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Abstract

The implications of Value-at—Risk regulations are analyzed in a CARA-
normal general equilibrium model. Financial institutions are hetero-
geneous in risk preferences, wealth and the degree of supervision. Reg-
ulatory risk constraints lower the probability of one form of a systemic
crisis, at the expense of more volatile asset prices, less liquidity, and
the amplification of downward price movements. This can be viewed as
a consequence of the endogenously changing risk appetite of financial
institutions induced by the regulatory constraints. Finally, the Value—
at—Risk constraints may prevent market clearing altogether. The role
of unregulated institutions (hedge-funds) is considered. The findings
are illustrated with an application to the 1987 and 1998 crises.
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1 Introduction

Financial institutions have traditionally been subjected to extensive regu-
lations governing their behavior, where the form of regulations continually
evolves. Ideally, the choice of regulatory instruments should represent the
culmination of a consulting process involving theoretical, empirical, and po-
litical considerations. The political objectives of financial regulation have
recently been stated as “limiting the costs to the economy from financial
distress” and “protecting depositors.” (Crockett(2000))*. In contrast, the
empirical and especially the theoretical aspects of risk regulations are rather
less studied. Our interest is the formal analysis of present risk regulations
and its effects on the economy.

For market risk, the chosen regulatory instrument is internal risk modelling
in the form of Value-at—Risk (VaR). The reason for the choice of VaR as a
regulatory tool is somewhat obscure. Perhaps, at the time (early 1990s), it
was felt that it represented the state—of-the-art in risk management tech-
niques. Scant evidence exists however that the present market risk regulatory
structure by means of Value-at—Risk Basle Committee on Banking Super-
vision(1996)) is based on any substantive theoretical and empirical analysis,
since at the time of its adoption, no published formal economic arguments
advocating VaR over other techniques appear to have been in existence?.
Subsequent research by Artzner et al.(1999)Artzner, Delbaen, Eber, and
Heath) indicates that VaR is not a desirable statistical measure because it
fails to be subadditive. From Ahn et al.(1999)Ahn, Boudukh, Richardson,
and Whitelaw) we note that the VaR measure may not be reliable because
it is easy for a financial institution to legitimately manage reported VaR
through options. Basak and Shapiro(2001)) analyze VaR based risk manage-
ment and find that other risk management techniques are preferable.

We propose a general equilibrium model where risk regulations, despite being
successful in reducing the probability of an ex-post systemic collapse, impose
real costs on the economy during non-—crisis periods, and may even be the
cause of an ex-ante market breakdown by preventing financial institutions
from absorbing the asset supply. Furthermore, in non—crisis periods, volatil-
ity is higher, while liquidity (and often prices as well) is lower in the presence
of regulations.

In recent financial history, market risk and portfolio constraints have played

IMr. Crockett is the General Manager of the Bank for International Settlements
2The choice of the multiplication factor three is most likely due to statistical arguments
advanced by Stahl, ultimately published in Stahl(1997)).



a fundamental role during at least two crisis episodes: The 1987 crash and
the 1998 crisis. In 1987, portfolio insurance was widely used to contain down-
side risk. A key feature of portfolio insurance is that complicated trading
strategies must be executed when the markets are falling. During the 1987
crash, a large number of financial institutions attempted to execute similar
trades simultaneously due to portfolio insurance, perhaps inevitably leading
to large price swings and lack of liquidity. This may be a partial reason
why the price drop was of such short duration. After the crisis, portfolio
insurance ceases to be a factor, enabling prices to recover. Risk regulations
played a role similar to the one attributed to portfolio insurance in the 1998
crisis. As volatility increased, banks only had two options, either to increase
capital or dispose of risky assets. In the short run, this effectively implied
that banks had to dispose of risky assets. This in turn may have contributed
to the increase in volatility and the decrease in liquidity. We note however,
that the relative importance of risk regulations during this episode is as of
yet unclear. We analyze the 1998 crisis in Section 6.3 below.

Our model contains three types of agents in addition to the supervisory
authorities: regulated financial institutions (RFI) such as banks and certain
fund managers, unregulated financial institutions (UFI) such as hedge funds,
and finally noise traders. We use a standard two period model where in
the first period heterogeneous financial institutions have endowments of a
number of risky and riskless assets which pay off normally distributed payoffs
in the last period. The regulated institutions are subject to a risk constraint
whereby the regulators impose a limit on VaR or extreme volatility. They
are heterogeneous in risk aversion, and have CARA utility. The unregulated
institutions also have CARA preferences, but they are free to hold any risk
exposure they see fit. Noise traders on the other hand submit market orders.
This in turn induces trading, price formation, and a price volatility level.
Over the period, unless unbalanced risk-taking induces a systemic crisis, the
assets pay off dividends, received in period one, and consumption occurs.

Imposing regulatory risk constraints on financial institutions has direct im-
plications for market variables. These results are stated in Propositions 4
to 6. Using the unregulated economy as a benchmark, we demonstrate that
binding risk regulations adversely affect prices, liquidity, and volatility when
aggregate supply is sufficiently large. Furthermore, the tighter the constraint,
the greater the adverse impact becomes. For easy visualisation, consider the
single risky-asset economy, as illustrated on Figure 3 where we depict the
equilibrium price of the risky asset as a function of the noise trades, €. It
turns out that the regulations cause the pricing function to become concave
for typical trades, where the slope decreases with the severity of regulation.



Hence for a given change in demand, prices move more with regulation than
without, implying higher (local) volatility and lower liquidity post regulation.
In a crisis, we expect financial institutions to have to sell assets, e.g. to meet
margin requirements. However, since in that case we move to the left in the
figure, liquidity diminishes and (local) volatility shoots up.

Our results, outlined in Proposition 3, also have interesting implications for
risk—appetite. The risk constraints prevent the less risk averse regulated
institutions from holding the type and amount of risky assets they desire,
inducing, via equilibrium price adjustments, the more risk averse financial
institutions to purchase these risky assets. In effect, the institutions’ effective
risk aversion coefficient changes due to the constraints.

Despite the costs imposed upon the economy, regulations are usually thought
to prevent systemic collapses or systemic failures. We note that no standard
definition of systemic crisis exists (see De Bandt and Hartmann(2000)) for
a survey), however a common notion of systemic crisis is when the entire
banking system collapses. This is captured in our setting by assuming that in
a systemic collapse the real output of all assets held drops to zero. Within our
model, the probability of systemic crisis increases with the imbalance in risk-
taking. This formulation may be viewed as a stylized way of capturing the
domino effects resulting from the failure of several extremely levered financial
institutions, where the externality of contributing towards the likelihood of
a systemic crash is not internalized by the market participants.

Effectively, a systemic collapse happens in our model because dividends are
intermediate inputs into the production process for consumption goods. The
production process depends on inputs being appropriately distributed among
agents. In particular, if specific assets are too concentrated by particular
agents, production fails, and no consumption commodity is produced. This
occurs when the less risk averse agents invest in the more risky, and hence
more profitable inputs. Since no agent can individually affect the economy
and hence risk distribution, the potential for systemic collapse does not factor
in their decision making. It is the elimination of this externality that the
supervisory authorities set out to achieve by means of regulations. We follow
the regulators in choosing VaR as a regulatory instrument.

There exists however a possibly stronger form of an extreme event where
equilibria are no longer defined due to the VaR constraints. Such an event,
termed here market breakdown, is not possible in the absence of regulation
since an equilibrium always exists in the unconstrained economy. The effect
of VaR regulations is to reduce the capacity of investors to take on risk, in-
troducing the possibility that markets cannot clear. Note that this is caused



by the particular choice of a regulatory regime. As institutions try to sell
their assets, the regulatory constraints effectively make it harder and harder
for the market to absorb the supply up to the point where markets break
down. There are economies where a reduction in the probability of one form
of systemic crisis is thus only achieved by the introduction of the possibility
of complete market breakdowns. The only way to prevent a market break-
down from happening is to allow (sufficiently many) financial institutions to
remain unregulated. In other words, attempts to bring hedge funds under
the regulatory umbrella may perversely lead to market breakdowns. Indeed,
Brown et al.(1998)Brown, Goetzmann, and Park) have observed that the
unregulated hedge funds actually helped in alleviating the Asian crisis.

The structure of the paper is as follows. In Section 2 we present the in-
gredients of the model. Section 3 discusses a financial institution’s decision
problem, and Section 4 establishes the necessary and sufficient conditions for
the existence of equilibria. In Section 5 we study the impact on risk-taking,
depth and volatility, and we analyze financial crises in Section 6 with special
emphasis on the 1988 crisis. Section 7 concludes. Most proofs are contained
in the Appendix, and all figures are at the end of the paper.



2 The Model

Our economy is a standard two period constant absolute risk—aversion model
without asymmetric information and with stochastic asset supply. There
are three families of agents: regulated financial institutions (RFI) that are
subjected to regulatory risk constraints (e.g. banks), unregulated institutions
(URI) (e.g. hedge funds), and noise traders. In the first period the UFIs and
RFIs invest their endowments in both risky and riskless assets, and the noise
traders submit an aggregate market order for assets. Consumption occurs at
the second date.

The economy has IV + 1 assets, asset 0 is referred to as the riskless asset and
promises to pays off dy . There are also N risky assets with promised normally

distributed stochastic payoffs d ~ N ([L, ﬁ]) at time 1. We denote this law

of d by P¢. Expectations taken with respect to this measure are denoted by
E?. We assume 3 is positive definite (and in particular invertible, meaning
that there are no redundant assets) and that the dividends are distributed
independently of the noise trader demand e. The vector of risky returns R
is defined as the vector whose ith element is R; = d;/¢;, the dividend of the
1th asset divided by its price, ¢;. We denote the price vector by q. Returns
are then normal with mean and variance (u,X), where g and 3 depend on
q.

The types of UFIs and RFIs, denoted by A, are distributed on the inter-
val [£,1], £ > 0® and have neither state—contingent endowments nor state—
contingent preferences. Each type h is characterized by a constant coefficient
of absolute risk aversion (CARA) o” as well as an initial endowment of the
riskless asset 62 and of the risky assets 8". A fraction 7 of agents of each
type h are regulated, the remaining fraction is unregulated.

We do not model the noise traders’ utility explicitly, and only assume that
they are hit by liquidity shocks at time 0 which cause them to submit an ag-
gregate market order for € assets. This demand is assumed to be distributed
on E C RY according to the law P, for simplicity assumed to be indepen-
dent of the law governing asset payoffs. Because the market order has to be
absorbed by the UFIs and RFIs, prices depend upon €.*

3The reason for this will become clear when we assume that their index h corresponds
to their coefficient of absolute risk aversion.

“Notice that there are no income effects due to the CARA assumption and no in-
formational effects due to the assumption that liquidity shocks bear no payoff relevant
information.



3 Decision Problem of the Financial Institu-
tions

Each FI is characterized by its type h, which determines risk-aversion and
endowments, and by its regulation status ¢, which is either ¢ = {r} if the FI is
regulated, or t = {u} if it is unregulated. A FI (h,t) invests its initial wealth
Wl in a portfolio comprising both riskless and risky assets, (yg’t, y™t). The
time—zero wealth of an agent of type h (regulated or unregulated) comprises
initial endowments in the riskless asset, 6, as well in risky assets, 0", so
that W = 0" + ¢'8". As a general rule, we denote aggregates over all
types h by a superscript a, e.g. the aggregate riskless holdings by Fls are
denoted as y§ = 7 fel Yo" dh + (1 — 1) , ye"dh, and the aggregate amount
of outstanding risky assets is 08¢ = fel 0"dh. Since the time-zero budget
constraint go0% + q' o" > qoyg’t + q'y™' is homogeneous of degree zero in
prices, we can normalize, without loss of generality, the price of the riskless
asset to go = 1, i.e. the riskless asset is used as the time—zero numéraire. We
can write Ry = dy = dy/qo for the return on the riskless asset. At time 1, the
consumption commodity plays the role of the numéraire. Agents’ preferences
are:

Assumption 1 The type characteristics (1/a”, 08, 0") are distributed via an
integrable mapping h € [¢,1] — (1/ah, o, Bh). A fraction of agentsn € [0, 1]
of each type h is requlated (t = {r}), while the complement 1—n is unregulated

(t = {u})



In theory, a large number of possible regulatory environments exists for this
purpose. In practice, we are not aware of any published research into the pros
and cons of alternative market risk regulatory methodologies, and as a result,
we adopt the standard market risk methodology, i.e., Value-at—Risk. The
constraint takes the form (we drop the superscript 7 whenever no confusion
arises):

P! [(EYW"] — W") > VaR] < p,

i.e. the probability of a loss larger than the uniform regulatory number
VaR is sufficiently small. Since the portfolio payoffs are normal, a sufficient
statistic for portfolio risk is the volatility of W". The VaR constraint can
therefore be stated as an exogenous upper bound v on portfolio variance,’

yM'Syt <o, (1)
Each RFI solves
Problem 1 (Risk Constrained Problem)
max E4[u"(z")] s.t. yh+ gy <0t + q'60"
{y"5}
ot =W =ybdy + d'y" Plas.
y"' Syt <

In the Appendix we derive the optimal portfolio as summarized in the Lemma
below.

Lemma 1 (Optimal Portfolio) The optimal portfolio of risky assets for
RFI (h,t) has the mean-variance form

1 o —1
hit _ o
v = o - Ry ©)
where ¢ = 0 and " = Ed[%% > 0, with \»" being the Lagrange

multiplier of the VaR constraint. The effective degree of risk-aversion, o +
™" is independent of the initial wealth W[ and only depends on o”, q and
U.

®Indeed, denoting the cumulative standard normal distribution function by N(-),
P [(BUW — W) > VaR] < p iff N (s5keks) < p iff Sad'(Wh) < Yol iff

Vard(Wh) < (%) ’

1l

0.



Whereas the coeflicient of absolute risk-aversion is constant for unrestricted
Fls, it is effectively endogenous for the Fls subjected to the VaR regulations
and larger than their utility-based coefficient, o + ¢*" > o”. This is one
way of capturing the often-heard expression among practitioners that “risk-
aversion went up.” This is reminiscent of the effet of portfolio insurance on
optimal asset holdings found in Grossman and Zhou(1996)). Also see Basak

and Shapiro(1995)) and Gennotte and Leland(1990)).

Suppose that equilibria exist. We shall provide necessary and sufficient
conditions for existence in the next section. Market clearing prices solve
n fel yhrdh+ (1—n) f; y"tdh+ € = 0°, equivalently they satisfy the implicit
relation (implicit since ¥ itself depends on q):

1. o
q:R—f[H—‘I’E(a _6)} (3)
where
! R dh + (1 1 Lan 4
gl = S — - —
0| st [ )

The factor ¥ can be understood as a market—price of risk scalar, since (3)
can be rewritten as

fL— Riq=X[¥(6" — €)]

which shows that ¥(0* — €) is the market—price of risk vector, the product
of ¥, a scalar common to all NV sources of risk, and the residual market port-
folio (RM) 8“ — €. Alternatively, ¥ can be viewed as the reward-variability
ratio of the (residual) market, ¥ = by Rpdev — Gompared to an economy

TRM
without any VaR constraints (n = 0) where the market-price of risk scalar

-1
isy = ( f; al—hdh) , we have ¥ > ~. In other words, the market price of

risk is higher in a constrained economy than in an unconstrained one. For
completeness, we could also derive the CAPM relation (with the residual
market portfolio 8% — € as opposed to the market portfolio),

1~ Rl = Bpy(prm — Ry) (5)
We can use (3) to express asset demands at equilibrium as

y"' =" (q)(0" — €) (6)

where w"(q) € R, is the effective risk tolerance of (h,t) as a fraction of the



aggregate risk tolerance,

v ()
h,t( _ ! a"+¢" T .
ah + d)h,t nfe (qugk,r)dk + (1 - T’) fz (%)dk

q)

w

We summarize these results in the following proposition.

Proposition 1 Assume an equilibrium ezists. Each FI (h,t) holds a fraction
of the residual market portfolio, equalling their share of the aggregate effective
risk tolerance, w"'(q).

If subjected to binding r



To allow for closed-form solutions, we maintain in the rest of this paper the
assumption that the FIs’ risk aversion is uniformly distributed on [¢, 1], £ > 0:
a® = h. We establish the following result in the Appendix:

Proposition 2 (On the Existence and Uniqueness of Equilibria)

If n < 1, there exists a unique competitive equilibrium for any (€,7,¢) €
E x [0,00) x (0,1].

If n = 1, there exists an equilibrium for £ € [0,1] and for (v, €) satisfying
€€ E@,0) ={ecE:[(0°—e)X(0"— €)Y < (1—0)i}. For (v,¢€)
s.t. € € int £(0,0), the equilibrium (the pair comprising the price and the
allocation) is unique, while for (v,€) s.t. € € 0E(v,£) asset prices and con-
sumption allocations are indeterminate (within a certain range of prices) but
the allocation of risky assets is not.

In the case where n = 1, the necessary condition implies that there can
only be an equilibrium if the residual aggregate payoff variability accrues to
investors. Given our assumptions, this implies that a typical RFI, is actually

permitted to assume per—capita risk, i.e. \/(0“ — e)’ﬁ)(@“ —€)/(1-0) < V7.

Introducing some more notation, define the number of agents over which the

(0% —€)'33(0%—€)
v

risk needs to be evenly spread by k(e;v) = , in which case
equilibria exist iff £ < 1 —¢. Alternatively, if we define the critical level of
regulation v,(€) = %

v > v.(€), whereas € € 0(7,{) is equivalent to ¥ = v,(€).

, the condition € € £(7,¢) is equivalent to

4.1 On Hedge Funds and Market Clearing

In the present regulatory environment, some FIs, e.g. hedge funds, are ex-
empted from the risk regulations. Following the collapse of LTCM, some
policymakers have discussed whether to bring hedge funds under the regula-
tory umbrella. We can analyze the impact of regulating hedge funds within
the model and see how this affects market outcomes. Our starting point is
a situation where a fraction 1 — 7 > 1 of FIs is unregulated. We know that
equilibria exist in this case.

Any large market order of risky assets € € FE has to be absorbed by the FIs.
Intuitively, as 7 is raised further towards 1, more and more FIs are subjected

n)z"*)dh = x%. Walras’ Law at times 0 and 1 says that (y¢ —0%+€0)+q'(y>—0%+€) =0
[WO0] and 2%+ z¢ = do(yg + 6§ +€0) +d' (y* +6° +€) [W1]. So assume that y> —6*+e = 0.
Then by [W0] the market for the riskless asset clears as well, and by [W1] we immediately
have 2% + 2¢ = do (6 + 05) + d' (8 + 8°) under “normal market conditions.”

11



to a maximum level of risk they can take on, and prices adjust to guide the
supply towards the institutions whose constraint is not binding yet. But as
n — 1, there are no such institutions left. So for noise trades sufficiently
different from 0, no price will be able to induce market-clearing.

Figure 1 illustrates this phenomenon in an economy with two assets and
different levels of tightness . Each level of tightness determines an ellipsoid
set of noise supplies that can be supported by a competitive equilibrium.

Given a noise trade €, define v*(€) as the weakest level of regulation for which
there is an agent whose risk-taking constraint is binding. For ¥ larger than
the critical level sup,. g v*(€) (whose expression is derived in the appendix),
regulations are so loose that no institution hits its risk-constraint, no matter
which market orders the noise traders submit. This implies that the ellipsoid
extends to the whole of R?.

For the regulatory level 7; < sup. g v*(€) on the other hand, equilibria can
be supported for noise trades in the ellipsoid £(7;) only. For € outside of
this ellipsoid, FIs cannot absorb the supply as described earlier, and markets
break down. And for a tighter regulatory level v, < ¥, the set of supportable
supplies shrinks even further, £(75) C £(v).

It is interesting to note that it is not true that equilibria exist for small
noise trades €, but only for noise trades around the aggregate outstanding
supply 8“. This seems to be an unlikely outcome in the real world as one
would suspect the support of €, E, to be a small neighbourhood of 0, at
least during “normal” market conditions. In particular for tight regulations
such as vy, there is no equilibrium if noise traders don’t trade or trade only
a little: 0 ¢ £(02). This suggests the following corollary:

Corollary 1 Assume n = 1 and assume that not all assets are in zero net

supply. Furthermore, also suppose that the support of noise trades E s

a small enough neighbourhood of 0. If the supervisory authorities impose

stringent risk limits (in the sense that v is small enough to lead to £(7) # 0,
0°'30°

n.e. U< W}, some agents need to be exempted from those constraints for

markets to clear.

The immediate implication is that UFIs (e.g. hedge funds), are needed to
ensure market clearing (n < 1 needed), suggesting that demands for the
regulation of hedge funds may be misguided, at least for assets that are not
in zero net supply. For derivatives, however, E C £ 5 0, and no exemptions
are required as long as regulations are not too strict.

As an illustration, assume in Figure 1 with a regulatory level 75 that noise
traders dump assets (an irrational panic, say), leading to € € R? . No matter

12



how low prices fall, there is no price level low enough for RFIs to be able to
absorb this supply since they are all prevented from holding the risk. Hedge
funds on the other hand are the natural buyers for undervalued assets, and if
given the opportunity to buy into the selling, they restore equilibrium. This
scenario is reminiscent of aspects of the Asian crisis, especially the crucial
four month period of June through September 1997, such as for instance

exposited in the empirical study by Brown et al.(1998)Brown, Goetzmann,
and Park):

The ringgit dropped by 10% over this period. .. The hedge funds
appeared to be unwinding their negative positions in the ringgit or
its correlates beginning in June. In fact, the figure suggests they
were buying into the ringgit crash from June through August.
An interpretation of this activity is that the hedge fund managers
were supplying liquidity to a rapidly falling market. It is tempting
to suggest that they cushioned the rapid fall of the ringgit, rather
than hastened it.

One may advance the hypothesis that without the hedge-funds, markets
would not have cleared, and the Asian economies would have had to resort
much more to capital controls.

4.2 Special Cases when all Institutions are Regulated

Two interesting results arise in the special case when all FI's are regulated,
i.e. n = 1. The first relates to the indeterminacy that arises when n =1 and
v = v.(€), while the second result exhibits an economy where equilibria exist
in a constrained economy but not in a unconstrained economy.

Remark 1 (On Indeterminacy) Consider the following basic intuition be-
hind the indeterminacy result that holds if n = 1. When € € 0&, the RFIs
hold the maximal risk compatible with the regulations. Compensating them
more for their risk will not induce any of them to hold more of the risky asset.
So raising ¥ > (1 — ¢)~! will scale prices, but will not affect the allocation of
the risky assets. Since they hit their constraint anyway, any price that would
induce them to hold a yet riskier portfolio must yield the same effective risky
demand. This is reminiscent of the indeterminacy of no-arbitrage prices of
non-redundant assets.

Formally, this can be seen from the individual portfolio: for € € 0&, it turns

out that a’;f?h = U, so that y"* = ahidﬂ” (6° — €) = /5(0" — €), independent

13



of W. The effective risk aversion due to regulation rises proportionately
with W, not inducing any change in the allocation of assets. Still, since
Wh = ybR; + d'y" and y = 08 + ¢'[0" — -1,(6° — €)], we can see that
both the holdings of the riskless asset as well as the consumption choices do
depend on ¥ via q. Since g = R;l[ﬂ — U(0" — €)], raising U affects the
distribution of y} and of consumption as long as 8* # € (by the full rank
assumption on fl) and not all A have the same endowments of risky assets,

6" — 1,(6" — €) # 0 for some h.

Similar indeterminacy has also been noted by Grossman and Zhou(1996)).
More fundamentally, the general theory behind the real indeterminacy arising
from constrained net trades has been studied (albeit in a model with finitely
many states and with linear net trade restrictions) by Polemarchakis and
Siconolfi(1998)).

Remark 2 (On Existence and Risk-Neutrality) In contrast to the pre-
vious discussion, here we consider a situation where equilibria exist in the
presence of strict regulations, n = 1, but not without. The reason is that
the unregulated fringe is too risk-neutral in aggregate but too risk-averse as
individuals:

Corollary 2 Assume £ = 0. In a risk-constrained economy where v < o0,
and for € € £, an equilibrium exists if n = 1, while no equilibrium exists in
the less constrained economyn < 1 (except in the, presumably unlikely, event
that € = ).

The reason for this is clear. In the economy with n < 1, ¥, the inverse of
the aggregate effective risk tolerance defined in (4), is zero, and the only
equilibrium price candidate is the risk neutral price vector g = R;l . But if
that’s the case, then almost no FI, regulated or unregulated, holds any assets,
since their risk aversions are almost all strictly positive. Thus demand cannot
equal supply, unless by chance the whole supply is met by noise traders,
€ = 0°. On the other hand we saw in Proposition 2 that equilibria exist for
all € € £ in the constrained economy where n = 1.

The intuition as to why equilibria exist if n = 1 is as follows. In the risk-
constrained economy the inverse of the aggregate risk tolerance is effectively
)t = [ Kl Wld),mdh. Assume first that € # 8*. The inverse of aggregate
risk-tolerance is bounded away from zero, ¥ > 0 at ¢ = 0, so that the
economy’s risk-tolerance is not infinite, and an equilibrium exists. Next
assume that € = 0. Pricing is then risk-neutral, but this is exactly what an
equilibrium requires, since FIs must not hold any assets.

14



5 Impact on Risk—Taking, Depth and Volatil-
ity

The imposition of the VaR constraints affects the equilibria directly, with in-
teresting results on risk-taking, liquidity, and volatility. We present our main
results in a series of Propositions, with all proofs relegated to the Appendix.

5.1 Risk—Taking

Consider the implications of the VaR constraint on those agents who are di-
rectly affected by the constraint and those only indirectly affected by the con-
straint. We reserve the term risk-aversion to their CARA coefficients o*. We
call o + ¢™" their coefficient of effective risk-aversion, and we call its inverse
risk appetite. It is shown in the Appendix that a” + ¢" = max {ah, K,\I/},
where k is the number of agents needed to spread the risk without violating
anyones’s VaR constraint, and sV is the index of the marginal FI whose
constraint is barely binding.

Proposition 3 (Effects on Risk—Taking)

(i) Less risk averse inframarginal RFIs, h € [0, ¥k), have less risk appetite
in the presence of VaR constraints, ol +¢"" = kU > o, while the risk
appetite of the more risk averse, h € [Uk, 1], remains unchanged at .

(ii) The lower the admissible risk-taking level v, the more RFIs hit their
risk-taking constraints, i.e. the index of the marginal RFI, Vk, rises.

(#5i) The more risk-averse RFIs hold riskier portfolios in the presence of VaR
constraints than they would otherwise. Risk-taking is therefore more
uniform in a regulated economy. For a given €, in the limit v = v.(€)
and all constrained Fls hold the same risky portfolio.

Item (i) is intuitive: considering the RFI’s maximization program, we see
that the effective risk-aversion of RFI h is o + ¢". Now since less risk-averse
RFIs hold riskier portfolios, they hit the risk-constraint earlier than more
risk-averse RFIs. And once the VaR constraint for RFI A binds, its effective
risk-aversion equals kWU, which is the same for all RFI’s whose VaR constraint
is binding. We see that the risk appetite is endogenous and fluctuates with
€. the more extreme a realization of € is, the more RFI’s hit their constraint,
lowering their risk appetite. And the degree to which they become effectively
more risk-averse depends on the level of regulation, .

15



Items (ii) and (iii) show that as regulations are tightened, more agents hit
the allowed risk-limit. Since the aggregate risk is unaffected by regulations
(recall that we are ignoring the possibility of a systemic collapse at this
stage), the tighter the regulatory risk constraint, the more risk is shifted
from the less risk averse agents (the agents in the interval [Ux, U + 225 d7])
via an appropriate price change to the unconstrained and the constrained
but more risk-averse institutions. In other words, a binding regulatory risk
constraint implies that financial institutions effectively become more uniform
in behavior since their attitudes to risk becomes more homogeneous.

In the limit for a very tight policy, v = v,(€), all hold the same risky portfolio.
While in an unconstrained economy only the less risk-averse agents would
hold a portfolio as risky or riskier than v, the economy with risk-taking
constraints forces each regulated investor to hold the same (maximal) amount
of risk ¥, no matter what his degree of risk-aversion o € [¢,1]. This is
because each RFT’s effective risk-aversion becomes identical, so that the ratios
of their effective risk-aversion to the aggregate risk-aversion, w", are identical.

This points out a potentially perverse implication of otherwise well-intentioned
prudential regulations: By limiting the allowable level of extreme risk that
can be taken, at equilibrium, the agents may be induced to hold portfolios
that are riskier than the ones they would otherwise have held. If one does in-
terpret RFIs close to £ as banks (since they effectively take deposits), then a
stricter VaR regulation limits the natural role of these institutions (e.g. tak-
ing deposits and assuming risk), and optimal risk-sharing is compromised.

5.2 Depth and Volatility

The risk constraint affects the depth of the markets directly. In our context,
depth (defined below) is an appropriate measure of liquidity, or alternatively
the inverse depth, or shallowness. From (3, 4) and Definition 1 we know that
the equilibrium pricing mapping is

1

Q(G, ,D) = R_f

[,1 — U(k(e,0))S(0° — €)

(0% —€)'33(8%—¢)
e
entire market is defined as the maximal extent to which an additional (unit-

size) market order for a portfolio impacts its price, formally

with k(€,7) = The inverse depth, or shallowness, of the

- 1 _ !
Slen) =, max  [#dQ| = max [6(0.Q)0]
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We now state three of the main results of this paper with formal proofs in
the Appendix.

Proposition 4 (Depth) Depth (“liquidity”) is lower the tighter the con-

straint (i.e. the smaller v), % < 0 for all € € £. In particular, depth is
lower in the requlated economy than in the unconstrained economy for any

ecé.

Refer to Figure 3 for an illustration. No RFI’s risk taking constraint is
binding for € € [#*(v),0%(v)], and Q(-,v) is defined on £(v) = [e(v), €(v)],
with €(v) = 0° — g(l —/¢) and €(v) = 6° + @(1 — £). We have not made
any assumptions regarding the distribution of €. However, in most cases we
expect € < 8“ because otherwise the noise traders’ aggregate demand exceeds
the value of all assets in the economy, i.e. in aggregate, the noise traders
corner the market, in which case they really cease to be noise traders. In the
two Propositions that follow, we assume that € < 8“ and that N = 1. This
implies that the pricing function is concave over the relevant domain, and in
most interesting cases (large negative noise trades, or restrictive regulations)
the pricing function is strictly concave.

Proposition 5 (Bulls v.s. Bears) Assume N =1 and that regulations are
sufficiently strict so that some agents are hitting the requlatory constraint at

e=0,v< (%)2. Also, assume that P¢([0%,00)) = 0.

Then, inflows by the UFIs raise prices less than outflows lower them.

The single-asset intuition can then be extended to an arbitrary finite number
of assets:

Proposition 6 (Volatility and Risk Constraints) Assume that E C £(7),
and that v' > v. Equilibrium prices are more volatile in the economy with
tighter requlations, v, than in economy v'. In particular, there is more volatil-
ity in the constrained economy than in the unconstrained economy. This
follows from the fact that uniform shallowness implies ex-ante volatility.

The basic intuition behind these results is that the less risk—averse RFIs (i.e.
h close to £), who are the first ones to hit the risk—taking constraint, have
greater impact on pricing in the unconstrained economy. Therefore, the risk
averse have more weight on the impact of the risk averse agents on price
formation post regulations. The UFIs who were previously absorbed by the
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more risk—neutral RFIs now have to be absorbed by the more risk—averse.
However, the risk-averse are less willing to absorb these (additional) market
orders. Hence the imposition of the risk constraint reduces market depth,
and the market impact of a market order is larger. Since the arrival of market
orders is random, this generates more volatile asset prices.

6 Systemic Crises and Risk Regulations

Above, we side-stepped the issue of systemic crisis, the raison d’étre for reg-
ulatory VaR constraints. From a more normative point of view it is obvious
that these regulations lead to a Pareto inferior allocation, and hence it would
be desirable to explicitly model systemic failures. Unfortunately, no existing
systemic crisis model can be straightforwardly integrated into our model in
a manner that allows for closed-form solutions (see Allen and Gale(2000))
for an attempt). Furthermore, since our main objective is the analysis of
the positive asset pricing implications of risk regulations, our framework is
clearly too abstract to capture many aspects of actual systemic crisis.

It is however possible to analyze some aspects of systemic crisis in our model.
In specifying what constitutes a systemic crash, we follow a common defini-
tion, i.e., that the financial and credit system collapses and all real promises
become effectively worthless. Furthermore, we can capture the contribution
factors to systemic risk by following views expressed the regulators. In par-
ticular, Crockett(2000)), has argued that regulations are necessary because
unregulated markets lead to output losses due to financial instability. He
says that upswings bear the seed for a crisis eventually leading to lost output
since in upswings “too many resources” flow into risky investments in a par-
ticularly unbalanced fashion. Presumably this implies that an excessive (due
to a free-riding externality) amount of risk is concentrated on a small but
significant number of investors. In turn, this imbalance may create, probably
via a series of defaults, a systemic crisis in which total output collapses.

6.1 Modelling Systemic Crisis

Within our context, a systemic collapse implies the bankruptcy of the entire
financial sector. We capture this by assuming that in a systemic collapse
the real output of all assets, including the risk-less, is zero. This happens
when the distribution risk along the FIs becomes extremely skewed, with the
least risk averse assuming the bulk of financial risk. The failure of extremely
levered institutions may trigger a domino effect, effectively causing a systemic
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collapse. The fear of this happening is behind the common view that some
FIs are “too big to fail” and as a result, the supervisory authorities need to
control risk taking. Embedded in this view of the world is the notion that
FT’s optimize without regard to systemic risk, and hence impose externalities
on the financial system by taking on excessive risk.

Three main ingredients are needed for systemic collapse to occur. First, a
sufficient number of FIs need to acquire extremely risky positions. Second,
the financial sector realizes adverse earnings such that a sufficient number
of these institutions default. Finally, this in turn triggers a domino effect.
Within this context, the probability of the systemic collapse increases as the
distribution risk becomes more uneven.

We measure the imbalance in the distribution of risk by a Gini coefficient,
G € [0, 1], defined as

1 1 1 h .
1/2(1+£2)—g/e [(h—f)—(l—ﬁ)m/é Mdk] dh

1+4—k || ,

G(e,v) =

The inequality or distribution variable M is chosen to be M* = ||q'y
k € [¢£,1], the amount of resources invested in risky assets.” Note that this
amount does not depend on initial wealth due to the CARA assumption.

Production breaks down if inequality is too large, G > g, where g is an ex-
ogenous constant which is part of the definition of the production technology,
and to make the problem interesting, we assume that P¢(G' > g) € (0,1) at
U = +00. Output therefore satisfies the equation

0 if G(y,q;7) > g
output = y .
doy§ +d'y® otherwise

Even though the technology is common knowledge, each institution is negli-
gible and rationally disregards the effect of their own investment behavior on
aggregate output and on the probability of a breakdown, P(e,v) = P¢(G >
g). Markets are thus incomplete since no asset pays off in the state of the
systemic collapse.

6.2 Program of Regulated Financial Institutions

In the second pe 0 dCo



collapse happens with probability P(e,v). The probability P(e,v) depends
on the distribution of risk among the agents as discussed above.

The RFI’s ex-ante program (before € is realized) consists in choosing demand
schedules to solve

Problem 2 (Risk Constrained Ex-ante Problem)

max P(e,v)u"(0) + (1 — P(e,v)) E[u"(2")||G(€,v) < g]

{y"y5}
s.t. Yyt g'y" <o+ q'0" P a.s.
h=wh= ygdo +d'y" P¢ and P as.
yh'f]yh < P* a.s.

Since individual institutions are negligible, this formulation gives rise to a
free-riding problem. Each financial institution knows that a systemic crisis
follows if the imbalance between risky and riskless investments becomes too
large, but they also know that they themselves have no effect on aggregates,
and therefore choose to neglect the effect of their actions on P(e,v). Given
the manner by which we capture systemic risk, the RFI’s Problem 2 is there-
fore equivalent, at each given q, to Problem 1 solved before, and the demand
schedules and equilibrium prices derived there remain unchanged.

Finally, Proposition 7 implies that the VaR regulations are effective in re-
ducing the probability of a systemic crash.

Proposition 7 Assume n = 1. For a given €, consider the requlatory levels
U € [v4(€), 00).

Imbalance G is reduced as v is lowered, and limy_,, . G = 0.

The regulator faces a typical cost-benefit tradeoff. Imposing more stringent
rules (a drop in ¥)induces suboptimal risk-sharing, more shallow asset mar-
kets and more volatile allocations during normal market conditions, but it
reduces the probability of a systemic failure, Prob(G(e, ¥) > g), which would
have led to a total loss of output and consumption.

Since it seems natural to assume (and in line with the Basel Agreements) that
v cannot be fine-tuned after observing €, the socially optimal v does depend
on things such as the distribution of € and the gains from risk-sharing.
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6.3 Analysis of Financial Crisis

The Propositions above can now readily be applied to the analysis of financial
crisis. Consider the special case where market volatilities are increasing and
unregulated funds need to sell a large amount of assets, i.e., €is negative,
large, and variable. We can differentiate three distinct categories of financial
crises within the context of our model:

e Non—catastrophic event: a large sell-off, leading to sharp drops in
asset prices, but not to a breakdown or collapse, (7, €) s.t. T > v,(€)
and G(e;7) < g.

e Systemic collapse: the financial imbalances cause the collapse, at
time 1, of the real productive sector, and (for simplicity) all output
drops to zero, (7,€) s.t. v > v.(€) and G(€;7) > g.

e Market breakdown: financial markets at time zero cannot clear,
(v,€) s.t. v < v,(€). We have seen that a market breakdown can only
occur if all FIs are regulated, n = 1.

Proposition 7 showed that market risk regulations can be effective in low-
ering the probability of a systemic crash. On the other hand, market risk-
regulations may lead, in extreme cases, to the breakdown of all markets,
including financial markets at time zero. And similarly, the VaR constraints
impose costs in non—crisis periods, as seen in Propositions 6 and 4. In partic-
ular, it may exacerbate the effects on markets of a sudden selling by reducing
the ability of FIs to absorb the selling orders:

Proposition 8 (Volatility in a non—catastrophic event) More volatile
asset payoffs d or more volatile UFI trades € create more shallow asset mar-
kets and more volatile asset prices in a requlated economy than in a non—
regqulated economy.

At the onset of financial crisis, when volatilities are increasing, a RFI cur-
rently has two courses of action open in order to remain compliant with the
regulations: it can either dispose of risky assets, or increase capital. Raising
capital takes time, and may be impossible in crisis, so in practice, a sell-off
of risky assets is the only avenue open in a crisis.

However, since many institutions are in the same situation, this leads to
precisely the scenarios shown in Propositions 5, 6, and 8. Thus, the VaR
constraints may reduce the probability of an ex-post systemic collapse by
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restraining risk-taking, but these constraints on risk-taking exacerbate the
ex-ante symptoms of crises: poor liquidity, high volatility and a downward
spiral of falling asset prices. They may in some cases even prevent market
clearing altogether.

6.4 The 1998 Crisis

Consider specifically the Russia crisis of 1998. Prior to the crisis, volatility
had been increasing, and many financial institutions were disposing of volatil-
ity with LTCM being a frequent buyer. It is not precisely known what role
regulations played at the time, i.e., with institutions disposing of volatility
for regulatory or other reasons, but the violation of regulatory constraints
certainly was a factor in this. As Proposition 8 suggests, the initial pick up
in volatility translated into a volatility of asset prices that was compounded
by the regulatory risk-limits which resulted in more shallow markets. In a
normal course of events, higher volatility inevitably leads to more margin
calls. When Russia defaulted, many financial institutions, most prominently
LTCM, were facing large losses, and unable to meet margin calls out of the
remaining capital, leading to sell-offs of other assets. However, LTCM was
not the only hedge-fund in that situation, and furthermore it seems that
speculative capital was greatly reduced in general before and during the inci-
dent (in our model this may be viewed as an increase of 7), exacerbating the
symptoms by leaving few FIs able or willing to buy into the selling frenzy.

The fear that led to the rescue of LTCM (the rescue package effectively
lowered €) was that the sell-offs (and the resulting defaults induced by margin
calls) would be so strong as to cause a melt-down of production and the real
economy at time 1. In our model, the sell-off pushes risky stock into the
RFIs’ portfolios, which may induce G > ¢, a systemic collapse. The rationale
for regulatory limits to risk-taking is that the VaR constraints create more
uniform risk-taking among banks (Proposition 3), thereby reducing the risk
imbalance G and the (unmodelled) risk of domino-style defaults.

And, due to the effective rise of 17 to a number close to 1, if the sell-off had
been even larger, € ¢ £(v, £), asset markets at time zero would not have been
able to clear and the economy would have collapsed altogether.
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7 Conclusion

The ultimate aim of financial risk regulations is the reduction of systemic risk.
In general, this objective necessitates restricting financial institutions in their
ability to assume risk. Even if this objective is laudable, in the real world
specific policy instruments must be employed in the regulation of financial
institutions. This goal may readily be achieved by proper application of
Value-at-Risk regulations, or indeed any number of alternative regulatory
regimes.

We consider the present VaR regulations in a two period general equilibrium
Model. Our results indicate that a naive implementation of risk constraints
may have unintended adverse consequences.

A major flaw in the VaR based market risk regulations is uniformity of ap-
plication. It may be justified in the name of fairness (exempting hedge funds
may penalize regulated institutions), however this very uniformity of appli-
cation leads to the adverse effects of VaR regulations. In general, we feel
that heterogeneity and flexibility in regulatory policy should be a fundamen-
tal element in an effective regulatory environment. This however appears
to run counter to current trends in regulatory policy which appears to be
increasing in scope and uniformity, see the 2001 Basel Committee proposals,
which recommends that credit, operational, and liquidity risk be regulated
by means of modelling, just as market risk is now. The problem of uniformity
may even be exacerbated in environments that conform to the structure of a
global game, see for instance Morris and Shin(1999)).

In addition, the present regulations and the new proposals fail to consider
the fact that the risk is endogenous. The lesson here is similar to the Lucas
critique, Lucas(1976)). We demonstrate that regulating risk-taking changes
the statistical properties of financial risk, rendering risk modelling all the
more challenging. In particular, during crisis, VaR constraints change the risk
appetite of financial institutions, effectively harmonizing their preferences. It
is this effect which is most damaging, since during crisis it leads to higher
volatility, larger drops in prices, and lower liquidity than would be realized
in the absence of risk regulations.
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A Proofs

Proof of Lemma 1 The program consists in solving

mx B [0 (@ldf + 40" — o]+ )] — X [y Syt - ]
{y ayo}

The FOC (the program is strictly convex, so the FOC are both necessary
and sufficient) are

B [uh’(wh)(d . doq)} — 2\hSiyh
or equivalently

Cov?(u (W"), d) + E* [u"' (W")] Eld] — doE* [u" (W")] q = 22" Sy"

Next, by Stein’s Lemma® and the fact that Cov®(d, W") = Cov®(d, d'y") =
Sy" we get that:

1 A1
h ~
=—3 —d,
Y = by g [ = dod]
where we also used the fact that in this CARA-Normal setup _EFjid[ZLh}il]'] = ol
and where we defined ¢" = %ﬁ»’]

Finally, we’ll derive the expression for o + ¢"* and show that it does not
depend on the wealth of the institution. In order to accomplish this, we first
need to find an expression for ¢". To simplify expressions, define

-1

p=(—Rsq)S (i — Rq) (7)

It can easily be established that®

YISyt =% (and \* > 0) = o + ¢" = p (8)
v

y"' Syl < v (50 V' =0)= o+ ¢" =" 9)

8Stein’s Lemma asserts that if z and y are multivariate normal, if g is everywhere
differentiable and if E[g¢'(y)] < oo, then Cov(z, g(y)) = E[g'(y)]Cov(z, y).
Tndeed, assume that y"' 3y = . Since y* = ﬁE(ﬁ — R;q), this expression

2 .
becomes (%ﬂ,h) p = 0. Of course, if y*' Syh < v then \* = 0 and thus ¢* = 0.
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This implies that o 4+ ¢" is independent of W for given prices,
o’ + ¢" = max {ah, @} (10)
T

Indeed, assume first that y" Sy" < v. Then by (9) we have that a"+¢" = o,

so we need to show that a” > \/g. Now since yhlﬁ)yh = ah”?

that o °p < @, so that indeed af > . Next, assume that y" Sy" = 7.
p

Then from (8) o+ ¢" = /2. So we need to establish that o/ < |/Z, which
follows from ¢" > 0. ]

p, we know

Proof of Proposition 2 (On the Existence and Uniqueness of Equi-
libria)

We need to exhibit a solution to the fixed-point problem. Fix some € € E
and assume first that £ > 0. Recall from (4) that

1
-1 _
v _"/e h+¢hrdh+ (17 /—dh

=7 —dh+77/ \/7dh—|— 1—n /—dh (11)
11 I2

where Iy = {h € [{,1]: " > \/Z} and I, = {h € [(,1] : " < | /2}.

In order to solve for the equilibrium, we can either express ¥ (from (11)) as
a function of ¢ and then solve (3) for g, or we can use (3) to express g as
a function of ¥ and then solve (11) for . We chose the latter approach for
obvious reasons.

For convenience, we establish some preliminary calculations and notation.
First, insert the pricing relation (3) into the definition of p from (7) to get

the expression |/p = \Il\/ 0" —¢€) ’2(0“ — €). Second, define the parameter

k(€) =4/ % = 1[ €) represents the ratio of the standard
deviation of the dividends of the re31dual market portfolio 8% — € to the
maximal allowable standard deviation of the payoffs of individual portfolios.
By our assumption that a® = h, we can then define the ranges I, = {h €
[0,1] : o = h > Uk(€)} and I, = {h € [(,1] : & = h < Uk(€)} to get the
functional equation

gl = ”/f h='dh + | | (Uk(e)~ + (1 — 77)/Z Wk (12)
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For simplicity, we drop the explicit dependence of k upon € wherever no
confusion arises. Let us first concentrate on the first element on the RHS
where we have to distinguish 3 cases:

[or kdh = —In(¥k) ¥k € [4,1]

1 1
/lﬁdh: fﬁdh:o Uk > 1
' [, #dh = —1In(¢) Uk < L

The second element can be rewritten as

[6,9k] ;UK e [l1]
[£,1] ;Uk>1
0 Uk < /L

o
|

so that

Uk —L ;UK€ [(1]
0 Wk </l

The equilibrium relations thus become

—nIn(¢) + (1 —n)Int™? Uk </l
U= p[=In(Vk) + (Tk — ) (Tk) ] + (1 —n)Intt Tk e [41]
n(1—£0)(¥r)™+(1—n)lnt ! Uk > 1

We rewrite the system in terms of a fixed-point problem via a mapping 7.

Tl(\ll) = 1né—1 Uk < 12
— — 1 i
T(\Il) = TQ(‘I]) - n*nln(\I}:—)Z—(l—n) In¢-1 Uk € [ﬁ, 1] (13)
_ 1-(1-0k?
Ty(V) = o=t ;UK > 1

Before we proceed to proving that there is a unique VU* satisfying ¥* =
TU*, we need to establish some preliminary properties of T'. The three sub-
domains of T depend on whether ¥ < /!, O € [lx ',k or ¥ >k 1.
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P1 On its domain, 7} > ¢k~ iff K > ¢In ¢!,
P2 On its domain, T3 < k' iff k < (1= O)n+ (1 —n)Inet.
P3 Ty <Tiff k<1—L

Pik <1—0=kKk< (1-0n+(1—-nnt"' To see this, notice that
1-4<(1-0On+Q—n)lne ' iff 1 +1Inf < ¢, which holds for all

LeR,.

1

P5 (k™Y =T, iff k =£Inl™" ie. T is continuous around ¢x~".

Ty (lk-

P6 To(ls™) < Ty iff kK > £1In ¢!

PT (k) <k tiffk<n(l—0)+(1—-n)lne
To(lk~

P8 To(lk™') > Ik iff kK > £Inl™".

PO Ifk=n(1—0)+(1—n)lnlt = Ty(xk!) = T3, i.e. T continuous around
kL.
P10 T,(¥) is continuous and monotonically increasing on its domain.

P11 The slope of T, is less than 1 at any fixed point. Indeed, at a fixed point,

5% = ey < Lsince —nIn(Wk) + (1 —n)Inl ' > 0.

P12 n(1—4)+ (1 —=n)Intt > £Int~' for all p € (0,1) and £ € (0,1).

Thus, we can distinguish 5 cases that can arise, depending on « (i.e. ulti-
mately depending on € and 7). We treat the case n < 1 first.

k < £Inf~t. Then by P12 we also know that x < (1 —¢) + (1 — n)In¢L.
The fixed point occurs on the 7 segment only. 75 remains below the
45 degree line over its domain, since by P8 Ty (¢~ 1) < £k~ and by P7
To(k 1) < k1, while by P11 T, cannot cross the 45 degree line. Also,
Ty(¢x~1) > Ti. The unique equilibrium is illustrated on Figure 4.

k = {In¢~'. By P5 the unique equilibrium is as on Figure 5.

k€ (nttn(1—4)+ (1 —n)lntt). We know by P8, To(¢s™t) > £r71).
There can’t be a fixed point on T}, since by P6 Ty > Ty(¢x~"). There
also cannot be a fixed point on T3 by P2. That there needs to be a fixed
point follows from P10, and uniqueness is guaranteed by P11. Refer to
Figure 6.
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k=mn(1—4¢)+ (1 —n)In¢~'. P9 implies Figure 7.

k>n(l—4¢)+(1—n)Inl'. By P12, k > £In/! as well, and the unique
equilibrium occurs on T3, as seen on Figure 8.

The case n = 1 can be treated similarly, please refer to Figures 9, 10, 11.

Notice that by construction the equilibrium ¥* satisfies U* > . Since €
affects ¥ only in as far as it affects k, it is useful to point out that the
mapping k — U(k;n, ) (we often drop the dependency on 7 and ¢ if no
ambiguity arises and write the mapping as ¥(k)), can be characterized as
follows. If n < 1 and £ > 0, then

=T ik € [0,¢In 071
Kk+nl _ _
KII(/{) = _UNW—l(*l(lWI_1+Z)eig(flnﬁfl+n—1lnf)) k€ (ﬁ Int 1’ 77(1 - E) + (1 - 7’) In¢ 1)
1—(1-0)k— —

where W_(+) is the non-principal (lower) branch of the Lambert W -correspondence.*’
Notice that the mapping W is continuous. The fact that no equilibrium exist
if £ = 0 is shown subsequently in the proof of Corollary 2.

If =1, then
= :k €[0,£In e
K44 . 1
(k) = _ml k€ (LIl 1—10)
any number > ;- k=1—1
undefined ik>1—/

Over the entire domain the correspondence ¥(k) is illustrated in figure (2).

We will find the partial derivatives of the equilibrium ¥ useful, and in par-
ticular their signs. As preliminaries, we establish some properties on the
domain k € (£Inf 1 n(l —¢) + (1 —n)lnl ') of the fixed-point system
F(U,k,4,n) = k¥[n—nln(¥k) + (1 —n)Inl™] — [k + nl].

D1 22 = U~'[k+nl]—rkn > 0. Indeed, the sign is positive iff k+nf—Vxn > 0.
Now at a fixed-point, we know that k¥ = nfnln(‘lfn';i?ffn) =1 50 that
k+nl = k¥ (n—nin(¥k) + (1 —n)Inl~'). Plugging this into the
expression above, we get that the sign is positive iff —nIn(Ux) + (1 —
n)In¢~' > 0, which holds for both terms are positive.

10The Lambert W correspondence is defined as the multivariate inverse of the function
w — wev.
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D2 %E = pek=! — ¥ =n[ls~" — ¥] < 0.

D3 G = #¥[1—In(¥x)—In ']~ £ < 0, since we can simplify this inequality
to me%l — ¥ < 0. The latter holds since me%l =v<V.

D4 28 = —k¥(1 — )~ <O0.

We can deduce from the implicit function theorem that the slopes, for £ > 0
and n < 1 are given by

sk € (0,£Inf71]

o . ' )
Ok _n2(n?p(—7(7fj+nn—gen)) k€ (LInl™ (1 —€)+ (1 —n)Int)
iy k> (1= 0+ (1—n)lne!

So g—f >0,and > 0ifp € (0,1) and k > £In¢~'. Tt is easy to verify that the
mapping ¥ is indeed differentiable on the entire R, .

For n =1, we find

0 'K E (O,f]nﬁfl]
ov U(kU—0) -1
undefined ;K€ [1—£,400)

Notice that limy_g; YOV iy, o YEHOVED — (o 5 = e

Repeating the exercise for the derivative with respect to 7, we find for £ > 0
and n <1

ik € (0,4In e 1]

ov (1—In -1 - ~
i —Ww k€ (lnep(l—6)+1-n)lne)
W"f)gW>0 ;/{>77(1—€)+(1—77)1n€_1
Finally,
0¥ 0¥k

=T if 0° ] 1
% 8&817_0’ <0 if@°#€ n>0and k> /lIn¥

Proof of Proposition 3 Most results follow from the properties of the
index of the marginal regulated investor, ¥x. Define v,(€) as the weakest
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level of regulation for which all RFIs hit their VaR constraints,

(0% — €)'2(0" — €)
(1 =€)+ (1 =) Ine-1)*

v.(€) =

If n = 1, v.(€) is also the strictest level of regulation, given €, that can
still be supported by an equilibrium. Similarly, define v*(€) as the weakest
level of regulation for which there is an agent whose risk-taking constraint is
binding,!

(09 —€)'33(0%—¢) .
/U*(e) = W if n >0
0 ifn=20
We summarize some properties of Uk first. They are proved for n < 1, but

they hold for n = 1 as well as long as the parameters are such that v > v,(€),
the necessary and sufficient condition for an equilibrium to exist.

L1 Wk is differentiable in v.

L2 &£ <0, <0 iff ° # €, in particular for ¥ € (v.(€), v*(€)).

Indeed, for the index of the marginal RFI Uk, 651’_” = [\Il + K 8n:| g’; <0,

< 0iff 0“ # € (smce gt = 0 iff 8° = €). Notice that if 8 = €, then the
interval (v.(€),v*(e )) is empty.

L3 Uk =1 at v = v.(€).
Indeeda hmn—)n(l—é)—l—(l—n) In¢—1 K\P(’f):limn—m(l—ﬁ)-l—(l—n) In¢-1 (f__n()lil;eg?l =
1

L4 Uk =/{ at © = v*(e).

Indeed, lim, 4101 KU (k) = lim,_pin 1 =1 = £

The proof of (i) is obvious, and (ii) is simply (L2).
As to (iii), denote the payoff variance of investor h by v = yh'Siyh :W\Iﬂm&
$ h .

(ah+¢h)2‘1’2(0a €)'>(6° — €). We need to show that 2 < 0 if h > Uk,

1 Almost no regulated investor’s constraint is binding iff v < v all h, ie. iff

2 2 . _ 1 2 .

(ﬁr) V2425 < 7 (Vh), iff (E,,+—1¢r) T2(0" — €)'S(0 —€) < 7 iff (m) 9° -
€)'3(0% — €) < © for all h. Now this holds for all A iff it holds for h = £, and plugging in
T = [ﬁlnfl]*l we get the stated result.
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So assuming that h > Wk (so that in particular Ux < 1), it is indeed easy to
see that

ovh 2 re ov

= 20— )26 — )V

0v  h? (0% — €/ %(0" —¢) v
<0; <0if@*#en>0and k> /{Inl*

Taken together with (ii), this shows that as regulations are tightened marginally,
the risk is taken away from the agents in the interval [¥x, Ux + 2Z%5d7] and
transferred (via an appropriate price change) to the unregulated and to the
regulated but more risk-averse.

For a given €, let us lower v towards v,(€). Observations L1 to L4 taken
together say that as v becomes smaller, the marginal RFI tends to 1, in which
case all investors’ risk-taking constraint is binding, and thus all hold the
same risky portfolio. This is so because each RFTI’s effective risk-aversion is
identical in that situation, so that the w”, their risk-aversions relative to the
aggregate risk-aversion, are identical. But we saw that ¢'y" = w"q'(0* — €),
and the right-hand side is in the limit independent of h. ]

Proof of Proposition 4

As preliminaries, let us record the following useful results.

J1 2 = —1=2 from the definition of k, and dek = k171X (e — 6%).
J2 92,0 = —5 [ i A 3‘1’} et Indeed, since 9;¥ = 2L we know from
_d (999 oK 02¥ o
J1 that 97 ;¥ _E(Eag) 55 Gz Oets + 500 (—3%).

J3 0.Q is positive definite (downward-sloping equilibrium inverse demand).
Indeed, 8.Q = R;' [xpz _ 56— e)(aew)'} —R;' [\1;2 +3(6° - ¢)

(0° — €)'k v 13‘1’] positive definite.

The idea of the proof is to show that 97 ;Q is negative definite (ND). In-
tuitively, we want to show that the market impact of a trade goes up as
the regulation is tightened, i.e. that Z|(dq)'(de)| = Z[(dq)’ (de)] < 0 since
(dq)'(de) > 0 as 0.Q is PD by J3. Now this expression equals ~ [(de)'0.Q(de)] =
(de)'d? ;Q(de) < 0 for all de # 0, but that’s the definition of negative defi-
niteness.

Before we show that 07 ;Q(de) is negative definite, we want to relate this idea
with the definition of shallowness given in the text, S(€, 7) = maxg |6'(9.Q)0)|
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s.t. [|6]] = 1, namely that 25 < 0 iff 2,Q negative definite. Indeed, pick
any 0 s.t. ||@|| = 1, then it is immediate that W = 0'(—0.4Q)0
which proves the claim. In some sense, a tighter ¥ makes 0.() “more positive

definite.”

The pricing function is Q(e,v) = RJTI [ﬂ —U3(6° - e)], from which we
can deduce that 0;Q) = —R;li(aa — €)%¥, and furthermore that 92,Q =
R;lﬁ‘;—%’ - R;lﬁ(Oa — €)02 ;. This expression can be simplified, using J2,
to

1OV K & 152 A\ ov
271 9k 2 rY 0K2 Ok

92,Q = ——R 2——R — K+ —} [2(0“ —€)(0° — e)'ﬁl] K
The first term is negative definite, while the second one is negative semidef-
inite. Indeed, it can be shown that the expression [8 Ok + 3‘1’} is strictly

positive, while the term [2(0” —€)(0*—¢€) f]] is clearly positive semidefi-
nite. This concludes the proof that 92 ;@ is negative definite. (]

Proof of Proposition 5 We would like to establish Figure 3. Assume that
N =1, so that there is a single risky asset. We can deduce the following
three characteristics of the pricing function, for ¢’ > o:

(i) We have

Q(e,7) < Q(e,0') one<b*— ﬁﬁlnf_l

o
Q(e,v) = Q(e,v") onee€ |0 — gﬁlnﬁ_l, 0* + gﬁlnﬁ_l
Q(e,0) > Q(e,0') one>0"+ gﬁln et

(i) %2 > 0, and

(iii) 22(v) > L2(v").

(iv) The graph is symmetrical with center (6%, Q(0%, c0)).

We briefly prove (i) here. First, assume that ¢ < 6* — ?f In¢~!. Then
Kk = "'9}__6' :a(aaﬁ—e) > ¢In¢~'. Tt follows that ¥ > v and ¥ > 0, so
that W(e,v) > (e ') since o' > © implies that x(e, ') < k(e,U). Since
Qe,v) = R;l [ — Va?(0* — €)], this results in Q(e,v) < Q(e,v') for all
€< 0 — ?Zlnﬁfl.
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Next, assume that € € [0 — @Elnﬂ’l,ﬁa + ?ﬂlnﬂ’l , so that 6% — ¢ €
[—‘gﬁlnﬁ_l, +§€ln€_1], which implies that % € [—£In¢~t LInfY
and finally that k = % € [0,£In¢7']. Then ¥ = v, and Q(¢,v) =

Q(e,+00), and in particular that Q(e,7) = Q(e,0'). This completes the
proof of item (i).

In order to prove (iv), we fix any ¥ and we need to verify Q(6*+n) —Q(6*) =
Q(6%) — Q(6* —n), n > 0. This equation boils down to ¥(k(6* + 7)) =

U (k(0* —n)). But k(6 +n) = % =k(0* — n) completes the proof of (iv).

Taken together, the equilibrium correspondence looks as on figure 3. [

Proof of Proposition 8 We show the claim for more volatile asset payoffs,
the claim for fund trades being evident. Using the results of Pro2position 6

we find that in order to show a\gt:Q > () it is sufficient to show % > 0.

It follows from J3 and the fact that Z—; = % that

2 2
8&:201{;1 [‘II+K<48_\11+K8_\11>] >0

0ode 0K OK?

since both terms in brackets are positive. [
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€2

€1

Figure 1: KEQUILIBRIUM ELLIPSOIDS WITH INCREASINGLY RESTRICTIVE
RISK CONSTRAINTS

In this scenario there are two assets, and in the absence of any reg-
ulations, equilibria exist for € € R2. When the risk constraint is o,
the set of € that can be supported by an equilibrium is the larger
ellipsoid, and includes zero noise trader demand. However a more re-
strictive constraint vo does not include zero net demand, and hence
equilibria do not exist if noise trades are zero.
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(k)

-

f t K

0 fln ¢t 1—/

Figure 2: ILLUSTRATION OF THE REWARD-TO-RISK FUNCTION ¥(x) WHEN
n=1AND ¢ > 0.
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No Constraint
Q(,OO) /

Weak Constraint -~/

Q(-,’U’) . | | I €
)/ 9* Qe 0

/

Strict Constraint,’
Q('ﬂj) /

Figure 3: PRICING FUNCTION
The pricing function without constraints and with increasingly bind-

ing constraints, co > ¥ > ©. The downside effects become more
pronounced as the constraint becomes stricter.
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Figure 4: FIXED POINT FOR k < £In/~!.
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Figure 5: FIXED POINT FOR k = £In /",
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/o k1

Figure 6: FIXED POINT FOR £ € ((Inf~',n(1—£)+ (1 —n)Int™t).

Ty
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k1 K

Figure 7: FIXED POINT FOR k =n(1 —£) + (1 —n)Inf~".
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Figure 8: FIXED POINT FOR k > n(1 —£) + (1 —n)Inf~".

v

i

k1 K

Figure 9: EcoNoMYy WITH 1 = 1. UNIQUE FIXED POINT FOR Kk €
(lIne='1—4).
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Figure 10: EcCONOMY WITH 7 = 1. INDETERMINACY OF FIXED POINTS IF
k=1—/.

Ty

i

k1 K

Figure 11: EcoNOMY WITH 1 = 1. NO FIXED POINT IF £k > 1 — /.
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