

From evolving to temporal networks: the impact on spreading

Claudio J. Tessone

Chair of Systems Design – ETH Zürich www.sg.ethz.ch/people/tessonec

Overview

1 Disclaimer

2 Evolving Networks

- Introduction
- Strategic network evolution based on centrality
- The link to spreading processes

3 Temporal Networks

- Empirical analysis of the e-MID market
- Topology in temporal networks: Betweenness Preference

Introduction

- Model for Speciation Process [Yule, Philos. Trans. Roy. Soc. Lond. B (1924)]
- The interaction patterns between agents determine their properties [Bavelas, Human Organization (1948)]
- Small-world effect [Milgram, Sociometry (1969)]
- Scale-free topologies

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone Evolving Networks SRC Seminar LSE 31/01/2014 | 3 / 31

Introduction

- Models of growth and configurational models
- Preferential attachment model [Barabási, Albert, Science (1999)]:
 - One node is added at each time step N = t
 - It forms links to *m* existing nodes. Existing nodes are selected with a probability proportional to their degree
- Ergodic properties
- They reach a stationary state in some of their properties

Introduction

A Graph $\mathcal{G}(N, E)$, defined by a set of nodes N and of edges E

- Adjacency matrix $a_{ij} = 1$ if $(i, j) \in E$; $a_{ij} = 0$ if $(i, j) \notin E$
- Degree of a node k_i : the number of neighbours
- Different topological properties: *centrality*

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone Evolving Networks SRC Seminar LSE 31/01/2014 | 3/31

Centrality measures in networks

 In different contexts, the importance of an agent in a network is measured by her centrality [Bavelas, *Human Organization* (1948)], [Wasserman, Social Network Analysis (1994)]

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone Evolving Networks SRC Seminar LSE 31/01/2014 | 4/31

Nestedness in networks

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone Evolving Networks SRC Seminar LSE 31/01/2014 | 5 / 31

Nestedness in networks

- The neighbourhood of large degree nodes contain the neighbourhood of lower degree nodes
- Typical of highly hierarchical structures
- Core-periphery structure

[König, Tessone, Zenou, Theoretical Economics (2014)]

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone Evolving Networks SRC Seminar LSE 31/01/2014 | 5/31

- The Fedwire bank network [Soramaki, Physica A (2007)] are nested in the sense that their organisation is strongly hierarchical
- Banks seek relationships with each other that are mutually beneficial
- As a result, small banks interact with large banks for security, lower liquidity risk and lower servicing costs
- large banks may interact with small banks in part because they can extract a higher premium for services and can accommodate more risk

- The Fedwire bank network [Soramaki, Physica A (2007)] are nested in the sense that their organisation is strongly hierarchical
- Banks seek relationships with each other that are mutually beneficial
- As a result, small banks interact with large banks for security, lower liquidity risk and lower servicing costs
- large banks may interact with small banks in part because they can extract a higher premium for services and can accommodate more risk
- Centrality is an indirect measure of link of Bank performance/size [Akram, Christophersen, working paper (2011)].

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone Evolving Networks SRC Seminar LSE 31/01/2014 | 6 / 31

- The network formation process can be viewed as a two-stage game on two separate time scales
- On the fast time scale, all agents simultaneously choose their effort level in a fixed network structure [Ballester, *Econometrica* (2006)] Individual payoff

$$\pi_i(\mathbf{x}, \boldsymbol{G}, \boldsymbol{\lambda}) \equiv \boldsymbol{x}_i - \frac{1}{2}\boldsymbol{x}_i^2 + \boldsymbol{\lambda} \sum_{j=1}^n \boldsymbol{a}_{ij} \boldsymbol{x}_i \boldsymbol{x}_j, \tag{1}$$

In equilibrium, payoff is a function of the agent's centrality in the network

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone Evolving Networks SRC Seminar LSE 31/01/2014 | 7 / 31

- The network formation process can be viewed as a two-stage game on two separate time scales
- On the fast time scale, all agents simultaneously choose their effort level in a fixed network structure [Ballester, *Econometrica* (2006)]

On the slow time scale, agents receive linking opportunities at a rate $\boldsymbol{\alpha}$

$$\begin{split} b_i^{\zeta}(j|G(t)) &\equiv \mathbb{P}\left(\pi_i^*(G(t)\oplus(i,j),\lambda)+\varepsilon_{ij}\right) \\ &= \frac{e^{\pi_i^*(G(t)\oplus(i,j),\lambda)/\zeta}}{\sum_{k\in\mathcal{N}\setminus(\mathcal{N}_i\cup\{i\})}e^{\pi_i^*(G(t)\oplus(i,k),\lambda)/\zeta}} \end{split}$$

random utility model

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone Evolving Networks SRC Seminar LSE 31/01/2014 | 7 / 31

- The network formation process can be viewed as a two-stage game on two separate time scales
- On the fast time scale, all agents simultaneously choose their effort level in a fixed network structure [Ballester, *Econometrica* (2006)]

Model Intuition

- If a link has to be created: the best strategy for an agent would be to select the node increases her centrality the most
- If a link has to be deleted: the best strategy for an agent would be to select the node that decreases her centrality the least

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone Evolving Networks SRC Seminar LSE 31/01/2014 | 7 / 31

Model: Network evolution

- This process generates, at every time step, a *nested network*
- We have shown that the most efficient strategy is independent of the type of centrality agents want to maximise: closeness, betweenness and Bonacich centrality
 - The link must be created to the node with the largest degree the agent is not still connected to
 - For removal, delete the link to the node with the lowest degree

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone Evolving Networks SRC Seminar LSE 31/01/2014 | 8/31

Model: Network evolution

- This process generates, at every time step, a *nested network*
- We have shown that the most efficient strategy is independent of the type of centrality agents want to maximise: closeness, betweenness and Bonacich centrality
 - The link must be created to the node with the largest degree the agent is not still connected to
 - For removal, delete the link to the node with the lowest degree
- Self-reinforcing structure: once established, it is better for the agents to maintain it. Symmetric choice

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone Evolving Networks SRC Seminar LSE 31/01/2014 | 8 / 31

Adjacency matrix and network density

(left) Computer simulations and analytical result for $N = 10^3$, for $\alpha = 0.40$, 0.42, 0.48, 0.495, 0.50, 0.505. (right) Network density *m* as a function of α

- Large volatility (low α), hierarchical, centralised network
- Low volatility (large α), highly decentralised network
- Sharp transition from hierarchical to flat structures by decreasing volatility

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone Evolving Networks SRC Seminar LSE 31/01/2014 | 9 / 31

Spreading processes

- Spreading processes: SIR-like models exhibit a threshold in infection rate above which spreading reaches all the system
- In networks with scale-free distribution, the threshold is 0. Thereby all outbreaks cover the complete system
- when periodic dynamics is considered, the spreading depends on topological properties of the system determines the synchronisability. Given the Laplacian Matrix, λ_N/λ₂: the smaller, the easier to get collective phenomena by coupling

Chair of Systems Design – ETH Zürich www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone Evolving Networks SRC Seminar LSE 31/01/2014 | 10/31

The role of network structure

- Single-scale networks (random, small-world), show a transition towards synchronisation similar to those in mean-field (effects of clustering, average-path length)
- networks with a *scale-free* $-\gamma \le 3-$ degree distribution show a different kind of transition (at very low -zero?- coupling strength)
- The nature of the phase transition may change (from second to first order) with different coupling schemes...

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

Evolving networks: conclusions

When thinking of network evolution, usual modelling approaches consider either

- ties between nodes to be persistent
- links have a lifetime long enough such that the backbone of the network builds-up

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone Evolving Networks SRC Seminar LSE 31/01/2014 | 12/31

Temporal networks: Introduction

- This neglects the fact that the interacting units might have limited capabilities
 - capacity constrains
 - cognitive capabilities
 - costly links

Temporal networks: Introduction

- This neglects the fact that the interacting units might have limited capabilities
 - capacity constrains
 - cognitive capabilities
 - costly links
- Because of these, the amount of neighbours in the network at any point in time can be rather limited

Temporal networks: Introduction

- This neglects the fact that the interacting units might have limited capabilities
 - capacity constrains
 - cognitive capabilities
 - costly links
- Because of these, the amount of neighbours in the network at any point in time can be rather limited

We want to address

How does the network evolution affect the global dynamical properties of a system?

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

e-MID overnight market

Overnight market

- An unsecured (electronic) market for interbank deposits
 - Market participants can choose their counterparties

e-MID overnight market

Overnight market

- An unsecured (electronic) market for interbank deposits
 - Market participants can choose their counterparties

In this market, more that 90 % of operations are overnight

e-MID overnight market

Overnight market

- An unsecured (electronic) market for interbank deposits
 - Market participants can choose their counterparties

- In this market, more that 90 % of operations are overnight
- [lori et al., JEDC (2008)], Finger, Fricke, Lux KWP_17822012, [Hatzopoulos, lori, DoE City Univ. London 12/04 (2012)]

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

Data

- We consider all the ON transactions in the system. They account for 95 % of all transactions
- Every day, we create a directed network with Banks representing nodes n^t_i. Edges e^t_j = (n^t₁, n^t₂)
- All the transactions from 01.01.1999 to 20.09.2012: 5016 network snapshots

[Tessone, Quattrochini , Caldarelli, working paper (2014)]

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

Data

- We consider all the ON transactions in the system. They account for 95 % of all transactions
- Every day, we create a directed network with Banks representing nodes n^t_i. Edges e^t_j = (n^t₁, n^t₂)
- All the transactions from 01.01.1999 to 20.09.2012: 5016 network snapshots
- Aggregated network: $N_e = 350$, $\langle k \rangle = 80.55$,

[Tessone, Quattrochini , Caldarelli, working paper (2014)]

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

Empirical analysis

Total number of nodes. Daily network as a function of time. Maturity: ON

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone

Empirical analysis

Number of edges. Daily network as a function of time. Maturity: ON

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone

Empirical analysis

Average degree. Daily network as a function of time. Maturity: ON

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone

Empirical analysis

Number of connected components in the network. Maturity, ON

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone

Empirical analysis

Relative size of connected components the network every day as a function of time. Maturity, ON

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

Network volatility

Proportion of (nodes or edges) which are present in the network at time t, but not after d days.

In the case of considering d = 1, it is the proportion of nodes or edges that dissapear after one day

Volatility of nodes in the network every day as a function of time. Maturity, ON, for different lags.

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

Network volatility

Proportion of (nodes or edges) which are present in the network at time t, but not after d days.

In the case of considering d = 1, it is the proportion of nodes or edges that dissapear after one day

Volatility of edges in the network every day as a function of time. Maturity, ON, for different lags.

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

Graph persistence

Proportion of (nodes or edges) which are present in the network at time t, and that keep being present after d days.

In the case of considering d = 1, it is the proportion of nodes or edges that remain in the network

Node persistence as a function of time. Maturity, ON, for different lags.

Chair of Systems Design – ETH Zürich www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

Graph persistence

Proportion of (nodes or edges) which are present in the network at time t, and that keep being present after d days.

In the case of considering d = 1, it is the proportion of nodes or edges that remain in the network

Edge persistence as a function of time. Maturity, ON, for different lags.

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

Lifetime of links

Lifetime of edges:

Distribution of lifetimes of edges in the network Maturity, ON, all.

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone

Next steps

- Understand network dynamics in this system, to model them
- Network volatility and *distress* propagation: How does network volatility increase distress propagation in this network? To what extent?

Next steps

- Understand network dynamics in this system, to model them
- Network volatility and *distress* propagation: How does network volatility increase distress propagation in this network? To what extent?
- Develop a stress test that does not not make any assumptions on the balance sheet structure, and takes into account simply the time evolution of the network.

Next steps

- Understand network dynamics in this system, to model them
- Network volatility and *distress* propagation: How does network volatility increase distress propagation in this network? To what extent?
- Develop a stress test that does not not make any assumptions on the balance sheet structure, and takes into account simply the time evolution of the network.
- Two complementary ingredients:
 - Temporal topological features of the network
 - Dynamical processes on rapidly evolving networks

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

Is it safe to aggregate temporal networks?

It is common practice, BUT...

Is it safe to aggregate temporal networks?

What can we learn from this picture?

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone

Is it safe to aggregate temporal networks?

Chair of Systems Design – ETH Zürich www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

A possible temporal evolution...

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

A possible temporal evolution...

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

A possible temporal evolution...

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

A possible temporal evolution...

Well mixed!

Chair of Systems Design – ETH Zürich www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

Another possible temporal evolution...

- 1 $A \rightarrow E \rightarrow C$ 2 $A \rightarrow E \rightarrow C$
- 3 $B \rightarrow E \rightarrow D$
- $4 \quad B \to E \to D$

node E has a preference to mediate nodes A,C and B,D. \rightarrow It has Betweenness Preference!

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

Influence on dynamical processes

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone

Influence on dynamical processes

Susceptible-Infected epidemic model

$$\Delta = (N_u(t) - N_p(t))/N_u(t)$$

The uncorrelated model significantly overestimates the average number of infected individuals! (even up to 80%)

[Pfitzner, Scholtes, Garas, Tessone, Schweitzer, Phys. Rev. Lett. (2013)]

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone

Definitions...

Temporal network: $G^T = (V, E^T)$, $a, b \in V$, and $(a, b; t) \in E^T$.

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone

Definitions...

Temporal network: $G^T = (V, E^T)$, $a, b \in V$, and $(a, b; t) \in E^T$.

- First order representation: $G^{(1)} = (V, E^{(1)}), E^{(1)} \subseteq V \times V$.
- Weight function $w_{ii}^{(1)}$: the relative number of edge occurrences.

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

Т

But...

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone

b

d

6

12

State space extension

2nd-order time-aggregated net.: $G^{(2)} = (V^{(2)}, E^{(2)}), V^{(2)} = E^{(1)}$ nodes $e \in V^{(2)}$ represent edges in G^{T} .

edges (e₁, e₂) ∈ E⁽²⁾ represent time-respecting paths of length 2.
 weights w⁽²⁾ : E⁽²⁾ → ℝ capture the statistics of two-paths in G^T.

State space extension

2nd-order time-aggregated net.: $G^{(2)} = (V^{(2)}, E^{(2)}), V^{(2)} = E^{(1)}$ **a** nodes $e \in V^{(2)}$ represent edges in G^{T} .

edges $(e_1, e_2) \in E^{(2)}$ represent time-respecting paths of length 2. weights $w^{(2)} : E^{(2)} \to \mathbb{R}$ capture the statistics of two-paths in G^T .

Chair of Systems Design – ETH Zürich www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone

The transition matrix T⁽²⁾

Using $w^{(2)}$, for $e_1, e_2 \in V^{(2)}$ we define the entries $T^{(2)}_{e_1,e_2}$ of a row stochastic matrix $\mathbf{T}^{(2)}$:

$$T_{e_{1}e_{2}}^{(2)} := w^{(2)}(e_{1}, e_{2}) \left(\sum_{e' \in V^{(2)}} w^{(2)}(e_{1}, e')\right)^{-1}$$

T⁽²⁾ is a transition matrix for a random walker in $G^{(2)}$.

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone

The transition matrix T⁽²⁾

Using $w^{(2)}$, for $e_1, e_2 \in V^{(2)}$ we define the entries $T^{(2)}_{e_1,e_2}$ of a row stochastic matrix $\mathbf{T}^{(2)}$:

$$T_{e_{1}e_{2}}^{(2)} := w^{(2)}(e_{1}, e_{2}) \left(\sum_{e' \in V^{(2)}} w^{(2)}(e_{1}, e')\right)^{-1}$$

- **T**⁽²⁾ is a transition matrix for a random walker in $G^{(2)}$.
- we obtain a second-order Markov model generating contact sequences which preserve:
 - the weights in the first-order time-aggregated network
 - the topology of the temporal network underlying G⁽²⁾

Laplacian dynamics of G^T related to spectral properties of T⁽²⁾
 The Markovian equivalent is T⁽²⁾

- Laplacian dynamics of G^T related to spectral properties of T⁽²⁾
 The Markovian equivalent is T⁽²⁾
- If $1 = \lambda_1 > |\lambda_2| > \dots$ the eigenvalues of a transition matrix $\mathbf{T}^{(2)}$

- Laplacian dynamics of G^T related to spectral properties of T⁽²⁾
 The Markovian equivalent is T⁽²⁾
- If $1 = \lambda_1 > |\lambda_2| > \dots$ the eigenvalues of a transition matrix $\mathbf{T}^{(2)}$
- Now we define a slow-down factor:

$$\mathcal{S}^*(\mathbf{T}^{(2)}) := \ln(|\tilde{\lambda}_2|) / \ln(|\lambda_2|),$$

- Laplacian dynamics of G^T related to spectral properties of T⁽²⁾
 The Markovian equivalent is T⁽²⁾
- If $1 = \lambda_1 > |\lambda_2| > \dots$ the eigenvalues of a transition matrix $\mathbf{T}^{(2)}$
- Now we define a slow-down factor:

$$\mathcal{S}^*(\mathbf{T}^{(2)}) := \ln(|\tilde{\lambda}_2|) / \ln(|\lambda_2|),$$

- For the random walk convergence due to non-Markovian properties of a *G*^{*T*}, *S*^{*}(**T**⁽²⁾) provides:
 - the upper bound of the slow-down
 - the lower bound of the speed-up

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone

Slow-down and speed-up

Speed-up/slow down factor for different datasets, as a function of the distance to the stationary distribution

- For the e-MID data (2012, all data), $S^*(\mathbf{T}^{(2)}) \cong 1.90$
- The spreading processes are much slower that an aggregated representation indicates

[Scholtes, Wider, Pfitzner, Garas, Tessone, Schweitzer, arXiv:1307.4030 (2014)]

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec

From evolving to temporal networks Claudio J. Tessone

Conclusions: Topological properties of temporal networks

- Temporal topological traits have to be taken into account
- A tenuous topology can slow-down, but also speed-up spreading dynamics

Conclusions: Topological properties of temporal networks

- Temporal topological traits have to be taken into account
- A tenuous topology can slow-down, but also speed-up spreading dynamics
- State space expansion
- First step. Longer expansions needed when non-Markovian properties are more important

Chair of Systems Design – ETH Zürich | www.sg.ethz.ch/people/tessonec From evolving to temporal networks Claudio J. Tessone