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general dependence amongst the prospects which are to be ranked. Also, the prospects may be

the residuals from certain conditional models, opening the way for conditional ranking. We also

propose a test of Prospect Stochastic Dominance. Our method is based on subsampling and

we show that the resulting tests are consistent and powerful against some N−1/2 local alterna-

tives. We also propose some heuristic methods for selecting subsample size and demonstrate

in simulations that they perform reasonably. We describe an alternative method for obtaining

critical values based on recentering the test statistic and using full sample bootstrap methods.

We compare the two methods in theory and in practice.
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1 Introduction

There is considerable interest in uniform weak ordering of investment strategies, welfare outcomes

(income distributions, poverty levels), and in program evaluation exercises. Partial strong orders are

based on specific utility (loss) functions. The latter rankings are obtained with indices of inequality or

poverty in welfare, mean-variance analysis in finance, or performance indices in program evaluation.

By their very nature, strong orders do not command consensus. In contrast, uniform order relations

such as Stochastic Dominance (SD) rankings can produce "majority" assessments based on the

expected utility paradigm and its mathematical regularity conditions. These relations are defined

over relatively large classes of utility functions.

In this paper we propose resampling procedures for estimating the critical values of a suitably

extended Kolmogorov-Smirnov test for Stochastic Dominance (SD) amongst K-competing states.

Alternative implementations of this test have been examined by several authors including McFadden

(1989), Klecan, McFadden, and McFadden (1991), and Barrett and Donald (2003).

Econometric tests for the existence of SD orders involve composite hypotheses on inequality

restrictions. These restrictions may be equivalently formulated in terms of distribution function

distances, their quantiles, or other conditional moments. The literature also divides according to

whether the tests are designed to be consistent against all alternatives or whether the class of alter-

natives against which the test has power is essentially finite dimensional. Most of the large literature

works with tests that have the more limited objective. Even in that case the statistical problems are

quite formidable. See for example Anderson (1996), Davidson and Duclos (2000), Kaur et al. (1994),

Dardanoni and Forcina (2000), Bishop et al. (1998), and Xu, Fisher, and Wilson (1995), and Craw-

ford (1999). Maasoumi (2001) surveys these alternative approaches. Tse and Zhang (2000) provide

some Monte Carlo evidence on the power of some of these alternative tests. There are just a handful

of papers that have pursued the more general objective of consistency against all alternatives, as we

do.

McFadden (1989) proposed a generalization of the Kolmogorov-Smirnov test of First and Second

order SD among K (≥ 1) prospects (distributions) based on i.i.d. observations and independent

prospects. Klecan, McFadden, and McFadden (1991) extended these tests allowing for dependence

in observations, and replacing independence with a general exchangeability amongst the competing

prospects. Since the asymptotic null distribution of these tests depends on the unknown distributions,

they proposed a Monte Carlo permutation procedure for the computation of critical values that relies

on the exchangeability assumption.1 Barrett and Donald (2003) propose an alternative simulation

1In fact, although they derived the asymptotic distribution of the test statistics allowing for time series dependence,

the proof that their critical values were consistent is only valid in the i.i.d. over time case.
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method based on an idea of Hansen (1996b) for deriving critical values, also in the case where the

prospects are mutually independent, and the data are i.i.d. These tests are consistent against all

alternatives at least under the stated sampling assumptions.

We propose to estimate the critical values using the subsampling method proposed in Politis and

Romano (1994). We also investigate a more standard full-sample bootstrap applied to a recentered

test statistic. We prove that our subsampling test is consistent against all (nonparametric) alterna-

tives. Because choice of subsample size may be important in practice, our main results are proven

for random subsamples - this is the first result of its kind that we are aware of for subsampling. We

give three practical methods of selecting subsample size.

Our sampling scheme is quite general: for the first time in this literature, we allow for general

dependence amongst the prospects, and for the observations to be non i.i.d. Accommodating generic

dependence between the variables which are to be ranked is especially necessary in many substantive

empirical settings where income distributions, say, are compared before and after taxes (or some

other policy decision), or returns on different funds are compared in the same or interconnected

markets. We are not aware of any evidence suggesting either that such prospects are independent or

exchangeable. Indeed the latter assumptions appear to be patently false in many empirical settings.

Some program evaluation settings rely on appropriately randomized treatment and/or randomized

assignment and may be free of this "dependence problem".

We also allow the prospects themselves to be residuals from some estimated model. This latter

generality is very important for policy makers where one wishes to control for certain characteristics

before comparing outcomes. For instance, one may wish to “purge” incomes from the influence of

age and/or education, thereby isolating both their influence and the separate contribution of other

factors (collectively) on the income distribution. For example Maasoumi and Millimet (2003) control

for the influence of ‘growth’ on the distribution of several pollutants in the US. This is done by

comparing the results of "unconditional" dominance tests (based on the actual observations) with

tests of dominance amongst the residual distributions.2 Based on their SD tests, they are able to

infer that incomes contribute positively while other factors collectively have a negative influence on

environmental quality. See also Abadie (2001) for comments about the desirability of controlling

for observables before applying such tests. Similarly, Style Analysis [Sharpe (1992)] is currently a

popular method amongst practitioners for ranking the performance of investment funds after taking

account of their ‘style’, e.g., value or growth funds. This involves a comparison of features of the

2The regression method for purging of the dependent variable from certain conditioning variables is well understood.

If these conditioning variables are the only ones relevant to the ‘true’ data generating process, the residuals will have

zero means. The residuals will normally be orthogonal to the conditioning variables by construction. Neither this fact,

nor the possibly zero means for the residuals precludes the existence of dominance relations between their distributions.
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residuals from a linear regression.

Also, given the recent credible challenges to the standard risk aversion and expected utility

paradigm, we propose a test of ‘Prospect Stochastic Dominance’, and propose consistent critical

values using subsampling.

Finally, we also describe a full sample bootstrap procedure and make a comparison between this

method and the subsampling procedure. The methods relying on standard bootstrap [as well as the

Barrett and Donald (2003) simulation methods] typically try to mimic the asymptotic null distrib-

utions in the least favorable case. This is a subset of the boundary of the null where the marginal

distribution functions are equal. However, the boundary of stochastic dominance is composite and

hence the tests based on the approximation of the least favorable case are not asymptotically similar

on this boundary. On the other hand, our test based on a subsampling procedure which approximates

the true sampling distribution under the composite null hypothesis is asymptotically similar on the

boundary. Consequently, our test might be asymptotically more powerful than the bootstrap (or

simulation)-based tests for some local alternatives.

The finite sample performance of our method is investigated on simulated data and found to

be quite good provided the sample sizes are appropriately large for distributional rankings. Our

simulation designs include the Burr distributions examined by Tse and Zhang (2000), the lognormal

distribution recently employed by Barrett and Donald (2003), and the multivariate normal with ex-

changeable and correlated prospects as in Klecan et al. (1991). Optimal choice of the subsample size

is rather like choosing the bandwidth in nonparametric estimation. Suggestive results on subsample

size are provided, and some power comparisons with other methods are given.

In addition, we describe an empirical application to Dow Jones and S&P daily returns which

demonstrates the potential of these tests and concludes the paper.

In section 2 we discuss the various concepts of stochastic dominance, while in section 3 we

introduce our test statistics. In section 4 we give its asymptotic null distribution, while in section 5

we define our subsampling procedure and obtain its asymptotic properties. In section 6 we describe

a full sample bootstrap approach to obtaining critical values and compare the theoretical properties

of the two resampling methods. In section 7 we report the results of some simulations and present

an application. Proofs are contained in the appendix.

2 Stochastic Dominance

The following definitions will be useful. Let X1 and X2 be two variables (incomes, returns/prospects)

at either two different points in time, or for different regions or countries, or with or without a

program (treatment). Let Xki, i = 1, . . . , N ; k = 1, 2 denote the not necessarily i.i.d. observations.
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Let U1 denote the class of all von Neumann-Morgenstern type utility functions, u, such that u0 ≥
0, (increasing). Also, let U2 denote the class of all utility functions in U1 for which u00 ≤ 0 (strict
concavity). Let F1(x) and F2(x) denote the cumulative distribution functions, respectively.

Definition 1 X1 First Order Stochastic Dominates X2, denoted X1 ºFSD X2, if and only if:

(1) E[u(X1)] ≥ E[u(X2)] for all u ∈ U1, with strict inequality for some u; Or
(2) F1(x) ≤ F2(x) for all x with strict inequality for some x.

Definition 2 X1 Second Order Stochastic Dominates X2, denoted X1 ºSSD X2, if and only if either:

(1) E[u(X1)] ≥ E[u(X2)] for all u ∈ U2, with strict inequality for some u; Or:
(2)

R x
−∞ F1(t)dt ≤

R x
−∞ F2(t)dt for all x with strict inequality for some x.

Weak orders of SD obtain by eliminating the requirement of strict inequality at some point. When

dominance is not present, any strong ordering by specific indices that correspond to specific utility

functions in U1 and U2, will not enjoy general acceptance.
Our methods are applicable to higher orders of dominance. Whitmore introduced the concept

of third order stochastic dominance (TSD) in finance, see (e.g.) Whitmore and Findley (1978).

Shorrocks and Foster (1987) showed that the addition of a “transfer sensitivity” requirement leads to

TSD ranking of income distributions. This requirement is stronger than the Pigou-Dalton principle

of transfers since it makes regressive transfers less desirable at lower income levels. Higher order SD

relations correspond to increasingly smaller subsets of U2. Davidson and Duclos (2000) offer a very
useful characterization of any SD order and tests. Define D(s)

k (x) =
R x
−∞D

(s−1)
k (t)dt, k = 1, 2, where

D
(1)
k (x) = Fk(x). We say that X1 Stochastically Dominates X2 at order s, if D

(s)
1 (x) ≤ D

(s)
2 (x) for

all x with strict inequality for some x.

In this paper we shall also consider the concept of prospect stochastic dominance (PSD). Kahne-

man and Tversky (1979) mounted a critique of expected utility theory and introduced an alternative

theory, called prospect theory. They argued that their model provided a better rationalization of

the many observations of actual individual behavior taken in laboratory experiments. Specifically,

they proposed an alternative model of decision making under uncertainty in which: (a) gains and

losses are treated differently; (b) individuals act as if they had applied monotonic transformations

to the underlying probabilities before making payoff comparisons.3 Taking only part (a), individuals

would rank prospects according to the expected value of S-shaped utility functions u ∈ UP ⊆ U1 for
which u00(x) ≤ 0 for all x > 0 but u00(x) ≥ 0 for all x < 0. These properties represent risk seeking for

3In Tversky and Kahneman (1992) this idea is refined to make the cumulative distribution function of payoffs the

subject of the transformation. Thus, individuals would compare the distributions F ∗k = T (Fk), where T is a monotonic

decreasing transformation that can be interpreted as a subjective revision of probabilities that varies across investors.
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losses but risk aversion for gains. This leads naturally to the definition [c.f. Levy and Wiener (1998,

Theorem 4)]

Definition 3 X1 Prospect Stochastic Dominates X2, denoted X1 ºPSD X2, if and only if either

(1) E[u(X1)] ≥ E[u(X2)] for all u ∈ UP , with strict inequality for some u; Or:
(2)

R x
y
F1(t)dt ≤

R x
y
F2(t)dt for all pairs (x, y) with x > 0 and y < 0 with strict inequality for

some (x, y).

Now consider the second component of prospect theory, (b), the transformation of probabilities.

Levy and Wiener (1998) show that the PSD property is preserved under the class of monotonic

transformations that are concave for gains and convex for losses. Therefore, if one can verify that

a prospect is dominated according to (2), this implies that it will be dominated even after certain

transforming of the probabilities.

Finally, Levy and Levy (2002) also discuss the concept of Markowitz Stochastic Dominance

(MSD). In this case individuals rank outcomes according to the expected value of reverse S-shaped

utility functions u ∈ UM ⊆ U1 for which u00(x) ≥ 0 for all x > 0 but u00(x) ≤ 0 for all x < 0. These

properties represent risk seeking for gains but risk aversion for losses. Levy and Levy (2002, p1339)

show that X1 ºMSD X2 when
³R y
−∞+

R∞
x

´
F1(t)dt ≤

³R y
−∞+

R∞
x

´
F2(t)dt for all pairs (x, y) with

x > 0 and y < 0 with strict inequality for some (x, y). As Levy and Levy (2002, p1340) discuss,

MSD is not exactly the opposite of PSD. However, when the outcomes have a common mean they

are opposites: if X1 ºPSD X2, then X2 ºMSD X1 in that case.

3 The Test Statistics

Suppose there areK prospects X1, . . . , Xk and let A = {Xk : k = 1, . . . ,K}. Let {Xki : i = 1, . . . , N}
be realizations of Xk for k = 1, . . . ,K. To subsume the empirically important case of “residual”

dominance, we suppose that {Xki : i = 1, . . . , N} might depend on an unknown finite dimensional
parameter θk0 ∈ Θk ⊂ RLk :

Xki = Yki − Z>kiθk0, (1)

where the random variables Yki ∈ R and Zki ∈ RLk satisfy the linear regression relationship

Yki = µk0 + Z>kiθk0 + εki, E(εki|Zki) = 0 a.s. (2)

for µk0 ∈ R, i = 1, . . . , N and k = 1, . . . ,K. Therefore, Xki can be viewed as an “intercept-

adjusted” regression error with mean µk0. We allow for serial dependence of the realizations and for

mutual correlation across prospects. Let Xki(θ) = Yki − Z>kiθ, Xki = Xki(θk0), and bXki = Xki(bθk),
6



where bθk is some sensible estimator of θk0 whose properties we detail below, i.e., the prospects
can be estimated from the data. (When the prospects do not depend on estimated parameters,

i.e., Xki(θ) = Xki, results analogous to those given below can be established using a substantially

simpler arguments than ours.) Since we have a linear regression model, there are many possible

ways of obtaining consistent estimates of the unknown parameters. The motivation for considering

estimated prospects is that when data is limited one may want to use a model to adjust for systematic

differences. Common practice is to group the data into subsets, say of families with different sizes, or

by educational attainment, or subgroups of funds by investment goals, and then make comparisons

across homogenous populations. When data are limited this can be difficult. In addition, the

preliminary regressions may identify “causes” of different outcomes which may be of substantive

interest and useful to control for.

For k = 1, . . . ,K, define

Fk(x, θ) = P (Xki(θ) ≤ x) and

F kN(x, θ) =
1

N

NX
i=1

1 (Xki(θ) ≤ x) .

We denote Fk(x) = Fk(x, θk0) and F kN(x) = F kN(x, θk0), and let F (x1, . . . , xk) be the joint c.d.f. of

(X1, . . . , Xk)
>. Define

D
(1)
k (x, θ) = Fk(x, θ) and (3)

D
(s)
k (x, θ) =

Z x

−∞
D
(s−1)
k (t, θ)dt for s = 2, 3, . . . . (4)

With some abuse of notation, for s ≥ 1, let D
(s)
kl (x, θ) = D

(s)
k (x, θ) − D

(s)
l (x, θ),

D
(s)
k (x) = D

(s)
k (x, θk0), and D

(s)
kl (x) = D

(s)
kl (x, θk0). Now, for a given integer s ≥ 1, define the

following functionals of the distribution functions:

d∗s = min
k 6=l

sup
x∈X

h
D
(s)
kl (x)

i
(5)

p∗ = min
k 6=l

sup
x,−y∈X+

h
D
(2)
kl (x)−D

(2)
kl (y)

i
, (6)

where X denotes a given set contained in the union of the supports of Xki for k = 1, . . . ,K and

X+ = {x ∈ X , x > 0}. Without loss of generality we assume that the supports are bounded, as do
Klecan et al. (1991). The hypotheses of interest can now be stated as:

Hd
0 : d

∗
s ≤ 0 vs. Hd

1 : d
∗
s > 0, (7)

Hp
0 : p

∗ ≤ 0 vs. Hp
1 : p

∗ > 0. (8)
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The null hypothesis Hd
0 implies that the prospects in A are not s—th degree stochastically maximal,

i.e., there exists at least one prospect in A which s—th degree stochastically dominates the others.

Likewise for the prospect stochastic dominance test. It is also sometimes of interest to test the related

hypothesis that a particular outcome k dominates all other outcomes: in this case, we merely replace

‘the minimum over all k, l with k 6= l’ in (5) and (6) by ‘the minimum over all l with k 6= l’.

The test statistics we consider are based on the empirical analogues of (5) - (6). That is, they

are defined to be:

D
(s)
N = min

k 6=l
sup
x∈X

√
N
h
D
(s)

kl (x,
bθk)i

PN = min
k 6=l

sup
x,−y∈X+

√
N
h
D
(2)

kl (x,
bθk)−D

(2)

kl (y,
bθk)i ,

where:

D
(1)

k (x, θ) = F kN(x, θ)

D
(s)

k (x, θ) =

Z x

−∞
D
(s−1)
k (t, θ)dt for s ≥ 2

D
(s)

kl (x, θ) = D
(s)

k (x, θ)−D
(s)

l (x, θ) for s ≥ 1.

For s = 1 and 2, we note that D(s)
N is the same as the Klecan et al. (1991)’s test statistic, except

that we have allowed the prospects to have been estimated from the data and stochastic dominance

of any pre-specified order.

We next discuss the issue of how to compute D(s)
N and PN . There have been a number of sug-

gestions in the literature that exploit the step-function nature of F kN(t, θ). The supremum in D
(1)
N

can be (exactly) replaced by a maximum taken over all the distinct points in the combined sample.

Regarding the computation of D(s)
N for s ≥ 2, Klecan et al. (1991) propose a recursive algorithm

for exact computation of D(2)
N and Barrett and Donald (2003) propose an extension to D(3)

N , see also

Davidson and Duclos (1999). Integrating by parts, we have

D
(s)
k (x) =

1

(s− 1)!
Z x

−∞
(x− t)s−1dFk(t),

which holds for all x provided E kXkks−1 < ∞ for s ≥ 1. Therefore, it can be computed by its

empirical analogue

D
(s)

k (x, θ) =
1

N(s− 1)!
NX
i=1

(x−Xki(θ))
s−11 (Xki(θ) ≤ x)

for s ≥ 1. To reduce the computation time, it may be preferable to compute approximations to the
suprema in D(s)

N and PN based on taking maxima over some smaller grid of points XJ = {x1, . . . , xJ},
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where J < N. This is especially true of PN , which requires a grid on R+ × R−. Thus, we might
compute

P J
N = min

k 6=l
max

x,−y∈XJ
1√
N

NX
i=1

{(x−Xki(bθk))1(Xki(bθk) ≤ x)− (y −Xli(bθl))1(Xli(bθl) ≤ y)},

where XJ ⊂ R+. Theoretically, provided the set of evaluation points becomes dense in the joint
support, the distribution theory is unaffected by using this approximation.

4 Asymptotic Null Distributions

4.1 Regularity Conditions

We need the following assumptions to analyze the asymptotic behavior of our test statistics:

Assumption 1: (i) {(Yki, Zki) : i = 1, . . . , N} is a strictly stationary and α- mixing sequence

with α(m) = O(m−A) for some A > max{(q−1)(q+1), 1+2/δ} for k = 1, . . . ,K, where q is an even

integer that satisfies q > 3(Lmax + 1)/2, Lmax = max{L1, . . . , LK} and δ is a positive constant that

also appears in Assumption 2(ii) below. (ii) E||Zki||2 <∞ for all k = 1, . . . ,K, for all i ≥ 1. (iii) The
conditional distribution Hk(·|Zki) of Xki given Zki has bounded density with respect to Lebesgue

measure a.s. for k = 1, . . . ,K, for all i ≥ 1.
Assumption 2: (i) The parameter estimator satisfies

√
N(bθk − θk0) =

(1/
√
N)
PN

i=1 Γk0ψk(Yki, Zki, θk0) + op(1), where Γk0 is a non-stochastic matrix for k = 1, . . . ,K; (ii)

The function ψk(y, z, θ) : R×RLk ×Θk → RLk is measurable and satisfies (a) Eψk(Yki, Zki, θk0) = 0

and (b) E||ψk(Yki, Zki, θk0)||2+δ <∞ for some δ > 0 and for k = 1, . . . ,K, for all i ≥ 1.
Assumption 3: (i) The function Fk(x, θ) is differentiable in θ on a neighborhood Θk0 of θk0 for

k = 1, . . . ,K; (ii) For k = 1, . . . ,K and for all sequence of positive constants {ξN : N ≥ 1} such that
ξN → 0, supx∈X supθ:kθ−θk0k≤ξN ||(∂/∂θ)D

(s)
k (x, θ)−∆(s)

k0 (x)||→ 0, where∆(s)
k0 (x) = (∂/∂θ)D

(s)
k (x, θk0);

(iii) supx∈X ||∆(s)
k0 (x)|| <∞ for k = 1, . . . ,K.

For the tests D(s)
N (for s ≥ 2) and PN we need the following modification of Assumption 1:

Assumption 1∗: (i) {(Yki, Zki) : i = 1, . . . , N} is a strictly stationary and α- mixing sequence

with α(m) = O(m−A) for some A > max{(s − 1)rq/(r − q), 1 + 2/δ} for k = 1, . . . ,K and some

r > q ≥ 2, where q satisfies q > Lmax and δ is a positive constant that also appears in Assumption

2(ii). (ii) E kZkik(s−1)r <∞ for k = 1, . . . ,K, for all i ≥ 1.
Remarks.

1. The mixing condition in Assumption 1 is stronger than the condition used in Klecan et. al.

(1991, Theorem 6). This assumption, however, is needed to verify the stochastic equicontinuity

of the empirical process (for a class of bounded functions) indexed by estimated parameters, see
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proof of Lemma 1(a). Assumption 1∗ introduces a trade-off between mixing and moment conditions.

This assumption is used to verify the stochastic equicontinuity result for the (possibly) unbounded

functions that appear in the test D(s)
N for s ≥ 2 (or PN). Without the estimated parameters, weaker

conditions on the dependence can be assumed.

2. Assumption 3 shows that, for higher order stochastic dominance, we need less smoothness of

the distribution functions. Intuitively, this is true because integration is a smoothing operation in

general.

3. When there are no estimated parameters, Assumptions 2 and 3 and the moment conditions in

Assumptions 1(ii) and 1∗(ii) are redundant.

4.2 The Null Distributions

In this section, we derive the asymptotic distributions of our test statistics under the null hypotheses.

To help understanding of the reader, we first introduce a heuristic argument for the testD(1)
N in the

simplest setting, in which there are no estimated parameters andK = 2. Suppose that F1(x) ≤ F2(x)

for all x ∈ X but F1(x) = F2(x) for x ∈ B (⊂ X ). Assume that B is nonempty, which implies d∗1 = 0.
Let AN(x) =

√
N [F 1N(x)−F 2N(x)], AN(x) =

√
N [F1(x)−F2(x)], and eAN(x) = AN(x)−AN(x). By

an empirical process CLT, the “centered” process eAN(·) will converge weakly to a mean zero Gaussian
process, say v(·), under suitable regularity conditions. Since AN(x) = 0 for x ∈ B but AN(x) →
−∞ for x /∈ B, it is easy to see that the supremum of the uncentered process AN(x) (= eAN(x) +

AN(x)) over x ∈ X is approximately equal to the supremum of the centered process eAN(x) over

x ∈ B forN sufficiently large. On the other hand, supx∈X [−AN(x)] will diverge to infinity. Therefore,

it follows that the asymptotic distribution of D(1)
N = min{supx∈X [AN(x)], supx∈X [−AN(x)]} will be

determined by supx∈X [AN(x)], and the latter will converge weakly to supx∈B [v(x)] as discussed above.

Clearly, if F1(x) < F2(x) for all x ∈ X and hence B is empty, then D(1)
N will diverge to minus infinity.

We now turn to our general setting and make the above heuristic statement more rigorous. For

a given integer s ≥ 1, define the empirical processes in x (and y) and θ to be:

ν
(s)
kN(x, θ) =

√
N
h
D
(s)

k (x, θ)−D
(s)
k (x, θ)

i
(9)

νpkN(x, y, θ) = ν
(2)
kN(x, θ)− ν

(2)
kN(y, θ).

Let ( ed(s)kl (·) ν>k0 ν>l0 )
> be a mean zero Gaussian process with covariance function given by

C
(s)
kl (x1, x2) = lim

N→∞
E

⎛⎜⎜⎝
ν
(s)
kN(x1, θk0)− ν

(s)
lN (x1, θl0)√

NψkN(θk0)√
NψlN(θl0)

⎞⎟⎟⎠
⎛⎜⎜⎝

ν
(s)
kN(x2, θk0)− ν

(s)
lN (x2, θl0)√

NψkN(θk0)√
NψlN(θl0)

⎞⎟⎟⎠
>

, (10)
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where ψkN(θk0) = (1/N)
PN

i=1 ψk(Yki, Zki, θk0) for all 1 ≤ k ≤ K. We analogously define

( epkl(·, ·) ν>k0 ν>l0 )
> to be a mean zero Gaussian process with covariance function Cp

kl(x1, y1, x2, y2),

which is equal to (10) except that ν(s)jN(xi, θj0) is replaced by νpjN(xi, yi, θj0) for j = k, l and i =

1, 2. The limiting null distributions of our test statistics are given in the following theorem.

Theorem 1. (a) Suppose that Assumptions 1-3 hold when s = 1 and Assumptions 1 ∗, 2 and 3

hold when s ≥ 2. Then, under the null Hd
0, we have

D
(s)
N ⇒

⎧⎨⎩ min(k,l)∈I(s) supx∈B(s)kl

hed(s)kl (x) +∆
(s)
k0 (x)

>Γk0νk0 −∆
(s)
l0 (x)

>Γl0νl0
i
if d∗s = 0

−∞ if d∗s < 0,

where I(s) = {(k, l)|k 6= l, supx∈X [D
(s)
k (x)−D

(s)
l (x)] = 0} and B(s)kl = {x ∈ X : D

(s)
k (x) = D

(s)
l (x)}.

(b) Suppose that Assumptions 1 ∗, 2 and 3 hold with s = 2. Then, under the null Hp
0, we have

PN ⇒
(
min(k,l)∈Ip sup(x,y)∈Bpkl

£epkl(x, y) + Ξk0(x, y)
>Γk0νk0 − Ξl0(x, y)

>Γl0νl0
¤
if p∗ = 0

−∞ if p∗ < 0,

where Ip = {(k, l)|k 6= l, supx,−y∈X+ [D
(2)
kl (x)−D

(2)
kl (y)] = 0}, Bp

kl = {(x, y) : x ∈ X+,−y ∈ X+ and
D
(2)
kl (x) = D

(2)
kl (y)}, and Ξk0(x, y) = ∆

(2)
k0 (x)−∆

(2)
k0 (y).

Theorem 1 shows that the asymptotic null distribution of D(s)
N (PN) is non-degenerate at the

boundary d∗s = 0 (p
∗ = 0) of the null hypothesis and depends on the “true” parameters {θk0 : k =

1, . . . ,K} and the full joint distribution function F of {Xki : k = 1, . . . ,K}. The latter implies that
the asymptotic critical values for D(s)

N and PN can not be tabulated once and for all. However, we

define below various procedures to estimate them from the data.

5 Critical Values by Subsampling

We next describe our main method for obtaining critical values, the subsampling approach. We

derive its asymptotic properties and propose various practical methods for selecting subsample size.

As was pointed out by Klecan et. al. (1991), even when the data are i.i.d. the standard bootstrap

does not work because one needs to impose the null hypothesis in that case, which is difficult because

it is defined by a complicated system of inequalities, see below for more discussion. The mutual

dependence of the prospects and the time series dependence in the data also complicate the issue

considerably. The subsampling method is very simple to define and yet provides consistent critical

values in a very general setting. In contrast to the simulation approach of Klecan et. al. (1991), our

procedure does not require the assumption of generalized exchangeability of the underlying random

variables. Indeed, we require no additional assumptions beyond those that have already been made.

11



We first define the subsampling procedure. Let Wi = {(Yki, Zki) : k = 1, . . . ,K} for i = 1, . . . , N
and TN denote our test statistic D

(s)
N or PN . With some abuse of notation, the test statistic TN can

be re-written as a function of the data {Wi : i = 1, . . . , N} :

TN =
√
NtN(W1, . . . ,WN),

where tN(W1, . . . ,WN) is given by mink 6=l supx∈X [D
(s)

kl (x,
bθk)] for TN = D

(s)
N and

mink 6=l supx,−y∈X+ [D
(2)

kl (x,
bθk)−D

(2)

kl (y,
bθk)] for TN = PN . Let

GN(w) = P
³√

NtN(W1, . . . ,WN) ≤ w
´

(11)

denote the distribution function of TN . Let tN,b,i be equal to the statistic tb evaluated at the subsample

{Wi, . . . ,Wi+b−1} of size b, i.e.,

tN,b,i = tb(Wi,Wi+1, . . . ,Wi+b−1) for i = 1, . . . , N − b+ 1.

This means that we have to recompute bθl(Wi,Wi+1, . . . ,Wi+b−1) using just the subsample as well.

We note that each subsample of size b (taken without replacement from the original data) is indeed a

sample of size b from the true sampling distribution of the original data. Hence, it is clear that one can

approximate the sampling distribution of TN using the distribution of the values of tN,b,i computed

over N − b + 1 different subsamples of size b. That is, we approximate the sampling distribution

GN of TN by bGN,b(w) =
1

N − b+ 1

N−b+1X
i=1

1
³√

btN,b,i ≤ w
´
.

Let gN,b(1− α) denote the (1− α)-th sample quantile of bGN,b(·), i.e.,

gN,b(1− α) = inf{w : bGN,b(w) ≥ 1− α}.

We call it the subsample critical value of significance level α. Thus, we reject the null hypothesis at

the significance level α if TN > gN,b(1−α). The computation of this critical value is not particularly

onerous, although it depends on how big b is. The subsampling method has been proposed in Politis

and Romano (1994) and is thoroughly reviewed in Politis, Romano, and Wolf (1999). It works in

many cases where the standard bootstrap fails: in heavy tailed distributions, in unit root cases, in

cases where the parameter is on the boundary of its space, etc.4

4In Barrett and Donald (2003) the outcomes have different sample sizes, say M and N with M < N (K = 2), and

the data were mutually independent and independent over i. In that case, the subsampling algorithm can be applied

to the two separate series with subsample sizes bbM and bbN respectively. Alternatively, one can use subsample bbM for

the vector sample of size M, and then apply the subsampling algorithm with bbN−M to the incremental scalar sample.

This latter approach works also when there is dependence amongst the outcomes in the common sample.

12



We now show that our subsampling procedure works under a very weak condition on b. In many

practical situations, the choice of b will be data-dependent, see the next section for some methodology

for choosing b. To accommodate such possibilities, we assume that b = bbN is a data-dependent

sequence satisfying

Assumption 4: P [lN ≤ bbN ≤ uN ]→ 1 where lN and uN are integers satisfying 1 ≤ lN ≤ uN ≤
N, lN →∞ and uN/N → 0 as N →∞.

The following theorem shows that our test based on the subsample critical value has asymptoti-

cally correct size.

Theorem 2. Suppose Assumptions 2-4 hold. In addition, suppose that Assumption 1 (when

s = 1) or Assumption 1∗(when s ≥ 2) holds if TN = D
(s)
N , and Assumption 1 ∗ with s = 2 holds if

TN = PN . Then, under the null hypothesis Hd
0 (H

p
0), we have that

(a) gN,bbN (1− α)
p→
(

g(1− α) if d∗s = 0 (p
∗ = 0)

−∞ if d∗s < 0 (p∗ < 0)

(b) P [TN > gN,bbN (1− α)]→
(

α if d∗s = 0 (p
∗ = 0)

0 if d∗s < 0 (p∗ < 0)

as N →∞, where g(1−α) denotes the (1−α)-th quantile of the asymptotic null distribution of TN
which is given in Theorem 1(a) (1(b)).

Remarks.

1. When d∗s = 0 (or p
∗ = 0), Theorem 2 shows that the level α critical value gN,bbN (1−α) obtained

from the subsampling distribution of the test statistic TbbN converges to the critical value g(1 − α)

from the limit distribution of TN . This suggests that, at the boundary of the null hypothesis, the

asymptotic significance level of the test TN using the subsample critical value is α as desired.

2. When d∗s < 0 (or p
∗ < 0), i.e., in the interior of the null hypothesis, Theorem 2 suggests that

the type I error of the test TN (based on the subsample critical value gN,bbN (1−α)) is asymptotically

zero. This holds because both TN and gN,bbN (1− α) diverge to −∞ as N →∞ in this case, but the

rate of divergence is faster for TN than for gN,bbN (1−α) as long as bbN goes to infinity at a slower rate
than N, i.e., when Assumption 4 holds, see proof of Theorem 2 for details.

5.1 Asymptotic Power Properties

In this section, we investigate power properties of our tests. To help the reader understand why the

subsampling test has non-trivial power against fixed and local alternatives, we first discuss a simple

testing problem: Let {X1, . . . , XN} be a random sample from N(µ, 1) and the null and alternative

hypotheses of interest are given by H0 : µ = 0 and H1 : µ > 0 respectively. Consider the t-test

13



statistic TN =
√
NXN , which satisfies TN ⇒ N(0, 1) as N → ∞ under H0. Let gN,b(1 − α) be the

subsample critical value, i.e., the (1− α)-th quantile of the subsampling distribution of Tb =
√
bXb,

where b denotes the subsample size (that satisfies b → ∞ and b/N → 0 as N → ∞). Note that
Tb ⇒ N(0, 1) as b → ∞ under H0. Clearly, the test (that rejects H0 if TN > gN,b(1 − α)) has

asymptotically correct size α. Now, suppose that the alternative hypothesis H1 is true. Then, both

TN and gN,b(1 − α) diverge (in probability) to ∞ but the latter diverges at a slower rate than the

former, so that the test would reject H0 with high probability for N large. More specifically, note

that, under H1, both XN and Xb converges (in probability) to µ (> 0) as N, b→∞ and hence

P (TN > gN,b(1− α)) = P
³p

N/bXN > gN,b(1− α)/
√
b
´

= P
³p

N/bµ > µ
´
+ o(1)→ 1,

where the latter convergence holds since limN→∞(N/b) > 1. This establishes that the subsampling

test is consistent against H1. On the other hand, consider a sequence of local alternatives Ha : µ(=

µN) = δ/
√
N, where δ > 0. UnderHa, we have TN ⇒ N(δ, 1), while Tb =

√
b(Xb−µN)+(b/N)1/2 δ ⇒

N(0, 1) since b/N → 0. This implies that

P (TN > gN,b(1− α))→ P (N(δ, 1) > z1−α) > α,

where z1−α denotes the (1 − α)-th quantile of the standard normal distribution. This establishes

that the test has the same first order non-trivial local power as the test based on the normal critical

values, and is asymptotically locally unbiased as desired.

We now come back to our tests of stochastic dominance. We first establish that the test D(s)
N

(PN) is consistent against the fixed alternative hypothesis Hd
1 (H

p
1). As in the previous section, we

shall let TN denote the test statistic D
(s)
N (or PN).

Theorem 3. Suppose that the assumptions in Theorem 2 hold. Then, under the alternative

hypothesis Hd
1 (or H

p
1), we have

P
h
TN > gN,bbN (1− α)

i
→ 1 as N →∞.

Next, we determine the power of the test TN against a sequence of contiguous alternatives con-

verging to the boundary d∗s = 0 (or p∗ = 0) of the null hypothesis at the rate N−1/2. To this

end, we allow the distribution functions to depend on N under the local alternatives and denote

FkN(x, θ) = P (Xi(θ) ≤ x). Also, define

D
(1)
kN(x, θ) = FkN(x, θ) and

D
(s)
kN(x, θ) =

Z x

−∞
D
(s−1)
kN (t, θ)dt for s = 2, 3, . . . .

14



and let Fk,N(x, θk0) = FkN(x). For the test TN = D
(s)
N , we consider the following sequence of local

alternatives:

D
(s)
kN(x) = D

(s)
k (x) +

δ
(s)
k (x)√
N

for 1 ≤ k ≤ K;N ≥ 1, (12)

where δ(s)k (·) is a real function satisfyingmin(k,l)∈I(s) supx∈B(s)kl
[δ
(s)
k (x)−δ(s)l (x)] > 0 andD(s)

k (·) satisfies
d∗s = 0, see Theorem 1 for the definition of I(s) and B(s)kl . (The latter restriction ensures that the

alternative functionals (12) shrink to the functionals satisfying the null restriction asymptotically.)

Likewise, for the test TN = PN , the local alternatives are defined to be

D
(2)
kN(x) = D

(2)
k (x) +

δpk(x)√
N

for 1 ≤ k ≤ K;N ≥ 1, (13)

where δpk(·) is a real function with min(k,l)∈Ip sup(x,y)∈Bpkl [(δ
p
k(x)− δpl (x))− (δpk(y)− δpl (y))] > 0 and

D
(2)
k (·) satisfies p∗ = 0.
To analyze the asymptotic behavior of the test under local alternatives, we need to modify the

assumptions in Section 4.1. That is, we assume:

Assumption 1-lc: (i) {(YNki, ZNki) =: (Yki, Zki) : i ≥ 1, N ≥ 1} is an α- mixing array with

α(m) = O(m−A) for some A > max{(q − 1)(q + 1), 1 + 2/δ} for k = 1, . . . ,K, where q is an even

integer that satisfies q > 3(Lmax + 1)/2, Lmax = max{L1, . . . , LK} and δ is a positive constant that

also appears in Assumption 2-lc (ii) below. (ii) supN≥1E kZkik2 < ∞ for all k = 1, . . . ,K, for all

i ≥ 1. (iii) The conditional distribution Hk(·|Zki) of Xki given Zki has a density with respect to

Lebesgue measure a.s. for all k = 1, . . . ,K, for all i ≥ 1 which is bounded uniformly over N ≥ 1.
Assumption 2-lc : (i) The parameter estimator satisfies

√
N(bθk − θk0) =

(1/
√
N)
PN

i=1 Γk0ψk(Yki, Zki, θk0)+op(1), where Γk0 is a non-stochastic matrix for k = 1, . . . ,K. ; (ii)

The function ψk(y, z, θ) : R×RLk×Θk → RLk is measurable and satisfies (a)
√
NEψk(Yki, Zki, θk0)→

mk0 and (b) supN≥1E kψk(Yki, Zki, θk0)k2+δ <∞ for some δ > 0 and for k = 1, . . . ,K, for all i ≥ 1.
Assumption 3-lc: (i) The function FkN(x, θ) is differentiable in θ on a neighborhood Θk0 of

θk0 for k = 1, . . . ,K; (ii) For all sequences of positive constants {ξN : N ≥ 1} such that ξN → 0,

supx∈X supθ:kθ−θk0k≤ξN || (∂/∂θ)D
(s)
kN(x, θ) − ∆

(s)
k0 (x)|| → 0 for k = 1, . . . ,K, where ∆

(s)
k0 (x) is as in

Assumption 3(ii); (iii) supx∈X ||∆(s)
k0 (x)|| <∞ for k = 1, . . . ,K.

For the tests D(s)
N (for s ≥ 2) and PN we need to modify Assumption 1-lc:

Assumption 1∗-lc: (i) {(YNki, ZNki) =: (Yki, Zki) : i = 1, . . . , N} is a strictly stationary and α-

mixing array with α(m) = O(m−A) for some A > max{(s− 1)rq/(r − q), 1 + 2/δ} for k = 1, . . . ,K
and some r > q ≥ 2, where q satisfies q > Lmax and δ is a positive constant that also appears in

Assumption 2(ii). (ii) supN≥1E kZkik(s−1)r <∞ for k = 1, . . . ,K, for all i ≥ 1.
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Note that Assumption 2-lc implies that the asymptotic distribution of
√
N(bθk − θk0) has mean

mk0 which might be non-zero under local alternatives. Now, the asymptotic distributions of D
(s)
N and

PN under the local alternatives are given in the following theorem:

Theorem 4. (a) Suppose that Assumptions 1-lc, 2-lc and 3-lc hold when s = 1 and Assumptions

1 ∗-lc, 2-lc and 3-lc hold when s ≥ 2. Then, under the local alternatives, we have

D
(s)
N ⇒ L

(s)
D , where:

L
(s)
D = min

(k,l)∈I(s)
sup
x∈B(s)kl

hed(s)kl (x) +∆
(s)
k0 (x)

>Γk0νk0 −∆
(s)
l0 (x)

>Γl0νl0 + µ
(s)
kl (x)

i
,

µkl(x) = ∆
(s)
k0 (x)

>Γk0mk0 −∆
(s)
l0 (x)

>Γl0ml0 + δ
(s)
k (x)− δ

(s)
l (x),

I(s), B(s)kl and ∆
(s)
k0 (x) are defined as in Theorem 1 and ( ed(s)kl (·), ν>k0, ν>l0 )

> is the Gaussian process

defined in Section 4.2.

(b) Suppose that Assumptions 1 ∗-lc, 2-lc and 3-lc hold with s = 2. Then, under the local alter-

natives, we have

PN ⇒ LP , where:

LP = min
(k,l)∈Ip

sup
(x,y)∈Bpkl

£epkl(x, y) + Ξk0(x, y)
>Γk0νk0 − Ξl0(x, y)

>Γl0νl0 + µpkl(x, y)
¤
,

µpkl(x, y) = Ξk0(x, y)
>Γk0mk0 − Ξl0(x, y)

>Γl0ml0 + δpk(x)− δpl (x)− δpk(y) + δpl (y),

Ip, Bp
kl and Ξk0(x, y) are defined as in Theorem 1 and ( epkl(·, ·), ν>k0, ν>l0 )

> is the Gaussian process

defined in Section 4.2.

Theorem 4 implies that asymptotic local power of our tests based on the subsample critical value

is given by the following Corollary:

Corollary 5. Suppose that the Assumptions in Theorem 4 hold. Then, under the local alterna-

tives, we have

P
h
TN > gN,bbN (1− α)

i
→ P [L > g(1− α)]

as N →∞, where TN =D
(s)
N (or PN), L = L

(s)
D (or LP ), and gN,bbN (1− α) and g(1− α) are defined

as in Theorem 2.

Remarks.

1. Theorem 4 implies that our test is asymptotically locally unbiased, i.e.

lim
N→∞

P [TN > gN,bbN (1− α)] ≥ α (14)
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under the local alternatives. When TN = D
(s)
N , for example, this follows because we have

P

⎡⎣ min
(k,l)∈I(s)

sup
x∈B(s)kl

hed(s)kl (x) +∆
(s)
k0 (x)

>Γk0νk0 −∆
(s)
l0 (x)

>Γl0νl0 + µ
(s)
kl (x)

i
> g(1− α)

⎤⎦ (15)

≥ P

⎡⎣ min
(k,l)∈I(s)

sup
x∈B(s)kl

hed(s)kl (x) +∆
(s)
k0 (x)

>Γk0νk0 −∆
(s)
l0 (x)

>Γl0νl0
i
> g(1− α)

⎤⎦ = α

by Anderson’s lemma (e.g., see Bickel et al. (1993, p.466)) and the left-hand-sides of (14) and (15)

are equal by Theorem 4. A similar result also applies to the test TN = PN using an analogous

argument.

2. Corollary 5 shows that the asymptotic local power of the test TN against the local alternatives

is given by P [L > g(1− α)] .

5.2 Choice of Subsample Size

In practice, the choice of b is important but rather difficult. Subsample size can be interpreted as a

sort of smoothing parameter, like a bandwidth in kernel regression, except that it is integer valued

and increases with sample size. Although a lot has been written on bandwidth choice for density and

regression estimation by kernel methods, most of that theory is not relevant here for two reasons.

First, b does not affect the first order distribution of the test under either null or local alternatives,

and so its effect is second order. Second, in the testing application the objectives of size and power

are often in conflict: tests that have good size [i.e., null rejection frequency close to the limiting value]

tend to have poor power and vice versa. Fan and Linton (2003) have characterized this trade-off

explicitly using higher order expansions in the context of a test of a parametric null regression against

nonparametric alternatives. Unless the practitioner is willing to specify a preference function over

the two conflicting objectives there is no unique best amount of smoothing. Nevertheless, there have

been various proposals in the literature. Politis, Romano, and Wolf (1999) discuss various methods

for selecting subsample size in the context of estimation and testing problems. Delgado, Rodriguez-

Poo, and Wolf (2001) propose a method for selecting b to minimize size distortion in the context of

hypothesis testing within the maximum score estimator, although no optimality properties of this

method were proven.

We propose a number of practical criteria for choosing b and investigate below how well they do

in practice. Let

BN = {bN1 < bN2 < · · · < bNrN ; bj integers less than N}
be a set of candidate subsample sizes. We can allow BN to be a very large set, including almost

all, but not all, of {1, . . . , N}. Specifically, we suppose that bN1 p→ ∞ and bNrN/N
p→ 0. Therefore,
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rN , the total number of elements of BN , is allowed to increase to infinity at any rate slower than N.

For example, we could take BN to include all integers between log logN and N/ log logN, which is a

very wide range [in practice, one may want to consider a coarser grid to save on computational time].

For comparison, many results in the literature consider such sets with more limited range: Horowitz

and Spokoiny (2001) also in a testing situation consider a set of bandwidths Hn = [Hmin,Hmax] with

Hmin ≥ n−γ with 0 < γ < 1/3 [for the scalar case]; see also Härdle and Marron (1985).

Our methods will select a sequence of subsample values from BN [hence the conditions of our

Theorems 2-4 are satisfied by such a sequence]. For each significance level α we obtain the sample of

estimated critical values {gN,bNj
(1− α), j = 1, . . . , rN}.

Politis, Romano, and Wolf (1999) suggest the ‘minimum volatility’ method. This involves com-

puting the local (in b) standard deviation of gN,b and then taking the subsample bbMV that minimizes

this volatility measure. The idea is that when b is in the right range the critical values should be

relatively stable.

A second approach is to use the mean or median critical value:

gN(1− α) =
1

rN

rNX
j=1

gN,bNj
(1− α) (16)

gMed
N (1− α) = med{gN,bNj

(1− α) : j = 1, . . . , rN}, (17)

and reject when TN > gN(1− α) in the first case and reject when TN > gMed
N (1− α) in the second

case.5 The idea in the median case is that each critical value reflects a standard of evidence from a

different ‘court of opinion’. Taking the median critical value is like taking the majority outcome of

a vote by all critical values on accept or reject.

In applications, we favor computing a plot of p-values against subsamples for a range of subsam-

ples. If the p-value is insensitive to subsample sizes within a ‘reasonable’ range, then inferences are

likely to be robust, and whatever automatic method is chosen will yield similar results. We illustrate

this method below.

6 Critical Values by Recentered Bootstrap

We next define an alternative to our subsampling procedure based on full-sample bootstrap applied

to a recentered test statistic. When the data are mutually dependent but independent over time,

the following bootstrap procedure provides consistent critical values. Let bεki = Yki − bµk0 − Z>kibθk
5This corresponds to some implicit subsample size. Instead of doing a formal test we can equivalently report the

mean or median p-value across the sample of tests with different b ∈ BN .
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denote the residual computed using the original sample W = {Wi : i = 1, . . . , N}, where Wi =

{(Yki, Zki) : k = 1, . . . ,K}. Let ε∗i ≡ (ε∗1i, . . . , ε∗Ki)
0 for i = 1, . . . , N be the bootstrap residual vector

drawn randomly with replacement from the empirical joint distribution of centered residual vectors

{bεci = (bε1i − bε1, . . . ,bεKi − bεK)0 : i = 1, . . . , N}, where bεk = PN
i=1bεki/N .6 Drawing ε∗i as a vector

will enable the bootstrap sample to preserve the general mutual dependence that may exist in the

original sample. Then compute Y ∗ki = bµk0 + Z>kibθk + ε∗ki. Using the bootstrap sample W∗ = {W ∗
i :

i = 1, . . . , N}, where W ∗
i = {(Y ∗ki, Zki) : k = 1, . . . ,K}, compute bθ∗k. These steps will take care of

the effect of the parameter estimation error in the bootstrap distribution described below.7 Define

X∗
ki(θ) = Y ∗ki − Z>kiθ and let

D
∗(1)
k (x, θ) = F

∗
kN(x, θ) =

1

N

NX
i=1

1 (X∗
ki(θ) ≤ x)

D
∗(s)
k (x, θ) =

Z x

−∞
D
∗(s−1)
k (t, θ)dt for s ≥ 2

D
∗(s)
kl (x, θ) = D

∗(s)
k (x, θ)−D

∗(s)
l (x, θ) for s ≥ 1.

for k, l = 1, . . . ,K. Define the recentered statistics

D
∗(s)
kc (x) = D

∗(s)
k (x,bθ∗k)− E∗D

∗(s)
k (x,bθk) (18)

D
∗(s)
klc (x) = D

∗(s)
kc (x)−D

∗(s)
lc (x).

(Here and in the following discussion, E∗(·) denotes the expectation relative to the distribution of the
bootstrap sampleW∗ conditional on the original sampleW.) In the case of the independent bootstrap

sampling as above, we have E∗D
∗(s)
k (x,bθk) = D

(s)

k (x,
bθk). The centred bootstrap test statistics are

defined by

D
∗(s)
N = min

k 6=l
sup
x∈X

√
N
h
D
∗(s)
klc (x)

i
(19)

P ∗N = min
k 6=l

sup
x,−y∈X+

√
N
h
D
∗(2)
klc (x)−D

∗(2)
klc (y)

i
, (20)

We then compute the bootstrap distribution of TN = D
∗(s)
N (or P ∗N) conditional on the original sample

and take the critical value from this distribution. That is, we approximate the sampling distribution

6The centering is redundant of course when the model includes a constant term and the parameters are estimated

by OLS.
7When there are no estimated parameters, i.e., when Xki(θ) = Xki, the bootstrap sample {(X∗1i, . . . ,X∗Ki) :

i = 1, . . . , N} are defined to be a random draw (with replacement) from the empirical (joint) distribution of

{(X1i, . . . ,XKi) : i = 1, . . . ,N}.
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HN of TN by bHN(w) =
1

M

MX
i=1

1
¡
T ∗N,i ≤ w

¢
where T ∗N,i is the value of TN = D

∗(s)
N (or P ∗N) computed from the i-th bootstrap sample andM is the

number of the bootstrap samples. Let HN(1 − α) denote the (1 − α)-th sample quantile of bHN(·),
i.e.,

HN(1− α) = inf{w : bHN(w) ≥ 1− α}.
We call it the bootstrap critical value of significance level α. Thus, we reject the null hypothesis at

the significance level α if TN > HN(1− α).

This procedure can be shown to satisfy Theorems 2 and 3 in this special case of i.i.d. sampling.

We investigate the finite sample behaviour below. As we argue below, the recentering inD∗
N is crucial

and is used to impose the restriction (21). The idea of recentering has also been suggested in other

contexts by Hall and Horowitz (1999) and Whang (2001) and in this context in a recent paper by

Chernozhukov (2002).8

In the time series case, the resampling should be modified to account for the dependence, see

Horowitz (2000) or Härdle, Horowitz and Kreiss (2001) for a survey of bootstrap methods for time

series. We briefly describe the non-overlapping (viz., Carlstein (1986)) and overlapping (viz., Kün-

sch (1989)) block bootstrap procedures that can be used in our context. The observations to be

bootstrapped are the centered residuals {bεci : i = 1, . . . , N}. Let L denote the length of the blocks
satisfying L ∝ Nγ for some 0 ≤ γ ≤ 1. With non-overlapping blocks, block 1 is observations {bεcj :
j = 1, . . . , L}, block 2 is observations {bεcL+j : j = 1, . . . , L}, and so forth. There are B different

blocks, where BL = N. With overlapping blocks, block 1 is observations {bεcj : j = 1, . . . , L}, block
2 is observations {bεc1+j : j = 1, . . . , L}, and so forth. There are N − L + 1 different blocks. The

bootstrap residuals {ε∗i : i = 1, . . . , N} are obtained by sampling B blocks randomly with replace-

ment from either the B non-overlapping blocks or the N −L+1 overlapping blocks and laying them

end-to-end in the order sampled. In the case of non-overlapping bootstrap, the recentering (18) may

be done with E∗D
∗(s)
k (x,bθk) = D

(s)

k (x,
bθk) as in the independent sampling case. However, when the

overlapping block bootstrap is used, we need to recenter the statistic with

E∗D
∗(s)
k (x,bθk) = D

(s)

k,OB(x,
bθk), where:

8Chernozhukov (2002) actually combines recentering with subsampling in his application.
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D
(1)

k,OB(x, θ) =
1

N

NX
i=1

w(i, L,N)1 (Xki(θ) ≤ x) ,

D
(s)

k,OB(x, θ) =

Z x

−∞
D
(s−1)
k,OB (t, θ)dt for s ≥ 2,

w(i, L,N) =

⎧⎪⎪⎨⎪⎪⎩
i/L

1

(N − i+ 1)/L

if i ∈ [1, L− 1]
if i ∈ [L,N − L+ 1]

if i ∈ [N − L+ 2, N ] .

The remaining steps are the same as in the independent case described above.9

6.1 Comparison between Subsampling and recentered Bootstrap

In contrast to subsampling, in the full sample recentered bootstrap one has to impose the null

hypothesis in the resampling schemes. This is also true of the multiplier simulation procedure of

Barrett and Donald (2003). The usual practice in the literature has been to impose the least favorable

case where

F1(x) = · · · = FK(x) for all x ∈ X . (21)

This is easy to apply when the prospects are mutually independent and independent over time and

there are no estimated parameters - you just pool the data into a common distribution and draw

with replacement from that. In an innovative paper, Klecan et al. (1991) showed that with suitable

modification this idea can be applied to the case where the prospects are mutually dependent as

long as the dependence is of a specific variety called generalized exchangeable.10 The recentering

of the test statistic that we have made imposes (21) implicitly, thereby avoiding having to impose

these nasty restrictions in the resampling algorithm. Of course, the boundary between the null and

alternative hypothesis is a large and complicated set, while (21) is a much smaller and simpler set.

We show below that imposing the least favorable case can have negative consequences.

In general, it reasonable to expect that the full sample method such as the bootstrap approach

may be more efficient than the subsampling approach provided the former works, see e.g., Hall and

9It is also possible to sample L randomly from the geometric distribution and use the overlapping blocks. This

procedure amounts to the stationary bootstrap of Politis and Romans (1993) and it guarantees that the resulting

bootstrap data series is stationary. If the stationary bootstrap is used, the recentering is defined with E∗D
∗(s)
k (x,bθk) =

D
(s)

k (x,
bθk).

When there are no estimated parameters, the observations to be bootstrapped are {(X1i, . . . ,XKi) : i = 1, . . . , N}
and we can apply the block bootstrap methods directly to them to get the bootstrap sample {(X∗1i, . . . ,X∗Ki) :

i = 1, . . . , N}.
10This structure is necessary to their method. It is also clear that they require time series independence in the

proofs of their Theorem 7.
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Jing (1996). However, we shall show that the bootstrap might not be very satisfactory in some

situations in our testing problem. For this purpose, we first need to characterize the asymptotic

distribution of the bootstrap test statistic conditional on the original sample. Instead of providing

more technical details, we just briefly sketch the main ideas to derive the latter distribution. Consider

the statistic D∗(s)
N in (19) with E∗D

∗(s)
k (x, θ) = D

(s)

k (x, θ). By rearranging terms, we have

√
ND

∗(s)
klc (x) =

h
ν
∗(s)
kN (x,

bθ∗k)− ν
∗(s)
lN (x,bθ∗k)i

+
h
ν
(s)
kN(x,

bθ∗k)− ν
(s)
kN(x,

bθk)i− hν(s)lN (x,bθ∗l )− ν
(s)
lN (x,

bθl)i (22)

+
√
N
h
D
(s)
k (x,

bθ∗k)−D
(s)
k (x,

bθk)i−√N hD(s)
l (x,

bθ∗l )−D
(s)
l (x,

bθl)i ,
where ν∗(s)kN (x, θ) =

√
N [D

∗(s)
k (x, θ)−D

(s)

k (x, θ)] denotes an empirical process based on the bootstrap

sample W∗ and ν
(s)
kN(x, θ) is as defined in (9). Under suitable regularity conditions (and using the

stochastic equicontinuity arguments as in Lemmas 1-2 below and consistency of bθ∗k for bθk), we may
show that: Uniformly in x ∈ X ,

√
ND

∗(s)
klc (x) = ν

∗(s)
kN (x,

bθk)− ν
∗(s)
lN (x,bθk) (23)

+∆
(s)
k0 (x)

>Γk0
√
Nψ

∗
kN(
bθk)−∆

(s)
l0 (x)

>Γl0
√
Nψ

∗
lN(
bθl) + op(1)

conditional onW with probability one, where ψ
∗
kN(θ) = (1/N)

PN
i=1 ψk(Y

∗
ki, Z

∗
ki, θ).We note that the

recentering (18) is crucial because, without recentering, we would have an additional random term

in (23) that may diverge asymptotically conditional on the original sample.11 Using an argument

analogous to the proof of Theorem 1, the representation (23) implies that D∗(s)
N has the asymptotic

distribution (conditional on W with probability one) given by

LB
D ≡ min

k 6=l
sup
x∈X

hed(s)kl (x) +∆
(s)
k0 (x)

>Γk0νk0 −∆
(s)
l0 (x)

>Γl0νl0
i

(24)

Similarly, P ∗N has the asymptotic bootstrap distribution:

LB
P ≡ min

k 6=l
sup

x,−y∈X+

£epkl(x, y) + Ξk0(x, y)
>Γk0νk0 − Ξl0(x, y)

>Γl0νl0
¤
. (25)

Compare the distribution LB
D (L

B
P ) with the asymptotic null distribution given in Theorem 1(a) (1(b)).

It is easy to see that the two distributions are equal when the distributions Fk(·) for k = 1, . . . ,K are

equal, i.e., when the least favorable case (21) is true. However, our test statistic D(s)
N (PN) has a non-

degenerate limit distribution everywhere on the boundary “d∗s = 0” (“p
∗ = 0”) of our null hypothesis

Hd
0 (H

p
0). Note that “d

∗
s = 0” (or “p

∗ = 0”) is in fact a composite hypothesis and includes the least

11Essentially, the recentering has the effect of annihilating a term corresponding to the term (A.8) in the expansion

(A.6) in Appendix.
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favorable case (21) as a special case. Therefore, when (21) fails to hold but d∗s = 0 (or p
∗ = 0”) is

true,12 then the test based on the bootstrap critical value would not have asymptotic size α. In fact,

this is true with any test which implicitly imposes the restriction (21), e.g., simulation-based tests or

subsampling-based test using recentered statistics.13 This implies that the bootstrap-based test (as

well as the latter tests) is not asymptotically similar on the boundary, which in turn implies that the

test is biased, i.e., there exist alternatives under which acceptance of the hypothesis is more likely

than in some cases in which the hypothesis is true, see Lehmann (1986, Chapter 4) for the concept

of similarity and unbiasedness. On the other hand, our test based on the subsample critical value is

unbiased and asymptotically similar on the boundary since the subsampling distribution mimics the

true sampling distribution everywhere on the boundary. Note that, in general, an asymptotically

similar test is more powerful than an asymptotically non-similar test for some local alternatives

near the boundary, see also Hansen (2001) for a similar result in a different context. Against some

alternatives that are far from the boundary, however, the bootstrap test might be more powerful

than the subsampling test because the former uses the full sample information.

7 Numerical Results

7.1 Simulations

We examine three sets of designs: the Burr distributions most recently examined by Tse and Zhang

(2000), the lognormal distributions most recently studied by Barrett and Donald (2003), and the

exchangeable normal processes of Klecan et al. (1991). The first two sets have mutually independent

and temporally independent prospects, while the third designs are both mutually and temporally

dependent. By choosing already published designs, we guard against the criticism of rigging of the

performance evaluation; we may also compare our procedures with those of the authors’ in regard

to size and power, although this is not our main purpose. We do not recompute their tests, but

refer the reader to their tables to make comparison. We have also carried out simulations in the case

where there are upto 10 prospects; full details of this are available from the authors.

12For example, if K = 3, this happens if F1(x) = F2(x) for all x ∈ X but F3(x) crosses with F1 (and F2). More

generally, this happens if Fk(x) ≤ Fl(x) with equality holding for x ∈ Bkl(⊂ X ) for some pair (k, l) but there are
crossings of the distributions (i.e., no FSD relationship) for the other pairs.
13The recentred subsample method, like our uncentred subsample method, works under quite general sampling

schemes. In some cases, the former might have be more powerful than the latter in small samples, because critical

values from recentred statistics are generally Op(1), while those from uncentred statistics diverge at b1/2 rate. However,

the cost of recentring in our testing problem is that it makes the test not asymptotically similar on the boundary, as

is true with the recentred bootstrap test.
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We first give some general details common to the simulations. In computing the suprema in

DN , SN , we took a maximum over an equally spaced grid of size n on the range of the pooled

empirical distribution. We experimented with a variety of such grids, but found our approach worked

adequately. We chose a total of twenty different subsamples for each sample size N ∈ {50, 500, 1000}.
In earlier work we tried fixed rules of the form b(N) = cjN

aj ,but found it did not work as well.

Instead, we took an equally spaced grid of subsample sizes: for N = 50, the subsample sizes are

{20, 21, . . . , 40}; for N = 500 the subsample sizes are {50, 65, . . . , 350}; for N = 1000 the subsample

sizes are {100, 120, . . . , 500}. This grid of subsamples are then used to implement the automatic
methods of sections 5. We report the results of the automatic methods here and comment also on

the results for fixed subsamples [which are available from the authors]. In computing the suprema

in each dN,b,i we took the same grid of points as was used in the original test statistic. In addition

to the subsampling method we also computed the ‘recentered bootstrap’ method; we used a total of

200 bootstrap repetitions in each case. In each experiment we did 1, 000 replications. We also report

results for the subampling method with recentering as proposed in Chernozhukov (2002), and the

uncentered full-sample bootstrap.

The overall impression is that the (automatic) subsample methods and the recentered full sample

bootstrap method work reasonably well in samples above 500. The full sample method consistently

works slightly better under the null hypothesis, while the subsample method frequently works better

under the alternative. In cases where the full sample method works better, this advantage effectively

disappears in the larger sample sizes, but in cases [1c,1d,1e, and 2d below] where the subsample

method is superior, that superiority can be quite substantial and significant relative to the simulation

error of 0.0069 even in the larger sample. This is consistent with our theory. However, we note that

in the smallest sample size, the recentered bootstrap does much better for all designs, and seems to

perform adequately in many cases. The recentered subsampling method seems to have much worse

size but usually has better power properties for small sample sizes. As expected the uncentered

bootstrap performs terribly, almost never rejecting under either null or alternative hypotheses for

the nominal 5% tests. Recentering seems essential for the full sample bootstrap but not so for the

subsampling method. Regarding the automatic subsample methods, the mean critical value method

seems to have the best overall performance. In comparison with the methods used by the other

authors, again the result is a split decision. However, it is worth reminding the reader that these

designs, especially the first two settings, favor the alternative methods which are designed for i.i.d.

observations on independent or exchangeable prospects.
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7.1.1 Tse and Zhang (2000): Burr Type Distributions

In the context of independent prospects and i.i.d. observations, Tse and Zhang (2000) have provided

some Monte Carlo evidence on the power of the alternative tests proposed by Davidson and Duclos

(2000) and Anderson (1996). They also shed light on the convergence to the Gaussian limiting

distribution of these tests. The evidence on the latter issue is not very encouraging except for very

large sample sizes, and they conclude that the Davidson and Duclos test has better power than the

Anderson test for the cases they considered.

Tse and Zhang (2000) investigated the Burr Type XII distribution, B(α, β), which is often an

empirically plausible candidate in the income distribution field. This is a two parameter family

defined by:

F (x) = 1− (1 + xα)−β, x ≥ 0
where E(X) <∞ if β > 1/α > 0. This distribution has a convenient inverse: F−1(v) = [(1− v)−

1
β −

1]
1
α , 0 ≤ v < 1. We investigated the five different Burr designs of Tse and Zhang (2000), which are

given below along with the population values of d∗1, d
∗
2 :

Design X1 X2 d∗1 d∗2

1a B(4.7, 0.55) B(4.7, 0.55) 0.000(FSD) 0.0000(SSD)

1b B(2.0, 0.65) B(2.0, 0.65) 0.0000(FSD) 0.0000(SSD)

1c B(4.7, 0.55) B(2.0, 0.65) 0.1395 0.0784

1d B(4.6, 0.55) B(2.0, 0.65) 0.1368 0.0773

1e B(4.5, 0.55) B(2.0, 0.65) 0.1340 0.0761

The first two designs are in the null hypothesis, while the remaining three are in our alternative. We

report our results in Tables 1F and 1S, for cases 1a-e below.

The first two designs are useful for an evaluation of the size characteristics of our tests, but only

in the “least favorable” case of equality of the two distributions. The estimated CDFs “kiss” at many

more points than do the integrated CDFs. As a result, large sample sizes will be needed for accurate

size of FSD, as well as relatively large subsamples. For SSD, however, the accuracy is quite good for

moderate sample sizes. Given the nature of the testing problem, sample sizes less than 100 are very

small indeed. In such cases the tests will over-reject at conventional levels. Even in this demanding

case, however, one is led to the correct decision that the two (equal) prospects here do not dominate

each other. The accuracy of size estimation for SSD is rather impressive. Regarding the automatic

subsample methods, the Mean and Median methods seem to work similarly and better than the

MinVol method, especially for N = 50. MinVol overestimates size with very small sample sizes. In
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comparison, the Davidson and Duclos and Anderson tests reported in Tse and Zhang (2000) tend to

under-reject, although not substantially: for example with N = 1000, their implementations vary in

rejection frequency from 3.08% to 4.47%.

In the last three designs (Tables 1F and 1S, cases 1c-1e), the power of our tests are forcefully

demonstrated. This is so even at relatively small samples sizes. Even with a sample of size 50

there is appreciable power, especially for the recentered bootstrap method. There is not much to

choose between the performance of the three automatic methods. Regarding the fixed subsample

size methods (available from the authors): the power declines as the number of subsamples declines

(the subsample size increases). This seems to indicate that larger number of subsamples are needed

for more accurate estimation especially when moderate size samples are available. The performance

of the fixed subsample tests in these cases is quite satisfactory.

7.1.2 Barrett and Donald (2003): Lognormal Distributions

The lognormal distribution is a long celebrated case in both finance and income and wealth distrib-

ution fields. It was most recently investigated in Barrett and Donald (2003) in a Monte Carlo study

of the Klecan et al. (1991) tests along with some of its competitors. Let,

Xk = exp(µk + σkZk),

where Zk are standard normal and mutually independent.

Design X1 X2 d∗1 d∗2

2a LN(0.85, 0.62) LN(0.85, 0.62) 0.0000(FSD) 0.0000(SSD)

2b LN(0.85, 0.62) LN(0.7, 0.52) 0.0000(FSD) 0.0000(SSD)

2c LN(0.85, 0.62) LN(1.2, 0.22) 0.0834 0.0000(SSD)

2d LN(0.85, 0.62) LN(0.2, 0.12) 0.0609 0.0122

These designs are clearly favorable to the independent samples assumption in Barrett and Donald

(2003). The results shown in Tables 2F and 2S, cases a-d correspond exactly to cases 1,2,3, and 4 of

Barrett and Donald (2003).

The first two designs are in the null and the next two (2c-2d) are in the alternative for FSD,

borderline null for SSD in design 2c, and in the alternative for SSD in design 2d. The first design

is a “least favorable” case and, at least for the FSD test, it demonstrates the demand for higher

sample sizes as well as subsample sizes. The tendency is toward moderate over-rejection for very

small samples. Accuracy improves quite rapidly with sample size for SSD tests and is impressive for

most subsample sizes and moderate sample sizes. Bootstrap method does quite well in this ‘friendly’

least favorable case.
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The second design is quite instructive. While the overall results are similar to the previous case,

the differences reflect the fact that there is no FSD ranking, (or equality) and only a mild degree

of Second Order Dominance. For moderate to reasonable sample sizes the tendency is to slightly

under-reject FSD. This tendency is reduced by increasing the size of the subsamples. The results for

SSD, confirm the theoretical consistency properties of our tests. The theoretical power properties of

the subsampling test are evidenced.

Results for design 2c are quite conclusive. For moderate to large sample sizes, FSD is powerfully

rejected, while SSD is not. Very small samples are seen to be dangerous in cases where CDFs cross

(no FSD) and the degree of SSD is moderate. A comparison with the last design (case 2d) is quite

instructive. Here there is no FSD or SSD and the test is quite capable of producing the correct

inference.

In terms of a comparison with the tests investigated in Barrett and Donald (2003), we seem to

do better in some cases and worse in others. For example, in Table 2F, 2a the corresponding number

for their implementation is 0.031 for n=50 and 0.044 for n=500. In Table 2S, 2a, for n=50 they

have 0.032 and for n=500 they have 0.044. In Table 2S,2c they report zeros for n=50 and n=500.

Generally speaking their performance is better under the null hypothesis and ours is better under

the alternatives.

We note that the comparison of the automatic selection methods is similar to the previous ex-

ample. There is evidence that the subsampling tests are more powerful for SSD hypotheses than the

bootstrap.

7.1.3 Klecan, McFadden, and McFadden (1991): Multivariate Normal Processes

The previous designs had independent prospects and i.i.d observations. In this section we investigate

the three different exchangeable multinormal processes of Klecan et al. (1991),

Xki = (1− λ)
h
αk + βk

³√
ρZ0i +

p
1− ρZki

´i
+ λXk,i−1, (26)

where (Z0i, Z1i, Z2i) are i.i.d. standard normal random variables, mutually independent. The para-

meters λ = ρ = 0.1 determine the mutual correlation of X1i and X2i and their autocorrelation. The

parameters αk, βk are actually the mean and standard deviation of the marginal distributions of X1i

and X2i. This scheme produces autocorrelated and mutually dependent prospects consistent with

the assumptions of Klecan et al. (1991), but only as far as the cross-sectional dependence. Again,

these designs slightly favor their test assumptions. The marginals and the true values of the statistics

are:
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Design X1 X2 d∗1 d∗2

3a N(0, 1) N(−1, 16) 0.1981 0.0000(SSD)

3b N(0, 16) N(1, 16) 0.0000(FSD) 0.0000(SSD)

3c N(0, 1) N(1, 16) 0.1981 0.5967

The results are given in Tables 3F and S, cases a-c. Design 3a is in the alternative for FSD, and

in the null for SSD. Again we note that we need large samples and subsample sizes to infer this low

degree of SSD, but have very good power in rejecting FSD (especially for large number of subsamples

even in very small samples of 50). Design 3b is rather strongly in the null. These designs correspond

exactly to experiments 1,2, and 3 in Table 2 of Klecan et al (1991).

Small sample sizes lead to over estimation of size but, again, the larger number of subsamples

do better in these situations. Interestingly, the number and size of subsamples do not appear conse-

quential for moderate to large samples. Otherwise the theoretical power and consistency properties

are strongly confirmed. The final design 3c is clearly in the alternative for both FSD and SSD. Our

procedures show their expected power in rejecting dominance. For very small samples (50), again

larger number of subsamples do uniformly much better than otherwise (the subsample size seems

not as important), but minvol method is inferior for size calculations. The subsampling tests are

generally more powerful than the bootstrap for SSD than FSD cases.

In terms of a comparison with the tests investigated in Klecan et al. (1991), we seem to do better

in some cases and worse in others. In Table 3F, 3a the corresponding number for their implementation

is 0.096, in 3b, it is 0.060, in 3c it is 0.95, all for n=50. In Table 3S, 3a, they have 0.020, in 3b they

have 0.060, and in 3c they have 0.950, all for n=500.

7.1.4 Style Analysis

As a brief example of the residual-based testing, here we investigate a test of stochastic dominance

of different residuals from a style regression based on the Klecan et al. (1991) designs of the previous

section. Return-based style analysis [originally proposed in Sharpe (1992)] is a popular practitioner

tool to study fund managers’ performance. The style regression for the returns Ri of a given fund is

Ri = α+
JX

j=1

βjFji + εi, (27)

where Fji is the (observed) return of the some asset class, for j = 1, . . . , J, the βj’s are the factor

loadings, while εi is an idiosyncratic disturbance term that contains the part of the fund’s performance

not explained by the factors. The disturbance term ui = α+εi represents the own choice of the fund

manager and is called the selectivity of the fund. It is of interest to compare the ui from different
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funds and to rank them according to some criterion. For example it is common practice to interpret

the α of each fund as a measure of its success in selection. Given the considerable evidence on non-

normality of stock returns, relying purely on a location measure to evaluate performance may not be

appropriate, see Ho (2003) for a discussion. One could also compare the marginal distributions in a

test of the stochastic dominance of one fund over another.

We let Fi = Z0i/(1−λL), where L is the lag operator, be a single observed factor and letRki = Xki

be the return on asset k, where Xki are those generated in designs 3a-c. We have

Rki = αk + γkFi + εki, where γk = βk
√
ρ and εki =

βk(1− λ)
√
1− ρ

1− λL
Zki.

The simulations compute a test of whether u1i = α1 + ε1i dominates u2i = α2 + ε2i based on the

dataset {R1i, R2i, Fi, i = 1, . . . , N}. This involves estimating the parameters (αk, γk) by least squares

and obtaining the residuals and applying our subsampling method. The marginals of uki and the

true values of the statistics are given below

Design u1 u2 d∗1 d∗2

3Rd N(0, 0.7364) N(−1, 11.7818) 0.1936 0.0000(SSD)

3Re N(0, 11.7818) N(1, 11.7818) 0.0000(FSD) 0.0000(SSD)

3Rf N(0, 0.7364)) N(1, 11.7818) 0.1930 0.6024

The results are given in Tables 3RS and 3RF. There is a slight deterioration in performance due

to estimating the parameters, but otherwise all methods work well as before.

7.2 Application: Daily Stock Index Returns

The SD concepts have been applied extensively in the finance literature, see for recent work Post

(2002) and Abhyankar and Ho (2003). But almost all the SD testing in this area is either informal,

or assumes that one or both distributions are a priori known. In this section, we apply our tests

to a dataset of daily returns on the Dow Jones Industrials and the S&P500 stock returns from

8/24/88 to 8/22/00, a total of 3131 observations. The means of these series are 0.00055 and 0.00068

respectively, while the standard deviations are 0.00908 and 0.0223, yielding Sharpe ratios of 6.1%

and 3.1% respectively. The series are mutually dependent and dependent over time, as permitted by

our assumptions but not by say Barrett and Donald (2003). Figure 1 plots the c.d.f.’s and integrated

c.d.f. [denoted s.d.f.] of the two series over the central part of the pooled distribution. This shows

that the two c.d.f.’s cross, but the s.d.f. of the Dow Jones index dominates that of the S&P500 index

over this time period and this range of values.
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Figure 1ab

In Figure 2 we plot the surface
R x
y
[F1N(t)− F2N(t)] dt against x, y on a grid of x > 0, y < 0. This

surface is also everywhere positive, consistent with the hypothesis that the S&P500 index prospect

dominates the Dow Jones index. This can be confirmed again by looking at Figure 1a. A sufficient

condition for a random variable X to prospect dominate Y is that: max{X, 0} first order dominates
max{Y, 0} [risk aversion on the positive side] and that min{Y, 0} first order dominates min{X, 0}
[risk seeking on the negative side]. This seems to be the case in Figure 1a.
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Figure 2. Shows
R x
y
[F1N(t)− F2N(t)] dt against x > 0, y < 0.

In Figure 3 we plot the p-value of our tests of the null hypotheses d∗1 ≤ 0, d∗2 ≤ 0, and p∗ ≤ 0
against subsample size [we are testing maximality here because a priori it is not obvious, which if any

dominance relation should exist between the series]. The results suggest strongly that the evidence

is against d∗1 ≤ 0 but in favour of d∗2 ≤ 0 and p∗ ≤ 0.14 Any of the automatic methods described in
5.2 would yield the same conclusion. For comparison, the recentered bootstrap p-values are 0.1448,

0.9999, and 0.9999 respectively.

14In the test of prospect dominance we subtracted off the risk free rate measured by one month t-bill rates.
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Figure 3.

This is a rather striking result. The ranking of these return series depends on whether the

prospect theory or the usual risk measures are favoured. Although we do not report it here, the

ranking according to the MSD criterion agrees with that of SSD and Sharpe ratios. We refer the

reader to Levy and Levy (2002) for further discussion of the comparison between MSD and PSD

criteria and their appropriateness for individual behaviour.

8 Concluding Remarks

We have obtained the asymptotic distribution of well known tests for stochastic dominance of various

type and demonstrated their consistency in a very general setting that allows generic dependence

of prospects and non i.i.d observations. The availability of this technique for empirical situations

in which ranking is done conditional on desirable controls is of consequence for widespread use of

uniform ranking in empirical finance and welfare.

The performance of the subsampling technique is rather good in the cases we considered when
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the sample size is at least 500. We also gave theoretical reasons why the subsample method might

have better power than a recentered bootstrap against some alternatives close to the null hypothesis,

although there may be reasons why for alternatives far from the null hypothesis, the recentered

bootstrap would have better power. Certainly, the full sample bootstrap works much better with

small sample sizes and should be preferred in such cases.

We have chosen, like Klecan et al. (1991), to base our tests on the supremum criterion. However,

as in testing other hypotheses about c.d.f.’s there are many other criteria that could be used, see

Shorack and Wellner (1986) for a discussion. For example, the weighted supremum test based on

d∗s = mink 6=l supx∈X [w(x)D
(s)
kl (x)] for some non-negative weighting function w(x) is one possibility.

Also, one can take distances other than supremum like d∗s = mink 6=l
R
[max{0,D(s)

kl (x)}]pw(x)dx for
positive p and non-negative weighting function w(x); with p = 2 it amounts to a sort of one-sided

Cramér von Mises test. This class of criteria have been used recently in Hall and Van Keilegom

(2003) in another context. The main results should carry over to these situations. Unfortunately, it

is unlikely that any of these tests has a compelling advantage over any other. Although there has

been much recent work on the many different notions of efficiency for these sorts of tests [excellently

summarized in Nikitin (1995)], the main finding is that which one is best depends on the alternative

being tested.

A Appendix

Below we sketch the proof of Theorems in the main text only for the test D(1)
N . The corresponding proofs

for the tests D(s)
N for s ≥ 2 and PN are omitted for brevity and are available in our working paper version.

We let Cj for some integer j ≥ 1 denote a generic constant. (It is not meant to be equal in any two places
it appears.) Let kZkq denote the Lq norm (E |Z|q)1/q for a random variable Z. The following lemma holds

for all k = 1, . . . ,K :

Lemma 1 Suppose Assumption 1 holds. Then, for each ε > 0 there exists δ > 0 such that

lim
N→∞

°°°°° sup
ρ∗d((x1,θ1),(x2,θ2))<δ

¯̄̄
ν
(1)
kN(x1, θ1)− ν

(1)
kN(x2, θ2)

¯̄̄°°°°°
q

< ε, (A.1)

where

ρ∗d ((x1, θ1) , (x2, θ2)) =
©
E [1(Xki(θ1) ≤ x1)− 1(Xki(θ2) ≤ x2)]

2ª1/2 . (A.2)

Proof of Lemma 1. The result follows from Theorem 2.2 of Andrews and Pollard (1994) with

Q = q and γ = 1 if we verify the mixing and bracketing conditions in the theorem. The mixing condition
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is implied by Assumption 1(i). The bracketing condition also holds by the following argument: Let Fk
d =

{1 (Xki(θ) ≤ x) : (x, θ) ∈ X ×Θk} . Then, Fk
d is a class of uniformly bounded functions satisfying the

L2-continuity condition, because we have

sup
i≥1

E sup
(x0,θ0)∈X×Θk:

|x0−x|≤r1,kθ0−θk≤r2,
√

r21+r
2
2≤r

|1 (Xki(θ
0) ≤ x0)− 1 (Xki(θ) ≤ x)|2

= E sup
(x0,θ0)∈X×Θk:

|x0−x|≤r1,kθ0−θk≤r2,
√

r21+r
2
2≤r

¯̄
1
¡
Xki ≤ Z>ki(θ

0 − θ0) + x0
¢− 1 ¡Xki ≤ Z>ki(θ − θ0) + x

¢¯̄2
≤ E1

¡¯̄
Xki − Z>ki(θ − θ0)− x

¯̄ ≤ kZkik r1 + r2
¢

≤ C1 (E kZkik r1 + r2) ≤ C2r,

where the second inequality holds by Assumption 1(iii) and C2 =
√
2C1 (E kZkik ∨ 1) is finite by Assump-

tion 1(ii). Now the desired bracketing condition holds because the L2-continuity condition implies that the

bracketing number satisfies N(ε,Fk
d ) ≤ C3 (1/ε)

Lk+1 , see Andrews and Pollard (1994, p.121).

Lemma 2 Suppose Assumptions 1-3 hold. Then, we have ∀k = 1, . . . ,K,

sup
x∈X

¯̄̄
ν
(1)
kN(x,

bθk)− ν
(1)
kN(x, θk0)

¯̄̄
p→ 0. (A.3)

Proof of Lemma 2. Consider the pseudometric (A.2). We have

sup
x∈X

ρ∗d
³³

x,bθk´ , (x, θk0)´2
= sup

x∈X

ZZ h
1
³ex ≤ x+ z>(bθk − θk0)

´
− 1 (ex ≤ x)

i2
dHk(ex|z)dPk(z) (A.4)

≤ sup
x∈X

ZZ
1
³
x−

¯̄̄
z>(bθk − θk0)

¯̄̄
≤ ex ≤ x+

¯̄̄
z>(bθk − θk0)

¯̄̄´
dHk(ex|z)dPk(z)

≤ C1

°°°bθk − θk0

°°°E kZkik p→ 0,

where Pk(·) denotes the distribution function of Zki and the second inequality holds by Assumption 1(iii)

and a one-term Taylor expansion, and the last convergence to zero holds by Assumptions 1(ii) and 2. Now,

this result and the stochastic equicontinuity result (A.1) yield the desired result (A.3) using a standard

argument. ¥

Lemma 3 Suppose Assumptions 1-3 hold. Then, we have ∀k = 1, . . . ,K,

√
N sup

x∈X

°°°Fk(x,bθk)− Fk(x, θk0)−∆
(1)
k0 (x)

>Γk0ψkN(θk0)
°°° = op(1).

Proof of Lemma 3. The proof is standard and follows from a mean value expansion and several

applications of triangle inequality. See our website for details. ¥
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Lemma 4 Suppose Assumptions 1-3 hold. Then, we have³
ν
(1)
kN(·, θk0)− ν

(1)
lN (·, θl0),

√
Nψ

>
kN(θk0),

√
Nψ

>
lN(θl0)

´>
⇒
³ ed(1)kl (·), ν>k0, ν>l0

´>
∀ k, l = 1, . . . ,K and the sample paths of ed(1)kl (·) are uniformly continuous with respect to pseudometric ρd
on X with probability one, where

ρd (x1, x2) =
©
E [(1(Xki ≤ x1)− 1(Xli ≤ x1))− (1(Xki ≤ x2)− 1(Xli ≤ x2))]

2ª1/2 .
Proof of Lemma 4. By Theorem 10.2 of Pollard (1990), the result of Lemma 4 holds if we have (i)

total boundedness of pseudometric space (X, ρd) (ii) stochastic equicontinuity of {ν(1)kN(·, θk0)−ν(1)lN (·, θl0) :
N ≥ 1} and (iii) finite dimensional (fidi) convergence. Conditions (i) and (ii) follow from Lemma 1. We now
verify condition (iii). We need to show that (ν(1)kN(x1, θk0)− ν

(1)
lN (x1, θl0), . . . , ν

(1)
kN(xJ , θk0)− ν

(1)
lN (xJ , θl0),√

NψkN(θk0)
>,
√
NψlN(θl0)

>)> converges in distribution to
³ed(1)kl (x1), . . . ,

ed(1)kl (xJ), ν
>
k0, ν

>
l0

´>
∀xj ∈ X,

∀j ≤ J,∀J ≥ 1. This result holds by the Cramer-Wold device and a CLT for bounded random variables (e.g.,
Hall and Heyde (1980, Corollary 5.1, p.132)) because the underlying random sequence {Xki : i = 1, . . . , n}
is strictly stationary and α- mixing with the mixing coefficients satisfying

P∞
m=1 α(m) <∞ by Assumption

1 and we have |1(Xki ≤ x)− 1(Xli ≤ x)| ≤ 2 <∞. ¥

Proof of Theorem 1. Suppose that d∗1 = 0. Then, there exists a pair (k, l) that satisfies

supx∈X [Fk(x)− Fl(x)] = 0. For such pair, we have Fk(x) ≤ Fl(x) for all x ∈ X but Fk(x) = Fl(x)

for x ∈ B
(1)
kl (⊂ X ). We first verify that

bD(1)
kl ≡ sup

x∈X

√
N
h
F kN(x,bθk)− F lN(x,bθl)i

⇒ sup
x∈B(1)kl

hed(1)kl (x) +∆
(1)
k0 (x)

>Γk0νk0 −∆
(1)
l0 (x)

>Γl0νl0
i

(A.5)

≡ sup
x∈B(1)kl

d
(1)
kl (x), say.

Note that Lemmas 2 and 3 imply

bD(1)
kl (x) ≡

√
N
h
F kN(x,bθk)− F lN(x,bθl)i

= ν
(1)
kN(x,

bθk)− ν
(1)
lN (x,

bθl) +√N hFk(x,bθk)− Fl(x,bθl)i
= A

(1)
kl (x) + op(1) uniformly in x ∈ X , (A.6)
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where

A
(1)
kl (x) = Aa

kl(x) +Ab
kl(x) (A.7)

Aa
kl(x) = ν

(1)
kN(x, θk0)− ν

(1)
lN (x, θl0)

+∆
(1)
k0 (x)

>Γk0
√
NψkN(θk0)−∆

(1)
l0 (x)

>Γl0
√
NψlN(θl0)

Ab
kl(x) =

√
N [Fk(x)− Fl(x)] . (A.8)

To show (A.5), we need to verify

sup
x∈X

A
(1)
kl (x)⇒ sup

x∈B(1)kl

d
(1)
kl (x). (A.9)

Note that

sup
x∈B(1)kl

Aa
kl(x)⇒ sup

x∈B(1)kl

d
(1)
kl (x) (A.10)

by Lemma 4 and continuous mapping theorem. Note also that A(1)kl (x) = Aa
kl(x) for x ∈ B

(1)
kl . Given ε > 0,

this implies that

P

µ
sup
x∈X

A
(1)
kl (x) ≤ ε

¶
≤ P

⎛⎝ sup
x∈B(1)kl

Aa
kl(x) ≤ ε

⎞⎠ . (A.11)

On the other hand, Lemma 4 and Assumptions 1(i), 2(ii) and 3(iii) imply that given λ and γ > 0, there

exists δ > 0 such that

P

⎛⎜⎜⎝ sup
ρd(x,y)<δ

y∈B(1)kl

|Aa
kl(x)−Aa

kl(y)| > λ

⎞⎟⎟⎠ < γ (A.12)

and

sup
x∈X

|Aa
kl(x)| = Op(1). (A.13)

Using the results (A.12) and (A.13) and arguments similar to those in the proof of Theorem 6 of Klecan et.

al. (1991, p.15), we can verify that

P

⎛⎝ sup
x∈B(1)kl

Aa
kl(x) ≤ ε

⎞⎠ ≤ P

µ
sup
x∈X

A
(1)
kl (x) ≤ ε+ λ

¶
+ 2γ (A.14)

for N sufficiently large. Taking λ and γ small and using (A.10), (A.11) and (A.14) now establish the desired

result (A.9) and hence (A.5). Now the desired result of Theorem 1 follows by continuous mapping theorem

because the terms bD(1)
ij with (i, j) satisfying supx∈X [Fk(x)− Fl(x)] > 0 will diverge to infinity and hence

will not affect the limit distribution of D(1)
N .

Next suppose d∗1 < 0. In this case, the set B(1)kl is an empty set and hence Fk(x) < Fl(x) ∀x ∈ X for

some (k, l). Then, supx∈X A
(1)
kl (x) defined in (A.7) will be dominated by the term Ab

kl(x) which diverges to

minus infinity for any x ∈ X as required. Therefore, in this case D(1)
N will also diverge to minus infinity.¥
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Proof of Theorem 2. Consider first the case d∗1 = 0. Let the asymptotic null distribution of TN =

D
(1)
N in this case be given by G(w). This distribution is absolutely continuous because it is a functional of

a Gaussian process whose covariance function is nonsingular, see Lifshits (1982). Therefore, Theorem 2(a)

holds if we establish bGN,bbN (w) p→ G(w) ∀w ∈ R. (A.15)

Let Gb(w) = P
³√

btN,b,i ≤ w
´
= P

³√
btb(W1, . . . ,Wb) ≤ w

´
. Note that suplN≤b≤uN |Gb(w)−G(w)|→

0, since b ≥ lN →∞. Therefore, to establish (A.15), it suffices to verify

sup
lN≤b≤uN

¯̄̄ bGN,b(w)−Gb(w)
¯̄̄

p→ 0 ∀w ∈ R, (A.16)

since then we have P
³¯̄̄ bGN,bbN (w)−G(w)

¯̄̄
> ε
´
→ 0 ∀ε > 0 by triangle inequality and Assumption 4.

We now verify (A.16). For any ε > 0 and integer q ∈ (1, (N − uN + 1) /2) , we have

P

µ
sup

lN≤b≤uN

¯̄̄ bGN,b(w)−G(w)
¯̄̄
> ε

¶
≤

uNX
b=lN

P
³¯̄̄ bGN,b(w)−G(w)

¯̄̄
> ε

´
≤ uN sup

lN≤b≤uN
P
³¯̄̄ bGN,b(w)−G(w)

¯̄̄
> ε

´
≤ uN

(
4 exp

µ
−ε

2

8
q

¶
+ 22

µ
1 +

4

ε

¶1/2
qα

µ∙
N − uN + 1

2q

¸¶)
, (A.17)

where the last inequality follows from Bosq (1998, Theorem 1.3). Take q = [((N − uN + 1) /2)
γ] , where

γ = (A− 1)/(A+1) with A satisfying Assumption 1(i). Then, the right hand side of (A.17) is bounded by

uN
©
O (exp (−(N − uN + 1))) +O

¡
(N − uN + 1)

−1¢ª which converges to zero by Assumption 4. This
proves (A.16) and hence part (a) of Theorem 2. Given this result, part (b) of Theorem 2 also holds since

we have

P
³
TN > gN,bbN (1− α)

´
= P (TN > g(1− α) + op(1))→ α as N →∞.

Next, suppose d∗1 < 0. Then, part (a) immediately follows from the proof of Theorem 1. To verify part

(b), let

bG0
N,b (w) = (N − b+ 1)−1

N−b+1X
i=1

1 (tN,b,i ≤ w) = bGN,b

³√
bw
´

G0
b(w) = P (tb(W1, . . . ,Wb) ≤ w) .
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By an argument analogous to those used to verify (A.16), we have suplN≤b≤uN

¯̄̄ bG0
N,b(w)−G0

b(w)
¯̄̄

p→ 0 .

Since tb(W1, . . . ,Wb)
p→ d∗1, this implies that

g0
N,bbN (1− α) = inf

n
w : bG0

N,bbN (w) ≥ 1− α
o

p→ d∗1 < 0.

Therefore, we have

P
³
TN > gN,bbN (1− α)

´
= P

µ√
NtN(W1, . . . ,WN) >

qbbNg0N,bbN (1− α)

¶
≤ P

Ãr
N

uN
tN(W1, . . . ,WN) > d∗1

!
+ o(1)→ 0,

using the result limN→∞
³

N
uN

´
> 1 and tN(W1, . . . ,WN)

p→ d∗1 < 0. This establishes Theorem 2. ¥

Proof of Theorem 3. The proof is similar to the proof of Theorem 2 under d∗s < 0. ¥
Proof of Theorem 4. The proof is similar to that of Theorem 1. Consider Lemmas 1-4 with

ν
(1)
kN(x, θ) now defined by

ν
(1)
kN(x, θ) =

1√
N

NX
i=1

[1 (Xki(θ) ≤ x)− FkN(x, θ)] for k = 1, . . . ,K. (A.18)

Then, by contiguity, the results of Lemmas 2 and 3 hold under the local alternatives. This result and

Assumption 2-lc imply that

√
N
h
F kN(x,bθk)− F lN(x,bθl)i

= ν
(1)
kN(x, θk0)− ν

(1)
lN (x, θl0)

+∆
(1)
k0 (x)

>Γk0
√
N
¡
ψkN(θk0)−EψkN(θk0)

¢−∆
(1)
l0 (x)

>Γl0
√
N
¡
ψlN(θl0)−EψlN(θl0)

¢
+ µkl(x) + op(1) uniformly in x ∈ X ,

Therefore, it suffices to show that Lemma 4 holds under the local alternatives. This follows by a slight

modification of the proof of Lemma 4 and using the CLT of Herrndorf (1984) for α-mixing arrays to verify

the condition (iii) (fidi convergence) of Theorem 10.2. of Pollard (1990). ¥
Proof of Corollary 5. We know that gN,bbN (1− α)

p→ g(1− α) under the null hypothesis. By

contiguity, we have gN,bbN (1− α)
p→ g(1− α) under the local alternatives. The results of Corollary 5 now

follows immediately from Theorem 4. ¥

38



REFERENCES

Abadie, A., (2001), “Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable

Models.” Harvard University. Forthcoming in Journal of the American Statistical Association.

Abhyankar, A., and K-Y. Ho (2003), “Exploring long-run abnormal performance using stochastic

dominance criteria: Additional evidence from IPO’s. Manuscript available from

http://www.cc.ncu.edu.tw/~kengyuho/researchpaper.htm.

Anderson, G.J. (1996), “Nonparametric tests of stochastic dominance in income distributions,”

Econometrica 64, 1183-1193.

Andrews, D.W.K., (1997), “A conditional Kolmogorov test,” Econometrica 65, 1097-1128.

Andrews, D. W. K. and D. Pollard (1994), “An introduction to functional central limit theorems

for dependent stochastic processes,” International Statistical Review 62, 119-132.

Barrett, G. and S. Donald (2003), “Consistent Tests for Stochastic Dominance, unpublished man-

uscript, Dept. of Economics, Univ. of New South Wales.

Bickel, P.J., C.A.J. Klaassen, Y. Ritov, and J.A. Wellner (1993), Efficient and adaptive estimation

for semiparametric models, The Johns Hopkins Univ. Press, Baltimore and London.

Bishop, J.A., J.P.Formby, and P.D. Thisle (1992), “Convergence of the South and non-South income

distributions, 1969-1979”, American Economic Review 82, 262-272.

Bosq, D. (1998), Nonparametric statistics for stochastic processes: estimation and prediction, Lec-

ture Notes in Statistics 110, 2nd edition, Springer, New York.

Carlstein, E. (1986), “The use of subseries methods for estimating the variance of a general statistic

from a stationary time series,” Annals of Statistics 14, 1171-1179.

Chernozhukov, V. (2002), “Inference on Quantile Regression Process, an Alternative,” Working

paper, MIT.

Crawford, I. (1999), “Nonparametric tests of Stochastic Dominance in Bivariate Distributions with

an Application to UK data,” Institute for Fiscal Studies, WP 28/99.

Dardanoni, V. and A. Forcina (1999), “Inference for Lorenz curve orderings”, Econometrics Journal

2, 49-75.

39



Davidson, R. and J-Y Duclos (1997), “Statistical inference for the measurement of the incidence of

taxes and transfers”, Econometrica 52, 761-76.

Davidson R. and J-Y. Duclos (2000), “Statistical inference for stochastic dominance and for the

measurement of poverty and inequality”, Econometrica 68, 1435-1464.

Delgado, M., J.M. Rodriguez-Poo and M. Wolf (2001), “Subsampling inference in cube root as-

ymptotics with an application to Manski’s maximum score estimator,” Economics Letters 73,

241-250.

Fan, Y., and O.B. Linton (2003), “Some higher order theory for a consistent nonparametric model

specification test,” The Journal of Statistical Planning and Inference 109, 1-2, 125-154.

Härdle, W., and J.S. Marron (1985), “Optimal bandwidth selection in nonparametric regression

function estimation,” The Annals of Statistics 13, 1465-81.

Hadar, J. and W.R. Russell (1969), “Rules for ordering uncertain prospects, American Economic

Review 59, 25-34.

Hall, P. and Heyde, C. C. (1980), Martingale limit theory and its application, Academic Press, New

York.

Hall, P. and I. Van Keilegom (2003), “Testing for monotone increasing hazard rate,” Discussion

paprer 0228, Institut de Statistique, UCL.

Hall, P. and B. -Y. Jing (1996), “On sample reuse methods for dependent data,” Journal of the

Royal Statistical Society, Series B, 58, 727-737.

Hansen, B.E. (1996a), “Stochastic equicontinuity for unbounded dependent heterogeneous arrays,”

Econometric Theory 12, 347-359.

Hansen, B.E. (1996b), “Inference when a nuisance parameter is not identified under the null Hy-

pothesis,” Econometrica 64, 413-430.

Hansen, P.R. (2001), “An unbiased and powerful test for superior predictive ability,” Working paper,

Brown University.

Härdle, W., J. Horowitz and J.-P. Kreiss (2001), “Bootstrap methods for time series,” Working

paper, Humboldt Universität zu Berlin.

Herrndorf, N. (1984), “An invariance principle for weakly dependent sequences of random variables,”

Annals of Probability 12, 141-153.

40



Ho, K.Y. (2003): “Long-run stock price performance after IPO’s: what do tests for stochastic dom-

inance tell us?” Applied Economics Letters 10, 15-19.

Horowitz, J.L. (2000), “The Bootstrap,” Forthcoming in The Handbook of Econometrics, volume 5.

Horowitz, J.L., and V. Spokoiny (2001), “An adaptive, rate-optimal test of a parametric mean

regression model against a nonparametric alternative,” Econometrica, 69, 599-632.

Kahneman, D., and A. Tversky (1979), “Prospect Theory of Decisions Under Risk,” Econometrica

47, 263-291.

Kaur, A., B.L.S. Prakasa Rao, and H. Singh (1994),“Testing for second-order stochastic dominance

of two distributions,“ Econometric Theory 10, 849-866.

Klecan, L., R. McFadden, and D. McFadden (1991), “A robust test for stochastic dominance,“

Working paper, Dept. of Economics, MIT.

Künsch, H. R. (1989), “The jackknife and the bootstrap for general stationary observations,” Annals

of Statistics 17, 1217-1241.

Lehmann, E.L. (1986), Testing statistical hypotheses, 2nd Edtion, J. Wiley and Sons, New York.

Levy, H., and Z. Wiener (1998), “Stochastic Dominance and Prospect Dominance with Subjective

Weighting Functions” Journal of Risk and Uncertainty, 147-163.

Levy, M., and H. Levy (2002), “Prospect Theory: Much Ado About Nothing?”Management Science,

48, 1334-1349.

Lifshits, M. A. (1982), “On the absolute continuity of distributions of functionals of random

processes,” Theory of Probability and Its Applications 27, 600-607.

Maasoumi, E. (2001), “Parametric and nonparametric tests of limited domain and ordered hypothe-

ses in economics”, chapter 25, in B. Baltagi (Ed.) A Companion to Econometric Theory, Basil

Blackwell.

Maasoumi, E. and A. Heshmati (2000), “Stochastic dominance amongst Swedish income distribu-

tions”, 19-3, Econometric Reviews.

Maasoumi, E. and D. Millimet (2003), “Robust Inference Concerning Recent Trends in U.S. Envi-

ronmental Quality”, forthcoming, Journal of Applied Econometrics.

41



McFadden, D. (1989), “Testing for stochastic dominance,” in Part II of T. Fomby and T.K. Seo

(eds.) Studies in the Economics of Uncertainty (in honor of J. Hadar), Springer-Verlag.

Nikitin, Y. (1995). Asymptotic efficiency of nonparametric tests. Cambridge University Press,

Cambridge.

Otten, R. & D., Barns, (2001), “Statistical tests for return-based style analysis”, Working paper,

Maastricht University.

Pollard, D. (1990), Empirical processes: theory and applications, CBMS Conference Series in Prob-

ability and Statistics, Vol. 2. Institute of Mathematical Statistics, Hayward.

Politis, D.N. and J. P. Romano (1993), “The stationary bootstrap,” Journal of the American Sta-

tistical Association 89, 1303-1313.

Politis, D. N. and J. P. Romano (1994), “Large sample confidence regions based on subsamples

under minimal assumptions.” Annals of Statistics 22, 2031-2050.

Politis, D. N., J. P. Romano and M. Wolf (1999), Subsampling, Springer-Verlag, New York.

Post, T. (2002): “Empirical Tests for Stochastic Dominance Efficiency,” Forthcoming in Journal of

Finance.

Sharpe, William F., (1992), “Asset allocation: management style and performance measurement”,

The Journal of Portfolio Management, Winter 1992, pp. 7-19.

Shorack, G.R., and J.A. Wellner (1986). Empirical Processes with Applications to Statistics. John

Wiley and Sons, New York.

Shorrocks, A.F.(1983), “Ranking income distributions,” Economica 50, 3-17.

Shorrocks A., and J. Foster (1987), “Transfer sensitive inequality measures,” Review of Economic

Studies 54, 485-497.

Tse, Y.K. and X.B. Zhang (2000), “A Monte carlo Investigation of Some Tests for Stochastic

Dominance”, Forthcoming in Journal of Statistical Computation and Simulation. Available at

http://www.mysmu.edu/faculty/yktse/yktsehp.htm.

Tversky, A. and D. Kahneman (1992), “Advances in Prospect Theory:Cumulative Representation

of Uncertainty,” Journal of Risk and Uncertainty 5, 297-323.

42



Whang, Y.-J (2001): “Consistent Specification Testing for Conditional Moment Restrictions,” Eco-

nomics Letters 71, 299-306.

Whitmore,G.A. and M.C. Findley (1978), Stochastic Dominance: An approach to decision making

under risk, Heath, Lexington :Mars.

Xu, K., G. Fisher, and D. Wilson (1995), “New distribution-free tests for stochastic dominance,”

Working paper No. 95-02, February, Dept. of Economics, Dalhousie University, Halifax, Nova

Scotia.

43



Subsample Bootstrap

Mean Median MinVol

Design n uncent recent uncent recent uncent recent uncent recent

50 0.1140 0.4100 0.1370 0.4140 0.1850 0.4700 0.0000 0.0630

1a, d∗1 = 0 500 0.0590 0.2360 0.0570 0.2420 0.1100 0.2960 0.0000 0.0560

1000 0.0460 0.1830 0.0500 0.1870 0.0710 0.2170 0.0000 0.0490

50 0.1030 0.3710 0.1180 0.3720 0.1600 0.4140 0.0000 0.0550

1b, d∗1 = 0 500 0.0540 0.2440 0.0620 0.2580 0.1010 0.2880 0.0000 0.0510

1000 0.0480 0.1620 0.0480 0.1590 0.0720 0.1970 0.0000 0.0590

50 0.3610 0.8310 0.3640 0.8380 0.4120 0.8460 0.0000 0.6850

1c, d∗1 > 0 500 0.9500 0.9620 0.9420 0.9620 0.8980 0.9620 0.0000 0.9830

1000 0.9600 0.9630 0.9600 0.9630 0.9580 0.9630 0.0000 0.9950

50 0.3730 0.8170 0.3680 0.8190 0.4100 0.8280 0.0000 0.6840

1d, d∗1 > 0 500 0.9650 0.9710 0.9590 0.9710 0.8860 0.9720 0.0000 0.9840

1000 0.9580 0.9680 0.9570 0.9690 0.9520 0.9670 0.0000 0.9940

50 0.3790 0.8190 0.3800 0.8160 0.4180 0.8450 0.0000 0.6560

1e, d∗1 > 0 500 0.9640 0.9820 0.9590 0.9820 0.8880 0.9820 0.0000 0.9920

1000 0.9530 0.9610 0.9530 0.9610 0.9480 0.9610 0.0000 0.9920

Table1F. Rejection frequencies for the test of First Order Stochastic Dominance for Design 1 with

critical values computed by the automatic methods [Mean, median, and Minvol] described in section 5.2 for

the 5% null rejection probabilities. Recent refers to the recentered subsampling or full sample bootstrap

method, while uncent refers to the uncentered subsampling or full sample bootstrap method.
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Subsample Bootstrap

Mean Median MinVol

Design n uncent recent uncent recent uncent recent uncent recent

50 0.1010 0.2480 0.1280 0.2590 0.2110 0.3150 0.0000 0.0660

1a, d∗2 = 0 500 0.0490 0.1290 0.0540 0.1340 0.1020 0.1800 0.0000 0.0550

1000 0.0540 0.1010 0.0580 0.1030 0.0660 0.1360 0.0000 0.0500

50 0.0760 0.2010 0.1050 0.2200 0.1710 0.2840 0.0000 0.0610

1b, d∗2 = 0 500 0.0660 0.1480 0.0690 0.1550 0.1020 0.1840 0.0000 0.0600

1000 0.0680 0.1390 0.0690 0.1430 0.0960 0.1590 0.0000 0.0500

50 0.2390 0.6880 0.2470 0.6900 0.3240 0.7480 0.0000 0.3360

1c, d∗2 = 0 500 0.9060 0.7340 0.8930 0.7280 0.8290 0.7370 0.0000 0.4510

1000 0.9570 0.7410 0.9560 0.7370 0.9510 0.7710 0.0000 0.5450

50 0.2230 0.6410 0.2340 0.6450 0.3120 0.7090 0.0000 0.3290

1d, d∗2 > 0 500 0.9070 0.7390 0.8850 0.7370 0.8290 0.7480 0.0000 0.4230

1000 0.9570 0.7270 0.9550 0.7320 0.9520 0.7350 0.0000 0.5240

50 0.2090 0.6480 0.2290 0.6470 0.3070 0.7110 0.0000 0.2990

1e, d∗2 > 0 500 0.8970 0.7230 0.8760 0.7210 0.8210 0.7520 0.0000 0.4240

1000 0.9490 0.7120 0.9490 0.7060 0.9380 0.7359 0.0000 0.4840

Table1S. Rejection frequencies for the test of Second Order Stochastic Dominance for Design 1 with

critical values computed by the automatic methods [Mean, median, and Minvol] described in section 5.2 for

the 5% null rejection probabilities. Recent refers to the recentered subsampling or full sample bootstrap

method, while uncent refers to the uncentered subsampling or full sample bootstrap method.
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Subsample Bootstrap

Mean Median MinVol

Design n uncent recent uncent recent uncent recent uncent recent

50 0.1110 0.4120 0.1330 0.4110 0.1720 0.4680 0.0000 0.0540

2a, d∗1 = 0 500 0.0470 0.2440 0.0490 0.2560 0.0940 0.2850 0.0000 0.0550

1000 0.0680 0.1800 0.0710 0.1900 0.0890 0.2290 0.0000 0.0440

50 0.0790 0.2950 0.0860 0.2970 0.1220 0.3530 0.0000 0.0720

2b, d∗1 = 0 500 0.0120 0.1120 0.0170 0.1170 0.0750 0.1580 0.0000 0.0260

1000 0.0210 0.0970 0.0280 0.0960 0.0710 0.1060 0.0000 0.0180

50 0.2960 0.8330 0.2990 0.8290 0.3800 0.8280 0.0000 0.4530

2c, d∗1 > 0 500 0.9650 1.0000 0.9460 1.0000 0.8990 1.0000 0.0000 1.0000

1000 1.0000 1.0000 0.9990 1.0000 0.9940 1.0000 0.0000 1.0000

50 0.2640 0.5360 0.2730 0.5330 0.2550 0.5620 0.0000 0.1730

2d, d∗1 > 0 500 0.9550 1.0000 0.9360 0.9980 0.9220 0.9990 0.0000 0.9880

1000 1.0000 1.0000 0.9980 1.0000 0.9970 1.0000 0.0000 1.0000

Table2F. Rejection frequencies for the test of First Order Stochastic Dominance for Design 2 with

critical values computed by the automatic methods [Mean, median, and Minvol] described in section 5.2 for

the 5% null rejection probabilities. Recent refers to the recentered subsampling or full sample bootstrap

method, while uncent refers to the uncentered subsampling or full sample bootstrap method.
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Subsample Bootstrap

Mean Median MinVol

Design n uncent recent uncent recent uncent recent uncent recent

50 0.0680 0.2000 0.0980 0.2060 0.1980 0.2940 0.0000 0.0560

2a, d∗2 = 0 500 0.0560 0.1340 0.0620 0.1400 0.1190 0.1600 0.0000 0.0460

1000 0.0620 0.1220 0.0660 0.1230 0.0840 0.1300 0.0000 0.0650

50 0.0580 0.2020 0.0940 0.2150 0.1600 0.2850 0.0000 0.0780

2b, d∗2 = 0 500 0.0010 0.0480 0.0070 0.0480 0.0860 0.0850 0.0000 0.0060

1000 0.0040 0.0300 0.0100 0.0340 0.0500 0.0560 0.0000 0.0100

50 0.0010 0.0110 0.1650 0.0110 0.0410 0.0100 0.0000 0.0060

2c, d∗2 = 0 500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

50 0.1680 0.3440 0.1870 0.3560 0.2300 0.4590 0.0000 0.0270

2d, d∗2 > 0 500 0.9100 0.7560 0.8890 0.7700 0.8350 0.7600 0.0000 0.3320

1000 0.9990 0.9370 0.9980 0.9400 0.9920 0.9130 0.0000 0.8600

Table2S. Rejection frequencies for the test of Second Order Stochastic Dominance for Design 2 with

critical values computed by the automatic methods [Mean, median, and Minvol] described in section 5.2 for

the 5% null rejection probabilities. Recent refers to the recentered subsampling or full sample bootstrap

method, while uncent refers to the uncentered subsampling or full sample bootstrap method.
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Subsample Bootstrap

Mean Median MinVol

Design n uncent recent uncent recent uncent recent uncent recent

50 0.6120 0.9960 0.6040 0.9950 0.5640 0.9970 0.0000 0.9590

3a, d∗1 > 0 500 1.0000 1.0000 1.0000 1.0000 0.9930 1.0000 0.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000 0.0000 1.0000

50 0.0580 0.2310 0.0650 0.2240 0.1040 0.2680 0.0000 0.0250

3b, d∗1 < 0 500 0.0000 0.0010 0.0020 0.0010 0.0440 0.0040 0.0000 0.0000

1000 0.0000 0.0000 0.0010 0.0000 0.0190 0.0000 0.0000 0.0000

50 0.6010 0.9980 0.5860 0.9980 0.5480 0.9950 0.0000 0.9490

3c, d∗1 > 0 500 1.0000 1.0000 1.0000 1.0000 0.9960 1.0000 0.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000

Table3F. Rejection frequencies for the test of First Order Stochastic Dominance for Design 3 with

critical values computed by the automatic methods [Mean, median, and Minvol] described in section 5.2 for

the 5% null rejection probabilities. Recent refers to the recentered subsampling or full sample bootstrap

method, while uncent refers to the uncentered subsampling or full sample bootstrap method.
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Subsample Bootstrap

Mean Median MinVol

Design n uncent recent uncent recent uncent recent uncent recent

50 0.0010 0.0180 0.1600 0.0190 0.0710 0.0220 0.0000 0.0210

3a, d∗2 = 0 500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

50 0.0430 0.1530 0.1210 0.1600 0.1990 0.2050 0.0000 0.0440

3b, d∗2 = 0 500 0.0000 0.0050 0.0060 0.0060 0.0060 0.0180 0.0180 0.0000

1000 0.0000 0.0000 0.0030 0.0000 0.0110 0.0000 0.0000 0.0000

50 0.5250 0.9260 0.5180 0.9260 0.5330 0.9300 0.0000 0.9340

3c, d∗2 > 0 500 1.0000 1.0000 1.0000 1.0000 0.9890 1.0000 0.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000

Table3S. Rejection frequencies for the test of Second Order Stochastic Dominance for Design 3 with

critical values computed by the automatic methods [Mean, median, and Minvol] described in section 5.2 for

the 5% null rejection probabilities. Recent refers to the recentered subsampling or full sample bootstrap

method, while uncent refers to the uncentered subsampling or full sample bootstrap method.
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Subsample Bootstrap

Mean Median MinVol

Design n uncent recent uncent recent uncent recent uncent recent

50 0.5220 0.9860 0.5160 0.9860 0.5060 0.9870 0.0000 0.9270

3Rd, d∗1 > 0 500 1.0000 1.0000 0.9980 1.0000 0.9940 1.0000 0.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000 0.0000 1.0000

50 0.0860 0.1390 0.0980 0.1410 0.1580 0.1680 0.0000 0.0100

3Re, d∗1 = 0 500 0.0000 0.0030 0.0000 0.0020 0.0280 0.0040 0.0000 0.0000

1000 0.0000 0.0000 0.0020 0.0000 0.0060 0.0000 0.0000 0.0000

50 0.5320 0.9910 0.5360 0.9910 0.5320 0.9880 0.0000 0.9440

3Rf, d∗1 > 0 500 1.0000 1.0000 1.0000 1.0000 0.9880 1.0000 0.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000

Table3RF. Rejection frequencies for the test of First Order Stochastic Dominance for Design 3R with

critical values computed by the automatic methods [Mean, median, and Minvol] described in section 5.2 for

the 5% null rejection probabilities. Recent refers to the recentered subsampling or full sample bootstrap

method, while uncent refers to the uncentered subsampling or full sample bootstrap method.
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Subsample Bootstrap

Mean Median MinVol

Design n uncent recent uncent recent uncent recent uncent recent

50 0.0060 0.0310 0.0600 0.0320 0.0120 0.0310 0.0000 0.0250

3Rd, d∗2 = 0 500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

50 0.0680 0.1240 0.0700 0.1310 0.1280 0.1820 0.0000 0.0310

3Re, d∗2 = 0 500 0.0000 0.0040 0.0060 0.0040 0.0240 0.0140 0.0180 0.0010

1000 0.0000 0.0000 0.0000 0.0000 0.0020 0.0000 0.0000 0.0000

50 0.5320 0.9570 0.5220 0.9570 0.5340 0.9570 0.0000 0.9190

3Rf, d∗2 > 0 500 1.0000 1.0000 1.0000 1.0000 0.9860 1.0000 0.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000

Table3RS. Rejection frequencies for the test of Second Order Stochastic Dominance for Design 3R with

critical values computed by the automatic methods [Mean, median, and Minvol] described in section 5.2 for

the 5% null rejection probabilities. Recent refers to the recentered subsampling or full sample bootstrap

method, while uncent refers to the uncentered subsampling or full sample bootstrap method.
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