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Abstract 
 
 

We study a very general setting, and propose a procedure for estimating the critical 
values of the extended Kolmogorov-Smirnov tests of First and Second Order 
Stochastic Dominance due to McFadden (1989) in the general k-prospect case. We 
allow for the observations to be generally serially dependent and, for the first time, 
we can accommodate general dependence amongst the prospects which are to be 
ranked. Also, the prospects may be the residuals from certain conditional models, 
opening the way for conditional ranking. We also propose a test of Prospect 
Stochastic Dominance. Our method is based on subsampling and we show that the 
resulting data tests are consistent. 
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1 Introduction

There is considerable interest in uniform weak ordering of investment strategies, welfare outcomes

(income distributions, poverty levels), and in program evaluation exercises. Partial strong orders

are commonly used on the basis of speci…c utility (loss) functions. This is the predominant form of

evaluation and is done when one employs indices of inequality or poverty in welfare, mean-variance

(return-volatility) analysis in …nance, or performance indices in program evaluation. By their very

nature, strong orders do not command consensus. The most popular uniform order relations are the

Stochastic Dominance (SD) relations of various orders, based on the expected utility paradigm and

its mathematical regularity conditions. These relations are de…ned over relatively large classes of

utility functions and represent “majority” preferences.

In this paper we propose an alternative procedure for estimating the critical values of a suitably

extended Kolmogorov-Smirnov test due to McFadden (1989), and Klecan, McFadden, and McFadden

(1991) for …rst and second order stochastic dominance in the general k-prospect case. Our method is

based on subsampling. We prove that the resulting test is consistent. Our sampling scheme is quite

general: for the …rst time in this literature, we allow for general dependence amongst the prospects,

and for the observations to be autocorrelated over time. This is especially necessary in substantive

empirical settings where income distributions, say, are compared before and after taxes (or some

other policy decision), or returns on di¤erent funds are compared in the same or interconnected

markets.

We also allow the prospects themselves to be residuals from some estimated model. This latter

generality can be important if one wishes to control for certain characteristics before comparing

outcomes. Our method o¤ers tests of Conditional Stochastic Dominance (CSD) when the residuals

are ranked. Finally, we propose a ‘new’ test of Prospect Stochastic Dominance and propose consistent

critical values using subsampling.

Finite sample performance of our method is investigated on simulated data and found to be quite

good provided the sample sizes are appropriately large for distributional rankings. An empirical

application to Dow Jones and S&P daily returns demonstrates the potential of these tests and
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concludes the paper. The following brief de…nitions will be useful:

Let X1 and X2 be two variables (incomes, returns/prospects) at either two di¤erent points in

time, or for di¤erent regions or countries, or with or without a program (treatment). Let Xki,

i = 1; : : : ; N; k = 1; : : : ;K denote the not necessarily i.i.d. observations. Let U1 denote the class

of all von Neumann-Morgenstern type utility functions, u, such that u0 ¸ 0, (increasing). Also, let

U2 denote the class of all utility functions in U1 for which u00 · 0 (strict concavity), and U3 denote a

subset of U2 for which u000 ¸ 0. Let X(1p) and X(2p) denote the p-th quantiles, and F1(x) and F2(x)

denote the cumulative distribution functions, respectively.

De…nition 1 X1 First Order Stochastic Dominates X2, denoted X1 ºf X2, if and only if:

(1) E[u(X1)] ¸ E[u(X2)] for all u 2 U1; with strict inequality for some u; Or

(2) F1(x) · F2(x) for all x 2 X , the support of Xk, with strict inequality for some x; Or

(3) X(1p) ¸ X(2p) for all 0 · p · 1, with strict inequality for some p.

De…nition 2 X1 Second Order Stochastic Dominates X2, denoted X1 ºs X2, if and only if one of

the following equivalent conditions holds:

(1) E[u(X1)] ¸ E[u(X2)] for all u 2 U2, with strict inequality for some u; Or:

(2)
R x
¡1 F1(t)dt ·

R x
¡1 F2(t)dt for all x 2 X , with strict inequality for some x;Or:

(3) ©1(p) =
R p
0 X(1t)dt ¸ ©2(p) =

R p
0 X(2t)dt for all 0 · p · 1, with strict inequality for some

value(s) p.

Weak orders of SD obtain by eliminating the requirement of strict inequality at some point.

When these conditions are not met, as when either Lorenz or Generalized Lorenz Curves of two

distributions cross, unambiguous First and Second order SD is not possible. Any partial ordering by

speci…c indices that correspond to the utility functions in U1 and U2 classes, will not enjoy general

consensus. Whitmore introduced the concept of third order stochastic dominance (TSD) in …nance,

see (e.g.) Whitmore and Findley (1978). Shorrocks and Foster (1987) showed that the addition of a

“transfer sensitivity” requirement leads to TSD ranking of income distributions. This requirement is

stronger than the Pigou-Dalton principle of transfers since it makes regressive transfers less desirable
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at lower income levels. Higher order SD relations correspond to increasingly smaller subsets of U2:

Davidson and Duclos (2000) o¤er a very useful characterization of these relations and their tests.

In this paper we shall also consider the concept of prospect stochastic dominance. Kahneman

and Tversky (1979) mounted a critique of expected utility theory and introduced an alternative

theory, called prospect theory. They argued that their model provided a better rationalization of the

many observations of actual individual behavior taken in laboratory experiments. Speci…cally, they

proposed an alternative model of decision making under uncertainty in which: (a) gains and losses

are treated di¤erently; (b) individuals act as if they had applied monotonic transformations to the

underlying probabilities before making payo¤ comparisons.1 Taking only part (a), individuals would

rank prospects according to the expected value of S-shaped utility functions u 2 UP µ U1 for which

u00(x) · 0 for all x > 0 but u00(x) ¸ 0 for all x < 0: These properties represent risk seeking for losses

but risk aversion for gains. This leads naturally to the concept of Prospect Stochastic Dominance.

De…nition 3 X1 Prospect Stochastic Dominates X2, denoted X1 ºPSD X2, if and only if one of the

following equivalent conditions holds:

(1) E[u(X1)] ¸ E[u(X2)] for all u 2 UP , with strict inequality for some u; Or:

(2)
R x
y F1(t)dt ·

R x
y F2(t)dt for all pairs (x; y) with x > 0 and y < 0 with strict inequality for

some (x;y); Or:

(3)
R p2
p1
X(1t)dt ¸

R p2
p1
X(2t)dt for all 0 · p1 · F1(0) · F2(0) · p2 · 1, with strict inequality for

some value(s) p.

Now consider the second component of prospect theory, (b), the transformation of probabilities.

One question is whether stochastic dominance [of …rst, second, or higher order] is preserved under

transformation, or rather what is the set of transformations under which an ordering is preserved.

Levy and Wiener (1998) show that the PSD property is preserved under the class of monotonic

transformations that are concave for gains and convex for losses. Therefore, if one can verify that a
1 In Tversky and Kahneman (1992) this idea is re…ned to make the cumulative distribution function of payo¤s the

subject of the transformation. Thus, individuals would compare the distributions F¤
k = T (Fk); where T is a monotonic

decreasing transformation that can be interpreted as a subjective revision of probabilities that varies across investors.
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prospect is dominated according to (2), this implies that it will be dominated even after transforming

the probabilities for a range of such transformations.

Econometric tests for the existence of SD orders involve composite hypotheses on inequality

restrictions. These restrictions may be equivalently formulated in terms of distribution functions,

their quantiles, or other conditional moments. Di¤erent test procedures may also di¤er in terms of

their accommodation of the inequality nature (information) of the SD hypotheses. A recent survey

is given in Maasoumi (2001).

McFadden (1989) proposed a generalization of the Kolmogorov-Smirnov test of First and Second

order SD among k prospects (distributions) based on i.i.d. observations and independent prospects.

Klecan, Mcfadden, and Mcfadden (1991) extended these tests allowing for dependence in observa-

tions, and replacing independence with a general exchangeability amongst the competing prospects.

Since the asymptotic null distribution of these tests depends on the unknown distributions, they pro-

posed a Monte Carlo permutation procedure for the computation of critical values that relies on the

exchangeability hypothesis. Maasoumi and Heshmati (2000) and Maasoumi et al. (1997) proposed

simple bootstrap versions of the same tests which they employed in empirical applications. Barrett

and Donald (1999) propose an alternative simulation method based on an idea of Hansen (1996b)

for deriving critical values in the case where the prospects are mutually independent, and the data

are i.i.d.

Alternative approaches for testing SD are discussed in Anderson (1996), Davidson and Duclos

(2000), Kaur et al. (1994), Dardanoni and Forcina (2000), Bishop et al. (1998), and Xu, Fisher, and

Wilson (1995), Crawford (1999), and Abadie (2001), to name but a few recent contributions. The Xu

et al. (1995) paper is an example of the use of Â2 distribution for testing the joint inequality amongst

the quantiles (conditions (2) in our de…nitions). The Davidson and Duclos (2000) is the most general

account of the tests for any order SD, based on conditional moments of distributions and, as with

most of these alternative approaches, requires control of its size by Studentized maximum modulus or

similar techniques. Maasoumi (2001) contains an extensive discussion of these alternatives. Tse and

Zhang (2000) provide some Monte Carlo evidence on the power of some of these alternative tests.
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2 The Test Statistics

We shall suppose that there are K prospects X1; : : : ; Xk and let A = fXk : k = 1; : : : ; Kg: Let

fXki : i = 1; : : : ; Ng be realizations of Xk for k = 1; : : : ; K: To subsume the empirically important

case of “conditional” dominance, suppose that fXki : i = 1; : : : ;Ng are unobserved errors in the

linear regression model:

Yki = Z 0kiµk0 +Xki;

for i = 1; : : : ; N and k = 1; : : : ;K; where, Yki 2 R; Zki 2 RL and µk0 2 £k ½ RL. We shall

suppose that E(XkijZki) = 0 a.s. as well as other conditions on the random variables Xk; Yk . We

allow for serial dependence of the realizations and for mutual correlation across prospects. Let

Xki(µ) = Yki ¡ Z 0kiµ; Xki = Xki(µk0); and bXki = Xki(bµk); where bµk is some sensible estimator of

µk0 whose properties we detail below, i.e., the prospects can be estimated from the data. Since we

have a linear model, there are many possible ways of obtaining consistent estimates of the unknown

parameters. The motivation for considering estimated prospects is that when data is limited one

may want to use a model to adjust for systematic di¤erences. Common practice is to group the

data into subsets, say of families with di¤erent sizes, or by educational attainment, or subgroups of

funds by investment goals, and then make comparisons across homogenous populations. When data

are limited this can be di¢cult. In addition, the preliminary regressions may identify “causes” of

di¤erent outcomes which may be of substantive interest and useful to control for.2

For k = 1; : : : ; K; de…ne

Fk(x;µ) = P (Xki(µ) · x) and

FkN(x;µ) =
1
N

NX

i=1

1 (Xki(µ) · x) :

We denote Fk(x) = Fk(x;µk0) and FkN (x) = FkN(x; µk0); and let F (x) be the joint c.d.f. of
2Another way of controlling for systematic di¤erences is to test a hypothesis about the conditional c.d.f.’s of Yk

given Zk : Similar results can be established in this case.
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(X1; : : : ;Xk)0: Now de…ne the following functionals of the joint distribution

d¤ = min
k 6=l

sup
x2X

[Fk(x) ¡ Fl(x)] (1)

s¤ = min
k 6=l

sup
x2X

Z x

¡1
[Fk(t) ¡ Fl(t)] dt (2)

p¤ = min
k 6=l

sup
x;¡y2X+

Z x

y
[Fk(t) ¡ Fl(t)]dt; (3)

where X denotes the support of Xki and X+ = fx 2 X ; x > 0g:Without loss of generality we assume

that X is a bounded set, as do Klecan et al. (1991). The hypotheses of interest can now be stated

as:

Hd0 : d¤ · 0 vs: Hd1 : d¤ > 0 (4)

Hs0 : s¤ · 0 vs: Hs1 : s¤ > 0 (5)

Hp0 : p¤ · 0 vs: Hp1 : p¤ > 0: (6)

The null hypothesis Hd0 implies that the prospects in A are not …rst-degree stochastically maximal,

i.e., there exists at least one prospect in A which …rst-degree dominates the others. Likewise for the

second order and prospect stochastic dominance test.

The test statistics we consider are based on the empirical analogues of (1)-(3). They are de…ned

to be:

DN = min
k 6=l

sup
x2X

p
N

h
FkN (x;bµk) ¡ FlN (x; bµl)

i

SN = min
k 6=l

sup
x2X

p
N

Z x

¡1

h
FkN(t;bµk) ¡ FlN(t;bµl)

i
dt

PN = min
k 6=l

sup
x;¡y2X+

p
N

Z x

y

h
FkN(t;bµk) ¡ FlN(t;bµl)

i
dt:

These are precisely the Klecan et al. (1991) test statistics except that we have allowed the prospects

to have been estimated from the data.

We next discuss the issue of how to compute the supremum inDN ;SN and PN ; and the integrals in

SN and PN : There have been a number of suggestions in the literature that exploit the step-function
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nature of FkN(t; µ): The supremum in DN can be (exactly) replaced by a maximum taken over all

the distinct points in the combined sample. Regarding the computation of SN ; Klecan et al. (1991)

propose a recursive algorithm for exact computation of SN ; see also Barratt and Donald (1999) for

an extension to third order dominance statistics. Integrating by parts we have
Z x

¡1
Fk(t)dt = E[maxf0; x¡Xkg]

provided E[jXkj] < 1:3 Motivated by this, Davidson and Duclos (1999) have proposed computing

the empirical analogue

1
N

NX

i=1

(x ¡Xki(µ))1 (Xki(µ) · x) :

The computation of PN can be based on the fact that
Z x

y
FkN (t; µ)dt =

Z x

¡1
FkN (t; µ)dt¡

Z y

¡1
FkN(t; µ)dt

for all x;¡y > 0:

To reduce the computation time, it may be preferable to compute approximations to the suprema

in DN ;SN ; PN based on taking maxima over some smaller grid of points XJ = fx1; : : : ; xJg; where

J < n: This is especially true of PN ; which requires a grid on R+ £ R¡: Thus, we might compute

P JN = min
k 6=l

max
0<x;0>y2XJ

1p
N

NX

i=1

(x¡Xki(bµ))1
³
Xki(bµ) · x

´
¡ (y ¡Xli(bµ))1

³
Xli(bµ) · y

´
:

Theoretically, provided the set of evaluation points becomes dense in the joint support, the distrib-

ution theory is una¤ected by using this approximation.
3A similar relation holds for higher order integrated c.d.f.s. In fact, one can de…ne ‘fractional dominance’ relations

based on the quantity

1
¡(® +1)

E[jmaxf0; x ¡ Xgj®];

which is de…ned for all ® > 0; here, ¡ is the gamma function. See Ogryczak and Ruszcynski (1997).
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3 Asymptotic Null Distributions

3.1 Regularity Conditions

We need the following assumptions to analyze the asymptotic behavior of DN :

Assumption 1: (i) f(Xki ; Zki) : i = 1; : : : ; ng is a strictly stationary and ®- mixing sequence

with ®(m) = O(m¡A) for some A > maxf(q ¡ 1)(q + 1); 1 + 2=±g 81 · k · K; where q is an even

integer that satis…es q > 3(L+1)=2 and ± is a positive constant that also appears in Assumption 2(ii)

below. (ii) E kZkik2 <1 for all 1 · k · K; for all i ¸ 1: (iii) The conditional distribution Hk(¢jZki)
of Xki given Zki has bounded density with respect to Lebesgue measure a.s. 81 · k · K; 8 i ¸ 1:

Assumption 2: (i) The parameter estimator satis…es
p
N (bµk ¡ µk0) =

(1=
p
N )

PN
i=1 ¡k0Ãk(Xki; Zki; µk0) + op(1); where ¡k0 is a non-stochastic matrix for all 1 · k · K;

(ii) The function Ãk(y; z; µ) : R£ RL££ ! RL is measurable and satis…es (a) EÃk(Yki; Zki; µk0) = 0

and (b) E kÃk(Yki; Zki; µk0)k2+± <1 for some ± > 0 for all 1 · k · K, for all i ¸ 1:

Assumption 3: (i) The function Fk(x;µ) is di¤erentiable in µ on a neighborhood £0 of µ0

for all 1 · k · K; (ii) For all sequence of positive constants f»N : N ¸ 1g such that »N ! 0;

supx2X supµ:kµ¡µ0k·»N k@Fk(x; µ)=@µ ¡ ¢k0(x)k ! 0 for all 1 · k · K; where ¢k0(x) = @Fk(x; µk0)=@µ;

(iii) supx2X k¢k0(x)k <1 for all 1 · k · K:
For the tests SN and PN we need the following modi…cation of Assumptions 1 and 3:

Assumption 1¤: (i) f(Xki ; Zki) : i = 1; : : : ; ng is a strictly stationary and ®- mixing sequence

with ®(m) = O(m¡A) for some A > maxfrq=(r ¡ q); 1 + 2=±g 81 · k · K for some r > q ¸ 2;

where q satis…es q > L and ± is a positive constant that also appears in Assumption 2(ii). (ii)

E kZkikr <1 81 · k · K; 8 i ¸ 1:

Assumption 3¤ : (i) Assumption 3(i) holds; (ii) For all 1 · k · K for all sequence of positive

constants f»N :N ¸ 1g such that »N ! 0; supx2X supµ:kµ¡µ0k·»N
°°°(@=@µ)

R x
¡1 Fk(t; µ)dt¡ ¤k0(x)

°°° !
0; where ¤k0(x) = (@=@µ)

R
Fk(y; µk0)dy; (iii) supx2X k¤k0(x)k <1 for all 1 · k · K:

Assumption 3¤¤ : (i) Assumption 3(i) holds; (ii) For all 1 · k · K for all sequence of positive

constants f»N : N ¸ 1g such that »N ! 0; supx;¡y2X+ supµ:kµ¡µ0k·»N
°°°(@=@µ)

R x
y Fk(t; µ)dt ¡ ¥k0(x; y)

°°° !
0; where ¥k0(x; y) = (@=@µ)

R x
y Fk(t; µk0)dt; (iii) supx;¡y2X+

k¥k0(x; y)k <1 for all 1 · k · K:
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Remarks.

1. The mixing condition in Assumption 1 is stronger than the condition used in Klecan et. al.

(1991). This assumption, however, is needed to verify the stochastic equicontinuity of the empirical

process (for a class of bounded functions) indexed by estimated parameters, see proof of Lemma 1(a).

Assumption 1¤ introduces a trade-o¤ between mixing and moment conditions. This assumption is

used to verify the stochastic equicontinuity result for the (possibly) unbounded functions that appear

in the test SN (or PN ); see proof of Lemma 1(b)(or (c)). Without the estimated parameters, weaker

conditions on the dependence can be assumed: indeed there are some results available for the weak

convergence of the empirical process of long memory time series [e.g., Giraitis, Leipus, and Surgailis

(1996)].

2. Assumptions 3 and 3¤ (or 3¤¤) di¤er in the amount of smoothness required. For second order

(or prospect) stochastic dominance, less smoothness is required.

3. When there are no estimated parameters: we do not need any moment conditions for DN and

only a …rst moment for SN ;PN , and the smoothness conditions on F are redundant.

3.2 The Null Distributions

De…ne the empirical processes in x; µ

ºdkN (x; µ) =
1p
N

NX

i=1

[1 (Xki(µ) · x) ¡ Fk(x; µ)]

ºskN (x; µ) =
1p
N

NX

i=1

·Z x

¡1
1 (Xki(µ) · t) dt¡

Z x

¡1
Fk(t; µ)dt

¸

ºpkN (x; y; µ) =
1p
N

NX

i=1

·Z x

y
1 (Xki(µ) · t) dt¡

Z x

y
Fk(t; µ)dt

¸
(7)

Let ( edkl(¢) º 0k0 º 0l0 )0 be a mean zero Gaussian process with covariance functions given by

Cd(x1; x2) = lim
N!1

E

0
BB@
vdkN (x1; µk0) ¡ vdlN(x1; µl0)p
NÃkN(µk0)p
NÃ lN (µl0)

1
CCA

0
BB@
vdkN (x2; µk0) ¡ vdlN(x2; µl0)p
NÃkN (µk0)p
NÃ lN (µl0)

1
CCA

0

: (8)
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We analogously de…ne ( eskl(¢) º 0k0 º 0l0 )0 and ( epkl(¢; ¢) º 0k0 º 0l0 )0 to be mean zero Gaussian processes

with covariance functions given by Cs(x1; x2) and Cp(x1; y1; x2; y2) respectively.

The limiting null distributions of our test statistics are given in the following theorem.

Theorem 1. (a) Suppose Assumptions 1-3 hold. Then, under the null Hd0 ; we have

DN )

8
<
:

mink 6=l supx2Bdkl
h
edkl(x) + ¢k0(x)0¡k0ºk0 ¡¢l0(x)0¡l0º l0

i
if d = 0

¡1 if d < 0;

where Bdkl = fx 2 X : Fk(x) = Fl(x)g:
(b) Suppose Assumptions 1 ¤, 2 and 3 ¤ hold. Then, under the null Hs0 ; we have

SN )
(

mink 6=l supx2Bskl [eskl(x) + ¤k0(x)0¡k0ºk0 ¡ ¤l0(x)0¡l0º l0] if s = 0
¡1 if s < 0;

where Bskl = fx 2 X :
R x
¡1 Fk(t)dt =

R x
¡1 Fl(t)dtg:

(c) Suppose Assumptions 1 ¤, 2 and 3 ¤¤ hold. Then, under the null Hp0 ; we have

PN )
(

mink 6=l sup(x;y)2Bpkl [epkl(x; y) + ¥k0(x)0¡k0ºk0 ¡ ¥l0(x)0¡l0º l0] if p = 0

¡1 if p < 0;

where Bpkl = f(x; y) : x 2 X+;¡y 2 X+ and
R x
y Fk(t)dt =

R x
y Fl(t)dtg:

The asymptotic null distributions of DN ; SN and PN depend on the “true” parameters fµk0 : k =

1; : : : ; Kg and distribution functions fFk(¢) : k = 1; : : : ; Kg: This implies that the asymptotic critical

values for DN ; SN ; PN can not be tabulated once and for all. However, a subsampling procedure can

be used to approximate the null distributions.

4 Critical Values based on Subsample Bootstrap

In this section, we consider the use of subsampling to approximate the null distributions of our test

statistics. As was pointed out by Klecan et. al. (1991), even when the data are i.i.d. the standard

bootstrap resample does not work because one needs to impose the null hypothesis in that case, which

is very di¢cult given the complicated system of inequalities that de…ne it. The mutual dependence

of the prospects and the time series dependence in the data also complicate the issue considerably.
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Horowitz (2000) gives an overview of many of the problems of using bootstrap with dependent data.

The subsampling method is very simple to de…ne and yet provides consistent critical values in a

very general setting. In contrast to the simulation approach of Klecan et. al. (1991), our procedure

does not require the assumption of generalized exchangeability of the underlying random variables.

Indeed, we require no additional assumptions beyond those that have already been made.

We now discuss the asymptotic validity of the subsampling procedure for the test DN (The

argument for the tests SN and PN is similar and hence is omitted). Let Wi = f(Yki;Zki) : k =

1; : : : ; Kg for i = 1; : : : ;N: With some abuse of notation, the test statistic DN can be re-written as

a function of the data fWi : i = 1; : : : ; Ng :

DN =
p
NdN(W1; : : : ;WN );

where

dN (W1; : : : ;WN) = min
k 6=l

sup
x2X

h
FkN (x;bµk) ¡FlN (x;bµl)

i
: (9)

Let

GN(w) = Pr
³p
NdN(W1; : : : ;WN ) · w

´
(10)

denote the distribution function of DN : Let dN;b;i be equal to the statistic db evaluated at the sub-

sample fWi; : : : ;Wi+b¡1g of size b; i.e.,

dN;b;i = db(Wi;Wi+1; : : : ;Wi+b¡1) for i = 1; : : : ; N ¡ b+ 1:

This means that we have to recompute bµl(Wi;Wi+1; : : : ;Wi+b¡1) using just the subsample as well.

We note that each subsample of size b (taken without replacement from the original data) is indeed a

sample of size b from the true sampling distribution of the original data. Hence, it is clear that one can

approximate the sampling distribution of DN using the distribution of the values of dN;b;i computed

over N ¡ b + 1 di¤erent subsamples of size b: That is, we approximate the sampling distribution

GN of DN by

bGN;b(w) =
1

N ¡ b + 1

N¡b+1X

i=1

1
³p
bdN;b;i · w

´
:
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Let gN;b(1 ¡ ®) denote the (1 ¡ ®)-th sample quantile of bGN;b(¢); i.e.,

gN;b(1 ¡ ®) = inffw : bGN;b(w) ¸ 1 ¡®g:

We call it the subsample critical value of signi…cance level ®: Thus, we reject the null hypothesis at

the signi…cance level ® if DN > gN;b(1¡®): The computation of this critical value is not particularly

onerous, although it depends on how big b is. The subsampling method has been proposed in Politis

and Romano (1994) and is thoroughly reviewed in Politis, Romano, and Wolf (1999). It is well known

to be a universal method that can ‘solve’ almost any problem. In particular, it works in heavy tailed

distributions, in unit root cases, in non-standard asymptotics, etc.

We now justify the above subsampling procedure. Let g(1¡ ®) denote the (1¡ ®)-th quantile of

the asymptotic null distribution of DN (given in Theorem 1(a)).

Theorem 2. Suppose Assumptions 1-3 hold. Assume b=N ! 0 and b ! 0 as N ! 1: Then,

under the null hypothesis Hd0 ; we have when d = 0 that

(a) gN;b(1 ¡ ®) p! g(1 ¡ ®)

(b) Pr[DN > gN;b(1 ¡ ®)] ! ®

as N ! 1:
Since d = 0 is the least favorable case, we have that

sup
d2Hd0

Pr[DN > gN;b(1 ¡ ®)] · ®+ o(1):

The following theorem establishes the consistency of our test:

Theorem 3. Suppose Assumptions 1-3 hold. Assume b=N ! 0 and b ! 0 as N ! 1: Then,

under the alternative hypothesis Hd1 ; we have

Pr [DN > gN;b(1 ¡ ®)] ! 1 as N ! 1:

Remark. Results analogous to Theorems 2 and 3 hold for the test SN (PN) under Assumptions

1¤, 2 and 3¤(3¤¤). The proof is similar to those of the latter theorems.
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In practice, the choice of b is important and rather di¢cult. It is rather akin to choosing bandwidth

in tests of parametric against nonparametric hypotheses. Delgado, Rodriguez-Poo, and Wolf (2001)

propose a method for selecting b to minimize size distortion in the context of hypothesis testing

within the maximum score estimator, although no optimality properties of this method were proven.

The main problem here is that usually b that is good for size distortion is not good for power and

vice a versa.

5 Numerical Results

In this section we report some numerical results on the performance of the test statistics and the

subsample critical values.

5.1 Simulations

We examined three sets of designs, the Burr distributions most recently examined by Tse and Zhang

(2000), the lognormal distributions most recently studied by Barrett and Donald (1999), and the

exchangeable normal processes of Klecan et al. (1991). These cases allow an assessment of the power

properties of the tests, and to a limited extent, the question of suitable subsample sizes.

In computing the suprema in DN ; SN ; we took a maximum over an equally spaced grid of size n

on the 98% range of the pooled empirical distribution - that is, we took the 1% and 99% quantiles of

this empirical distribution and then formed an equally spaced grid between these two extremes. We

chose a total of nine di¤erent subsamples for each sample size n 2 f50; 500; 1000g: In earlier work

we tried …xed rules of the form b(n) = cjnaj ; but found it did not work so well. Instead, we took an

equally spaced grid of subsample sizes on the range 2£n0:3 < b < 3£n0:7: In each case we did 1; 000

replications.

5.1.1 Tse and Zhang (2000)

In the context of independent prospects and i.i.d. observations, Tse and Zhang (2000) have provided

some Monte Carlo evidence on the power of the alternative tests proposed by Davidson and Duclos
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(2000), the “DD test”, and Anderson (1996). They also shed light on the convergence to the Gaussian

limiting distribution of these tests. The evidence on the latter issue is not very encouraging except

for very large sample sizes, and they conclude that the DD test has better power than the Anderson

test for the cases they considered.

In the income distribution …eld, an often empirically plausible candidate is the Burr Type XII

distribution, B(®; ¯). This is a two parameter family de…ned by:

F (x) = 1 ¡ (1 + x®)¡¯; x ¸ 0

where E(X) <1 if ¯ > 1=® > 0. This distribution has a convenient inverse: F ¡1(v) = [(1¡ v)¡ 1
¯ ¡

1]
1
® ; 0 · v < 1:We investigated the …ve di¤erent Burr designs of Tse and Zhang (2000), which are

given below along with the population values of d¤; s¤ :

X1 X2 d¤ s¤

B(4:7; 0:55) B(4:7; 0:55) 0:000 0:0000
B(2:0; 0:65) B(2:0; 0:65) 0:0000 0:0000

B(4:7; 0:55) B(2:0; 0:65) 0:1395 0:0784
B(4:6; 0:55) B(2:0; 0:65) 0:1368 0:0773
B(4:5; 0:55) B(2:0; 0:65) 0:1340 0:0761

The …rst two designs are in the null hypothesis, while the remaining three are in our alternative.

Note that Tse and Zhang (2000) actually report results for di¤erent hypotheses, so that only their

…rst two tables are comparable. We report our results in Tables 1a-e below.

The …rst two designs are useful for an evaluation of size characteristics of our tests, but in the

demanding context of the “least favorable” case of equality of the two distributions. The estimated

CDFs “kiss” at many more points than do the integrated CDFs. As a result, large sample sizes

will be needed for accurate size of FSD, as well as relatively large subsamples. For SSD, however,

the accuracy is quite good for moderate sample sizes and in all but the smallest of subsample cases.

Given the nature of the testing problem, sample sizes less than 100 are very small indeed. In such

cases the tests will overreject at conventional levels, indicating an inability to distinguish between
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the “unrankable” and “equal” cases. Even in this demanding case, however, one is led to the correct

decision that the two (equal) prospects here do not dominate each other. The accuracy of size

estimation for SSD is rather impressive.

In the last three designs (Tables 1c-1e), the power of our tests are forcefully demonstrated. This is

so even at relatively small samples sizes. Even with a sample of size 50 there is appreciable power. We

note a certain phenomenon with very small samples: the power declines as the number of subsamples

declines (the subsample size increases). This seems to indicate that larger number of subsamples are

needed for more accurate estimation especially when small samples are available. The performance

of the tests in these cases is quite satisfactory.

5.1.2 The lognormal distributions

The lognormal distribution is a long celebrated case in both …nance and income and wealth distri-

bution …elds. It was most recently investigated in Barrett and Donald (1999) in an examination of

the McFadden tests. Let,

Xj = exp(¹j + ¾jZj);

where Zj are standard normal and mutually independent.

X1 X2 d¤ s¤

LN(0:85;0:62) LN (0:85; 0:62) 0:0000 0:0000

LN(0:85;0:62) LN (0:7; 0:52) 0:0000 0:0000
LN(0:85;0:62) LN (1:2; 0:22) 0:0834 0:0000
LN(0:85;0:62) LN (0:2; 0:12) 0:0609 0:0122

The results are shown in Tables 2a-d.

The …rst two designs are in the null and the next two (2c-2d) are in the alternative for FSD,

borderline null for SSD in design 2c, and in the alternative for SSD in design 2d. The …rst design

is a “least favorable” case and, at least for the FSD test, it demonstrates the demand for higher

sample sizes as well as subsample sizes. The tendency is toward moderate overrejection for very

small samples. Accuracy improves quite rapidly with sample size for Second order SD tests and is

impressive for most subsample sizes and moderate sample sizes.
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The second design is quite instructive. While the overall results are similar to the previous case,

the di¤erences re‡ect the fact that there is no FSD ranking, (or equality) and only a mild degree

of Second Order Dominance. For moderate to reasonable sample sizes the tendency is to sligtly

underreject FSD. This tendency is reduced by increasing the size of the subsamples. The results for

SSD, con…rm the theoretical consistency properties of our tests.

Results for design 2c are quite conclusive. For moderate to large sample sizes, FSD is powerfully

rejected, while SSD is not. Very small samples are seen to be dangerous in cases where CDFs cross

(no FSD) and the degree of SSD is moderate. A comparison with the last design (case 2d) is quite

instructive. Here there is no FSD or SSD and the test is quite capable of producing the correct

inference. Accuracy is again improved with increasing number of subsamples.

5.1.3 Klecan, McFadden, and McFadden (1991)

The previous designs had independent prospects and i.i.d observations. In this section we investigate

the three di¤erent exchangeable multinormal processes of Klecan et al. (1991),

Xjt = (1 ¡ ¸)
h
®j + ¯j

³p
½Z0t +

p
1 ¡ ½Zjt

´i
+ ¸Xj;t¡1;

where (Z0t; Z1t;Z2t) are i.i.d. standard normal random variables, mutually independent. The para-

meters ¸ = ½ = 0:1 determine the mutual correlation of X1t and X2t and their autocorrelation. The

parameters ®j; ¯j are actually the mean and standard deviation of the marginal distributions of X1t

and X2t. This scheme produces autocorrelated and mutually dependent prospects. The marginals

and the true values of the statistics are:

X1 X2 d¤ s¤

N (0; 1) N (¡1; 16) 0:1981 0:0000
N (0;16) N (1; 16) ¡0:0126 0:0000

N (0; 1) N (1; 16) 0:1981 0:5967

The results are given in Tables 3a-c. Design 3a is in the alternative for FSD, and in the null

for SSD. Again we note that we need large samples and subsample sizes to infer this low degree of

SSD, but have very good power in rejecting FSD (especially for large number of subsamples even
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in very small samples of 50). Design 3b is rather strongly in the null (note FSD implies SSD).

Inappropriately small sample sizes lead to over estimation of size but, again, the larger number of

subsamples do better in these situations. Interestingly, the number and size of subsamples do not

appear consequential for moderate to large samples. Otherwise the theoretical power and consistency

properties are strongly con…rmed. The …nal design 3c is clearly in the alternative for both FSD and

SSD. Our procedures show their expected power in rejecting dominance. For very small samples

(50), again we note that larger number of subsamples do uniformly much better than otherwise (the

subsample size seems not as important).

While we have looked at other designs and subsample/sample combinations and found the qual-

itative results here to be robust, we think the issue of optimal subsample size and numbers deserves

further independent investigation in many contexts.

5.2 Daily Stock Index Returns

Finally, we applied our tests to a dataset of daily returns on the Dow Jones Industrials and the

S&P500 stock returns from 8/24/88 to 8/22/00, a total of 3131 observations. The means are 0:00055

and 0:00068 respectively, while the standard deviations are 0:00908 and 0:0223 respectively; the series

are certainly mutually dependent and dependent over time. Figure 1 plots the c.d.f.’s and integrated

c.d.f. [denoted s.d.f.] of the two series. This shows that the two c.d.f.’s cross near zero, but the

integrated c.d.f. of the Dow Jones index dominates that of the S&P500 index over this time period.

In Figure 2 we plot the surface
R x
y [F1N(t) ¡ F2N (t)] dt against x; y on a grid of x > 0; y < 0:

This surface is also everywhere positive, consistent with the hypothesis that the Dow Jones index

prospect dominates the S&P500 index.

In Figure 3 we plot the p-value of our tests of the null hypotheses d¤ · 0; s¤ · 0; and p¤ · 0

against subsample size: The results suggest strongly that the evidence is against d¤ · 0 but in favour

of s¤ · 0 and p¤ · 0:4

This is a rather striking result and implies the following. These excess daily returns on these

indices (for this period) cannot be uniformly ranked on the basis of the returns alone. Any indexed-
4 In the test of prospect dominance we subtracted o¤ the risk free rate measured by one month t-bill rates.
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Figure 1:

Figure 2:
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Figure 3:

based (strong) rankings at this level must necessarily depend on preferences that must be, (i) clearly

revealed and declared, and (ii) defended vigorously in context. And when issues of risk and volatility

are added in, most index based rankings must agree, to a statistical degree of con…dence, with

the uniform SSD ranking observed here. In particular, dominated index driven strategies require a

revelation of their preference bases.

6 Concluding Remarks

Based on subsampling estimation of the critical values, we have obtained the asymptotic distribution

of well known tests for FSD and SSD and demostrated their consistency in a very general setting that

allows generic dependence of prospects and non i.i.d observations. The availability of this technique

for empirical situations in which ranking is done conditional on desirable controls is of consequence

for widespread use of uniform ranking in empirical …nance and welfare. We have not pursued this

aspect of our work here.

It is sometimes argued that the subsample bootstrap only works when the sample sizes are
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astronomically large, if b =
p
N the argument goes, we will need N2 observations to achieve usual

accuracy. We …nd this argument to be somewhat misguided - the issues here are the same as in

nonparametric estimation where sample sizes of 200 are routinely analyzed by these methods. If the

underlying process is simple enough a subsample of size b = 30 withN = 200 will be quite accurate. If

the underlying process is very complicated, subsample bootstrap will not work so well, but neither will

any of the alternatives in general. In the designs we analyzed we found that the subsample bootstrap

appears to be an e¤ective way of computing critical values in this test of stochastic dominance,

delivering good performance for sample sizes as low as 250. Some methodology for choosing b is

desirable, although di¢cult.

A Appendix

We let Cj for some integer j ¸ 1 denote a generic constant. (It is not meant to be equal in any two

places it appears.) Let kZkq denote the Lq norm (E jZjq)1=q for a random variable Z:

Lemma 1 (a) Suppose Assumption 1 holds. Then, for each " > 0 there exists ± > 0 such that

lim
N!1

°°°°° sup
½¤d((x1;µ1);(x2;µ2))<±

¯̄
ºdkN(x1; µ1) ¡ ºdkN(x2; µ2)

¯̄
°°°°°
q

< "; (A.1)

where

½¤d ((x1; µ1) ; (x2; µ2)) =
©
E [1(Xki(µ1) · x1) ¡ 1(Xki(µ2) · x2)]2

ª1=2
: (A.2)

(b) Suppose Assumptions 1¤ hold. Then, for each " > 0 there exists ± > 0 such that

lim
N!1

°°°°° sup
½¤s ((x1;µ1);(x2;µ2))<±

jºskN(x1; µ1) ¡ ºskN(x2; µ2)j
°°°°°
q

< "; (A.3)

where

½¤s ((x1; µ1) ; (x2; µ2)) =
½
E

¯̄
¯̄
Z x1

¡1
1(Xki(µ1) · t)dt ¡

Z x2

¡1
1(Xki(µ2) · t)dt

¯̄
¯̄
r¾1=r

: (A.4)
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(c) Suppose Assumptions 1¤ hold. Then, for each " > 0 there exists ± > 0 such that

lim
N!1

°°°°° sup
½¤p((x1;y1;µ1);(x2;y2;µ2))<±

jºpkN(x1; µ1) ¡ ºpkN(x2; µ2)j
°°°°°
q

< "; (A.5)

where

½¤p ((x1; y1; µ1) ; (x2; y2; µ2)) =
½
E

¯̄
¯̄
Z x1

y1
1(Xki(µ1) · t)dt¡

Z x2

y2
1(Xki(µ2) · t)dt

¯̄
¯̄
r¾1=r

: (A.6)

Proof of Lemma 1. We …rst verify the conditions for part (a) of Lemma 1. The result follows

from Theorem 2.2 of Andrews and Pollard (1994) with Q = q and ° = 1 if we verify the mixing

and bracketing conditions in the theorem. The mixing condition is implied by Assumption 1(i). The

bracketing condition also holds by the following argument: Let

Fd = f1 (Xki(µ) · x) : (x; µ) 2 X £ £g : (A.7)

Then, Fd is a class of uniformly bounded functions satisfying the L2-continuity condition, because

we have

sup
i¸1
E sup

(x0 ;µ0)2X££:
jx0¡xj·r1;kµ0¡µk·r2;

p
r21+r

2
2·r

j1 (Xki(µ0) · x0) ¡ 1 (Xki(µ) · x)j2

= E sup
(x0;µ0)2X££:

jx0¡xj·r1;kµ0¡µk·r2;
p
r21+r22·r

j1 (Xki · Z 0ki(µ0 ¡ µ0) + x0) ¡ 1 (Xki · Z 0ki(µ ¡ µ0) + x)j2

· E1 (jXki ¡ Z 0ki(µ ¡ µ0) ¡ xj · kZkik r1 + r2)

· C1 (E kZkik r1 + r2)

· C2r;

where the second inequality holds by Assumption 1(iii) and C2 =
p
2C1 (E kZkik _ 1) is …nite by

Assumption 1(ii). Now the desired bracketing condition holds because the L2-continuity condition

implies that the bracketing number satis…es

N(";Fd) · C3

µ
1
"

¶L+1

; (A.8)

see Andrews and Pollard (1994, p.121).
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We next verify part (b). The result follows from Theorem 3 of Hansen (1996a) with a = L; ¸ = 1;

q = q and r = r: To see this, let

Fs =
½Z x

¡1
1 (Xki(µ) · t) dt : (x; µ) 2 X £ £

¾
: (A.9)

Then, the functions in Fs satisfy the Lipschitz condition:
¯̄
¯̄
¯

Z x0

¡1
1 (Xki(µ0) · t) dt ¡

Z x

¡1
1 (Xki(µ) · t) dt

¯̄
¯̄
¯

= jmaxfx0 + Z 0ki(µ0 ¡ µk0) ¡Xki;0g ¡max fx +Z 0ki(µ ¡ µk0) ¡Xki; 0gj

·
p
2 (kZkik _ 1)

³
(x0 ¡ x)2 + kµ0 ¡ µk2

´1=2
; (A.10)

where the third line follows from the inequality jmaxfa; 0g ¡ maxfb; 0gj · ja ¡ bj and Cauchy-

Schwarz inequality. We also have supk;iE kZkikr <1 by Assumption 1¤(ii) which yields the condi-

tion (12) and (13) of Hansen (1996a). Finally, the mixing condition (11) in Hansen (1996a, p.351)

holds by Assumption 1¤(i), as desired:

The proof of part (c) is similar to that of part (b) except that we now take

Fp =
½Z x

y
1 (Xki(µ) · t) dt : (x;¡y; µ) 2 X+ £ X+ £ £

¾
(A.11)

and verify the Lipschitz condition using (A.10) and triangle inequality.

Lemma 2 (a) Suppose Assumptions 1-3 hold. Then; we have 8k = 1; : : : ; K;

sup
x2X

¯̄
¯ºdkN(x;bµk) ¡ ºdkN (x;µk0)

¯̄
¯ p! 0: (A.12)

(b) Suppose Assumptions 1¤, 2 and 3¤ hold. Then; we have 8k = 1; : : : ; K;

sup
x2X

¯̄
¯ºskN(x;bµk) ¡ ºskN (x;µk0)

¯̄
¯ p! 0: (A.13)

(c) Suppose Assumptions 1¤, 2 and 3¤¤ hold. Then; we have 8k = 1; : : : ; K;

sup
x;¡y2X+

¯̄
¯ºpkN (x; y;bµk) ¡ ºpkN(x; y; µk0)

¯̄
¯ p! 0: (A.14)
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Proof of Lemma 2. We …rst verify part (a). Consider the pseudometric (A.2). We have

sup
x2X
½¤d

³³
x;bµk

´
; (x;µk0)

´2

= sup
x2X
E [1(Xki(µ) · x) ¡ 1(Xki(µk0) · x)]2

¯̄
µ=bµk

= sup
x2X

ZZ h
1
³
ex · x + z0(bµk ¡ µk0)

´
¡ 1 (ex · x)

i2
dHk(exjz)dPk(z) (A.15)

· sup
x2X

ZZ
1
³
x ¡

°°°z0(bµk ¡ µk0)
°°° · ex · x+

°°°z0(bµk ¡ µk0)
°°°
´
dHk(exjz)dPk(z)

· C1

Z °°°z0(bµk ¡ µk0)
°°°dPk(z)

· C1

°°°bµk ¡ µk0
°°°E kZkik p! 0;

where Pk(¢) denotes the distribution function of Zki and the inequality in the 5th line holds by

Assumption 1(iii) and a one-term Taylor expansion, and the last convergence to zero holds by As-

sumptions 1(ii) and 2. Now, (A.12) holds since we have: 8" > 0; 8´ > 0; 9± > 0 such that

lim
N!1

P
µ
sup
x2X

¯̄
¯ºdkN (x;bµk) ¡ ºdkN(x; µk0)

¯̄
¯ > ´

¶

· lim
N!1

P
µ
sup
x2X

¯̄
¯ºdkN (x;bµk) ¡ ºkN(x; µk0)

¯̄
¯ > ´; sup

x2X
½¤d

³³
x;bµk

´
; (x; µk0)

´
< ±

¶

+ lim
N!1

P
µ
sup
x2X
½¤d

³³
x;bµk

´
; (x; µk0)

´
¸ ±

¶
(A.16)

· lim
N!1

P ¤
Ã

sup
½¤d((x1;µ1);(x2;µ2))<±

¯̄
ºdkN (x1; µ1) ¡ ºdkN(x2; µ2)

¯̄
> ´

!

<
"
´
;

where the last term on the right hand side of the …rst inequality is zero by (A.15) and the last

inequality holds by the stochastic equicontinuity result (A.1) Since "=´ > 0 is arbitrary, (A.12)

follows.

We next establish part (b). We have

sup
x2X
½¤s

³³
x;bµk

´
; (x; µk0)

´r

= sup
x2X
E

¯̄
¯̄
Z x

¡1
(1(Xki(µ) · t) ¡ 1(Xki(µk0) · t)) dt

¯̄
¯̄
r ¯̄
¯̄
µ=bµk

·
°°°bµk ¡ µk0

°°°
r
E kZkikr p! 0
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by Assumptions 1¤(ii) and 2. Now part (b) holds using an argument similar to the one used to verify

part (a). The proof of part (c) is similar. ¥

Lemma 3 (a) Suppose Assumptions 1-3 hold. Then, we have 8k = 1; : : : ;K;

p
N sup
x2X

°°°Fk(x;bµk) ¡ Fk(x; µk0) ¡ ¢0
k0(x)¡k0ÃkN(µk0)

°°° = op(1):

(b) Suppose Assumptions 1¤, 2 and 3¤ hold. Then, we have 8k = 1; : : : ;K;

p
N sup
x2X

°°°°
Z x

¡1
Fk(t;bµk)dt ¡

Z x

¡1
Fk(t; µk0)dt ¡ ¤0k0(x)¡k0ÃkN(µk0)

°°°° = op(1):

(c) Suppose Assumptions 1¤, 2 and 3¤¤ hold. Then, we have 8k = 1; : : : ; K;

p
N sup
x;¡y2X+

°°°°
Z x

y
Fk(t;bµk)dt ¡

Z x

y
Fk(t; µk0)dt ¡ ¥0k0(x; y)¡k0ÃkN (µk0)

°°°° = op(1):

Proof of Lemma 3. We verify part (a). Proof of parts (b) and (c) is similar. A mean value

expansion gives

Fk(x;bµk) = Fk(x; µk0) +
@Fk(x; µ¤k(x))

@µ0
(bµk ¡ µk0);

where µ¤k(x) lies between bµk and µk0: By Assumption 2, we have
p
N(bµk ¡ µk0) = Op(1): This implies

that there exists a sequence of constants f»N : N ¸ 1g such that »N ! 0 and P
³°°°bµk ¡ µk0

°°° · »N
´

!
1: The latter implies that P (supx2X kµ¤k(x) ¡ µk0k · »N) ! 1: Let

AN = sup
x2X

°°°°
@Fk(x; µ¤k(x))

@µ
¡ ¢k0(x)

°°°° and

BN = sup
x2X

sup
µ:kµ¡µk0k·»N

°°°°
@Fk(x; µ)
@µ

¡ ¢k0(x)
°°°° :

Then, we have AN = op(1) since P (AN · BN) ! 1 by construction and BN = o(1) by Assumption

3(ii). Now we have the desired result:

p
N sup
x2X

°°°Fk(x;bµk) ¡ Fk(x; µk0) ¡ ¢0
k0(x)¡k0ÃkN (µk0)

°°°

=
p
N sup
x2X

°°°°
@Fk(x; µ¤k(x))

@µ0
(bµk ¡ µk0) ¡ ¢0

k0(x)¡k0ÃkN(µk0)
°°°°

· AN
p
N

°°°bµk ¡ µk0
°°°+ sup

x2X
k¢k0(x)k

°°°
p
N(bµk ¡ µk0) ¡ ¡k0

p
NÃkN(µk0)

°°°

= op(1);
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where the inequality holds by the triangle inequality and the last equality holds by Assumptions 2

and 3(iii). ¥

Lemma 4 (a) Suppose Assumptions 1-3 hold. Then, we have
0
BB@
vdkN(¢; µk0) ¡ vdlN (¢; µl0)p
NÃkN (µk0)p
NÃlN(µl0)

1
CCA )

0
BB@

edkl(¢)
ºk0
º l0

1
CCA

8 k; l = 1; : : : ; K and the sample paths of edkl(¢) are uniformly continuous with respect to pseudometric

½d on X with probability one, where

½d (x1; x2) =
©
E [(1(Xki · x1) ¡ 1(Xli · x1)) ¡ (1(Xki · x2) ¡ 1(Xli · x2))]2

ª1=2
:

(b) Suppose Assumptions 1¤, 2 and 3¤ hold. Then, we have
0
BB@
vskN (¢; µk0) ¡ vslN(¢; µl0)p
NÃkN(µk0)p
NÃlN (µl0)

1
CCA )

0
BB@

eskl(¢)
ºk0
º l0

1
CCA

8 k; l = 1; : : : ; K and the sample paths of eskl(¢) are uniformly continuous with respect to pseudometric

½s on X with probability one, where

½s (x1; x2) =
½
E

¯̄
¯̄
Z x1

¡1
(1(Xki · t) ¡ 1(Xli · t))dt¡

Z x2

¡1
(1(Xki · t) ¡ 1(Xli · t)) dt

¯̄
¯̄
r¾1=r

:

(c) Suppose Assumptions 1¤, 2 and 3¤¤ hold. Then, we have
0
BB@
vpkN(¢; ¢; µk0) ¡ vplN (¢; ¢; µl0)p
NÃkN(µk0)p
NÃlN(µl0)

1
CCA )

0
BB@

epkl(¢; ¢)
ºk0
º l0

1
CCA

8 k; l = 1; : : : ; K and the sample paths of epkl(¢; ¢) are uniformly continuous with respect to pseudo-

metric ½p on X+£ X¡ with probability one, where

½s ((x1; y1) ; (x2; y2)) =
½
E

¯̄
¯̄
Z x1

y1
(1(Xki · t) ¡ 1(Xli · t)) dt¡

Z x2

y2
(1(Xki · t) ¡ 1(Xli · t)) dt

¯̄
¯̄
r¾1=r

:
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Proof of Lemma 4. Consider part (a) …rst. By Theorem 10.2 of Pollard (1990), the result

of Lemma 4 holds if we have (i) total boundedness of pseudometric space (X ; ½d) (ii) stochastic

equicontinuity of fvdkN(¢; µk0) ¡ vdlN (¢; µl0) : N ¸ 1g and (iii) …nite dimensional (…di) convergence.

Conditions (i) and (ii) follow from Lemma 1. We now verify condition (iii). We need to show that

vdkN(x1; µk0) ¡ vdlN(x1; µl0); : : : ; vdkN (xJ ; µk0) ¡ vdlN(xJ ; µl0);
p
NÃkN (µk0)0;

p
NÃ lN (µl0)0 converges in

distribution to
³

edkl(x1); : : : ; edkl(xJ ); º 0k0; º 0l0
´0

8xj 2 X ; 8j · J; 8J ¸ 1: This result holds by the

Cramer-Wold device and a CLT for bounded random variables (e.g., Hall and Heyde (1980, Corollary

5.1, p.132)) because the underlying random sequencefXki : i = 1; : : : ;ng is strictly stationary and

®- mixing with the mixing coe¢cients satisfying
P1
m=1 ®(m) < 1 by Assumption 1 and we have

j1(Xki · x) ¡ 1(Xli · x)j · 2 <1: This establishes part (a).

Next, for part (b), we need to verify the …di convergence (ii) again. Note that the moment

condition of Hall and Heyde (1980, Corollary 5.1) holds since we have

E
¯̄
¯̄
Z x

¡1
(1(Xki · t) ¡ 1(Xli · t)) dt

¯̄
¯̄
2+±

· E jXki ¡Xlij2+± <1:

The mixing condition also holds since we have
P
®(m)¡A · CP

m¡A±=(2+±) < 1 by Assumption

1¤(i) as desired. Proof of part (c) is similar. ¥

Proof of Theorem 1. We only verify part (a). Proof of parts (b) and (c) is analogous. Consider

…rst the case when d = 0: In this case, we verify that, if Fk(x) · Fl(x) with equality holding for

x 2 Bdkl; then

bDkl ´ sup
x2X

p
N

h
FkN (x;bµk) ¡ FlN (x;bµl)

i

) sup
x2Bdkl

h
edkl(¢) + ¢k0(¢)0¡k0ºk0 ¡ ¢l0(¢)0¡l0º l0

i
: (A.17)

Then, the result of Theorem 1 (a) follows immediately from continuous mapping theorem.

We now establish (A.17). Lemmas 2 and 3 imply

bDkl(x) ´
p
N

h
FkN (x;bµk) ¡ FlN (x;bµl)

i

= ºdkN (x;bµk) ¡ ºdlN(x;bµl) +
p
N

h
Fk(x;bµk) ¡ Fl(x;bµl)

i

= Dkl(x) + op(1) uniformly in x 2 X ;
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where

Dkl(x) = D0
kl(x) +D

1
kl(x) (A.18)

D0
kl(x) = ºdkN (x;µk0) ¡ ºdlN(x; µl0)

+¢k0(x)¡k0
p
NÃkN (µk0) ¡ ¢l0(x)¡l0

p
NÃlN(µl0)

D1
kl(x) =

p
N [Fk(x) ¡ Fl(x)] : (A.19)

We need to verify

sup
x2X
Dkl(x) ) sup

x2Bdkl
dkl(x): (A.20)

Note that

sup
x2Bdkl

D0
kl(x) ) sup

x2Bdkl
dkl(x) (A.21)

by Lemma 4 and continuous mapping theorem. Note also that Dkl(x) = D0
kl(x) for x 2 Bdkl. Given

" > 0; this implies that

P
µ
sup
x2X
Dkl(x) · "

¶
· P

Ã
sup
x2Bdkl

D0
kl(x) · "

!
: (A.22)

On the other hand, Lemma 4 and Assumptions 1(i), 2(ii) and 3(iii) imply that given ¸ and ° > 0;

there exists ± > 0 such that

P

0
B@ sup
½(x;y)<±
y2Bdkl

¯̄
D0
kl(x) ¡D0

kl(y)
¯̄
> ¸

1
CA < ° (A.23)

and

sup
x2X

¯̄
D0
kl(x)

¯̄
= Op(1): (A.24)

The results (A.23) and (A.24) imply that we have

P

Ã
sup
x2Bdkl

D0
kl(x) · "

!
· P

µ
sup
x2X
Dkl(x) · "+ ¸

¶
+ 2° (A.25)
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for N su¢ciently large, which follows from arguments similar to those in the proof of Theorem 6 of

Klecan et. al. (1990, p.15). Taking ¸ and ° small and using (A.21), (A.22) and (A.25) now establish

the desired result (A.20).

Next suppose d < 0: In this case, the set Bdkl is an empty set and hence Fk(x) < Fl(x) 8x 2 X for

some k; l: Then, supx2X Dkl(x) de…ned in (A.18) will be dominated by the termD1
kl(x) which diverges

to minus in…nity for any x 2 X as required. ¥

Proof of Theorem 2. Let

d¤1 = min
k 6=l

sup
x2Bdkl

h
edkl(x) +¢k0(x)0¡k0ºk0 ¡ ¢l0(x)0¡l0º l0

i
:

Let the asymptotic null distribution of DN be given by G(w) ´ P (d¤1 · w). This distribution is

absolutely continuous because it is a functional of a Gaussian process whose covariance function is

nonsingular, see Lifshits (1982). Therefore, part (a) of Theorem 2 holds if we establish

bGN;b(w) p! G(w) 8w 2 R: (A.26)

Let

Gb(w) = P
³p
bdN;b;i · w

´

= P
³p
bdb(Wi; : : : ;Wi+b¡1) · w

´

= P
³p
bdb(W1; : : : ;Wb) · w

´
:

By Theorem 1(a), we have limb!1 Gb(w) = G(w) , where w is a continuity point of G(¢): Therefore,

to establish (A.26), it su¢ces to verify

bGN;b(w) ¡Gb(w) p! 0 8w 2 R: (A.27)

We now verify (A.27). Note …rst that

E bGN;b(w) = Gb(w): (A.28)

Let

Ii = 1
³p
bdb(Wi; : : : ;Wi+b¡1) · w

´
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for i = 1; : : : ; N: We have

var
³

bGN;b(w)
´

= var

Ã
1

N ¡ b+ 1

N¡b+1X

i=1

Ii

!

=
1

N ¡ b + 1

"
SN¡b+1;0 + 2

b¡1X

m=1

SN¡b+1;m + 2
N¡bX

m=b

SN¡b+1;m

#

´ A1 +A2 + A3 ; say;

where

SN¡b+1;m =
1

N ¡ b + 1

N¡b+1¡mX

i=1

Cov (Ii; Ii+m) :

Note that

jA1 + A2j · O( b
N

) = o(1): (A.29)

Also, we have

jA3j =

¯̄
¯̄
¯

2
N ¡ b + 1

N¡bX

m=b

(
1

N ¡ b + 1

N¡b+1¡mX

i=1

Cov (Ii; Ii+m)

)¯̄
¯̄
¯

· 8
(N ¡ b + 1)2

N¡bX

m=b

N¡b+1¡mX

i=1

®X (m ¡ b+ 1)

· 8
N ¡ b + 1

N¡2b+1X

m=1

®X(m)

! 0 as N ! 1; (A.30)

where the …rst inequality holds by Theorem A.5 of Hall and Heyde (1980) and the last convergence

to zero holds by Assumption 1(i). Now the desired result (A.27) follows immediately from (A.28)-

(A.30). This establishes part (a) of Theorem 2. Given this result, part (b) of Theorem 2 holds since

we have

P (DN > gN;b(1 ¡®)) = P (DN > g(1 ¡ ®) + op(1)) ! ® as n! 1:

¥
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Proof of Theorem 3. By lemmas 2-4, we have

dN(W1; : : : ;WN)
p! d¤;

where d¤ is as de…ned in (1). Note that under Hd1 ; we have d¤ > 0: Now consider the empirical

distribution of dN;b;i = db(Wi; : : : ;Wi+b¡1) :

bG0
N;b (w) =

1
N ¡ b + 1

N¡b+1X

i=1

1 (dN;b;i · w) = bGN;b
³p
bw

´
:

Let

G0
b(w) = P (db(W1; : : : ;Wb) · w) :

By an argument analogous to those used to verify (A.27), we have

bG0
N;b(w) ¡G0

b(w)
p! 0 :

Since db(W1; : : : ;Wb)
p! d¤; bG0

N;b (¢) converges in distribution to a point mass at d¤: It also follows

that

g0N;b(1 ¡ ®) = inf
n
w : bG0

N;b(w) ¸ 1 ¡ ®
o
p! d¤:

Therefore, we have

P (DN > gN;b(1 ¡ ®)) = P
³p
NdN(W1; : : : ;WN) >

p
bg0N;b(1 ¡ ®)

´

= P

Ãr
N
b
dN (W1; : : : ;WN) > g0N;b(1 ¡ ®)

!

= P

Ãr
N
b
dN (W1; : : : ;WN) > d¤ + op(1)

!

= P

Ãr
N
b
dN (W1; : : : ;WN) > d¤

!
+ o(1)

! 1;

where the last convergence holds since limN!1
¡N
b

¢
> 1 and dN(W1; : : : ;WN )

p! d¤ > 0 as desired.

¥
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n b(n) FSD95 FSD90 FSD80 SSD95 SSD90 SSD80

6 0.4140 0.5470 0.5730 0.1170 0.1840 0.3080
11 0.1580 0.2220 0.3730 0.1010 0.1480 0.2690

16 0.1820 0.2260 0.3720 0.1040 0.1370 0.2740
21 0.1500 0.1780 0.2840 0.1110 0.1490 0.2640

50 26 0.1370 0.2180 0.2990 0.1240 0.2030 0.2890

31 0.1710 0.2380 0.3420 0.1440 0.1940 0.2880
36 0.2210 0.2210 0.3230 0.1480 0.1480 0.2650
41 0.1320 0.2140 0.2740 0.2320 0.3250 0.4030
46 0.1310 0.2330 0.2330 0.3240 0.4680 0.4680

13 0.2370 0.3320 0.3330 0.0850 0.1670 0.2760

37 0.1180 0.2050 0.3250 0.0610 0.1320 0.2250
61 0.0860 0.1490 0.2880 0.0590 0.1120 0.2070
85 0.0850 0.1470 0.2490 0.0590 0.1150 0.2180

500 109 0.0740 0.1360 0.2490 0.0560 0.1180 0.2070
133 0.0800 0.1210 0.2280 0.0580 0.1130 0.2080
157 0.0750 0.1170 0.2140 0.0660 0.1120 0.2080

181 0.0880 0.1280 0.2270 0.0630 0.1240 0.2070
205 0.0680 0.1170 0.2080 0.0740 0.1200 0.2080

16 0.1370 0.3820 0.4660 0.0610 0.1200 0.2110
56 0.0880 0.1480 0.2910 0.0530 0.0970 0.1940
96 0.0790 0.1350 0.2460 0.0400 0.0830 0.1750

136 0.0650 0.1230 0.2330 0.0540 0.0810 0.1740
1000 176 0.0570 0.1060 0.2120 0.0430 0.0830 0.1810

216 0.0580 0.0980 0.2080 0.0460 0.0770 0.1730

256 0.0540 0.0900 0.2000 0.0460 0.0870 0.1830
296 0.0530 0.0890 0.1900 0.0480 0.0930 0.1790
336 0.0560 0.0890 0.1830 0.0630 0.1060 0.1770

Table 1a
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n b(n) FSD95 FSD90 FSD80 SSD95 SSD90 SSD80

6 0.3960 0.4720 0.4840 0.1360 0.2190 0.3260
11 0.1620 0.2500 0.3850 0.1310 0.1830 0.2760

16 0.1720 0.2180 0.3380 0.1290 0.1540 0.2830
21 0.1660 0.1940 0.2810 0.1340 0.1670 0.2760

50 26 0.1390 0.2500 0.3490 0.1260 0.2160 0.3020

31 0.1930 0.2370 0.3280 0.1620 0.2120 0.3030
36 0.2140 0.2140 0.3120 0.1920 0.1920 0.3040
41 0.1410 0.2170 0.2740 0.2070 0.2910 0.3700
46 0.1460 0.2380 0.2380 0.2860 0.4250 0.4250

13 0.3060 0.3200 0.3220 0.1230 0.2120 0.3320

37 0.1580 0.2410 0.3660 0.0690 0.1450 0.2690
61 0.1160 0.1950 0.3270 0.0660 0.1300 0.2590
85 0.1110 0.1800 0.2940 0.0550 0.1220 0.2530

500 109 0.1000 0.1670 0.2680 0.0600 0.1170 0.2350
133 0.0910 0.1460 0.2490 0.0580 0.1200 0.2320
157 0.0840 0.1340 0.2380 0.0690 0.1120 0.2250

181 0.0870 0.1430 0.2360 0.0740 0.1170 0.2260
205 0.0910 0.1320 0.2180 0.0750 0.1150 0.2110

16 0.2740 0.4480 0.4480 0.0980 0.1720 0.2930
56 0.1140 0.1950 0.3800 0.0740 0.1410 0.2410
96 0.1060 0.1910 0.3130 0.0540 0.1130 0.2160

136 0.0780 0.1650 0.2960 0.0650 0.1120 0.2100
1000 176 0.0810 0.1380 0.2560 0.0600 0.1120 0.2130

216 0.0840 0.1400 0.2430 0.0560 0.1090 0.2020

256 0.0840 0.1530 0.2380 0.0530 0.1030 0.2140
296 0.0810 0.1370 0.2260 0.0590 0.1040 0.2000
336 0.0810 0.1280 0.2300 0.0660 0.1130 0.1980

Table 1b
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n b(n) FSD95 FSD90 FSD80 SSD95 SSD90 SSD80

6 0.8560 0.9410 0.9670 0.5550 0.7370 0.8560
11 0.7320 0.7880 0.8780 0.4590 0.5750 0.7510

16 0.6540 0.7000 0.8270 0.3260 0.3860 0.6040
21 0.6200 0.6570 0.7780 0.3060 0.3730 0.5390

50 26 0.5000 0.6060 0.7000 0.2910 0.4210 0.5320

31 0.4410 0.5080 0.6150 0.3030 0.3690 0.4850
36 0.4380 0.4380 0.5870 0.3070 0.3070 0.4600
41 0.3590 0.4770 0.5660 0.2260 0.3440 0.4430
46 0.2920 0.4220 0.4220 0.2420 0.4000 0.4000

13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

37 1.0000 1.0000 1.0000 0.9980 1.0000 1.0000
61 1.0000 1.0000 1.0000 0.9870 0.9980 1.0000
85 1.0000 1.0000 1.0000 0.9760 0.9920 1.0000

500 109 1.0000 1.0000 1.0000 0.9570 0.9880 1.0000
133 0.9990 1.0000 1.0000 0.9430 0.9750 0.9960
157 0.9970 0.9990 1.0000 0.9350 0.9610 0.9920

181 0.9940 0.9970 0.9990 0.9240 0.9500 0.9840
205 0.9860 0.9950 0.9980 0.9160 0.9500 0.9760

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
56 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
96 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

136 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1000 176 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

216 1.0000 1.0000 1.0000 0.9990 1.0000 1.0000

256 1.0000 1.0000 1.0000 0.9980 1.0000 1.0000
296 1.0000 1.0000 1.0000 0.9970 0.9990 1.0000
336 1.0000 1.0000 1.0000 0.9940 0.9970 1.0000

Table 1c
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n b(n) FSD95 FSD90 FSD80 SSD95 SSD90 SSD80

6 0.8540 0.9400 0.9660 0.5410 0.7050 0.8460
11 0.7020 0.7790 0.8830 0.4310 0.5640 0.7280

16 0.6400 0.6880 0.8190 0.3280 0.3950 0.5930
21 0.6200 0.6640 0.7620 0.3090 0.3650 0.5350

50 26 0.5050 0.6360 0.7270 0.3090 0.4450 0.5500

31 0.4570 0.5240 0.6280 0.2760 0.3570 0.4920
36 0.4320 0.4320 0.5810 0.3030 0.3030 0.4630
41 0.3800 0.4820 0.5670 0.2380 0.3430 0.4540
46 0.2740 0.4270 0.4270 0.2430 0.4200 0.4200

13 1.0000 1.0000 1.0000 0.9990 1.0000 1.0000

37 1.0000 1.0000 1.0000 0.9950 1.0000 1.0000
61 1.0000 1.0000 1.0000 0.9800 0.9990 1.0000
85 1.0000 1.0000 1.0000 0.9740 0.9980 0.9990

500 109 1.0000 1.0000 1.0000 0.9570 0.9850 0.9990
133 0.9990 1.0000 1.0000 0.9340 0.9740 0.9970
157 0.9940 0.9980 1.0000 0.9270 0.9660 0.9910

181 0.9920 0.9970 1.0000 0.9150 0.9500 0.9870
205 0.9890 0.9960 0.9990 0.8920 0.9390 0.9750

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
56 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
96 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

136 1.0000 1.0000 1.0000 0.9990 1.0000 1.0000
1000 176 1.0000 1.0000 1.0000 0.9990 1.0000 1.0000

216 1.0000 1.0000 1.0000 0.9960 0.9990 1.0000

256 1.0000 1.0000 1.0000 0.9970 0.9990 1.0000
296 1.0000 1.0000 1.0000 0.9960 0.9980 1.0000
336 1.0000 1.0000 1.0000 0.9940 0.9980 1.0000

Table 1d
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n b(n) FSD95 FSD90 FSD80 SSD95 SSD90 SSD80

6 0.8330 0.9260 0.9580 0.5340 0.7060 0.8200
11 0.6830 0.7630 0.8800 0.4250 0.5580 0.7090

16 0.6350 0.6950 0.8020 0.3150 0.3760 0.5990
21 0.5880 0.6350 0.7510 0.2770 0.3380 0.5260

50 26 0.4920 0.5960 0.6830 0.3010 0.4320 0.5390

31 0.4440 0.5070 0.6050 0.3010 0.3610 0.4860
36 0.4360 0.4360 0.5660 0.2930 0.2930 0.4310
41 0.3730 0.4690 0.5350 0.2480 0.3340 0.4330
46 0.2810 0.4130 0.4130 0.2550 0.4000 0.4000

13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

37 1.0000 1.0000 1.0000 0.9950 0.9990 1.0000
61 1.0000 1.0000 1.0000 0.9850 0.9980 1.0000
85 1.0000 1.0000 1.0000 0.9660 0.9940 1.0000

500 109 0.9980 1.0000 1.0000 0.9480 0.9820 0.9990
133 0.9960 0.9990 1.0000 0.9290 0.9660 0.9930
157 0.9950 0.9960 0.9990 0.9190 0.9530 0.9860

181 0.9910 0.9950 0.9980 0.8970 0.9450 0.9790
205 0.9840 0.9920 0.9970 0.8740 0.9290 0.9640

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
56 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
96 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

136 1.0000 1.0000 1.0000 0.9990 1.0000 1.0000
1000 176 1.0000 1.0000 1.0000 0.9980 1.0000 1.0000

216 1.0000 1.0000 1.0000 0.9990 0.9990 1.0000

256 1.0000 1.0000 1.0000 0.9970 0.9990 1.0000
296 1.0000 1.0000 1.0000 0.9960 0.9990 1.0000
336 1.0000 1.0000 1.0000 0.9950 0.9980 0.9990

Table 1e
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n b(n) FSD95 FSD90 FSD80 SSD95 SSD90 SSD80

6 0.4100 0.5360 0.5640 0.0900 0.1570 0.2720
11 0.1550 0.2190 0.3590 0.0930 0.1380 0.2460

16 0.1750 0.2050 0.3200 0.0920 0.1240 0.2490
21 0.1490 0.1780 0.2610 0.1090 0.1410 0.2390

50 26 0.1250 0.2200 0.3050 0.1240 0.2080 0.2950

31 0.1700 0.2270 0.3250 0.1700 0.2140 0.3180
36 0.2120 0.2120 0.3090 0.1810 0.1810 0.2840
41 0.1180 0.1970 0.2580 0.2560 0.3290 0.4040
46 0.1070 0.2040 0.2040 0.3430 0.4700 0.4700

13 0.2390 0.3620 0.3660 0.0710 0.1420 0.2480

37 0.1160 0.2220 0.3400 0.0540 0.1120 0.2140
61 0.0840 0.1550 0.2900 0.0500 0.1050 0.2170
85 0.0930 0.1510 0.2610 0.0590 0.1030 0.2120

500 109 0.0870 0.1320 0.2630 0.0530 0.1060 0.2060
133 0.0800 0.1290 0.2350 0.0660 0.1190 0.2140
157 0.0750 0.1240 0.2230 0.0660 0.1170 0.2070

181 0.0810 0.1360 0.2410 0.0690 0.1110 0.2100
205 0.0800 0.1230 0.2160 0.0780 0.1100 0.2070

16 0.1360 0.3510 0.4840 0.0640 0.1120 0.2170
56 0.0720 0.1500 0.2880 0.0520 0.1070 0.1930
96 0.0760 0.1380 0.2500 0.0540 0.0940 0.1940

136 0.0580 0.1190 0.2310 0.0520 0.0910 0.1940
1000 176 0.0620 0.1160 0.2130 0.0500 0.0970 0.1870

216 0.0620 0.1150 0.2050 0.0530 0.0990 0.1800

256 0.0650 0.1240 0.2160 0.0590 0.0990 0.1990
296 0.0650 0.1060 0.1970 0.0580 0.0980 0.1830
336 0.0660 0.1080 0.1900 0.0650 0.1070 0.1910

Table 2a
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n b(n) FSD95 FSD90 FSD80 SSD95 SSD90 SSD80

6 0.2950 0.4040 0.4260 0.0820 0.1480 0.2710
11 0.1200 0.1680 0.2670 0.0760 0.1290 0.2260

16 0.1110 0.1390 0.2400 0.0940 0.1160 0.2330
21 0.1160 0.1440 0.2090 0.1030 0.1290 0.2380

50 26 0.1270 0.1940 0.2560 0.1120 0.1860 0.2660

31 0.1440 0.1820 0.2620 0.1330 0.1690 0.2710
36 0.1740 0.1740 0.2630 0.1610 0.1610 0.2680
41 0.1280 0.1880 0.2490 0.2720 0.3470 0.4320
46 0.1280 0.2310 0.2310 0.3190 0.4560 0.4560

13 0.0860 0.1650 0.1730 0.0050 0.0270 0.1130

37 0.0360 0.0720 0.1380 0.0010 0.0050 0.0570
61 0.0170 0.0360 0.1190 0.0020 0.0020 0.0360
85 0.0200 0.0470 0.1160 0.0010 0.0070 0.0370

500 109 0.0230 0.0430 0.1200 0.0020 0.0100 0.0450
133 0.0250 0.0520 0.1400 0.0030 0.0130 0.0630
157 0.0350 0.0640 0.1310 0.0090 0.0220 0.0800

181 0.0350 0.0710 0.1540 0.0120 0.0380 0.1100
205 0.0490 0.0870 0.1730 0.0220 0.0510 0.1380

16 0.0540 0.1500 0.2390 0.0030 0.0120 0.0590
56 0.0150 0.0510 0.1430 0.0000 0.0020 0.0280
96 0.0120 0.0490 0.1250 0.0000 0.0010 0.0320

136 0.0160 0.0480 0.1380 0.0000 0.0020 0.0370
1000 176 0.0200 0.0530 0.1350 0.0000 0.0060 0.0590

216 0.0260 0.0600 0.1350 0.0010 0.0130 0.0680

256 0.0370 0.0640 0.1390 0.0060 0.0170 0.0810
296 0.0380 0.0700 0.1490 0.0090 0.0290 0.1020
336 0.0470 0.0790 0.1530 0.0160 0.0360 0.1170

Table 2b

41



n b(n) FSD95 FSD90 FSD80 SSD95 SSD90 SSD80

6 0.5940 0.7600 0.8780 0.3040 0.5730 0.8510
11 0.3430 0.4360 0.6110 0.5450 0.6740 0.8310

16 0.3150 0.3700 0.5660 0.6900 0.7420 0.8660
21 0.3370 0.3760 0.4980 0.8110 0.8330 0.8980

50 26 0.3290 0.4460 0.5320 0.8460 0.8900 0.9100

31 0.3220 0.3740 0.4840 0.6880 0.7230 0.7910
36 0.3670 0.3670 0.5040 0.1770 0.1770 0.2730
41 0.2600 0.3480 0.4560 0.9130 0.9400 0.9640
46 0.1460 0.2900 0.2900 0.9180 0.9520 0.9520

13 1.0000 1.0000 1.0000 0.1140 0.6220 0.9950

37 0.9960 0.9990 1.0000 0.8560 0.9860 1.0000
61 0.9930 0.9960 1.0000 0.4890 0.6990 0.9160
85 0.9820 0.9960 1.0000 0.0040 0.0110 0.0610

500 109 0.9690 0.9880 1.0000 0.0010 0.0010 0.0010
133 0.9560 0.9780 1.0000 0.0010 0.0010 0.0010
157 0.9500 0.9730 0.9950 0.0010 0.0010 0.0010

181 0.9350 0.9620 0.9890 0.0010 0.0010 0.0010
205 0.9190 0.9490 0.9810 0.0010 0.0010 0.0010

16 1.0000 1.0000 1.0000 0.1720 0.8230 1.0000
56 1.0000 1.0000 1.0000 0.9860 1.0000 1.0000
96 1.0000 1.0000 1.0000 0.8740 0.9740 0.9990

136 1.0000 1.0000 1.0000 0.0010 0.0010 0.0010
1000 176 0.9990 1.0000 1.0000 0.0010 0.0010 0.0010

216 0.9990 0.9990 1.0000 0.0010 0.0010 0.0010

256 0.9980 0.9990 1.0000 0.0010 0.0010 0.0010
296 0.9970 0.9980 1.0000 0.0010 0.0010 0.0010
336 0.9960 0.9970 1.0000 0.0010 0.0010 0.0010

Table 2c
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n b(n) FSD95 FSD90 FSD80 SSD95 SSD90 SSD80

6 0.5220 0.6970 0.7830 0.0240 0.0690 0.2060
11 0.3770 0.4860 0.6590 0.0390 0.0750 0.2000

16 0.3300 0.3780 0.5760 0.1390 0.1910 0.3900
21 0.3300 0.3780 0.4840 0.1630 0.2180 0.3520

50 26 0.3670 0.4760 0.5630 0.1570 0.2600 0.3430

31 0.3780 0.4330 0.5330 0.1750 0.2310 0.3350
36 0.3880 0.3880 0.5020 0.1920 0.1920 0.3080
41 0.2230 0.2900 0.3710 0.2240 0.2960 0.3790
46 0.1420 0.2300 0.2300 0.1930 0.3090 0.3090

13 1.0000 1.0000 1.0000 0.4850 0.7950 0.9800

37 0.9980 1.0000 1.0000 0.4770 0.7210 0.9420
61 0.9890 1.0000 1.0000 0.4790 0.6720 0.9170
85 0.9860 0.9920 1.0000 0.4760 0.6440 0.8750

500 109 0.9770 0.9910 1.0000 0.4920 0.6190 0.8430
133 0.9480 0.9710 0.9960 0.4820 0.6120 0.8050
157 0.9350 0.9750 0.9950 0.4710 0.6130 0.7750

181 0.9240 0.9570 0.9880 0.4910 0.6140 0.7680
205 0.8980 0.9350 0.9750 0.4880 0.6120 0.7500

16 1.0000 1.0000 1.0000 0.9270 0.9950 1.0000
56 1.0000 1.0000 1.0000 0.9150 0.9870 1.0000
96 1.0000 1.0000 1.0000 0.9120 0.9820 1.0000

136 1.0000 1.0000 1.0000 0.8620 0.9570 0.9980
1000 176 1.0000 1.0000 1.0000 0.8660 0.9540 0.9940

216 1.0000 1.0000 1.0000 0.8630 0.9420 0.9900

256 0.9980 1.0000 1.0000 0.8280 0.8970 0.9780
296 0.9980 1.0000 1.0000 0.8360 0.9070 0.9700
336 0.9940 1.0000 1.0000 0.7980 0.8760 0.9450

Table 2d
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n b(n) FSD95 FSD90 FSD80 SSD95 SSD90 SSD80

6 0.9660 0.9830 0.9990 0.0970 0.2870 0.6210
11 0.8810 0.9210 0.9700 0.3140 0.4370 0.6720

16 0.7930 0.8270 0.9100 0.4510 0.5150 0.7170
21 0.7340 0.7710 0.8620 0.6310 0.6780 0.7900

50 26 0.6220 0.7370 0.8130 0.7100 0.7860 0.8480

31 0.5780 0.6440 0.7440 0.6460 0.6970 0.7750
36 0.5380 0.5380 0.6560 0.1980 0.1980 0.2820
41 0.3770 0.4870 0.5680 0.8340 0.8720 0.9010
46 0.2970 0.5100 0.5100 0.7740 0.8300 0.8300

13 1.0000 1.0000 1.0000 0.0020 0.0460 0.6540

37 1.0000 1.0000 1.0000 0.5150 0.8070 0.9860
61 1.0000 1.0000 1.0000 0.7140 0.9000 0.9940
85 1.0000 1.0000 1.0000 0.0280 0.0980 0.3590

500 109 1.0000 1.0000 1.0000 0.0010 0.0010 0.0010
133 1.0000 1.0000 1.0000 0.0010 0.0010 0.0010
157 1.0000 1.0000 1.0000 0.0010 0.0010 0.0010

181 1.0000 1.0000 1.0000 0.0010 0.0010 0.0010
205 1.0000 1.0000 1.0000 0.0010 0.0010 0.0010

16 1.0000 1.0000 1.0000 0.0010 0.0440 0.8580
56 1.0000 1.0000 1.0000 0.8080 0.9840 1.0000
96 1.0000 1.0000 1.0000 0.9560 0.9950 1.0000

136 1.0000 1.0000 1.0000 0.0010 0.0010 0.0010
1000 176 1.0000 1.0000 1.0000 0.0010 0.0010 0.0010

216 1.0000 1.0000 1.0000 0.0010 0.0010 0.0010

256 1.0000 1.0000 1.0000 0.0010 0.0010 0.0010
296 1.0000 1.0000 1.0000 0.0010 0.0010 0.0010
336 1.0000 1.0000 1.0000 0.0010 0.0010 0.0010

Table 3a
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n b(n) FSD95 FSD90 FSD80 SSD95 SSD90 SSD80

6 0.2180 0.3060 0.3350 0.0540 0.1500 0.3900
11 0.0850 0.1120 0.1830 0.0830 0.1410 0.3480

16 0.0850 0.1040 0.1800 0.0850 0.1090 0.2650
21 0.0930 0.1060 0.1530 0.1370 0.1820 0.3000

50 26 0.0820 0.1300 0.2010 0.1710 0.2650 0.3540

31 0.1060 0.1440 0.2130 0.2460 0.3020 0.3990
36 0.1290 0.1290 0.2180 0.1990 0.1990 0.3190
41 0.1050 0.1660 0.2190 0.4520 0.5330 0.5860
46 0.1250 0.2380 0.2380 0.5300 0.6170 0.6170

13 0.0010 0.0010 0.0010 0.0000 0.0010 0.0090

37 0.0010 0.0010 0.0020 0.0000 0.0010 0.0010
61 0.0000 0.0000 0.0010 0.0000 0.0000 0.0230
85 0.0000 0.0000 0.0030 0.0000 0.0010 0.0190

500 109 0.0000 0.0000 0.0010 0.0020 0.0050 0.0170
133 0.0010 0.0010 0.0030 0.0020 0.0070 0.0270
157 0.0000 0.0010 0.0020 0.0010 0.0040 0.0180

181 0.0030 0.0040 0.0100 0.0020 0.0070 0.0260
205 0.0050 0.0060 0.0140 0.0040 0.0100 0.0230

16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
56 0.0000 0.0000 0.0000 0.0000 0.0000 0.0150
96 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050

136 0.0000 0.0000 0.0000 0.0000 0.0000 0.0030
1000 176 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

216 0.0000 0.0000 0.0000 0.0000 0.0010 0.0030

256 0.0000 0.0000 0.0000 0.0000 0.0000 0.0030
296 0.0000 0.0000 0.0010 0.0000 0.0010 0.0020
336 0.0000 0.0000 0.0010 0.0000 0.0000 0.0040

Table 3b
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n b(n) FSD95 FSD90 FSD80 SSD95 SSD90 SSD80

6 0.9700 0.9860 0.9980 0.8520 0.8880 0.9250
11 0.8860 0.9280 0.9750 0.7610 0.8200 0.8790

16 0.8240 0.8440 0.9120 0.7110 0.7520 0.8480
21 0.7690 0.8110 0.8830 0.6490 0.6930 0.7840

50 26 0.6590 0.7460 0.8140 0.5630 0.6740 0.7440

31 0.6040 0.6610 0.7620 0.4770 0.5460 0.6650
36 0.5710 0.5710 0.6920 0.4180 0.4180 0.5630
41 0.3860 0.4880 0.5960 0.3360 0.4610 0.5540
46 0.3340 0.5170 0.5170 0.2670 0.4710 0.4710

13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

37 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
61 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
85 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

500 109 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
133 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
157 1.0000 1.0000 1.0000 0.9990 1.0000 1.0000

181 1.0000 1.0000 1.0000 0.9990 0.9990 1.0000
205 1.0000 1.0000 1.0000 0.9990 0.9990 1.0000

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
56 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
96 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

136 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1000 176 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

216 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

256 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
296 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
336 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 3c
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