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ABSTRACT

Order flow has been found to carry information to the market. When assessing
how informative order flow is, the VAR methodology is typically employed,
using impulse response functions. However, in such analyses, the direction of
causality runs explicitly from order flow to asset return. If data are sampled at
anything other than at the highest frequencies then any feedback trading may
well appear contemporaneous; trading in period t depends on the asset return
in that interval. The implications of contemporaneous feedback trading are
examined in the spot USD/EUR currency market and we find that when data
are sampled at the one and five minute frequency, such trading strategies cause
the price impact of order flow to be significantly larger than when feedback
trading is ruled out.
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Order flow, one way buying or selling pressure, has a contemporaneous impact on

prices, while at the very highest frequencies, the converse is not true. However,

when aggregated over time, order flow and prices can be expected to impact on each

other simultaneously, a phenomenon we call contemporaneous feedback trading. The

existence of contemporaneous feedback trading implies that such models cannot be

estimated with traditional techniques. This is unfortunate, since empirical models

with feedback trading can be expected to give firmer support for theoretical models

than models that ignore such trading strategies. In this paper we argue that feed-

back trading is an inevitable consequence of time aggregation of order flow models,

and propose an estimator of such models by using instrumental variable techniques.

We find that the price impact of trades is much stronger when feedback trading is

incorporated, further supporting market microstructure theories generally, and the

validity of the order model specifically.

It is well known in the theoretical microstructure literature that order flow conveys

private information to the market as a whole. In this way, information is aggregated

via the trading process implying that order flow has permanent effects on prices.

See Kyle (1985), Glosten and Milgrom (1985), Easley and O’Hara (1987), and Evans

and Lyons (2002b) for examples of such models. These models imply that if trades

carry private information then the informativeness of trades can be accessed by their

price impact. Furthermore, in empirical models when data are employed at the very

highest frequencies, order flow, by definition, can only be affected by the lags of

price changes. However, when data are aggregated, transactions and order entry are

simultaneous, frustrating empirical investigations.

The existence and profitability of feedback trading strategies has been considered in a

number of papers. De Long, Shleifer, Summers, and Waldmann (1990) build a model

of feedback trading with rational speculators who will buy (sell) when the price rises

(falls). The profitability of a number of feedback trading strategies in stock markets

is considered in Jegadeesh and Titman (1993) and the existence of high frequency

positive feedback trading in the US treasury market is documented in Cohen and
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Shin (2003).

The most common methodology for empirically assessing the informativeness of order

flow, is the vector autoregressive (VAR) model of Hasbrouck (1991). His model

was originally applied to data at the tick–by–tick frequency, where the direction of

causality runs explicitly from order flow to asset price returns. Hasbrouck introduces

a shock to the trading process, representing private information, and computes the

cumulated effect on the asset return. The greater the cumulated effect, or impulse

response, the more information trades are argued to carry. These VAR models have

become standard in the microstructure literature; recent examples include Dufour

and Engle (2000) and Engle and Patton (2004) for stocks, Evans (2002) and Payne

(2003) for currencies and Cohen and Shin (2003) and Green (2003) for treasuries. In

the VAR framework, the asset returns in period t are regressed on contemporaneous

order flow (date t) as well as lagged returns and order flows (dated t− 1 or earlier),

whereas order flows are only regressed on lagged returns and flows; order flows at

date t do not depend on contemporaneous asset returns.

These models therefore rule out contemporaneous feedback trading, an assumption

which is overly restrictive when the data are sampled at anything other than at

the highest frequencies. If traders have the ability to respond to price changes and

trade before the end of the time interval used in the empirical investigation, then

order flows will indeed cause asset price changes within that period, but these price

changes may then feed back into order flows in the same interval. A shock to order

flows within period t causes a change in the asset price within that interval. If other

traders react to this price change by buying or selling the asset themselves in that

period, perhaps because they expect a wave of trading activity that pushes the price

in one direction or another, this significantly affects market dynamics and estimates

of trade informativeness. Therefore, a model which does not allow contemporaneous

feedback tradingwill bias any estimates of how much information trades actually

carry. If a positive order flow shock causes an increase in the asset price, which in

turn causes an increase in order flows via feedback trading within that period, the
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total effect/price impact of the order flow shock will be higher than when feedback

trading is ruled out. Alternatively, if there exists negative feedback trading, perhaps

because of expected return reversals of the initial asset price change, the ultimate

price impact of the trade will be smaller than the non-feedback case.

The reason for ruling out feedback trading in empirical models with aggregated data

is that without such a restriction, the model cannot be estimated since the VAR

becomes unidentified. By allowing returns to depend on order flowbut ruling out

the converse, the two equation VAR in returns and order flows becomes a recursively

ordered structural VAR, which is just identified when the variance/covariance matrix

of the residuals is restricted to be diagonal. However, as we show in Section 1,

when data are aggregated from tick–by–tick to any lower frequency, contemporaneous

feedback trading is inevitable. Imposing the restriction that order flows do not depend

on contemporaneous asset returns then represents a mis-specification of the empirical

model and is therefore likely to result in biased parameter estimates and incorrect

inference.

However, it is not possible to estimate the simultaneous impact of order flows and

prices on each other in the VAR model since, in the standard setup, not enough

information is available for the VAR’s identification. In order to identify both struc-

tural parameters, additional information is required and we suggest that sufficient

information can be obtained from statistics (typically order flows or returns) from

related assets or markets. This additional information can be used to identify and

estimate the structural VAR in a very efficient manner through standard instrumen-

tal variables methods. In so far as many assets, whether they are currency, stocks

or bonds, have a number of assets related to them, it seems likely that information

should be readily available. This could then be used by the econometrician in order

to estimate an otherwise unidentified model and hence allow for contemporaneous

feedback trading. In the case of stocks, when trying to estimate a feedback trading

VAR for IBM, one could try using statistics based on Hewlett Packard flows and

returns for example, or any stock in the same or related industry. The question of
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which instruments to use is simply an empirical one. One may simply choose those

instruments found to be strongly correlated with the endogenous right hand side

regressors.

We apply our instrumental variables VAR methodology to the spot USD/EUR (US

dollar per euro) foreign exchange market since this is a very active market and pro-

vides a natural testing ground for our hypotheses of contemporaneous feedback trad-

ing. The data are taken from the Reuters D2000-2 electronic trading system, one of

the two dominant brokered trading platforms used in the inter-dealer spot FX mar-

ket and cover the eight month period from 1st December 1999 to 24th July 2000.1

In order to estimate the structural, feedback VAR for the USD/EUR market we

use instrumental variables, where the instruments are statistics obtained from the

closely linked markets of USD/GBP (US dollar per pound sterling) and GBP/EUR

(pound sterling per euro). It is clear that the USD/EUR rate should, in the absence

of arbitrage, equal the USD/GBP rate multiplied by the GBP/EUR rate. Statis-

tics obtained from these markets, in particular returns and order flows, may then be

correlated with the endogenous variables for which we are trying to instrument, i.e.

USD/EUR returns and flows.

In order to evaluate the importance of the feedback trading parameter, we consider

two sampling frequencies; one minute and five minutes.2 From both frequencies

we estimated the VARs with and without feedback trading and calculated impulse

response functions following an order flow shock, representing private information, in

order to assess the informativeness of trades.

We find that for the one minute frequency, the feedback trading parameter in the

structural VAR is positive and significant at the 1% level and the impulse response

function following an order flow shock is larger when feedback trading is permitted.

However the difference between the restricted and unrestricted IRFs is not signifi-

1The other electronic trading system is that of EBS and together they account for between 85%
and 95% of all interdealer trading. See Bank for International Settlements (2001).

2When the data were sampled at lower frequencies the abilities of other market statistics to
instrument for USD/EUR endogenous variables deteriorated to such an extent that such analysis
became pointless.
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cantly different, at the 5% level. At the five minute frequency, the feedback trading

parameter in the VAR is quantitatively large and significant at the 5% level, and the

impulse response without feedback trading is significantly below that when feedback

trading is permitted. This suggests that in the case of spot FX markets, feedback

trading is prevalent and has significant implications when examining the price im-

pact/informativeness of order flows, especially when the data are sampled at the

lower/five minute frequency. For the spot FX market considered in this exercise,

feedback trading is positive, i.e. order flow in one period depends positively on the

asset return in that period.

We demonstrate in a theoretical context in Section 1 that omitting feedback trading in

aggregated data will result in a mis-specified model and will bias the estimated impact

of order flowon prices. This is confirmed in our empirical exercise where we show

that feedback trading is a significant concern for empirical order flowmodels. By

employing appropriate instruments, we show that in high frequency foreigh exchange

data, there exists positive contemporaneous feedback trading : order flow in one

period depends positively on the return experienced within that period. This results

in the price impact of an order flow shock being significantly greater than when

one imposes a recursive ordering of the VAR. Private information, in the form of

unanticipated order flow shocks, then has a larger impact on returns than previously

believed, i.e. trades carry more information than previous estimates suggest.

The rest of the paper is organised as follows. Section 1 motivates the need to model

contemporaneous feedback trading when data are aggregated at any level. Section

2 introduces the model to be estimated and describes the standard techniques to be

employed as well as explanations as to how to obtain analytical confidence bounds

for the impulse response functions. Section 2 also discusses the choice of instruments

used. Section 3 presents the regression results and reports the impulse response

functions. Section 4 discusses our findings, placing them within the existing finance

literature and Section 5 concludes.
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1 The Inevitability of Contemporaneous Feedback

Trading in Aggregated Data

In this section we show how contemporaneous feedback trading can result simply

from considering aggregated data. By definition, contemporaneous feedback trading,

whereby order flows at date t depend on date t asset returns, cannot occur in tick-

by-tick data; a trader can only respond to a price change once the price has indeed

changed. Assume, without loss of generality, that returns and flows can be charac-

terised by a VAR with only 1 lag. The VAR model, originally introduced by Sims

(1980) and implemented in the microstructure literature by Hasbrouck (1991), is a

simple statistical framework that allows us to examine the relationships between as-

set returns and trading activity; more specifically, order flows. Hasbrouck originally

applied the model to US equity data where the data were sampled in ‘transaction

time’, i.e. tick-by-tick data were used. In what follows, assume the data are sampled

at a sufficiently high frequency so that contemporaneous feedback trading is ruled

out. This could be tick-by-tick, ten second or even one second data for very active

markets.3 Since the possibility of contemporaneous feedback trading is ruled out, the

system of equations can be written as:

Rt = α1 + βFt + φ11Rt−1 + φ12Ft−1 + εR
t

Ft = α2 + φ21Rt−1 + φ22Ft−1 + εF
t

(1)

where Rt is the return on the asset in period t, defined as the log first difference of

the price, Ft is the order flow in period t; the number of buyer less seller initiated

trades in that interval and εR
t and εF

t are serially uncorrelated, independent errors

with variances σ2
εR and σ2

εF respectively. The system can be written as a structural

3For the purpose of this study we simply wish to examine data at a frequency where no contem-
poraneous feedback trading can occur and then see what happens when we aggregate the data at a
lower frequency.
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VAR:


 1 −β

0 1




︸ ︷︷ ︸
Q


 Rt

Ft




︸ ︷︷ ︸
yt

=


 α1

α2




︸ ︷︷ ︸
α

+


 φ11 φ12

φ21 φ22




︸ ︷︷ ︸
φ


 Rt−1

Ft−1




︸ ︷︷ ︸
yt−1

+


 εR

t

εF
t




︸ ︷︷ ︸
εt

⇒ Qyt = α + φyt−1 + εt V ar (εt) = Ω =


 σ2

εR 0

0 σ2
εF




(2)

where yt = [Rt Ft]
′ and εt =

[
εR
t εF

t

]′
, t = 1, . . . , 2T . What we wish to do is to move

from a structural VAR at a high frequency, t, to a structural VAR where the frequency

is halved (frequency τ).4 However, in order to do this, (2) must be converted into

a reduced form and put into state space representation. Aggregation can then be

performed using the methods in Harvey (1989). The reduced form of (2), at the

frequency, t, is clearly

yt = µ + Q−1φyt−1 + Q−1εt t = 1, . . . , 2T (3)

where µ = Q−1α and the corresponding reduced form at the frequency, τ , where

τ = 2t, is shown in Appendix A.1 to be

yτ = µ+ + Ayτ−1 + eτ τ = 1, . . . , T (4)

where A = Q−1φ (I2 + Q−1φ). Since returns and order flows are both flow variables,

as opposed to stocks, then the period τ (low frequency) return is simply the sum of

the two t period returns in that interval, and similarly for order flows. The variance

4For example, t could represent data sampled at the ten second frequency and τ would represent
data sampled at the twenty second frequency.
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of eτ is given by

V ar (eτ ) = GΩG′ + Q−1Ω
(
Q−1

)′
(5)

where G = (I2 + Q−1φ) Q−1. To convert (4) into a structural VAR, we first factorise

the variance of eτ . This is done in (6).

V ar (eτ ) =
[

G Q−1

]

 Ω 0

0 Ω





 G′

(Q−1)
′


 = P Ω̃P ′ (6)

If we premultiply (4) by [I2 I2] P
+, where P+ is the Moore-Penrose inverse of the

2× 4 matrix P , P+ = (P ′P )−1 P ′, then the structural form can be written as:

[I2 I2] P
+yτ = [I2 I2] P

+µ+ + [I2 I2] P
+Ayτ−1 + [I2 I2] P

+eτ (7)

The variance of the error vector in the structural form is now

V ar
(
[I2 I2] P

+eτ

)
= 2Ω (8)

(7) therefore has the appealing property that the variance of the error (return or

flow) at the τ period frequency is twice that of the error at the t period frequency.5

In order to solve for the structural parameters in (7), note that if we let xτ = P+yτ ,

5Note that the errors in the return and flow equations at the t period frequency are serially
uncorrelated and independent, as too are those at the τ period frequency.
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then xτ is the solution to


 g11 g12 1 β

g21 g22 0 1




︸ ︷︷ ︸
[G Q−1]=P




x1τ

x2τ

x3τ

x4τ




︸ ︷︷ ︸
xτ

=


 Rτ

Fτ




︸ ︷︷ ︸
yτ

(9)

There are clearly an infinite number of solutions for xτ and this is to be expected

when considering the literature on simultaneous equation models; premultiply any

structural form by a non-singular matrix and the reduced form, (4), will be unaffected.

However, [I2 I2] P
+yτ , the right hand side of the structural equation, (7), will have

the general form




(
1

g11
+ g12g21

g11|G|

)
−

(
g12

|G|

)

−
(

g21

|G|

) (
g11

|G|

)




 Rτ

Fτ


 (10)

+




(
1− 1

g11
+ g21

|G|

)
−

(
β

g11
+ (g11−g21β)

|G|

)
(

g21

|G|

) (
1− (g11−g21β)

|G|

)




 mτ

nτ


 (11)

for any real values of mτ and nτ , τ = 1, . . . , T . For a proof, see Appendix A.2.

Therefore there are an infinite number of structural VARs at the τ period frequency

that are consistent with the recursively ordered structural t period VAR in (2). The

top rows of (10) and (11) can be interpreted as the left hand side of the structural

return equation and the bottom rows can be interpreted as the left hand side of

the structural flow equation. However, a common choice of structural form in (7) is

the Choleski solution. This essentially chooses the arbitrary values of mτ and nτ so

that the Rτ term in the structural flow equation drops out. The recursively ordered

structural VAR which results is just identified if the variance/covariance matrix of

the residuals is assumed to be diagonal. Therefore, by choosing the Choleski solution,
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standard econometric methods can be used to estimate the model (OLS for example).

For all other solutions though, the coefficient on contemporaneous returns in the flow

equation will depend on g21. Only if g21 equals zero will there be no contemporaneous

feedback trading. Assume t represents data sampled at the ten second frequency and

τ represents data at the lower, twenty second frequency. In Appendix A.1, g21 is

shown to be equal to φ21, the coefficient on lagged returns in the flow equation in the

ten second VAR. This is perfectly intuitive. If the order flow from seconds 11 to 20

depends on the return from seconds 1 to 10, then part of the order flow from seconds

1 to 20 will depend on part of the return from seconds 1 to 20, i.e. contemporaneous

feedback trading exists! The question then becomes, on what grounds should the

Choleski solution be chosen? The justification for choosing the Choleski solution

is always on the basis that it makes life easier; the model becomes just identified

and estimation can take place simply using OLS. However, by imposing a recursive

structure on the VAR, the Choleski solution rules out contemporaneous feedback

trading. In this paper, we suggest that one should use the data to tell us what the

coefficient on returns in the flow equation should be, rather than assuming it to be

zero. In our empirical application below we show that using data to calculate the

effect of contemporaneous returns on flows, rather than assuming the coefficient to

be zero, can have serious implications when calculating the price impact of trades

and hence on estimates of their information content.

2 The VAR Model with Feedback Trading

The VAR model is a convenient statistical framework that allows one to analyse the

relationships between, among other things, asset returns and order flow. By inter-

preting order flow shocks as private information, one can examine the price impact

of such shocks, via impulse response functions, and therefore give a quantitative es-

timate of the information content of trades. The greater the price impact, the more

information trades are argued to carry.
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2.1 Model design

The standard VAR model allows asset returns to depend on contemporaneous order

flows but not the converse. From Section 1 we saw that when data are aggregated,

even at still very high frequencies, this recursive ordering may not be valid. Here we

allow both returns and order flows to depend on each other contemporaneously. The

model we wish to estimate can be written as:

yt + Byt = c +

p∑
j=1

φjyt−j + εt t = 1, . . . , T (12)

In our example, yt is simply the 2 × 1 vector of endogenous variables at date t, i.e.

returns and flows; yt = [Rt Ft]
′. In the appendix we generalise the analysis from the 2

to the n variable case.6 c is a 2× 1 vector of constants, the summation term contains

the lags of the VAR and εt is a 2× 1 vector of residuals with zero mean and variance

matrix Ω, assumed to be diagonal. B is the 2 × 2 matrix of structural parameters

with zeros along the main diagonal.7

B =


 0 −b12

−b21 0


 (13)

b12 represents the contemporaneous effect of flows on returns and b21 represents the

contemporaneous feedback trading parameter. For each equation, i = 1, 2, we can

stack the k exogenous and n−1(= 1) endogenous regressors into a (1+k)×1 vector,

zit. Stacking these vectors across the T observations allows us to write

yi = ziΠi + εi i = 1, 2 (14)

6In the model of Engle and Patton (2004), returns of ask prices and returns of bid prices are
considered separately, so yt need not be restricted to be a 2 × 1 vector. In the original Hasbrouck
(1991) setting, yt also contained a number of trade related variables including trade sign and the
interactions between trade sign and volume and spread.

7We separate yt and Byt in (12) as this simplifies the notation in the appendix when we calculate
the distribution of the impulse response functions.
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Πi is a (1 + k) × 1 vector of parameters. yi is the T × 1 vector of the scalar yits

(yit ∈ {Rt, Ft}) and similarly for εi. zi is the T × (1 + k) matrix formed by stacking

the T , (1 + k)× 1, zit vectors. In matrix form, (14) can be written:


 R

F




︸ ︷︷ ︸
Y

=


 z1 0T×(1+k)

0T×(1+k) z2




︸ ︷︷ ︸
Z


 Π1

Π2




︸ ︷︷ ︸
π

+


 εR

εF




︸ ︷︷ ︸
ε

(15)

Y is 2T ×1, Z is 2T ×2(1+k), π is 2(1+k)×1 and ε is 2T ×1. Writing the system in

this form will help us calculate the distribution of the impulse response functions in

Section 2.3, since they will be functions of the distribution of the 2(1+ k)× 1 vector,

π.

2.2 Instrumental variables

Since each of the equations in (14) contain endogenous variables on the right hand

side, we estimate using instrumental variables. For the 1 + k variables in zit we use

the g + k instruments wit, i = 1, 2 and g ≥ 1. For a greater explanation of the use

of these variables as instruments, see Section 2.5. Using two stage least squares, the

IV estimator for Πi, i = 1, 2, is denoted Π̂i and calculated as:

Π̂i =
[
z′iwi (w

′
iwi)

−1
w′

izi

]−1

z′iwi (w
′
iwi)

−1
w′

iyi (16)

where wi is simply the T × (g + k) matrix formed by stacking the T wit vectors of

instruments. Using standard instrumental variables methods, the distribution of π̂,

the 2(1 + k)× 1 vector of parameters in (15) is given by (see Appendix A.3):

√
T (π̂ − π)

d−→ N (0 , Σπ) (17)
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2.3 Impulse response functions

In order to evaluate the informativeness of trades, a common approach is to use

impulse response functions (IRFs). To calculate these impulse response functions,

we convert the VAR of (12) into its MA(∞) representation. It is simple to show that

(12) can be written as8

yt = µ + Ψ0 (I2 + B)−1 εt + Ψ1 (I2 + B)−1 εt−1 + Ψ2 (I2 + B)−1 εt−2 + . . . (18)

where µ is the unconditional mean of the vector yt. B is given in (13) and ΨS,

S = 0, 1, 2, . . . , is given by

ΨS = (I2 + B)−1 φ1ΨS−1 + (I2 + B)−1 φ2ΨS−2 + . . . + (I2 + B)−1 φP ΨS−P (19)

where φj, j = 1, . . . , P , are the coefficients on the lags in the VAR in (12) and

Ψ0 = I2, the 2 × 2 identity matrix. Ψk = 02×2 ∀ k < 0. The impacts of εt on yt+S

are shown by the impulse response functions, HS, where HS is the 2 × 2 coefficient

matrix on εt−S in (18).

HS = ΨS (I2 + B)−1 (20)

We therefore introduce a one unit order flow shock to each of the VARs and exam-

ine the effect of the feedback trading parameter by comparing the IRFs with and

without this feedback trading. In order to determine whether the non-feedback IRF

is significantly different from the IRF of the unrestricted VAR, we have to calculate

the distribution of this feedback impulse response and we do so analytically using

8See Hamilton (1994) for example.
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the delta method. From (20), HS depends only on the parameters in the structural

VAR, the distribution of which is shown in (17). If ĤS = Ψ̂S

(
I2 + B̂

)−1

, where the

caret denotes parameter estimate, and if ĥS = vec
(
Ĥ ′

S

)
then the distribution of the

IRF parameters is given, using (17), as

√
T

(
ĥS − hS

)
d−→ N (0 , GSΣπG′

S) (21)

where GS is 4× 2(1 + k) and equals ∂hS

∂π′ . However, to calculate GS, one cannot use

the results of Hamilton (1994). The structural VARs considered in Hamilton (1994)

are estimated from the reduced form and the structural parameters are backed out

from the variance/covariance matrix of the residuals. In that way, the distribution of

the IRFs depends, not only on the distribution of the reduced form parameters, but

also on the distribution of the variance/covariance matrix of the errors. Since we use

instrumental variables to estimate the structural parameters directly, the distribution

of the IRFs in (21) will depend only on the distribution of the π parameters and not

on the distribution of the variance/covariance matrix of residuals. In Appendix A.4

we show, using methods similar to those of Hamilton (1994) and Lütkepohl (1990),

that GS can be written as

GS =
∂hS

∂π′
= [I4 + (I2 ⊗B′)]−1

[
∂ψS

∂π′
− (HS ⊗ I2) SB′

∂ΘB′

∂π′

]
(22)

where SB′ and
∂ΘB′
∂π′ are shown to be matrices of zeros and ones, and ∂ψS

∂π′ is given by

∂ψS

∂π′
=− (

I2 ⊗ [φ1ΨS−1 + . . . + φP ΨS−P ]′
) (

(I2 + B)−1 ⊗ (
(I2 + B)−1)′) SB′

∂ΘB′

∂π′

+
P∑

j=1

{(
(I2 + B)−1 ⊗Ψ′

S−j

) ∂Θφ′j

∂π′
+

(
(I2 + B)−1 φj ⊗ I2

) ∂ψS−j

∂π′

}

(23)
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where, again,
∂Θφ′

j

∂π′ , j = 1, . . . , P , are matrices of zeros and ones. Using (21), (22)

and (23) we can then calculate the distribution of the impulse response functions and

therefore see whether the restricted/non-feedback IRF is significantly different from

the unrestricted impulse response.9

2.4 Data

The market we consider is that of the spot USD/EUR (US dollar per euro) inter-

dealer foreign exchange market, taken from the Reuters D2000-2 electronic trading

system. The data we consider as instruments are those from the USD/GBP (US

dollar per pound sterling) and GBP/EUR (pound sterling per euro). When sampling

the data we record the last transaction price in each period (one minute or five

minutes) and the order flow, defined as the number of buyer initiated trades minus

the number of seller initiated trades. Unfortunately we have no information on traded

quantities. However, to the extent that earlier work has shown little size variation in

trades on this dealing system (Payne 2003) and that in other applications it is the

number rather than aggregate size of trades that has been shown to matter for prices

and volatility (Jones, Kaul, and Lipson 1994), we expect that this limitation will not

distort our results. Furthermore, even when both the number and size of trades have

been available, research has often focussed on the former measure of trading activity

(Hasbrouck 1991). We also decide to remove certain sparse trading periods from our

sample. These include weekends, the overnight period, defined as 1800 to 0600 GMT

(BST in the summer months) where trading activity was found to be very thin and

some public holidays including Christmas, New Year, Easter (Good Friday and Easter

Monday) and the May Day bank holiday. Periods where the D2000-2 data feed broke

down were also excluded. These periods are defined as those where no transactions

(and hence no price changes) occurred for at least thirty minutes during the day

in any of the three FX markets, i.e. if the data feed broke down on GBP/EUR or

9The distribution of the cumulative IRFs can be calculated quite easily from (21). See Lütkepohl
(1990).
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USD/GBP but not USD/EUR then those data are still excluded, purely because the

GBP/EUR and USD/GBP data are needed in the construction of the instruments.

This filtering process reduced the total number of observations to 90949 at the one

minute frequency and 18401 at the five minute frequency. Table 1 contains statistical

information on exchange rate returns, defined as 100 times the logarithmic difference

in prices, transaction frequencies and order flows for our filtered data sample.

2.5 Instrumenting the endogenous variables

The IV estimator and its distribution, reported in Section 2.2 are standard results.

The main question at this point concerns what instruments one can use and how

good they are at instrumenting the endogenous regressors. Since the data available

to us include not only USD/EUR returns and transactions but also those from the

USD/GBP and GBP/EUR markets, the statistics from these other two markets seem

prime candidates for use as instruments. Previous research has documented the cross

effects of order flow on exchange rates. Evans and Lyons (2002a) document the role

that order flow in one currency has in determining exchange rates in other markets.

In particular DEM/USD (Deutsche mark-dollar) and CHF/USD (Swiss franc-dollar)

order flows have significant effects on a number of other dollar exchange rates. These

cross market effects are also documented in Dańıelsson, Luo, and Payne (2002) which

considers the USD/EUR, GBP/EUR, USD/GBP and JPY/USD markets. Theoreti-

cal explanations as to why cross effects of order flow exist are also presented in Lyons

and Moore (2003), which examines the triangle of rates between the US dollar, euro

and yen.

Since the triangle of rates between the dollar, sterling and euro form a strict coin-

tegrating system, using contemporaneous USD/GBP and GBP/EUR returns as in-

struments for USD/EUR returns is likely to be problematic. Following a shock to

USD/EUR returns at date t for example, this will affect not only the USD/EUR

rate but also one or both of the sterling rates, otherwise clear arbitrage opportu-

nities would result. In which case date t USD/GBP and GBP/EUR returns will
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be correlated with the date t error in the USD/EUR return equation. The use of

contemporaneous USD/GBP and GBP/EUR returns as instruments for the endoge-

nous USD/EUR variables will then result in biased parameter estimates just as OLS

estimates would. Instead, we consider lags of sterling returns which should not be

correlated with the errors and hence stand a good chance of being valid instruments.

Also, under conditions of no arbitrage, it is clear that the USD/EUR return at

time t will equal the sum of the returns in the USD/GBP and GBP/EUR markets.

Therefore, using lags of both sterling returns as instruments will be problematic since,

unless the coefficients on the sterling returns are different in the first stage regression

in the 2SLS procedure, we will essentially be using a ‘synthetic’ lagged USD/EUR

return to instrument for contemporaneous returns. However, the lagged USD/EUR

return is effectively being used as an instrument for itself, since it too is included in

the VAR. For this reason we only use one of either USD/GBP or GBP/EUR returns

as instruments. Which return series we use will depend on how good they are at

instrumenting for the endogenous regressors. Since the no arbitrage problem does not

hold for our order flow series; USD/EUR order flow in period t does not have to equal

the sum of the USD/GBP and GBP/EUR flows, we consider both USD/GBP and

GBP/EUR order flows as candidate instruments for the contemporaneous USD/EUR

flow regressor.

Researchers have often pointed to the pitfalls of using weak instruments and the bias

that such instruments introduce. See for example Buse (1992), Bound, Jaeger, and

Baker (1995), Wang and Zivot (1998) and Staiger and Stock (1997). It is therefore

vital that we examine the quality of our instruments. In our two equation case, in

returns and flows, we only have one endogenous regressor and so test the quality

of our instruments using the procedure discussed in Pagan and Robertson (1998).

They suggest an easily implementable test for the quality of potential instruments

by means of a Wald test. For cases with multiple endogenous regressors, see Shea

(1996) and Hall, Rudebusch, and Wilcox (1996).10 The results of these Wald tests

10To test the quality of our instruments we run a regression of the endogenous regressor in each of
the structural equations in (12) on all the exogenous variables (lagged USD/EUR flows and returns)
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are reported in Table 2 for the one and five minute frequency VARs.

For the one minute frequency VAR, three lags of USD/GBP and GBP/EUR flows

were chosen to instrument for USD/EUR flows in the return equation, while two

lags of USD/GBP returns were chosen as instruments for USD/EUR returns in the

flow equation. Testing the quality of the instruments for USD/EUR flows in the

return equation produced a Wald test of 28.09. For returns in the flow equation,

the instrument Wald test was 236.13. The 1% critical values for the corresponding

χ2 distributions are 16.81 and 9.21 respectively, suggesting that the chosen vari-

ables are good instruments for the endogenous regressors. When considering the

five minute frequency VAR, contemporaneous and one lag of both USD/GBP and

GBP/EUR flows were chosen to act as instruments for USD/EUR flows in the re-

turn equation, while in the flow equation, two lags of GBP/EUR returns were chosen

to instrument for USD/EUR returns. The regression of USD/EUR flows on all ex-

ogenous variables and instruments produced a Wald test of 7109.01, while testing

how good the GBP/EUR returns are as instruments for returns in the flow equa-

tion produced a Wald test of 62.26. Again both of these are significant at the 1%

level, suggesting that these variables make good instruments.11 We also considered

sampling the data at lower frequencies. However, at anything lower than the five

minute frequency, the instrument Wald test became insignificant, even at the 5%

level, suggesting that neither USD/GBP or GBP/EUR variables would be good at

as well as the candidate instruments. A Wald test is then performed on the coefficients of those
instruments. For the endogenous USD/EUR return regressor we begin by using the first lag of either
USD/GBP or GBP/EUR returns and continue increasing the lag length of the instruments until no
more explanatory power is added by their inclusion. The choice as to which sterling series to use,
is made based on the overall fit of this first stage regression. For the USD/EUR flow regressor, we
start by considering contemporaneous USD/GBP and GBP/EUR flows and increase the lag length
in a similar fashion.

11It may appear strange that different variables were chosen to act as instruments at the one
and five minute frequencies. This may be reconciled when one considers the different FX market
dynamics at the different frequencies. With different dynamics and cross correlations at one and five
minute frequencies, it may be unsurprising to find different choices of instruments. The question of
which variables to include as instruments is, after all, an empirical one. The huge Wald statistic on
the instruments for USD/EUR flows (7109.01) comes primarily from the use of contemporaneous
USD/GBP and GBP/EUR flows as instruments. Surprisingly, contemporaneous flows were not
of any use for the one-minute VAR, suggesting possibly delayed information spill-overs from one
market to another.
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instrumenting for the endogenous USD/EUR returns and flows. Since only lagged

returns are suggested as instruments, due to the problems of using contemporaneous

USD/GBP and GBP/EUR returns explained above, as soon as one considers lower

frequency data, the ability of these lagged variables to instrument for USD/EUR

returns is likely to fall. At the hourly or daily frequency for example, returns and

flows will no longer be serially correlated. If USD/EUR returns are not correlated

with its own lag, it is highly unlikely that they will be correlated with the lags of

USD/GBP or GBP/EUR returns. At the lower frequencies, even the fifteen minute

level, the candidate instruments became very weak. Therefore the estimations were

only performed for the one and five minute VARs.

To our knowledge, only one other paper has tried to examine contemporaneous feed-

back trading in the foreign exchange market. Evans and Lyons (2003) use a VAR

model, as we do, in returns and order flows but is not as general as the procedure

outlined above. Evans and Lyons split order flows into two types, both having differ-

ent roles. They assume returns depend on contemporaneous ‘informational’ trades

while ‘feedback’ trades depend on contemporaneous returns. The order flow measure

available from the data is simply the sum of these two components. This is more

restrictive than our approach since we do not, in any way, split trades into different

motives. By using variables obtained from other FX markets as instruments we are

able to estimate an otherwise unidentified model.12

3 Estimation Results

The estimation results of the one minute VAR with and without feedback trading are

shown in Table 3. The lag lengths of the VAR were chosen using the Schwartz Infor-

mation Criterion and this resulted in seven lags of returns and three for order flows.

Each VAR was estimated equation by equation and heteroscedasticity and autocor-

12At the daily frequency Evans and Lyons (2003) find evidence of negative feedback trading!
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relation consistent standard errors were calculated using the Newey-West method.13

The left panel shows the estimation results of the feedback VAR. There are a number

of important findings. Firstly, as one would expect, returns depend positively on

contemporaneous order flow. One way buying (selling) pressure causes positive (neg-

ative) returns intra minute. Returns also display negative serial correlation, as have

been found in Payne (2003) and Evans (2002), both of whom consider the Deutsche

mark-dollar market. Returns also depend negatively on lagged own order flow, al-

though the explanatory power of these variables in the determination of returns is

surprisingly low compared to previous studies; the R2 is only 11.2%.14 Of more in-

terest in this paper are the results for the order flow equation. Order flow appears to

depend positively on contemporaneous returns, with a coefficient that is significant

at the 1% level. This suggests that following a positive return in one minute, traders

‘buy into’ the currency in that same period, possibly because they expect further

price changes in the same direction. However, this is not consistent with the negative

serial correlation observed in one minute returns. On the other hand, positive intra

minute feedback trading is consistent with the positive effect of lagged returns on or-

der flows, seen in both versions of the VAR. This lagged feedback trading phenomenon

is considered in more detail by Cohen and Shin (2003) in the US treasury market.

Without feedback trading, the R2 in the flow equation is only 8.2%. However, when

contemporaneous feedback trading is allowed, the R2 increases to 26.5%, suggesting

that contemporaneous price changes are an important determinant of order flows.

Table 4 gives the VAR results when the data are sampled at the five minute fre-

quency. Again the VARs were estimated equation by equation and the Newey-West

method was used to correct for heteroscedasticity and serially correlated errors. The

13The feedback VAR was estimated equation by equation using instrumental variables, described
above, while the recursively ordered/non-feedback VAR was estimated equation by equation using
OLS. In this way, we compare the ‘true’, unrestricted VAR to that which would have been estimated
using current best practice.

14This raises the question of how good lagged sterling flows are at instrumenting for contemporane-
ous USD/EUR flows at the one minute frequency. The dramatic reduction in R2 from non-feedback
to feedback VAR, along with the dramatic reduction in the t-stat on contemporaneous flows, sug-
gests either a huge mis-specification in the non-feedback VAR, or the use of instruments which are
not as strong as the Wald test suggests. However, this problem is not apparent in the 5 minute
frequency VAR, in which the feedback trading parameter is larger and makes more of a difference.
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Schwartz Information Criterion suggested using three lags of returns and one of flows.

The results are similar, but more pronounced, than those from the higher/one minute

frequency VAR. Again, order flows have a positive and significant effect on contempo-

raneous returns, as one would expect, and returns display negative serial correlation

and depend negatively on lagged flows. The explanatory power of these variables

for five minute returns is quite high, with an R2 of 31.1%. When examining the

flow equation, we again find evidence of feedback trading. Flows depend positively,

not only on lagged returns, but also on contemporaneous five minute returns. The

coefficient on contemporaneous returns in the flow equation is significant at the 5%

level and quantitatively very large; the size of the contemporaneous feedback trading

parameter is more than two and a half times larger than that on the first lag of

returns (56.27 versus 21.23).15 Indeed, if there is positive feedback trading (lagged

and contemporaneous) at the one minute frequency, this, by definition, will be shown

as contemporaneous feedback trading at the five minute frequency, as demonstrated

in Section 1. The results therefore suggest that positive feedback trading is present

in the spot USD/EUR market and significant at high frequencies. Intra minute feed-

back trading is significant but not large, possibly because of the time it takes for

traders to react to the price movements. At the five minute frequency, however,

intra period feedback trading becomes much larger as any lagged feedback trading

at higher frequencies gets incorporated into the contemporaneous feedback effect.

We can interpret the effects of this feedback trading using standard VAR analysis,

namely impulse response functions. This is the focus of the next section.

3.1 Implications of contemporaneous feedback trading: Im-

pulse response functions

We follow standard practice and use IRFs to estimate the information content of

trades. Shocking the system with an order flow shock, εit, where i corresponds to

15For the one minute VAR, contemporaneous feedback trading had a coefficient of 27.02, compared
with 24.12 for the first lag of returns.
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the order flow equation in (12), can be interpreted as examining the effect of private

information. The larger the impact such a shock has on returns, the more informative

order flows are argued to be. By comparing the impulse response functions following

an order flow shock in the two VARs (feedback trading versus non-feedback trading)

we can examine how important contemporaneous feedback trading is. Intuitively, by

ignoring the positive feedback trading (in the recursively ordered structural VAR) it is

likely that any order flow shock will have a smaller impact on returns. The existence

of positive feedback trading will cause the price impact of order flow shocks/private

information to be larger than when feedback trading is ignored, i.e. trades carry more

information than previous estimates suggest.

The impulse response functions following a one unit order flow shock are shown in

the top panel of Figure 1 for the one minute frequency VAR. A number of features

can be noted.

• The impact of the order flow shock is almost immediate. Following the one unit

shock in the feedback VAR, this causes a 1.09 basis point return and after ten

minutes the cumulative return is 1.06 basis points.

• When contemporaneous feedback trading is allowed, the effect of the order flow

shock is larger than when contemporaneous feedback trading is prohibited; the

feedback impulse response is more than double that in the non-feedback VAR.

However, the non-feedback VAR impulse response function is not significantly

different from the feedback IRF, i.e. the non-feedback IRF lies within the 95%

confidence bound of that from the unrestricted VAR.16

This suggests that at the one minute frequency, the difference between the two im-

pulse response functions is economically significant, if not statistically so (at the 5%

level). Evaluating the informativeness of order flows by considering their price im-

16Impulse responses were also done using a one standard deviation order flow shock but this had
no effect on our results. This is because the standard deviations of order flow shocks were very
similar in both VAR specifications; see Table 3.
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pact will result in a bias if a recursively ordered VAR is considered. However, the

statistical significance of this bias is questionable.

The results from the five minute frequency VAR are more pronounced and suggest

a much more important role for feedback trading in the interpretation of IRFs. The

impulse response functions following a one unit order flow shock are shown in the

bottom panel of Figure 1. The notable features are given below.

• On impact of the order flow shock in the feedback VAR, this causes a return

of 1.12 basis points. The cumulative return is 1.02 basis points after thirty

minutes.

• Again, as in the one minute VAR results, the effect of a one unit order flow shock

is larger when feedback trading is allowed. On impact of the order flow shock

in the non-feedback VAR, the return is only 0.43 basis points, i.e. the feedback

IRF is over two and a half times that of the non-feedback VAR. However, for

the five minute frequency case, the non-feedback IRF is significantly different

from the unrestricted impulse response, i.e. it lies outside the 95% confidence

bound.

Therefore, at the five minute frequency, feedback trading appears to have important

consequences when trying to calculate the price impact/informativeness of order flow.

The IRF that is commonly computed (that does not allow contemporaneous feed-

back trading) is significantly below the ‘true’ IRF which does allow such trading

strategies. The price impact of order flow, and hence proxies for the informativeness

of such trades, is therefore larger than is commonly believed, implying that trades

carry more information than previous studies suggest. The feedback trading that

occurs both contemporaneously and also with lags at the one minute frequency, has

significant repercussions when modelling five minute data without feedback trading,

as is commonly done.
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4 Discussion and Interpretation

We have shown that feedback trading in the USD/EUR spot FX market does exist

even at high frequencies, specifically the one and five minute sampling frequencies.

At the one minute frequency, even though the non-feedback impulse response is not

different from the unrestricted IRF in a statistical sense, it is different in an economic

sense; the feedback impulse response is more than twice that of the non-feedback

IRF, implying trades carry over twice as much information than current estimates

suggest. At the five minute frequency, the contemporaneous effect of returns on order

flows is significant and causes the IRFs with and without feedback trading to differ

significantly, economically and statistically. Indeed, if feedback trading occurs at the

one minute frequency in the lags and also contemporaneously, then by definition, such

trading strategies will appear contemporaneous at the five minute frequency. This

positive feedback trading causes the price impact of unanticipated order flow shocks

(representing private information) to be larger compared to when contemporaneous

feedback trading is ruled out. The price impact of private information/order flow

shocks that is commonly calculated will then be biased downwards compared with

the true impact.

In this paper we have labelled the effects of contemporaneous asset returns on order

flows as feedback trading effects. However, there may be other reasons why date

t order flows depend on contemporaneous asset returns. Firstly, traders wishing

to trade large quantities may break up their trade into a number of smaller sized

transactions. By walking up and down the limit order book and splitting a large buy

order into a number of smaller trades, to be executed within a short time interval,

this will be shown up in the VAR as order flows depending on contemporaneous asset

returns. Even though traders are not ultimately wishing to trade based on previous

price changes; the decision to trade was made some time earlier, this will still manifest

itself as date t order flow depending (statistically) on date t asset returns. Imposing

a recursively ordered structural VAR will still be a mis-specification. Another reason

why order flow may appear dependent on contemporaneous returns in aggregated

24



data is because of the existence of stop-loss orders (Osler 2002). If the price of an

asset falls to a certain level, traders may initiate sell orders in order to stop losses

from getting any larger. In which case, negative (positive) returns induce negative

(positive) order flow immediately. In any case, what we have demonstrated in this

paper is that order flow at date t depends positively on date t asset returns in the spot

FX market. Whether this is due to the splitting of dealers’ trades, stop loss orders

or due to ‘pure’ feedback trading based on extrapolative expectations of future price

changes, is irrelevant. In all cases, the assumption of a recursively ordered structural

VAR will result in a misspecified model and in a bias in any estimate of the price

impact/informativeness of trades.

This paper does not try to explain why feedback trading may occur in the foreign

exchange market, or indeed how profitable such strategies may or may not be. The

purpose of the paper is to analyse the effects of contemporaneous feedback trading

on estimates of the price impact of order flows. Such measures are commonly used

as proxies for the informativeness of trades (how much information trades carry). As

shown in this study, these measures are underestimated if feedback trading is ignored

and the data are sampled at anything other than at the highest frequencies. Following

a positive order flow shock, representing private information, this causes a positive

return due to the asymmetric information (Kyle 1985, Glosten and Milgrom 1985) or

inventory control channels (Lyons 1995). If such price changes induce further trades,

which in turn cause price changes, etc., then the total effect of the order flow shock

will be greater than when contemporaneous feedback trading is prohibited.

At the five minute frequency we find that after a one unit order flow shock, this

causes a return of approximately 1.12 basis points whereas when feedback trading is

ignored, the return is only 0.43 basis point. The non-feedback IRF is significantly

different from that of the unrestricted VAR, implying that feedback trading makes a

difference when calculating the price informativeness of trades.
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5 Conclusions

Microstructure theory suggests that trades carry information and hence have perma-

nent effects on prices. The information content of these trades is normally quantified

by examining their price impact (Hasbrouck 1991) after fitting the data to a vector

autoregression. However, common practise is to allow returns to depend on contem-

poraneous order flows but not the converse. The recursively ordered structural VAR

that results can then be estimated quite easily. Although intuitive at ultra-high fre-

quencies, such as tick-by-tick, as soon as one starts aggregating the data, any feedback

trading (that by definition can only occur in the lags of tick-by-tick data) will appear

contemporaneous. The recursively ordered VAR then becomes misspecified and can

have important repercussions when examining the price impact of order flow shocks.

In this paper we use standard instrumental variables techniques in order to estimate

a VAR model that allows contemporaneous feedback trading. Feedback trading is

found to be significant and positive at the one and five minute frequencies, with the

implication that the price impact of order flows is underestimated when such trading

strategies are not allowed. Trades, in the form of order flow shocks, therefore carry

more information/have a larger impact on asset prices than previously believed.
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Table 2
Instrumenting USD/EUR returns and flows

Return equation

R
USD/EUR
t = c + b F

USD/EUR
t +

∑m
i=1 uiR

USD/EUR
t−i +

∑n
j=1 vjF

USD/EUR
t−j + εR

t

1 min frequency 5 min frequency

Instruments for F
USD/EUR
t (flows)

F
USD/GBP
t−1 F

GBP/EUR
t−1

F
USD/GBP
t−2 F

GBP/EUR
t−2

F
USD/GBP
t−3 F

GBP/EUR
t−3︸ ︷︷ ︸

wt

F
USD/GBP
t

F
USD/GBP
t−1

F
GBP/EUR
t

F
GBP/EUR
t−1︸ ︷︷ ︸

wt

Frequency Wald test 1% critical value Degrees of freedom
1 min 28.09 16.81 6
5 min 7109.01 13.28 4

Flow equation

F
USD/EUR
t = c + bR

USD/EUR
t +

∑m
i=1 uiR

USD/EUR
t−i +

∑n
j=1 vjF

USD/EUR
t−j + εF

t

1 min frequency 5 min frequency

Instruments for R
USD/EUR
t (returns)

R
USD/GBP
t−1

R
USD/GBP
t−2︸ ︷︷ ︸

wt

R
GBP/EUR
t−1

R
GBP/EUR
t−2︸ ︷︷ ︸

wt

Frequency Wald test 1% critical value Degrees of freedom
1 min 236.13 9.21 2
5 min 62.26 9.21 2

Notes: Rx
t is 100 × the log first difference of exchange rate x at date t. F x

t is the order flow for
exchange rate x, defined as the number of buyer less the number of seller initiated transactions in
period t.
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Figure 1. Impulse Response Functions for Feedback and Non-feedback VARs
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Notes: The figures plot the impulse response functions following a one unit order flow shock. The
shock was introduced into the estimated VAR of (12) and the cumulative return calculated. In both
plots, the solid line gives the impulse response function from the feedback VAR and the dashed
lines trace out a 95% confidence interval for the IRF derived from (21). The crossed line gives the
impulse response from the non-feedback VAR.
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A Appendix

A.1 Aggregation of the ultra-high frequency VAR in model

(1)

The methods used here are taken from Harvey (1989). Let τ denote timing at the

twenty second frequency, τ = 1, . . . , T , and t denote timing at the ten second fre-

quency, t = 1, . . . , 2T . The reduced form of the ten second frequency VAR is then

given in (3). For convenience, this is given in (A.1) below.

yt = Q−1α + Q−1φyt−1 + Q−1εt t = 1, . . . , 2T (A.1)

Let µ denote the unconditional mean of the stationary vector process, yt. In which

case we can write

yt − µ = Q−1φ (yt−1 − µ) + Q−1εt︸ ︷︷ ︸
ut

(A.2)

Putting (A.2) into state space form, gives the state and observation equations as

(A.3) and (A.4) respectively.


 yt+1 − µ

yt − µ




︸ ︷︷ ︸
ξt+1

=


 Q−1φ 0

I2 0




︸ ︷︷ ︸
F


 yt − µ

yt−1 − µ




︸ ︷︷ ︸
ξt

+


 ut+1

0




︸ ︷︷ ︸
vt+1

V ar (vt+1) = Σ =


 Q−1Ω (Q−1)

′
0

0 0




(A.3)

yt = µ + [I2 0]︸ ︷︷ ︸
H′


 yt − µ

yt−1 − µ


 (A.4)
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If yf
t denotes the cumulator variable, i.e. yf

t = yt for the first ten seconds of a twenty

second period and yf
t = yt + yt−1 for the second ten second period, then:

yf
2(τ−1)+1 = y2(τ−1)+1

yf
2(τ−1)+2 = y2(τ−1)+1 + y2(τ−1)+2

(A.5)

The cumulator variable at the ten second frequency, but at times t = 2, 4, 6, . . . , can

therefore be given, using the observation equation, (A.4), as

yf
t = yf

t−1 + µ + H ′Fξt−1 + H ′vt (A.6)

At times t = 1, 3, 5, . . . , the cumulator variable is given by

yf
t−1 = µ + H ′ξt−1 (A.7)

Substituting yf
t−1 into (A.6) and using ξt−1 = Fξt−2 + vt−1 gives

yf
t = 2µ + H ′ (F + F 2

)
ξt−2 + H ′ (I2 + F ) vt−1 + H ′vt︸ ︷︷ ︸

H′v̄f
t

(A.8)

Since the cumulator function, yf
t , at times t = 2, 4, 6, . . . , is the same as yτ , the data

sampled at the twenty second frequency, then we can write

yτ = 2µ + H ′ (F + F 2
)

 yτ−1 − 2µ

yτ−2 − 2µ


 + H ′v̄f

t (A.9)

Noting that H ′ (F + F 2) = [Q−1φ (I2 + Q−1φ) 0] then the reduced form model at
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the twenty second frequency can be written as

yτ =
(
I2 −Q−1φ

(
I2 + Q−1φ

))
2µ︸ ︷︷ ︸

µ+

+ Q−1φ
(
I2 + Q−1φ

)
︸ ︷︷ ︸

A

yτ−1 + eτ (A.10)

where eτ = [I2 0] v̄f
t . V ar (eτ ) is therefore given by

V ar (eτ ) = [I2 0] V ar
(
v̄f

t

)

 I2

0


 = [I2 0]

[
(I2 + F ) Σ (I2 + F )′ + Σ

]

 I2

0




=
(
I2 + Q−1φ

)
Q−1Ω

(
Q−1

)′ (
I2 + Q−1φ

)′
+ Q−1Ω

(
Q−1

)′

= GΩG′ + Q−1Ω
(
Q−1

)′

(A.11)

where G = (I2 + Q−1φ) Q−1. Expanding this gives us the elements of G.

G =


 g11 g12

g21 g22


 =


 1 + φ11 + βφ21 (1 + φ11 + βφ21) β + φ12 + βφ22

φ21 φ12 + βφ22


 (A.12)

A.2 Derivation of the structural form of the twenty second

VAR

The structural VAR at the twenty second frequency is given in (7) and xτ , = P+yτ ,

is the solution to the equation in (9). The general solution for xiτ , i = 1, . . . , 4, can

37



be found using Gaussian elimination, resulting in

x1τ =

(
1

g11

+
g12g21

|G|
)

Rτ −
(

g12

|G|
)

Fτ −
(

1

g11

− g21

|G|
)

mτ −
(

β

g11

+
(g11 − g21β)

|G|
)

nτ

x2τ = −
(

g21

|G|
)

Rτ +

(
g11

|G|
)

Fτ +

(
g21

|G|
)

mτ −
(

g11 − g21β

|G|
)

nτ

x3τ = mτ

x4τ = nτ

(A.13)

for any real values of mτ and nτ , τ = 1, . . . , T , implying an infinite number of

solutions. The right hand side of (7) can be written as [I2 I2] xτ , and the coefficients

on Rτ and Fτ are the structural parameters of interest. Noting that [I2 I2] xτ =

[(x1τ + x3τ ) (x2τ + x4τ )]
′ gives us (10).

A.3 Distribution of π̂

The notation and methods used here are similar to those of Hamilton (1994) but we

allow IV estimation rather than simple OLS. In this appendix we also generalise the

2 variable case, in returns, Rt, and flows, Ft, to the n variable case, since one may

wish to model a number of returns and trade characteristics. From (16)

√
T

(
Π̂i − Πi

)
=




(
1

T

T∑
t=1

zitw
′
it

)(
1

T

T∑
t=1

witw
′
it

)−1 (
1

T

T∑
t=1

witz
′
it

)

−1

(
1

T

T∑
t=1

zitw
′
it

)(
1

T

T∑
t=1

witw
′
it

)−1

1√
T

T∑
t=1

witεit

(A.14)
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Let Qii
ww

(g+k)×(g+k)

=
1

T

T∑
t=1

witw
′
it and also Qii

ww −→ E [witw
′
it] (A.15)

Qii
zw

(n−1+k)×(g+k)

=
1

T

T∑
t=1

zitw
′
it Qii

zw −→ E [zitw
′
it] (A.16)

Qii
wz

(g+k)×(n−1+k)

=
1

T

T∑
t=1

witz
′
it Qii

wz −→ E [witz
′
it] (A.17)

Also assume that these expectations exist and are finite. This basically states that

the instruments are correlated with the right hand side regressors in (14). The in-

struments, wit, have the property that

plim
1

T

T∑
t=1

witεit = 0 i = 1, . . . , n (A.18)

so that the instruments are uncorrelated with the errors in the original VAR. Let

Qii =
[
Qii

zwQii−1

ww Qii
wz

]−1

Qii
zwQii−1

ww , then from (A.14),

√
T

(
Π̂i − Πi

)
= Qii 1√

T

T∑
t=1

witεit i = 1, . . . , n (A.19)

Stacking these up for i = 1, . . . , n, noting that π = [Π′
1 Π′

2 . . . Π′
n]′, i.e. π = vec (Π′)

where Π′ = [Π1 Π2 . . . Πn], then we obtain

√
T (π̂ − π) =




Q11 1√
T

∑T
t=1 w1tε1t

Q22 1√
T

∑T
t=1 w2tε2t

...

Qnn 1√
T

∑T
t=1 wntεnt




(A.20)

which can be written
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√
T (π̂ − π) =




Q11 0 0

0 Q22

. . .

0 Qnn




︸ ︷︷ ︸
Q




1√
T

∑T
t=1 w1tε1t

1√
T

∑T
t=1 w2tε2t

...

1√
T

∑T
t=1 wntεnt




(A.21)

= Q
1√
T

T∑
t=1

ζt (A.22)

where

ζt =




w1tε1t

w2tε2t

...

wntεnt




(A.23)

Let S = 1
T

∑T
t=1 ζtζ

′
t and let S −→ E [ζtζ

′
t] = SP which we assume exists and is finite.

If the population analogues of Q and S are denoted with superscript P s then

√
T (π̂ − π)

d−→ N


0 , QP SP QP ′

︸ ︷︷ ︸
Σπ


 (A.24)

In the empirical application of the paper, SP is estimated using the Newey-West

method, i.e.

π̂ ≈ N

(
π ,

QŜQ′

T

)
(A.25)
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where Q is as in (A.21) and Ŝ is given by

Ŝ = Ŝ0 +

q∑
v=1

[
1− v

q + 1

] (
Ŝv + Ŝ ′v

)
(A.26)

where

Ŝv =




1
T

∑T
t=v+1 w1tε1tε1t−vw

′
1t−v 0 · · · 0

0 1
T

∑T
t=v+1 w2tε2tε2t−vw

′
2t−v

...
. . .

0 1
T

∑T
t=v+1 wntεntεnt−vw

′
nt−v




(A.27)

This is the same as estimating the system using instrumental variables equation by

equation and making the Newey-West correction on each equation in turn.

A.4 Distribution of the impulse response functions

The results outlined here are similar to those given in Lütkepohl (1990) and Hamil-

ton (1994). However, the structural forms of the VAR that they consider are esti-

mated from reduced forms, with the structural parameters backed out of the vari-

ance/covariance matrix of the residuals. In which case the distribution of the IRFs

will be functions of the distribution of the parameters of the VAR but also of the dis-

tribution of the variance/covariance matrix of the errors. Since our structural VAR

is estimated directly, using instrumental variables, the distribution of our IRFs will

depend only on the distribution of the VAR parameters. The differences between our

results and those in Lütkepohl (1990) and Hamilton (1994) are non-trivial.

The impulse response functions are given by HS in (20). Using ĥS = vec
(
Ĥ ′

S

)
, the

distribution of the IRFs can be calculated from (21). For convenience, this is given
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below in (A.28).

√
T

(
ĥS − hS

)
d−→ N (0 , GSΣπG′

S) (A.28)

GS is the matrix formed from the derivatives of each of the elements in the vector

hS with respect to each of the elements in the vector π, i.e. GS = ∂hS

∂π′ . Below, we

show how these are calculated using HS = ΨS (In + B)−1 and noting that ΨS and B

depend on the π parameters, the distribution of which is given in (17).

HS (In + B) = ΨS

⇒ (In + B′) H ′
S = Ψ′

S

(A.29)

Letting η denote an element of π, then differentiating (A.29) with respect to η gives

(In + B′)
∂H ′

s

∂η
+

∂B′

∂η
H ′

S =
∂Ψ′

S

∂η
(A.30)

Using the result that vec (ABC) = (C ′ ⊗ A) vec(B) and letting ψS = vec (Ψ′
S), then

(A.30) can be written as

∂hS

∂η
= [In2 + (In ⊗B′)]−1

[
∂ψS

∂η
− (HS ⊗ In)

∂vec (B′)
∂η

]
(A.31)

We then need expressions for ∂ψS

∂η
and ∂vec(B′)

∂η
. Start by considering ∂vec(B′)

∂η
. From
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(13), and using the n variable case,

B =




0 −b12 · · · −b1n

−b21 0 · · · −b2n

...
...

−bn1 −bn2 · · · 0



⇒ B′ =




0 −b21 · · · −bn1

−b12 0 · · · −bn2

...
...

−b1n −b2n · · · 0




(A.32)

Write

vec (B′) = SB′ΘB′ (A.33)

where vec (B′) is the n2 × 1 vector formed by stacking the n2 elements of B′. Since

B has zeros along the diagonal, there are only n2 − n structural parameters that are

estimated. Hence ΘB′ is the (n2 − n)×1 vector of the −bij parameters, i, j = 1, . . . , n,

i 6= j. SB′ is the n2 × (n2 − n) matrix of zeros and ones that maps the elements of

ΘB′ onto vec (B′). Therefore

∂vec (B′)
∂η

= SB′
∂ΘB′

∂η
(A.34)
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Since Π′ = [Π1 Π2 . . . Πn], then Π′ can be written as

Π′ =




b12 b21 · · · bn1

b13 b23 bn2

...
...

...

b1n b2n · · · bnn−1








n− 1 rows



c′

φ′1
...

φ′P



︸ ︷︷ ︸
n columns





k rows

(A.35)

Noting that π = vec (Π′), it then becomes clear that
∂ΘB′
∂π′ is an (n2 − n)×n (n− 1 + k)

matrix of zeros and ones, i.e.

∂ΘB′

∂π′
=




−In−1 0(n−1)×(n−1)(n−1+k)+k

0(n−1)×(n−1+k) −In−1 0(n−1)×(n−2)(n−1+k)+k

0(n−1)×2(n−1+k) −In−1 0(n−1)×(n−3)(n−1+k)+k

...
...

0(n−1)×(n−1)(n−1+k) −In−1 0(n−1)×k




(A.36)

Since
∂ΘB′
∂π′ is formed by stacking the n (n− 1 + k)

∂ΘB′
∂η

vectors, each of which are

(n2 − n) × 1 and ∂hS

∂π′ is formed by stacking the n (n− 1 + k) ∂hS

∂η
vectors, then we

have our first expression, the matrix analogue of ∂vec(B′)
∂η

. We now need an expression

for ∂ψS

∂η
. From (19) we can write

Ψ′
S = Ψ′

S−1φ
′
1

(
(In + B)−1)′ + Ψ′

S−2φ
′
2

(
(In + B)−1)′ + . . . + Ψ′

S−P φ′P
(
(In + B)−1)′

(A.37)
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Differentiating this with respect to η, an element of π, and rearranging results in

∂Ψ′
S

∂η
= [φ1ΨS−1 + φ2ΨS−2 + . . . + φP ΨS−P ]′

∂
(
(In + B)−1)′

∂η

+ Ψ′
S−1

∂φ′1
∂η

(
(In + B)−1)′ + . . . + Ψ′

S−P

∂φ′P
∂η

(
(In + B)−1)′

+
∂Ψ′

S−1

∂η

(
(In + B)−1 φ1

)′
+ . . . +

∂Ψ′
S−P

∂η

(
(In + B)−1 φP

)′

(A.38)

and implementing the vec operator, where ψS = vec (Ψ′
S), gives us

∂ψS

∂η
=

(
In ⊗ [φ1ΨS−1 + φ2ΨS−2 + . . . + φP ΨS−P ]′

) ∂vec
(
(In + B)−1)′

∂η

+
(
(In + B)−1 ⊗Ψ′

S−1

) ∂vec (φ′1)
∂η

+ . . . +
(
(In + B)−1 ⊗Ψ′

S−P

) ∂vec (φ′P )

∂η

+
(
(In + B)−1 φ1 ⊗ In

) ∂ψS−1

∂η
+ . . . +

(
(In + B)−1 φP ⊗ In

) ∂ψS−P

∂η

(A.39)

Stack the elements of the n×n matrix φ′j in an n2×1 vector, Θφ′j , i.e. Θφ′j = vec
(
φ′j

)

then from (A.35), it can be seen that
∂Θφ′

j

∂π′ can be written as17

∂Θφ′j

∂π′
=




0n×nj In 0n×(n−1)(n−1+k)+(P−j)n

0n×(n−1+k)+nj In 0n×(n−2)(n−1+k)+(P−j)n

...
...

0n×(n−1)(n−1+k)+nj In 0n×(P−j)n




(A.40)

Again, since ∂ψS

∂π′ is formed by stacking the n(n−1+k) ∂ψS

∂η
vectors, then (A.40) gives

us the matrix analogue terms of
∂vec(φ′j)

∂η
. The last term we need is

∂vec((In+B)−1)
′

∂η
.

17If we have different lag lengths of returns and flows, as in our empirical model, these
∂Θφ′

j

∂π′
matrices need to be altered slightly. Also vec

(
φ′j

)
= Sφ′j Θφ′j and Sφ′j will not in general equal the

identity matrix.
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Using the results of Magnus and Neudecker (1988), pages 96, 148 and 151, we can

see that

∂vec
(
(In + B)−1)′

∂η
= −

[
(In + B)−1 ⊗ (

(In + B)−1)′]SB′
∂ΘB′

∂π′
(A.41)

where SB′ and
∂ΘB′
∂π′ are defined as before. Substituting (A.41) into (A.39) and sum-

ming the elements in the second and third rows will give us our definition of ∂ψS

∂π′

when we stack the n(n − 1 + k) ∂ψS

∂η
vectors. This is (23) in the text. Stacking the

n(n− 1 + k) ∂hS

∂η
vectors in (A.31) will give the result in (22), which we can then use

to calculate the distribution of the IRFs.
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