In this case, it is easy to see that the impact coming from the 

liquidations of bank n on the aggregate of the banking system is: 

,  (7) 

where n is the N×1 vector with all zeros except for the nth element, which is equal to 1. We call S(n) 

the “systemicness” of bank n. Systemicness can be interpreted as the contribution of bank n to 

aggregate vulnerability, as . 

As we did for aggregate vulnerability, we can develop intuition by expanding terms in 

equation (7): 

  (8) 

which is the bank-level equivalent of Equation (6). Thus, a  bank is more systemic if: 

 It is more connected (n is bigger): the bank owns assets that are both illiquid and widely held 
by other banks.  

 It is bigger (an/E1 is bigger): a given shock on a larger bank leads to more fire sales, which in 
turn leads to a large price impact. 

 It is more levered (bn is bigger): a shock to a more levered bank is going to induce it to sell 
more, which generates more price-impact. 

 It receives a bigger shock rn1. 

 

D. Impact of Deleveraging on each Bank: Indirect Vulnerability 

We define a bank’s “indirect vulnerability” with respect to shock F1 as the impact of the 

shock on its equity through the deleveraging of other banks: 

 (9) 

S(n) 
1' A1MLM 'BA1n 'n MF1

E1

AV  S n 
n



1
1

( ) ,n
n n n

a
S n b r

E


 
    

 

1 1 1

1

' '
( ) .n

n

A MLM BA MF
IV n

e
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IV(n) measures the fraction of equity of bank n that disappears when other banks deleverage 

following shock F1. It differs from direct vulnerability, which measures the direct exposure of bank 

n’s assets to shock F1: 

 (10) 

In our empirical applications, we will systematically contrast the two measures: IV involves the 

deleveraging spiral, while DV does not. 

To understand the intuition behind IV(n), we can expand terms in equation (9): 

. (11) 

The first term stands for the pure leverage effect: a given asset shock has a bigger impact on equity if 

the bank is more levered. The second term measures the importance of connections between banks. 

It is large when the bank is exposed to assets that are illiquid and exposed to heavy fire sales.  

 

E. Indirect Vulnerability to a specific bank 

Suppose one is interested in the impact of a single bank deleveraging (for example, if it were 

to fail and its assets were liquidated). In this case, we can compute IV in the special case where the 

vector of banks' returns R1=m, i.e. assuming that bank m (and only bank m) will deleverage 

following a shock  to it assets. Then, following equation (9), the indirect vulnerability of bank n to 

this shock is: 

 (12) 

1 1

1

'
( ) .n

n

A MF
DV n

e




   ' ' ' '
'illiquidity- weighted leverage

exposure to asset k fire sales of asset k
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This measure captures the interdependence through deleveraging of banks n and m. IV(n,m) is large 

when sender bank m is large and levered, when receiver bank n is levered, and more interestingly 

when the term  is big, i.e., when n and m own similar illiquid assets.  

 

F. Theoretical Properties 

i.  Heterogeneity and Systemic Risk 

One implication of equation (6) is that making the banks more similar may reduce fire sale 

spillovers, and thus AV. This contrasts with much of the existing literature on systemic risk, which 

assumes that systemic risk is high when banks have correlated stock returns.9 The economic intuition 

for this comes from two opposing effects. First, because banks liquidate all assets they hold when 

they are shocked, shocks to liquid assets trigger fire sales of illiquid assets when banks own both 

types. This can make it stabilizing to ring-fence the illiquid assets into specific banks. There is, 

however, also an effect that makes diversification desirable: when all banks own all assets, any 

shock to asset prices will spread the fire sales across all asset markets, which tends to reduce the 

total price impact. The diversification effect dominates when illiquid (high lk) assets receive stronger 

shocks (high fk): diversified (correlated) banks are better, because they can react to these shocks by 

partly selling liquid assets which reduces global price impact. But when liquid (low lk) assets receive 

bigger shocks (high fk), the contagion effect is more important. In this case, stability can be increased 

by isolating the illiquid assets into specific banks.  

To illustrate this intuition more formally, consider the case of N assets and N banks of 

identical size a and leverage b. Suppose that assets are equally spread across banks (heterogeneity), 

                                                 
9 A notable exception is Wagner (2011) who considers a similar set of issues about the distribution 
of risks between banks. 

n ' MLM'm
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we have M=(11’)/N (this is a matrix where all coefficients are equal to 1/N) and ∑ ̅  

where =̅ ∑ /  is the average liquidity of assets. In contrast, if each asset is exclusively held 

by one bank dedicated to that asset (homogeneity) M=Id., and ∑ .  Thus 

homogeneity leads to lower AV than heterogeneity if ∑ ̅ 0, i.e. when assets with large 

shocks tend to be more illiquid. 

ii. Absence of “Too Big to Fail” effect 

Another somewhat surprising property of our framework is that AV is not directly impacted 

by the size of banks. For instance, we can prove that slicing a bank into n smaller banks, with the 

same asset mix and leverage as the original bank, leaves AV unchanged (see appendix). This is 

because each of these new banks reacts to shocks exactly as the original bank, scaled by the ratio of 

their sizes. Thus, the combined impact on the rest of the system is exactly identical to that of the 

original banks. Conversely, merging banks with same asset mix and leverage also leaves AV 

unchanged. 

 

III.  Relation to Literature  

We follow a growing literature that studies linkages between financial institutions and the 

implications for systemic risk. The tradition in recent papers has been to infer bank linkages from 

correlations in market prices. A first set of papers seeks to estimate risk directly from bond or CDS 

(see for instance Ang and Longstaff (2011)). Giglio (2011), for example, uses the difference between 

bond and CDS spreads to estimate the joint probability of failure of large banks who are sellers of 

protection. A second set of papers measures systemic risk through comovement in the equity returns 

of financial intermediaries (Adrian and Brunnermeier (2010), Acharya, Pedersen, Philippon and 

Richardson (2010), Billio, Getmansky, Lo, and Pelizzon (2010), Diebold and Yilmaz (2011)).  
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Our framework departs from some of this literature by making simple assumptions about 

how funding shocks propagate across banks, i.e., we posit an economic structure to the propagation 

mechanism of initial shocks. To do so comes at some cost—we adopt a narrow definition of 

systemic risk based on banks’ common exposures, thus deemphasizing bilateral risks such as 

counterparty risk. On the other hand, the benefits are that our model-based approach can be used to 

do policy analysis.  

The structure of our model is similar to Acemoglu, Ozdaglar and Tahbaz-Salehi (2010), who 

study the propagation of shocks in the real economy. They derive conditions under which aggregate 

volatility remains high even when the network is large. Assuming their asymptotic approximation is 

correct for a large universe of banks, some of their insights could conceivably be applied here.  

A contribution of our model relative to existing work is that it distinguishes between a bank’s 

contribution to the risk of aggregate deleveraging (“systemicness”), and a bank’s sensitivity to 

deleveraging by other banks (“indirect vulnerability”). Adrian and Brunnermeier (2010) define and 

estimate the “CoVaR” of institution n as the Value at Risk of the whole financial sector conditional 

on bank n being in distress. In our model, “systemicness” S(n) is similar to their CoVaR measure; 

the main difference being that, while CoVaR is estimated using comovement in stock returns, we put 

structure on the propagation mechanism, which could result in patterns of return comovement that 

differ from comovement of returns observed during ordinary times. On the other hand, Acharya et al. 

(2010) propose a measure closer to “indirect vulnerability” IV(n). For each bank, they estimate 

average returns during the 5% worst days of market conditions. They combine this estimate with 

bank leverage to compute the “marginal expected shortfall (MES),” which captures how much 

capital a bank must raise when faced with adverse market conditions. Finally, Billio, Getmansky, 

Lo, and Pelizzon (2012) measure systemic risk using bilateral time-series dependencies between 



 15

firms. Diebold and Yilmaz (2011) discuss the relationship between cross-bank linkages estimated in 

this way and measures of network connectedness. Our cross-bank indirect vulnerability measure 

IV(n,m) may provide a foundation for some of these connections.  

Last, our analysis is closely related to policy proposals recently put forth by Duffie (2011) 

and Brunnermeier, Gorton, and Krishnamurthy (2011). Duffie (2011) proposes that a core group of 

large financial firms report their losses vis-à-vis their largest counterparties for a list of stressful 

scenarios. Brunnermeier, Gorton, and Krishnamurthy (2011) suggest eliciting firms’ sensitivities to 

different risk factors and scenarios. We build on this work by modeling these sensitivities, and 

quantifying how these stress scenarios could play out across the broader financial sector. 

 

IV.  The Vulnerability of European Banks 

As the US financial crisis subsided in 2009, investor attention shifted to the fiscal positions 

of a handful of European governments that were running large euro-denominated deficits. As the 

crisis in Europe unfolded between 2009 and 2011, one area of growing concern was the holdings of 

sovereign debt by national banks.  To assess exposure to potential sovereign defaults, in 2011 the 

newly formed European Banking Authority (EBA) conducted stress tests across euro banks. 

We use data disseminated by the EBA to test our model, and show how our model can be 

used to do policy simulations during a crisis. The main question we ask is: What the potential 

spillovers are across banks in the event of a sovereign default or writedown? Our task is made easier 

by the detailed bank-level holdings made available during the stress tests. Given the role that 

sovereign debt has played in the European banking crises, we focus on banks’ sovereign bond 

holdings, and consider as shocks writedowns of Greek, Irish, Italian, Portugese, and Spanish debt 

(henceforth GIIPS debt).   
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A. Data 

Published on the EBA website in July 2011, the European stress tests provide harmonized 

balance sheet composition for the 90 largest banks in the EU27 countries. The complete list of banks 

is in the Appendix.  

Matrix A1: The matrix of assets is obtained directly from the EBA data by summing over all 

banking exposures to loans of each bank n. Diagonal elements ann are the “total exposure” in euros 

of bank n. The average exposure is €260 billion. The biggest bank is HSBC (€1440bn), the smallest 

one is Caixa d'Estalvis de Pollensa (€338 million).  

Matrix M: To calculate the exposure matrix M, we collapse the EBA data into 42 asset 

classes: sovereign debt of each of the 27 EU countries plus 10 others, commercial real estate, 

mortgages, corporate loans, retail SME and retail revolving credit lines. The M matrix is thus a 90 x 

42 matrix, where mnk is the fraction of exposure to asset k of bank m. Aggregate exposure to 

commercial real estate across the 90 banks is €1.2 tn (5% of banking sector assets); small business 

lending is €744 bn (3.2%); mortgages are €4.7 tn (20%); and corporate loans are €6.7 tn (29%). 

Sovereign bonds account for €2.3 tn (13%). 

An alternative way to compute M, which may be helpful in other applications, is to estimate 

it from asset return data by regressing unlevered bank stock returns on the returns of assets in the 

bank portfolio. Adopting this approach is reasonable if we believe the stock market fully recognizes 

all of the assets and risks in a bank’s portfolio. And, the advantage of such an approach, particularly 

visible in Acharya et al (2010), is that it allows researchers or policymakers to monitor M 

dynamically. On the other hand, because factor returns are quite noisy and may be collinear, having 

direct measures of M is clearly preferable wherever possible.  
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Matrix B: The leverage matrix B is the diagonal matrix of debt-to-equity ratio. We use book 

leverage because the EU data does not lend itself to the use of market leverage (half of the 90 banks 

are not listed, and EBA exposure data are mostly not marked-to-market), and because measures of 

risk weighted leverage are strongly affected by regulatory arbitrage (Acharya, Schnabl and Suarez, 

2011). To obtain each element bnn, we divide total exposure (the ann element of A) minus book 

equity by book equity. Because some EU banks are very levered, this number has a few outliers (540 

for Allied Irish Banks, 228 for the Agricultural Bank of Greece). Because we do not want our results 

to be driven by these outliers, we cap target leverage bnn at 30: this cap is imposed on 20 banks.  

Matrix L: We assume L=10-13 x Id, where Id is a 42 x 42 diagonal matrix of ones. We 

therefore assume that all 42 assets have the same price impact. 10-13 means that €10bn of trading 

imbalances lead to a price change by 10bp. This is in the neighborhood of recent empirical estimates 

of price impact in the bond market, but probably an underestimate for some other asset classes. 

Shock F1: We study a 50% write-off of all GIIPS debt. Hence, the shock vector F1 is equal 

to zero for all 42 assets, except for the five GIIPS sovereign debts, for which we assume a return of -

50%. Given banks’ exposures, the direct effect of this shock on aggregate bank equity is given by -

1'A1MF1, which is equal to 381bn €, or 40.1% of aggregate bank equity.  

 

B. Validation using stock returns during the sovereign debt crisis 

We first validate our deleveraging model using past data on bank returns during the crisis. 

Between Dec 31, 2009 and September 16, 2011, European bank stocks (the subset of our sample 

which is publicly traded) fell by an average of 54%. In this Section, we ask if this meltdown comes 

from market perception of direct exposures DV(n) and indirect vulnerabilities IV(n) to losses on 
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GIIPS sovereign debt. If the market prices bank interdependence via deleveraging, IV(n) should 

explain the cross-section of bank returns during the crisis, even controlling for DV(n).  

To calculate DV(n) we use equation (10). To compute IV(n), we use a modified version of 

equation (9), where we account for the fact the fire sales cannot exceed the total assets of a bank (see 

Section II.A.). This adjustment is necessary as some banks are severely hit by the large shock we 

assume, so as to entirely wipe out their equity. This leads to the following definition of IV(n): 

 

where max(X,Y) is the element-by-element max operator. In this definition, we plug in the above 

matrices and the GIIPS shock vector F1. 

Table 1 lists the top 10 banks, sorted according to IV(n). To see how IV(n) differs from more 

direct exposures DV(n), we also report direct vulnerability, along with each bank’s leverage. 

Rankings in terms of indirect and direct effect are far from being perfectly correlated: the Spearman 

rank correlation between DV and IV with respect to a GIIPS shock is 0.17, and is not significantly 

different from 0 at the 5% level. On average, the direct impact of a full-blown GIIPS crisis would be 

to wipe out 1.11 times the equity for the average bank. To this direct effect, the impact of the 

subsequent deleveraging would further wipe out some 302% of the equity of the average bank. As a 

reminder, all estimates of the impact of deleveraging are contingent on our price impact estimate 

discussed earlier. 

We then regress cumulative returns over 2010 and September 2011 of each bank on indirect 

vulnerability, controlling for direct vulnerability, bank size (as measured by log of bank total  

exposure log(ann)) and leverage. These controls ensure that vulnerability to the deleveraging process 

IV(n) adds explanatory power beyond a bank’s direct exposure. Table 2 shows these results.  
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The first three columns are simple OLS regressions. Out of 90 banks covered by the stress 

tests, only 51 are publicly listed, and we have complete returns data for 49 of them. To reduce 

sensitivity to outliers, we also report median regression results in columns 4-6. Both sets of results 

confirm that the differences in indirect vulnerabilities explain part of the cross-section of bank 

returns during the crisis. In OLS results, the R2 of indirect vulnerability alone is 9%, compared with 

14% when direct exposure is also included. The bank size control does not affect the estimated 

impact of IV(n) on returns. The direct and indirect vulnerabilities have the same explanatory power 

on the cross-section of bank returns. For two banks that are one sample standard deviation apart in 

terms of IV(n), cumulative returns drop by 5 percentage points more in the bank most exposed to 

sector-wide deleveraging.  

 

C. Systemicness  

In this Section, we briefly discuss the properties of our systemicness measure S(n) on 

European Data. As for vulnerability, we need to amend equations (7) and (8) to ensure that bank-

level total fire sales are less than total assets (see Section II.A).  

     

 

which shows that the systemicness of bank n can be decomposed into the product of three scalars: n, 

which captures the impact of bank n on other banks through deleveraging, , which captures 

the relative size of bank n, and , which reflects the size of fire sales by 

bank n.  
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Table 3 reports the systemicness ranking for the 10 most systemic banks in Europe, along 

with the three components of the decomposition above. Unsurprisingly, in the overall sample, 

systemicness is correlated with size (spearman correlation of .52, statistically significant at 1%), but 

this correlation is far from perfect, as can be seen among the 10 most systemic banks. For example, 

HSBC, the largest EU bank, does not appear in this ranking. BNP Paribas, which is the second 

largest, is only the fifth most systemic bank. Size does not explain everything because there is 

substantial heterogeneity across banks in terms of necessary fire sales. Bankia, which is relatively 

small, is among the most systemic banks because fire sales would be enormous (92% of its assets), 

and it is highly connected with the rest of the financial system through its asset holdings (its linkage 

component equals 0.42). Assuming, for instance, that Bankia had an average linkage level (0.30 

instead of 0.42), its systemicness would be equal to 0.29x0.95x0.30=0.08, which would make it the 

8th most systemic bank instead of the 6th.  

The sum of systemicness across all 90 banks is equal to 2.45, which means that through the 

deleveraging process, our model predicts that 245% of aggregate bank equity would be wiped out. 

This is sizeable, since the direct impact of the GIIPS writedown total 40.1% of EU bank equity. The 

deleveraging effect is therefore 6 times larger than the direct shock. In what follows, we focus on 

deleveraging.10  

 

D. Policy simulations 

We now use the model to evaluate a number of different policies which have the potential to 

reduce spillovers from fire sales when banks are deleveraging. As a reminder, the model does not 

                                                 
10 To properly calibrate this effect, we would need to amend our exercise in two directions: change the L matrix so as to 
account for the fact that assets are less liquid, and change the liquidation rule of banks so as to account for the fact that 
banks fire-sell liquid assets more. The first change would make estimates of systemic risk bigger, while the second one 
(making banks smarter) would reduce it. 
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take a position on whether banks are behaving optimally, and assumes that all banks face currently 

binding leverage constraints, meaning that they adjust immediately to reach new target leverage. 

Thus, the interventions that follow should be interpreted as potential ex post interventions that could 

be used in a moment of crisis. The results of the experiments are reported in Table 4. For each policy 

intervention, we calculate the aggregate vulnerability to the 50% write-down on all GIIPS debt.11  

Limiting Bank Size: We start by considering the effect of a cap on bank size, holding constant 

leverage. We do this as follows. Suppose a bank n holds anmnk euros of asset k. If assets an>c, where 

c is the cap, we set the bank’s assets to c, and redistribute residual asset holdings (an – c)mnk  equally 

among non-capped banks. This procedure does not affect the portfolio structure of the capped bank, 

but does affect the portfolios of the other banks, which become richer in the assets held by the 

capped bank. After one iteration, some previously uncapped banks end up with size greater than c. 

We iterate this process until all banks are below or at the size cap.  

In calculating the new AV, we keep leverage constant. This means we are implicitly assuming 

that receiving banks can issue enough equity to absorb the new assets, while capped banks reduce 

their equity when they downsize. The intention is to isolate the effect of size capping separately from 

deleveraging. 

We report the results of this experiment for caps of €500 bn, €900 bn and €1300 bn euro in 

the first three rows of Table 4. The table shows that capping at €500 bn requires us to redistribute 

assets out of 17 banks; only two banks would be downsized if we set the cap to be €1300 bn. The 

main lesson from this analysis is that the overall impact of size caps on aggregate vulnerability is 

small, and, if anything, tends to increase AV.  

                                                 
11 Similar qualitative insights obtain using alternative, "less extreme" shocks, such as a 50% write-down on Greek debt 
only, or a 50% write-down on Greece, Ireland and Portugal. 
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The intuition for this can be understood by using the definition of AV and taking the 

difference before and after the policy has been implemented: 

1
1

1

1 1 1
1 1 1 1

1 1 1

size reallocation connection reallocation exposure reallocation

n
n n

n

n n n
n n n n n n n n n

n n n

a
AV r

E

a a a
b r b r b r

E E E



  

 
   

 

     



  
  

    (13) 

where x measures the change in x between before and after the policy, and  measures the average 

of x between before and after the policy. rn1 is the adjusted levered exposure given by 

. AV changes because the size cap reallocates assets across banks. The 

overall effect can be decomposed into three pieces. First, there is a size reallocation effect, in which 

AV is increased if banks that are more connected or more exposed/levered receive more assets. 

Second is a “connection reallocation” effect, in which AV increases when large, exposed/levered 

banks become more connected. The third effect is “exposure reallocation”, which increases systemic 

risk if it makes large connected banks more exposed. 

We report this decomposition in Table 4, next to the size cap simulation. The net increase in 

systemic risk is driven by two opposing forces. These two forces are the strongest for the most 

drastic cap (€500 bn), so we focus on this one. On the one hand, average (size- and connectedness-

weighted) exposure decreases, which reduces systemic risk. This happens because large banks tend 

to be significantly less exposed: GIIPS debt accounts for 3.2% of their assets, against 5.8% for banks 

below €500 bn.12 As a result, the average large banks has less GIIPS exposure: the transfer of one 

euro from large to small banks will reduce the average exposure of smaller banks, while keeping the 

average exposure of larger banks constant. Through this effect, the €500bn cap policy reduces 
                                                 
12 This difference also holds for levered exposure r. A 50% GIIPS debt write-down would wipe out 35% of the book 
equity of large banks on average, against 46% for banks below the €500 bn threshold. 

x

max bnn 'n MF1,1 'n MF1 
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exposure at smaller banks by 10.5 percentage points, on average. This “risk dilution effect” (further 

amplified by the fact that the smaller banks get relatively larger) decreases AV.  

On the other hand, AV goes up because more exposed banks (which happen to be the smaller 

banks) receive more assets. Through this “contamination effect”, safe assets which were previously 

held by relatively sheltered institutions are now held by more exposed banks, increasing AV. Overall, 

in the €500 bn cap policy, the contamination effect dominates the risk dilution effect. 

 

GIIPS debt re-nationalization: We also look at the effect of reallocating GIIPS sovereign 

debt to banks in their home country. This exercise is motivated by two facts. First, between July and 

December 2011, under pressure of markets and regulators, GIIPS-based banks increased their 

holdings of GIIPS debt by about 1%, while non GIIPS-based banks reduced them by about 22%. 

Second, between December 2011 and January 2012, while the ECB lent about €500 bn to euro-area 

banks, Spanish banks bought about 23bn euro of government debt and Italian banks some €20 bn. A 

partially intended consequence of prudential and monetary policies over the fall of 2011 has thus 

been to re-nationalize GIIPS debt.  

We thus implement the reallocation of 20% of aggregate holdings of each sovereign back to 

the balance sheets of banks of its own country. First, for each sovereign k, we aggregate euro 

holdings by all banks according to sk  mnkan
n

 . For each bank n outside country k, we then remove 

 euro of sovereign k from its balance sheet. Then, for each domestic bank n' 

in country k, we inject the holdings in proportion of its holdings of the sovereign among banks of 

country k: 20%  sk 
an'mn'k

ammmk
mdomestic

 . This reallocation never leads to negative holdings as long as 

20%  sk 
anmnk

ammmk
m foreign
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foreign banks own at least 20% of the aggregate holdings of sovereign k, which is the case in our 

simulation.13 

Table 4 reports the results of this simulation. We find that it reduces systemic risk by about 

8%, an effect larger than the €500 bn size cap. This effect is large: the amount of sovereign debt 

reallocated in the process is only €96 bn, while the €500 bn size cap reallocates trillion of euro of 

assets. 

What drives the reduction in AV? We can break down the overall impact into three 

components. Most of the effect comes through the aggregate reduction in exposure. When 

reallocating GIIPS debt, we are reducing GIIPS exposure of non-GIIPS banks (on average, by 0.2% 

of total assets), while increasing the exposure of most GIIPS banks (on average, by some 0.03% of 

their total assets).14 Given that GIIPS banks are on average less levered than non-GIIPS banks (with 

a debt-to-equity ratio of 21 against 23), this implements an overall reduction in fire sales and hence 

AV.  

 

Euro-bonds: Our next intervention replicates the effect of substituting all the different 

sovereign bonds in Europe for one debt security that has the same payoff. The intuition behind the 

experiment is to break the loop between banks and their sovereigns (Acharya, Dreschler and 

Schnabl, 2010). Some recent proposals have suggested replacing part of individual sovereign bonds 

                                                 
13 The only country in our sample where domestic banks own more than 80% of the aggregate bank holdings is the UK 
(81.6%).  
14 Some GIIPS banks experience a decrease in exposure. This happens because these banks own a lot of GIIPS debt but 
relatively little of their own sovereign (for instance most Italian banks own much a lot of non-Italian debt, and relatively 
less Italian debt). As a result, the policy reduces overall exposure to GIIPS for these banks. 
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in the eurozone with the equivalent amount of a euro-level sovereign bond.15 According to these 

authors, this would make banks less sensitive to their own sovereign default. 

Suppose we could substitute the sovereign portfolio of each bank with a new portfolio of 

sovereigns which has (1) the same size and (2) weights that are the same across banks. Each bank 

thus receives an identical portfolio. More precisely, we change the exposure mnk into 

sharesov k %sov n  where sharesovk is the share of sovereign k in aggregate sovereign holdings, 

while %sovn is the share of sovereign holdings in bank n's portfolio. This reshuffling of bonds across 

banks preserves each bank’s total sovereign exposure, and aggregate exposure (holdings) to each 

sovereign. But it makes banks more similar in terms of individual country exposure. In the context of 

our model, it is as if all banks are holding Eurobonds. 

Table 4 shows that this policy involves a considerable reshuffling of assets across banks: 

some 1.6tn euro of bonds change owners. It also increases AV. As in the previous experiment, the 

reason is that exposure is reallocated to firms that are more levered, so that only the “exposure 

change” components appears. The intuition is that non-GIIPS banks are both less exposed but more 

levered in the data. The eurobond experiment transfers GIIPS debt from GIIPS banks to non-GIIPS 

banks, and therefore increases exposure of the most levered banks.  

 

Ring-fencing risky assets: Perhaps more targeted policies can make the most systemic banks 

safer? To understand the effect of a merger, let us assume that banks indexed by n are merged 

together into a bank denoted by *. Noting that the merger preserves the quantity of each holding, it is 

straightforward to show that: 

                                                 
15 See Delpla and Von Weizacker (2010), Brunnermeier et al (2011), Hellwig and Philippon (2011) among others. 
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The interpretation of this equation is simple: if banks that are larger or more connected have an 

exposure lower than the merged entity, the merger increases systemic risk. The intuition is that the 

merger creates contagion: banks who were relatively large and connected, but less exposed, were 

protected against the shock. By being merged into an entity with larger exposure, these assets 

become vulnerable to fire sales, increasing AV. 

Suppose now that the regulator merges the most exposed banks into a single large bank. For 

each bank, we define as ‘exposure’ the fraction of bank equity that would be lost directly in a 50% 

write-down of GIIPS debt. We then study three scenarios: merge all banks with exposure above 

50%, above 100% and above 150% of their own equity. This means merging respectively 47, 20 and 

9 banks.  

Table 4 shows that the effect of the bank mergers is nearly zero. The reason is that the 

policy regroups banks that have very similar exposure-to-equity rn1. And, as equation (14) 

demonstrates, the expected change in AV is small when expected leverage adjusted-exposure rn1 is 

the same across merged firms. In this case, ring-fencing does not reduce systemic risk: the policy 

simply transforms several similar small banks into one big bank with the same exposure.  

 

Merging exposed banks with unexposed ones: Suppose we merge the 20 most exposed banks 

with the banks that are unexposed to the GIIPS write-down (6 of the 90 banks are unexposed). To 

isolate the impact of merging the two groups, we first merge the exposed banks together, then merge 

the unexposed banks together, and then finally perform the full merger. Merging unexposed banks 

does not change AV, because of the effect discussed in the previous experiment: they are identical 

with respect to the shock. For the same reason, merging exposed banks does not change things much 
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either. Merging the two groups into one bank does, however, increase systemic risk by 20% of 

aggregate equity. The intuition is that the assets of unexposed banks, which were previously not sold 

in response to the shock, become contaminated by the poor performance of GIIPS debt. This is 

because, in the data, the measure of connectedness of bank n, , is larger for initially 

unexposed banks than for exposed banks. As a result, merging the two categories of banks exposes 

the connected balance sheet of unexposed banks to the GIIPS shock.16  

 

Leverage cap: We next study the impact of capping leverage. Here, the policy is much 

simpler: if x is the cap, then, for all banks with leverage above x, we set D/E =x. We implicitly 

assume these banks can raise equity to reach the maximum leverage, but do not change their sizes. 

Economically in our model, such a policy reduces the need for banks to fire-sell assets, so it 

unambiguously reduces AV. From Equation (6) we see that: 

 

The policy is more effective when targeted banks are either (1) bigger, (2) more exposed, or (3) hold 

large asset classes.  

                                                 
16 This effect of increasing AV after merger shows up even in simulations where we assume that all banks have the same 
leverage bn and the same size an. If in equation (13) we set an=a* and bn=b*, we obtain: 

 

where . It appears from this expression that the increase in AV is positive if banks with 

above average exposure -ri1 have below average connectedness . This is the case in the data, where exposed 

banks have a connectedness level 13% below unexposed banks. 
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We try three different caps (knowing we capped leverage to 30 in the data): 15, 20 and 25. 

We calculate the amount of equity capped banks need to raise to reach this cap: for instance capping 

leverage at 15 (25th percentile) requires banks to raise a staggering of €480 bn. The table shows that, 

to obtain a significant reduction in systemic risk, the regulator would need to set a very drastic cap. 

For instance, capping leverage at 25 (this is leverage at the 63rd percentile bank) only reduces 

vulnerability to a GIIPS shock from 245 to 238% of aggregate equity. The impact of reducing 

leverage to 20 is much larger.  

 

E. Optimizing capital injection 

The policy interventions discussed above are disappointing in that they suggest that capping 

leverage yields only modest improvements in AV, and that other policies have ambiguous, or even 

adverse, impacts on AV. In a moment of crisis, what tools can reduce contagion at minimal expense 

to the regulator? In this last exercise, we explore the power of an optimal targeted policy. Recall 

from Eq. (8) that aggregate vulnerability to a shock vector S can be written as a weighted average of 

the debt-to-equity ratios bn’s. The weights measure the extent to which the leverage of a particular 

bank n is bad for aggregate vulnerability. This happens when the bank is large, the bank is exposed 

to shocks, and linkages are strong.  

Suppose the regulator has a given amount of cash F available to invest in bank equity, and 

cares only about reducing spillovers between banks in a deleveraging cycle. Equity injection into 

bank n is given by the vector f = (f1,…,fn), so that . When a bank receives fn euros of fresh 

equity, we assume the entire amount is used to repay existing debt, so that its debt to equity ratio 

becomes (Di– fi)/(Ei+ fi).  

1 f F 
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We minimize Eq. (8) subject to the constraints that 
 
and (Di – fi)/(Ei + fi)=bi ?. We 

also impose the constraint that the regulator cannot withdraw cash from equity-rich banks, so that 

fn>0 for all i. 

Optimizing equity injection across banks allows us to reduce aggregate vulnerability a lot 

more than any of the policy experiments we considered in Table 4. We can see this result visually in 

Figure 2, where we report the optimal AV obtained for various levels of aggregate investment F. 

Panel A shows the aggregate vulnerability to a GIP shock, while Panel B shows aggregate 

vulnerability to a GIIPS shock (both assuming a 50% write-down). Data from panel A shows a 

reduction by a third in systemic risk: AV declines from 47% to 31% using only €50 bn of equity. 

The marginal impact of additional euros of equity injections decreases: €200 bn leads to an 

AV of 23%; €500 bn leads to an AV of 18%. The effect on aggregate vulnerability to GIIPS is 

smaller in relative terms, and decreases more slowly, as more banks are exposed to GIIPS debt than 

to GIP debt. €50 bn only buy a reduction from 285% to 240% of aggregate equity. Still, the effect is 

large compared to previous policies considered in this paper.  

Table 5 then reports the optimal equity injections for each bank. Here, we use the scenario 

in which the regulator invests €200 bn, and seeks to minimize aggregate vulnerability to a 50% 

write-down on GIIPS debt. Table 10 only reports the 20 largest banks, ranked by the size of their 

equity injection. This list consists mostly of Italian, Spanish and Greek banks. These banks are not 

the largest, but the most exposed to the write-down.  

By construction, optimal injection has a very strong correlation with systemicness (.91). 

Correlation with the four components of systemicness is lower: .16 (leverage), .16 (Size), 38 (direct 

exposure), .21 (linkage). This shows that when deciding to inject fresh capital into banks, the 

regulator should consider all components of systemicness to minimize taxpayers’ investment. 

1 f F 
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F. Extension-- considering different liquidation rules 

Earlier we suggested that the model could be adjusted for different liquidation rules. A 

natural one to consider is one in which banks first sell off their most liquid assets. Here we focus on 

an extreme case and show its impact on the empirical results.  

Suppose that banks have the flexibility to sell their sovereign bonds, but that their other 

assets (primarily loans) are infinitely illiquid, meaning that their early disposal would yield zero 

proceeds. In this case, the banks would have to concentrate their liquidations of sovereign bonds 

alone. In this case, we can write down a modified version of the formula for aggregate vulnerability 

AV to a shock S: 

 
(15) 

where M* is a weight matrix that accounts for the fact that non-sovereigns are not liquidated. Each 

element is given by:  We only focus on factors k which corresponds to sovereign 

holdings. Hence, elements of M* are bigger: banks will liquidate more sovereigns in response to an 

adverse shock to their balance sheets. 

A striking feature of these simulations is that aggregate vulnerability is much lower under 

this alternative liquidation rule. The aggregate vulnerability of banks to a GIIPS write-down is now 

23%, instead of 285%.  

Changing the liquidation rule has two opposite effects. On the one hand, banks liquidate 

much more sovereign bonds, which has a stronger price impact on other banks. On the other hand, 

fire sales don’t contaminate other assets, which in this case are the majority of assets held on bank 

balance sheets.  
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Table 6 reports values of AV for alternative liquidation rules. We progressively add other 

asset classes to the list of liquid assets. As can be seen from Table 6, as long as the list of liquid 

assets is small enough (i.e. corresponds to less than 41% of banks' assets), aggregate vulnerability is 

reduced by illiquidity of the other assets. The intuition is that illiquidity prevents banks from 

transmitting their shocks to otherwise immune banks. When, however, sellable assets take up a 

larger fraction of the balance sheet (in our simulations, this happens as soon as we include corporate 

loans), then the fire sale concentration effect starts dominating the “ring fencing” effect: because 

banks cannot liquidate everything, they sell more liquid assets, which increases the price impact and 

therefore contagion. Table 6 illustrates the ambiguity of alternative liquidation rules on AV. 

 

V.  Dynamic Estimation of Vulnerability and Systemicness 

In our analysis thus far, we have used data on bank holdings and leverage to compute the M 

and B matrices, which are the key inputs in our calculations of vulnerability and systemicness.  This 

approach has the advantage of precision: we can study how shocks may propagate across many 

different types of assets on bank balance sheets. The main disadvantage is that it requires granular 

data that may not always be available, or data that is only available to regulators. 

An alternate approach is to compute M using stock returns. Consider the M matrix, which 

captures banks’ ownership of different asset classes such as mortgages, sovereign debt, or securities. 

We can estimate exposures to these assets by regressing unlevered stock returns on the underlying 

returns of the factors. For each bank n, we can run rolling regressions of the form:  

 
(16) 

Provided we have the full vector of asset returns Fk,t, the estimated mnk is equal to the weight of each 

asset in the bank’s portfolio. Armed with a conditional estimate of M, we can compute systemicness 

, ,n t nk kt n t
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and vulnerability on a dynamic basis, which is potentially valuable from the perspective of 

monitoring. 

To be able make the inference in equation (16), Rnt has to be obtained through unlevering the 

equity returns.  Implicitly, we assume that: (1) we have the adequate set of factor returns to represent 

each bank's portfolio, (2) that holdings are fairly stable (i.e. did not move too much over the span of 

the data used to estimate the regression), and (3) that the stock market has some understanding of 

each bank's exposure to each asset. Similar market-based approaches are adopted by many of the 

recent efforts to monitor systemic risk, including Adrian and Brunnermeier (2010) and Acharya et al 

(2010). A challenge in regressions of this type is the lack of power when bank assets have correlated 

returns. For example, suppose one wanted to estimate a bank’s exposures to Italian and Spanish 

bonds. Since the returns of these bonds are highly correlated, one requires long time-series of data to 

obtain reliable estimates. But, the longer is the time-series, the more likely our estimate of M is to be 

stale.  

 

VI. Conclusions 

Since the beginning of the US financial crisis in 2007, regulators in the United States and 

Europe have been frustrated by the difficulty in identifying the risk exposures at the largest and most 

levered financial institutions. Yet, at the time, it was unclear how such data might have been used to 

make the financial system safer. Our paper is an attempt to show simple ways in which this 

information can be used to understand how deleveraging scenarios could play out. 

The key assumption in our model is that distressed banks use asset liquidations to return to 

target leverage. We use this assumption to predict how individual banks will behave following 

shocks to their net worth, and how the resulting fire sales may spillover to other banks. While the 
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model is quite stylized, it generates a number of useful insights concerning the distribution of risks 

in the financial sector. For example, the model suggests that regulators should pay close attention to 

risks that are concentrated in the most levered banks. The model also suggests that policies which 

explicitly target bank solvency, such as was implicit in both the European and US stress tests, may 

be suboptimal from the perspective of controlling contagion. 

We then apply the model to the largest financial institutions in Europe, focusing on banks’ 

exposure to sovereign bonds. We use the model to evaluate a number of policy proposals to reduce 

systemic risk. When analyzing the European banks in 2011, we show how a policy of targeted equity 

injections, if distributed appropriately across the most systemic banks, can significantly reduce 

systemic risk. 



 34

References 

Acemoglu, Daron, Asuman Ozdaglar, and Alireza Tahbaz-Salehi, 2010, Cascades in Networks 
and Aggregate Volatility, Working Paper. 

Acharya, Viral, Lasse Heje Pedersen, Thomas Philippon, and Matt Richardson, 2010, Measuring 
Systemic Risk, Working Paper. 

Acharya, Viral and Philipp Schnabl, 2010, Do Global Banks Spread Global Imbalances? Asset-
Backed Commercial Paper during the Financial Crisis of 2007-09, IMF Economic 
Review, 58(1), 37-73 

Acharya, Viral, Philipp Schnabl and Gustavo Suarez, 2011, "Securitization without Risk 
Transfer", forthcoming Journal of Financial Economics 

Adamic, Lada, Celso Brunetti, Jeffrey H. Harris, and Andrei A. Kirilenko, 2010, Trading 
Networks, Working Paper. 

Adrian, Tobias, and Brunnermeier, Markus, 2010, CoVar, Working Paper. 

Adrian, Tobias, and Shin, Huyn, 2010, Liquidity and Leverage, Journal of Financial 
Intermediation. 

Allen, Franklin, Ana Babus and Elena Carletti, 2010, Financial Connections and Systemic Risk, 
NBER Working Paper 16177. 

Allen, Franklin, Ana Babus, and Elena Carletti,2 011, Asset Commonality, Debt Maturity and 
Systemic Risk, Working paper.  

Ang, Andrew, and Longstaff, Francis, 2011, Systemic Sovereign Credit Risk: Lessons from the 
U.S. and Europe, working paper. 

Amihud, Yakov,2002, Illiquidity and Stock Returns: Cross-Section and Time Series Effects, 
Journal of Financial Markets, 5, 31-56.Basel Committee on Banking Supervision, 2009, 
Principles for Sound Stress Testing Practices and Supervision, Bank for International 
Settlements. 

Billio, Monica, Mila Getmansky, Andrew W. Lo, and Loriana Pelizzon, 2012, Econometric 
Measures of Connectedness and Systemic Risk in the Finance and Insurance Sectors, 
Journal of Financial Economics, forthcoming. 

Brunnermeier, Markus, 2009, Deciphering the 2007-2008 Liquidity and Credit Crunch, Journal 
of Economic Perspectives 23, 77-100.  

Brunnermeier, Markus, Gary Gorton, and Arvind Krishnamurthy, 2011, Risk Topography, 
Working Paper. 

Cecchetti, Stephen,2009, Crisis and Responses: The Federal Reserve in the Early Stages of the 
Financial Crisis, Journal of Economic Perspectives 23, 51-75. 

Coval, Joshua, and Erik Stafford,,2007, Asset Fire Sales,and Purchases) in Equity Markets, 
Journal of Financial Economics 86,479-512. 

Diebold, Francis X. and Kamil Yilmaz,2011, Network Topology of Variance Decompositions: 
Measuring the Connectedness of Financial Firms, Working Paper. 



 35

Duffie, Darrell,2011, Systemic Risk Exposures: A 10-by-10-by-10 Approach, Working Paper. 

Ellul, A., Jotikasthira, C., Lundblad, C.T.,2011, Regulatory pressure and fire sales in the 
corporate bond market, Journal of Financial Economics, 101,3, 596-620. 

Giglio, Stefano, 2011, Credit Default Swap Spreads and Systemic Financial Risk, mimeo 
Chicago Booth. 

Greenlaw, David, Jan Hatzius, Anil Kashyap, and Hyun Song Shin,2008, Leveraged Losses, 
Lessons from the Mortgage Market Meltdown, Proceedings of the U.S. Monetary Policy 
Forum 2008.  

Greenwood, Robin and David Thesmar, 2011, Stock Price Fragility, Journal of Financial 
Economics 102, pp 471-490. 

Gromb, Denis and Dimitri Vayanos, 2010, Limits of Arbitrage: The State of the Theory, Annual 
Review of Financial Economics. 

Gromb, Denis and Dimitri Vayanos, 2007, Financially Constrained Arbitrage and Cross-market 
Contagion, Working Paper. 

Hanson, Samuel, Anil Kashyap, and Jeremy Stein,2011, A Macroprudential Approach to 
Financial Regulation, Journal of Economic Perspectives, 25, 3-28. 

He, Zhiguo, In Gu Khang and Arvind Krishnamurthy,2010, Balance Sheet Adjustment in the 
2008 Crisis, IMF Economic Review, 58, 118 - 156. 

Jotikasthira, C., Lundblad, C.T., Ramadorai, T., ,2011, Asset Fire Sales and Purchases and the 
International Transmission of Financial Shocks,Unpublished Manuscript.  

Kallestrup, Rene, Lando, David and Murgoci, Agatha, 2011, Financial sector linkages and the 
dynamics of bank and sovereign credit spreads, Working Paper. 

Kalemli-Ozcan, Sebnem, Papaioannou, Elias and Peydro, Jose-Luis, 2011, Financial Regulation, 
Financial Globalization and the Synchronization of Economic Activity, Working Paper. 

Krishnamurthy, Arvind and Zhiguo He,2010, Intermediary Asset Pricing, Working Paper. 

Lou, Dong, 2011, A Flow-based Explanation for Return Predictability, Working Paper. 

Schwarcz, Steven, 2008, Systemic Risk, The Georgetown Law Journal 97, 193-249. 

Shleifer, Andrei and Robert Vishny, 2011, Fire Sales in Finance and Macroeconomics, Journal 
of Economic Perspectives, 25, 29-48. 

Shleifer, Andrei and Robert Vishny, 1992, Liquidation Values and Debt Capacity: A Market 
Equilibrium Approach, Journal of Finance 47, 1343-1366. 

Sorkin, Andrew, 2009, Too Big to Fail, Viking Press, New York. 

Stein, Jeremy C.,2012, Monetary Policy as Financial-Stability Regulation, Quarterly Journal of 
Economics. 

Wagner, Wolf, 2011, Systemic Liquidation Risk and the Diversity-Diversification Trade-Off ,, 
Journal of Finance 64, pp. 1141-1175. 

  



 36

Appendix A. European Banks Involved in the 2011 stress tests. The sample includes the banks included in the EBA stress 
tests and thus considered in our European analysis. 

Publicly listed banks  Non-public banks  
Irish Lf.& Perm.Ghg.  Banque Et Caisse D'epargne De L'etat  
Bank Of Cyprus  Bayerische Landesbank  
Marfin Popular Bank  Bpce  
Otp Bank  Caixa D'estalvis De Catalunya, Tarragona..  
Swedbank 'A'  Caixa D'estalvis Unio De Caixes De Manll..  
Banco De Sabadell  Caixa De Aforros De Galicia, Vigo, Ouren..  
Dnb Nor  Caixa Geral De Depîsitos, Sa  
Efg Eurobank Ergasias  Caja De Ahorros Y M.P. De Gipuzkoa Y  
Bank Of Piraeus  Caja De Ahorros Y M.P. De Zaragoza,  
Bnp Paribas  Caja De Ahorros Y Pensiones De Barcelona  
Abn Amro Holding   Caja Espa„A De Inversiones, Salamanca Y ..  
Ing Groep  Dekabank Deutsche Girozentrale, Frankfurt  
Nordea Bank  Dz Bank Ag Dt. Zentral-  
Banca Monte Dei Paschi  Effibank  
Banco Popolare  Grupo Bbk  
Banco Santander  Grupo Bmn  
Banco Bpi  Grupo Caja3  
Alpha Bank  Hsh Nordbank Ag, Hamburg  
Societe Generale  Landesbank Baden  
Banco Pastor  Monte De Piedad Y Caja De Ahorros  
Banco Comr.Portugues 'R'  Norddeutsche Landesbank   
Bankinter 'R'  Nova Ljubljanska Banka   
Bbv.Argentaria  Nykredit  
Espirito Santo Financial  Oesterreichische Volksbank Ag  
Dexia  Powszechna Kasa Oszcz_Dno_Ci Bank  
Erste Group Bank  Rabobank Nederland  
Lloyds Banking Group  Raiffeisen Bank International   
Barclays  Skandinaviska Enskilda Banken Ab   
Royal Bank Of Sctl.Gp.  Westlb Ag, Dusseldorf  
Commerzbank  Wgz Bank Ag Westdt. Geno. Zentralbk, Ddf  
Allied Irish Banks    
Deutsche Bank    
Bank Of Ireland    
National Bk.Of Greece    
Kbc Group    
Hsbc Holdings    
Unicredit    
Intesa Sanpaolo    
Banco Popular Espanol    
Danske Bank    
Svenska Handbkn.'A'    
Landesbank Bl.Hldg.    
Agri.Bank Of Greece    
Credit Agricole    
Ubi Banca    
Hypo Real Estate Hldg    
Sns Reaal    
Tt Hellenic Postbank    
Caja De Ahorros Del Mediterraneo    
Bankia    
Banca Civica    

 
.  
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Figure 1. Aggregate Vulnerability as a Function of Aggregate Equity Injected (in billions of euros). This figure 
reports the optimal aggregate vulnerability AV to a 50% write-off on GIP debt  (Panel A), GIIPS debt (Panel B). AV 
is defined in Equation (5) of the paper and denotes the deterioration in bank equity that comes from fire sales that 
follow an initial shock. We minimize equation (5) by allowing the social planner to freely allocate euros into the 
banks, subject to the constraint that equity cannot be withdrawn from banks. In Panel A, for 0bn, we obtain AV of 
0.47. This means that, absent a capital injection, a 50% write-off on GIP debt would result in fire sales that reduce 
aggregate bank equity by 47%. 
 
Panel A: Aggregate vulnerability to a 50% write-off to GIP debt (per euro of aggregate equity) 

 
Panel B: Aggregate vulnerability to a 50% write-off to GIIPS debt (per euro of aggregate equity) 
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Table 1. Vulnerability to a 50% write-off on all GIIPS Debt. We compute the vulnerability of the major 
European banks to a 50% write-down on all sovereign debt of Greece, Italy, Ireland, Portugal, and Spain. In column 
1, IV(n) denotes the indirect vulnerability via sector-wide deleveraging as we define it in Equation (10), adjusted for 
the fact that total fire sales are capped by total assets (see Section II.A.). In column 3, DV(n) denotes the direct 
vulnerability to the write-down on balance-sheets, as defined in Equation (9), adjusted for maximal fire sales. Both 
measures are normalized by bank equity. In column 5, the table also reports the leverage, capped at 30. We only 
report bank-by-bank values for the 10 largest banks in terms of deleveraging vulnerability. In the last line of the 
table, we also report sample averages: Hence, a 50% write-down on all GIIPS debt would wipe out 111% of the 
equity of the average bank through the direct impact, while the indirect impact via deleveraging would create an 
additional loss of 302% of equity. 
 

Bank Name 

Indirect 
Vulnerability as a 
Fraction of Equity 

Direct 
Vulnerability as a 
Fraction of Equity  

Leverage Ratio  

 IV(n) Rank DV(n) Rank Leverage Ratio bnn 

Allied Irish Banks 35.24 1 11.9 2 
 

30 
Agricultural Bank of Greece 12.98 2 33.5 1 30 
West LB 8.80 3 0.9 25 30 
Banca Monte Dei Baschi di Siena 5.08 4 3.7 3 30 
Oesterreichische Volksbank 4.83 5 0.2 56 30 
SNS Bank 4.71 6 0.3 55 30 
Caixa de Aforros 4.70 7 1.4 11 30 
NordDeustche Landesbank 4.61 8 0.4 51 30 
Commerzbank AG 4.54 9 1.0 21 30 
Caixa d’Estalvis de Catalunya 4.36 10 0.8 31 30 
      
Full sample average 3.02   1.11   22.1 
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Table 2. Vulnerability to GIIPS and Cumulative Stock Returns. For each publicly listed bank in our sample, we 
calculate the cumulative return between Dec 31, 1999 and Sep 16, 2011. We then regress this return on our measure 
of indirect vulnerability, controlling for direct exposure to a 50% write-off on GIIPS debt, bank size and leverage. 
Columns 1-3 report plain OLS estimates. Columns 4-6 report median regressions to account for outliers. Robust t-
statistics in brackets.  
 
  (1) (2) (3) (4) (5) (6) 

 Dependent Variable : Cumulative return: 2009/12 - 2011/9 

              
Indirect 
Vulnerability -0.017*** -0.008** -0.010*** -0.013*** -0.010** -0.010** 
 [-4.34] [-2.58] [-2.92] [-2.70] [-2.59] [-2.52] 
Direct 
Vulnerability  -0.016*** -0.010*  -0.010*** -0.003 
  [-2.93] [-1.96]  [-2.74] [-0.51] 
log(assets)   0.069***   0.081 
   [2.70]   [1.46] 
Debt to Equity   -0.001   -0.004 
   [-0.08]   [-0.33] 
Constant -0.435*** -0.441*** -0.099 -0.472*** -0.467*** -0.037 
 [-9.24] [-9.60] [-0.47] [-6.42] [-6.53] [-0.08] 
       
Observations 49 49 49 49 49 49 
R-squared 0.088 0.136 0.213       

 
 
*** p<0.01, ** p<0.05, * p<0.1
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Table 3.  Systemicness ranking in a response to a GIIPS shock. We calculate the systemicness S(n) of each 
individual bank, assuming a 50% write-off on GIIPS sovereign debt. Column 1 reports systemicness as computed in 
equation (7). We only report detailed information for the top 10 banks in terms of systemicness. Columns 2-4 report 
the element of the decomposition of systemicness as in equation (8), except that we take into account the fact that 
fire sales induced by the write-off are capped by total assets (see Section II.A.). Column 2 reports total exposure of 
each bank, normalised by aggregate equity. Column 3 reports the fraction of assets that would be fire-sold as a 
fraction of total exposure. Because of our cap, it is always smaller than 1. Column 4 focuses on the linkage effect. 
By virtue of equation (8), systemicness is the product of the elements in columns 2,3 and 4. Banks are sorted by 
systemicness. Through Santander, a GIIPS write-off would lead, through deleveraging, to a 21% reduction in 
aggregate bank equity. The last line present the aggregate sum (over the 90 banks) of systemicness, which is equal to 
Aggregate Vulnerability (equation (5)). A 50% write-down on GIIPS debt would wipe out, through deleveraging 
245% of total bank equity. 
 
Bank Name Systemicness  

S(n) 
Assets / 

Aggregate 
Equity 
(ann/E) 

Fire sales    
min(-bnn.�'nMF1, 

1+�'nMF1) 

Linkage effect 
(1'AMLM'�n) 

Banco Santander 0.21 1.06 0.58 0.34 
Unicredit 0.19 0.88 0.69 0.31 
Intesa SanPaolo 0.19 0.62 0.95 0.33 
BBVA 0.18 0.57 0.94 0.33 
BNP Paribas 0.15 1.37 0.36 0.30 
BFA-Bankia 0.12 0.29 0.95 0.42 
Caja de Ahorros Y Pensiones de Barcelona 0.10 0.27 0.93 0.38 
Societe Generale 0.07 0.75 0.32 0.32 
Commerzbank AG 0.07 0.66 0.48 0.23 
Banca Monte Dei Baschi di Siena 0.06 0.22 0.92 0.32 
     
Full Sample Average 0.03 0.27 0.44 0.30 
Full Sample Total AV 2.45       
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Table 4. Impact of Various Policies on Aggregate Vulnerability of European Banking Sector. The first line reports the aggregate vulnerability of the 
European banks to a 50% GIIPS write-down: induced deleveraging would destroy 245% of aggregate bank equity. The remaining rows of the table show this 
calculation under different hypothetical policy interventions.  
 

   Aggregate Vulnerability Contribution of change in distribution of 
Policy intervention Detail Summary Statistics (deviation / benchmark) Asset Connectedness Exposure 
       
Baseline   0.00    
  Number of banks capped    
Size cap (bn euros) 500 17 0.06 0.16 0.00 -0.09 
 900 8 0.04 0.07 0.00 -0.03 
 1300 2 0.00 0.01 0.00 0.00 
GIIPS debt re-nationalization (bn euros) Fraction of total renationalized    
 96 0,2 -0.08 0.01 -0.01 -0.08 
Eurobonds (swap individual sov. holdings  Total amount of sovereign reshuffled (in bn €)   
  for the same basket of sovereigns) 1672 0.08 0.00 0.00 0.09 
  Number of banks merged    
Merge banks on which a GIIPS shock x = 50% 47 0.13    
  is at least x% of equity x = 100% 20 0.01    
 x = 150% 9 0.00    
  Number of Banks Merged    
Merge banks on which a GIIPS shock Merge exposed only 20 0.01    

 is at least 100% of equity 
Merge unexposed 
only 6 0.00    

 with banks totally unexposed Merge all 26 0.08    
  Equity Injection (in bn €)    
Leverage cap  max D/E = 15 480 -0.28    
 max D/E = 20 173 -0.11    
 max D/E = 25 45 -0.03    
Optimized equity injection of €200bn Countries     
 200 All Europe -0.26    
 200 German banks -0.05    
 200 German + French -0.09    
  200 GIIPS -0.24       
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Table 5. Optimal Equity Allocation to Reduce Aggregate Vulnerability to a GIIPS shock. We assume the social 
planner has 200bn euros to inject, and seeks the allocation of capital increases that maximizes the reduction in 
Aggregate Vulnerability. We only report here the top 20 receivers. Column 1 reports optimal equity injection, in 
billions of euros. Column 2 reports systemicness S(n). Columns 3-6 provide the four components of systemicness as 
in equation (8) from the text: target leverage, size, exposure to the shock, and connectedness to other banks.  
 

Bank  

Equity 
Injection   

(bn 
euros) 

Systemic
ness S(n) 

Assumed 
Target 

Leverage 
Size   

(ai/E1) 

Exposure 
to GIP 
shock   

(ei'MS) 

Linkage 
effect 

(1'AMLM'ei) 
Banca Monte Dei ...Siena 18.20 0.17 30.00 0.22 0.08 0.32 
Intesa Sanpaolo S.P.A 18.20 0.23 21.43 0.62 0.05 0.33 
Caja De Ahorros Y Pensiones De 
Barcelona 17.90 0.16 22.38 0.27 0.07 0.38 
Banco Bilbao Vizcaya Argentaria  17.77 0.22 20.87 0.57 0.06 0.33 
Bfa-Bankia 17.40 0.16 28.63 0.29 0.05 0.42 
Banco Santander S.A. 12.04 0.21 22.99 1.06 0.03 0.34 
Unicredit S.P.A 12.00 0.19 22.39 0.88 0.03 0.31 
Banco Popolare 8.11 0.07 30.00 0.13 0.05 0.36 
Bnp Paribas 6.04 0.15 22.62 1.37 0.02 0.30 
Banco De Sabadell 4.68 0.04 25.26 0.10 0.04 0.40 
Banco Comercial Português 4.34 0.04 27.16 0.10 0.04 0.34 
Ubi Banca 4.13 0.04 20.37 0.15 0.04 0.33 
Banco Popular Español 3.53 0.03 18.50 0.14 0.04 0.35 
National Bank Of Greece 3.52 0.03 12.64 0.11 0.09 0.28 
Efg Eurobank Ergasias  3.26 0.03 22.88 0.08 0.06 0.26 
Commerzbank Ag 3.14 0.07 30.00 0.66 0.02 0.23 
Bank Of Ireland 2.98 0.03 29.36 0.17 0.02 0.32 
Caja De Ahorros Del Mediterráneo 2.96 0.03 30.00 0.07 0.04 0.34 
Piraeus Bank Group 2.69 0.02 16.69 0.05 0.09 0.34 
Caixa De Aforros De Galicia 2.66 0.03 30.00 0.07 0.04 0.36 
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Table 6: Robustness to Liquidation Rules. We calculate the aggregate vulnerability AV to a 50% writedown of  
GIIPS debt. In line 1, we report the baseline AV. In line 2, we assume only sovereigns can be sold. In line 3, we 
assume sovereigns and commercial real estate only can be sold. In line 4, we add mortgages to the list of assets that 
can be sold. In line 7, we include all known assets (typically about 80 % of total exposure). The difference here with 
the first line is that we assume banks have no cash to adjust. 
 

 GIIPS Liquid assets / total 
Benchmark AV -2.85 1.00 
Liquidate Sovereigns only -0.23 0.12 
 + Commercial real estate -0.47 0.18 
 + Mortgages -2.40 0.41 
 + Corporate loans -4.11 0.68 
 + Consumer loans -4.02 0.70 
 + SME loans -3.84 0.75 
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Table 7. The impact of the Lehman Brothers failure on other banks. We regress stock returns on September 15, 
2008 on V(I,Lehman) which is the impact of Lehman induced fire sales on each bank. T-statistics are shown in 
brackets. 
 

 Dep. Var = Return on 
September 15, 2008 

Predicted Return from deleveraging V(i, Lehman) 1.48 1.31 
 [3.04] [2.44] 
Log(Size)  -0.01 
  [-1.86] 
Log(Leverage)  -0.09 
  [-0.11] 

R2 0.10 0.16 
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Table 9. Top 10 Systemic Banks, and the Top 10 more Vulnerable Banks, selected dates.  
 

Jan-07 Jan-08 Jan-09 

Name S(n)  Name S(n)  Name S(n)  

AIG 0.07%  Citigroup Inc 0.66%  Wells Fargo 1.60%  

Jpmorgan Chase  0.05%  Goldman Sachs 0.49%  Jpmorgan Chase 1.26%  

Morgan Stanley  0.03%  Jpmorgan Chase  0.36%  Bank Of America 0.88%  

Goldman Sachs  0.02%  FNMA 0.33%  Citigroup 0.74%  

Lehman Brothers   0.02%  Bank Of America 0.19%  Intercontinentalexchange  0.23%  

Metlife Inc 0.02%  AIG 0.17%  BONY Mellon 0.18%  

Wachovia Corp  0.01%  American Express 0.13%  Merrill Lynch & Co Inc 0.18%  

FNMA 0.01%  FHLM 0.13%  Goldman Sachs  0.15%  

Merrill Lynch 0.01%  Lehman Brothers 0.10%  Regions Financial  0.15%  

State Street Corp 0.01%  Metlife Inc 0.09%  Capital One Financial 0.14%  

Name DV IV Name DV IV Name DV IV 

Radian Group 2.31% 1.19% Radian Group 20.33% 19.43% M G I C Investment  Wis 38.09% 30.49% 

AIG 1.06% 1.18% Federal National 
Mortgage

3.27% 11.68% Intercontinentalexchange 19.00% 24.18% 
M G I C Investment  
Wis

1.75% 1.15% C B Richard Ellis 
Gro p

7.57% 9.09% American Capital Ltd 21.27% 23.94% 

Sovereign Ban 0.86% 1.10% Citigroup 2.87% 8.23% C B Richard Ellis Group 11.46% 23.18% 

M B I A 1.88% 0.95% Federal Home Loan 
Mortgage

2.07% 7.95% C M E Group 6.20% 16.47% 

Ambac Financial Group 1.12% 0.84% American Capital 
Ltd

3.01% 7.24% Fifth Third Ban 10.18% 15.78% 

Metlife 1.26% 0.79% E Trade Financial 11.38% 6.96% Legg Mason 10.80% 14.14% 

State Street 1.80% 0.76% Synovus Financial 1.90% 6.88% Regions Financial  New 14.06% 13.94% 

C B Richard Ellis Group 4.32% 0.75% Goldman Sachs 
Gro p

4.72% 6.65% Wells Fargo  New 9.43% 13.87% 

Jpmorgan Chase 1.35% 0.74% Fifth Third Ban 2.11% 6.57% M B I A 8.57% 13.66% 
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APPENDIX 

 

We prove below that when some banks have similar leverage and similar asset mix, merging them 

has no impact on aggregate AV. Equivalently, dividing a bank into several banks having the same 

levels of leverage and the same asset mix has no impact on AV. 

Assume there are N+s-1 banks and that the last s banks all have same leverage  and same 

portfolio weights , . Since they have the same mix of assets, they also have same asset returns  

Developing formula (6) yields: 

, ,

∈ ,∈ ,∈ ,

 

, ,

∈ ,∈ ,∈ ,

, ,

∈ ,∈ ,∈ ,

 

, ,

∈ ,∈ ,∈ ,

	
∈ ,

				 , ,

∈ ,∈ ,

 

This expression is strictly identical to the AV of a system where the first N-1 banks are similar to the 

previous system ( ; ∈ 1, 1 	) and the last one, bank N, is the combination of the 

previous last s banks: ∑ ∈ , ; 	 ; 	 		 , , .  


