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Abstract

This paper studies optimal intergenerational transfer policy under stochastic labor income

and capital returns. It has implications for Social Security, government tax and debt policy,

and DB pension funds. A stylized two-period overlapping-generations model is developed

where a central planner implements pay-as-you-go transfers. I allow for autocorrelation in

the labor income and skewness in the capital return and calibrate the model parameters

to US data. I show that state-contingent transfers facilitate intergenerational risk sharing

in a way that is similar to portfolio insurance using put options. That is, the working

generation provides downside risk insurance to the old on their savings. In addition, when

no riskfree asset is available, these transfers improve utility by substituting for this missing

asset. I further find that imposing an incentive constraint for the working generation has

little impact when transfers also have this substitution role, but it causes the transfer scheme

to collapse to the zero-transfer scheme when a risk free asset is available.
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1 Introduction

It is by now known that a central planner, like the government, can facilitate risk sharing in

addition to free market possibilities. It can do so by implementing intergenerational transfers;

for example via Social Security. There is surprisingly little literature though on the transfer

scheme that is optimal from this intergenerational risk sharing perspective. The papers that do

exist on this topic focus on sharing aggregate labor income risk by assuming a constant Pay-

As-You-Go (PAYG) tax on the working generations’ labor income. However, I will show that

risk sharing with an optimally chosen state-contingent PAYG tax involves much larger welfare

gains. Moreover, the focus on labor income risk is very restrictive. As I will illustrate using U.S.

data, the return on the savings of the retired generations is subject to much greater stochastic

fluctuations creating a much larger potential for intergenerational risk sharing.

This paper is the first (to the best of my knowledge) to analyse intergenerational risk sharing

taking into account the financial risk of both the workers and the retirees. I study a stylized two-

period overlapping-generations model where the young generation faces stochastic labor income

and the old generation faces a stochastic return on its savings. The central planner implements

transfers from the young to the old (i.e. PAYG transfers) as to maximize the unconditional

expected utility for the steady state generation. The size of the transfer depends on both the

young generation’s realised labor income (affordability) and the old generation’s pre-transfer

wealth (desirability). The latter is determined by the old’s labor income, consumption and

transfer paid when they were young and the return on their savings. I focus on a small open

economy where the transfers do not influence future marginal productivity of labor and capital.

Another important part of my set-up is the assumed joint stochastic process for the labor

income and capital return. I will use data on US GNP and the US stock market to proxy for

labor income and capital return. I assume a four state Markov process which allows me to match

the mean, standard deviation and skewness in the labor income and capital return as well as

the autocorrelation in labor income.

I consider several alternative model specifications to further deepen the understanding of

intergenerational risk sharing. I analyse the model with and without an additional, risk free

investment asset. Moreover, I investigate to what extent intergenerational risk sharing is possible

when voluntary cooperation is required. By imposing an incentive constraint for the young the

implementation of the transfer scheme will be enhanced. I consider this a first step towards

more advanced modeling of the political voting system.

Academics have shown interest in intergenerational transfers for a long time. Diamond

(1965) showed that a decentralized, non-stochastic economy can be dynamically inefficient and

that transfers from young to old can be Pareto improving. Only more recently, academics started
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to stress the ability of a central planner to facilitate intergenerational risk sharing. For an early

treatment see e.g. Merton (1983) or Gordon and Varian (1988). To evaluate the welfare impact

of intergenerational risk sharing, often Pareto optimality is considered. However, in a stochastic

setting this may be defined in different manners, depending on the moment different agents’

welfare is evaluated. With interim Pareto optimality agents’ welfare is evaluated at birth. This

concept is rather weak since it does not take into account insurance possibilities across states

of the world one is born in. In this paper I use the concept of ex ante Pareto optimality which

does take into account these insurance possibilities. For my model set-up this boils down to

maximizing unconditional expected utility for the steady state generation.1

The paper closest in spirit to mine is De Menil and Sheshinski (2003). As in this paper they

study PAYG transfers in a two-period overlapping generations model, use ex ante optimality for

the steady state generation as Pareto concept, and focus on a small open economy. Transfers

are restricted to be a constant fraction of the young’s labor income. Necessary conditions for

the optimal PAYG rate to be nonzero are derived. For selected countries they calibrate their

model parameters and numerically solve for the optimal values.

Bohn (2003) provides comparative statics on ex ante Pareto optimality in an economy with

stochastic productivity shocks. Wages are more exposed to productivity risk than the return on

capital. He argues that in practice the promised transfers from the workers to the retirees are

often safe and therefore seem to shift risk in the wrong direction. However, besides productivity

risk, capital is subject to stochastic depreciation shocks. As he shows himself, this makes the

return on capital more risky than wages. Taking into account the possible role for transfers to

share this depreciation risk as well might overturn his conclusion.

Krueger and Kubler (2002) study the impact of introducing a 2% PAYG pension rate. In

a small open economy it can be interim Pareto improving, but this is mitigated by a capital

crowding-out effect in a general equilibrium setting. For several reasons their results are hard to

compare with mine. First they focus on the weaker interim Pareto optimality concept. Second,

the transfers are of a very particular form, which is likely to be far from the optimal PAYG rate.

Third, they assume no riskless borrowing, but households can sell short the risky asset. This

implies that very young households have to cut consumption or bear additional risk to pay for

the pension tax.

This paper extends De Menil and Sheshinsky (2003), Bohn (2003), and Krueger and Kubler

(2002) along various dimensions. First, while these papers restrict the transfer to be a constant

fraction of labor income, this paper allows transfers to depend on all available information.

That is, the transfer is conditional on the entire history of the realised labor income and capital

1For a further discussion on Pareto optimality concepts see e.g. Demange and Laroque (1999) and Demange

(2002).
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return. Second, I use a more realistic stochastic setting with skewness in the labor income and

capital return and autocorrelation in the labor income. Third, I shed light on the implication

of adding a risk free asset to the investment opportunity set. Fourth, I examine to what extent

intergenerational transfers can be incentive compatible for the paying generation.

I start by assuming there is only a single asset available; which is risky. State-contingent

transfers facilitate intergenerational risk sharing in a way that is similar to portfolio insurance

using put options. That is, the working generation provides downside risk insurance to the old

on their savings. However, this insurance is imperfect in the sense that the old also bear part of

the downside risk. Moreover, the transfer depends not only on the old’s desirability of a transfer,

but also on the young’s affordability. That is, ceteris paribus we see larger transfers when the

young received a high labor income. In the absence of a risk free asset the intergenerational

transfers serve an additional purpose. The transfer can be considered as being the sum of a zero-

mean, state-dependent component and a constant component. The first component provides the

downside risk insurance to the old on their savings. The second component effectively substitutes

for the missing riskfree asset. For a low degree of risk aversion the added value of the transfer

scheme comes from the downside risk sharing, while as for a high degree of risk aversion the

substitution of the missing risk free asset is more important. Based on model parameter values

calibrated to U.S. data I find that for the downside risk sharing the capital return risk is more

important than the labor income risk. Not only the standard deviation of the log capital return

matters, but negative skewness also plays a substantial role. Furthermore, I provide evidence

that risk is effectively only shared over generations not too far apart in time. I find that

cooperation by the young is only an issue for low degrees of risk aversion. For high degrees of

risk aversion the substitution of the absent risk free asset provides a major incentive to cooperate

even for generations that face a transfer with a less attractive state-dependent component.

Next I assume a risk free asset is present. In this set-up the risk free asset represents a

long-term investment (e.g. with a horizon of 20 years) that provides a fixed real return (i.e.

inflation corrected). In reality most long-term bonds are nominal and over the long run these

are quite risky in real terms.2 However the market for inflation-indexed bonds might mature

and this analysis explores the implications for intergenerational risk sharing. Some of the results

change compared to the case when no risk free asset is present. Obviously the substitution role of

intergenerational transfers disappears. However, the young still provide imperfect downside risk

protection to the old on their savings. This risk sharing causes the optimal risky asset allocation

to be greater than it would have been under autarky. Cooperation by the young is now a major

issue for all degrees of risk aversion. In fact, imposing an incentive constraint for the young

2See e.g. Campbell and Viceira (2002, p.109) for an illustration.
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causes the zero transfer scheme to be the only implementable one. This again illustrates that

the substitution role is linked to implementability of the fully optimal state-contingent transfer

scheme.

The structure of this paper is the following. In Section 2 I present the general model set-

up, discuss the characteristics of the assumed joint stochastic process for the labor income and

capital return, and explain the solution technique. The calibration of the model parameters is

presented in Section 3. I discuss optimal transfer policy without risk free asset in Section 4 and

with risk free asset in Section 5. Section 6 concludes, discusses implications for Social Security

reform and suggests directions for future research.

2 A two-period overlapping generations model

I first discuss the model set-up. Second, I present details on the assumed stochastic environ-

ment. Third, I explain two numerical techniques to solve the model. These two techniques are

consistent with each other, but both have their own advantages.

2.1 Set-up of the model

I consider a stylized overlapping generations model where generations live for two periods. In

the first period a generation works and is referred to as young. In the second period a generation

invests his savings and is referred to as old. I abstract from population growth and intermediate

death, so the young and old generation have an equal number of members. The labor income,

Y , and the capital return on savings, R, in period t are determined by the state of the world,

ωt, which is assumed to follow a Markov process. Further introducing notation, ω is an element

of the finite space Ω. I assume the state of the world is exogenous, which seems a reasonable

assumption for a small open economy where foreign capital can flow in and out freely. In addition

to the two generations alive in a certain period there is a third player referred to as the central

planner. The central planner may transfer wealth between the two generations alive. Following

De Menil and Sheshinsky (2004) I assume that institutional requirements are such that only

transfers from the young to the old (i.e. PAYG transfers) can be implemented.

After the state of the world in period t is known the following actions are taken by the players.

The central planner implements a transfer of size xt ≥ 0 from the young to the old. The young

generation chooses consumption cyt , and consequently saves Y (ωt)−xt−cyt . The young’s optimal
savings turn out to be always positive, so we do not have to consider a nonnegativity constraint.

The old consume cot = st + xt, where

st =
£
Y (ωt−1)− xt−1 − cyt−1

¤
R (ωt) (1)
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is the old’s pre-transfer wealth. Since the old simply consume all wealth available to them, only

the young and the central planner have a choice to make.

The exogenous state of the world, ωt, and the endogenous old’s pre-transfer wealth, st,

together summarize all relevant information on the state of the economy in period t, denoted

(ωt, st). The policy functions cy and x for the young and the central planner respectively specify

the actions for all possible states of the economy.

The young in period t maximize expected utility conditional on the realised state of the

economy in period t. That is

cy (ωt, st) = argmax
cy

Et [u {cy}+ βu {(Y (ωt)− x (ωt, st)− cy)R (ωt+1) + x (ωt+1, st+1)}] , (2)

for all ωt ∈ Ω and st ≥ 0, where β is the subjective discount factor. I assume u is of power
utility form with coefficient of relative risk aversion γ. That is

u {c} =
¡
c1−γ − 1¢ / (1− γ) for γ > 1, (3)

u {c} = log (c) for γ = 1 (4)

The central planner maximizes unconditional expected utility for the steady state generation.

That is

x = arg max
x(ω,s),
ω∈Ω,s≥0

E [u {cy}+ βu {st+1 + x (ωt+1, st+1)}] , where (5)

st+1 = [Y (ωt)− x (ωt, st)− cy]R (ωt+1)

Even though the young’s and central planner’s objective look very similar, there is a potential

conflict of interest. The young might consume too much from the perspective of the central plan-

ner because they anticipate the central planner will find it optimal to bail them out once they are

old via a large intergenerational transfer. I will assume the central planner can credibly commit

to transfers as if the young chose the socially optimal consumption, to which the young will op-

timally react by actually choosing the socially optimal consumption. In equation (2) this subtle

point is reflected by writing x (ωt+1, st+1) instead of x (ωt+1, (Y (ωt)− x (ωt, st)− cy)R (ωt+1)),

indicating that the young at time t take x (ωt+1, st+1) as given for their consumption choice.

In words, the young take into account the impact of their action (consumption choice) on pre-

transfer wealth, but ignore the possible influence on the receivable transfer when old. Two

different motivations can be given for this. First, consumption of a single member of a gen-

eration is small compared to the consumption of the whole generation and members cannot

coordinate. Second, st+1 merely summarizes the relevant informational content of the infinite

realised exogenous states of the world, (ωt, ωt−1, ...). The central planner can alternatively for-

mulate his transfers in terms of this history directly. Then assuming the central planner is the

Stackelberg leader in the game with the young also aligns the desired young’s consumption.
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So equivalently we can just assume the central planner sets both young’s consumption and

transfers and the optimization problem can be written as

V̄ = max
cy(ω,s),x(ω,s),

ω∈Ω,s≥0
E [u {cy (ωt, st)}+ βu {st+1 + x (ωt+1, st+1)}] (6)

st+1 = [Y (ωt)− x (ωt, st)− cy (ωt, st)]R (ωt+1)

where we introduced V̄ as the highest obtainable unconditional expected utility. I will assume

that the return on capital is finite. Since only transfers from the young to the old are allowed,

this implies that total resources available in period t, Yt + st, is bounded. This in turn implies

that expected utility in (5) or (6) is bounded and therefore that the problem is well defined.

Subsequent generations have only at a single point in time both positive wealth. I make the

assumption that subsequent generations cannot make financial contracts with each other. This

can either be motivated by moral hazard problems making borrowing against human capital

impossible or by assuming that a generation is not adult yet before it receives labor income in

the model making it impossible to participate in a financial contract. So the focus of this paper

is on intergenerational risk sharing that is impossible in the marketplace.

I present the solution to above model in Section 4. I extend the model by introducing a

risk free asset in Section 5. In both Sections I investigate implications of having an incentive

constraint for the young. That is, the transfer scheme must be such that the young voluntarily

choose to cooperate over autarky in every state of the world.

2.2 A four-state Markov process

The joint process for the labor income and capital return is assumed to be Markovian and

stationary. This means that I abstract from a trend in the labor income process which I consider

reasonable given that the focus is on risk sharing. This results in conservative values for the

intergenerational transfers and the associated utility gain since a positive growth rate g effectively

implies a simple return g on PAYG transfers. Introducing notation, the world can be in four

states with the following unconditional probabilities:

ω1: P
¡
R = RH , Y = Y H

¢
= κ

ω2: P
¡
R = RH , Y = Y L

¢
= p− κ

ω3: P
¡
R = RL, Y = Y H

¢
= q − κ

ω4: P
¡
R = RL, Y = Y L

¢
= 1− p− q + κ

Notice that the capital return is high (R = RH) with unconditional probability p and low (R =

RL) with unconditional probability 1− p. Labor income is high (Y = Y H) with unconditional
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probability q and low (Y = Y L) with unconditional probability 1− q. The parameter κ will be

used to capture the correlation between the labor income and capital return.

Now I turn to determining the transition matrix, T , i.e. a 4∗4matrix with as (i, j)-th element
the probability of transition from state ωi to state ωj . For consistency with unconditional

probabilities we must have (κ, p− κ, q − κ, 1− p− q + κ)T = (κ, p− κ, q − κ, 1− p− q + κ). I

assume that ωt has no predicting power for Rt+1, implying that the capital return is iid.3 As a

result columns 1 and 2 of T should add up to p times the unity vector, and columns 3 and 4 to

1− p times the unity vector. Moreover I assume that Yt summarizes all relevant information at

time t for predicting Yt+1. So Rt contains no relevant information in addition to Yt on future

probabilities. As a result row 1 and 3 as well as row 2 and 4 of T should be equal. Under above

assumptions it is straightforward to show that T must be of the following form

T =


κ p− κ q − κ 1− p− q + κ

κ p− κ q − κ 1− p− q + κ

κ p− κ q − κ 1− p− q + κ

κ p− κ q − κ 1− p− q + κ

+


1
q 0 0 0

0 1
1−q 0 0

0 0 1
q 0

0 0 0 1
1−q




λ −λ µ −µ
−λ λ −µ µ

λ −λ µ −µ
−λ λ −µ µ


(7)

The case λ = µ = 0 corresponds to a situation with zero autocorrelation in labor income. The

more positive λ and µ are, the more positive autocorrelation in labor income there is. The

magnitude of λ relative to µ determines the correlation between Rt+1 and Yt+1 conditional on

Yt. I will assume a constant conditional correlation which will result in values for λ and µ close

to each other but not exactly equal.

The input parameters RH , RL, p, Y H , Y L, q, κ, λ and µ together uniquely define the

joint stochastic process for the capital return and labor income. To enhance interpretation of

the stochastic process I reparameterize these input parameters in equations (8)-(16) using the

first moments of the log capital return and the log labor income. Define rH ≡ log ¡RH
¢
and

rL ≡ log ¡RL
¢
. Now the mean, standard deviation and coefficient of skewness are given by

r̄ = prH + (1− p) rL (8)

σr =

q
p (rH − r̄)2 + (1− p) (rL − r̄)2 (9)

csr =
h
p
¡
rH − r̄

¢3
+ (1− p)

¡
rL − r̄

¢3i
/σ3r (10)

Similarly define yH ≡ log ¡Y H
¢
and yL ≡ log ¡Y L

¢
. The consumption rates, and the wealth

equivalent numbers I will typically report do not depend on the mean labor income. This is a

3Empirical support for mean-reversion in stock prices leading to negative autocorrelation in stock returns is

weak and limited to 3 to 8 year horizons. See e.g. Fama and French (1988), Poterba and Summers (1988) and

Lo (1991).
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direct consequence of the chosen power utility form. As a result I can set the mean log labor

income at 0 without loss of generality. Using the definitions for the standard deviation and

coefficient of skewness we have

0 = qyH + (1− q) yL (11)

σy =

q
q (yH)2 + (1− q) (yL)2 (12)

csy =
h
p
¡
yH
¢3
+ (1− q)

¡
yL
¢3i

/σ3y (13)

Matching the correlation between the log capital return and log labor income gives

ρrtyt =
κ
¡
rH − r̄

¢
yH + (p− κ)

¡
rH − r̄

¢
yL + (q − κ)

¡
rL − r̄

¢
yH + (1− p− q + κ)

¡
rL − r̄

¢
yL

σrσy
(14)

Matching the unconditional autocorrelation in the log labor income gives

ρytyt−1 =

£
q2 + λ+ µ

¤ ¡
yH
¢2
+ 2 [q (1− q)− λ− µ] yHyL +

h
(1− q)2 + λ+ µ

i ¡
yL
¢2

σ2y
(15)

Finally, without working out fully here, we impose that the conditional autocorrelation in labor

income is constant

ρrtyt|yt−1=yH = ρrtyt|yt−1=yL (16)

I will calibrate r̄, σr, csr, σy, csy, ρrtyt and ρytyt−1 to US data in Section 3.

2.3 Solution technique

In this subsection I present two techniques to solve for optimal consumption and transfers. The

first solution technique uses an iterative procedure and will be referred to as the iterative solution

technique. It is similar to Deaton and Laroque’s (1992) technique, but an adjustment is needed

to make it applicable to our steady state setting. Define expected utility for the young at time

t while being in state of the economy (ωt, st) by Vt (ωt, st). The central planner’s objective is to

maximize the unconditional expected value of Vt, which we denoted V̄ . This means the central

planner puts equal weight on the expected utility of all generations. First define the following

state-dependent value function W (ω, s)

W (ωt, st) = max
cy(ω,s),x(ω,s),

ω∈Ω,s≥0
Et

£¡
V (ωt, st)− V̄

¢
+
¡
V (ωt+1, st+1)− V̄

¢
+ ...

¤
(17)

I take conditional expected utilities in deviation from the unconditional expected utility to make

W (ωt, st) bounded for all (ωt, st). Now the following equation holds

W (ω, s) = max
cy(ω,s),x(ω,s),

ω∈Ω,s≥0
E
£
u {cy}+ βu {s+ x}− V̄ +W

¡
ω+, s+

¢¤
, (18)
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where ω+ and s+ are the successors of ω and s respectively. Using (18) we can solve for the policy

functions cy and x using an iterative procedure. Specifically, choose a grid on s. Remember

that Ω was already assumed to be finite. Determine a new estimate for W on the left-hand side

by using values from the previous iteration step for W on the right-hand side and determining

new estimates for cy and x. Continue until both cy and x converge. For this we do not need to

know V̄ , but W will be determined up to a constant error only. This procedure produces the

optimal policy functions cy and x, but not immediately the optimal value for V̄ . To determine

this you need to simulate paths for the state of the economy (ω, s) using the derived optimal

policy functions.

A second solution technique uses the fact that st merely summarizes the relevant informa-

tional content of the infinite history of realised exogenous states of the world, (ωt−1, ωt−2, ...) in

addition to ωt. Conditioning the young’s consumption and the central planner’s transfer at time

t first on ωt only, then on ωt and ωt−1, etc., leads to a converging sequence of policy functions

and utility levels. I will refer to this solution technique as the direct solution technique since it

immediately provides an estimate of the associated unconditional expected utility, V̄ . Denote

the set of different K-histories by HK and the number of elements in Ω by M . Now HK has

MK elements, i.e. there are MK different K-histories. Conditioning on the last K states of the

world only means optimally choosing the young’s consumption and the central planner’s transfer

for all different K-histories:

V̄ K = max
cy,K(h),
xK(h),
h∈HK

X
h∈HK

X
h+∈HK

P
¡
ht = h, ht+1 = h+

¢ ¡
u
¡
cy,K (h)

¢
+ βu

¡
st+1 + xK

¡
h+
¢¢¢
(19)

st+1 =
£
Y (h)− xK (h)− cy,K (h)

¤
R
¡
h+
¢

In Sections 4 and 5 we will see that for the chosen model parameter values the sequence V̄ 1,

V̄ 2,V̄ 3, ... converges rapidly in the sense that values do not change after two to four steps in the

reported precision.

In Sections 4 and 5 I will choose a grid for the iterative solution technique and a K for

the direct solution technique. For the choices made the optimal policy functions of the two

techniques are very close to each other and the associated unconditional expected utility levels

are equal in the reported precision. The reason to use both techniques is that they both have their

unique advantages. The iterative solution technique provides policy functions for all states of

the economy (ω, s), including out of equilibrium states. This greatly enhances the interpretation

and presentation of the solution. The direct solution technique is much faster because it can

use gradient and Hessian information. It is able to shed light on the question to what extent

historical realised states of the world should influence the optimal consumption and transfer
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today. Put differently, it makes clear over how many generations labor income and capital

return shocks are effectively spread. Moreover, it is capable handling an extended version of

the model with an incentive constraint for the young. This is practically impossible with the

iterative solution technique because no gradient information can be used.

3 Calibration

I interpret one period in the model to correspond to 20 years in real life. I estimate the mean,

standard deviation and coefficient of skewness for the log capital return using data on stocks.

I use a broad index comprising all NYSE, AMEX and NASDAQ firms over 1927 to 2003.4

Moreover I have data on the short nominal interest rate and the Consumer Price Index. Following

Fama and French (2002), amongst others, I believe that the equity premium is lower than

the realized premium when measured over the given sample period. While the realised excess

(simple, yearly) return in the data is 8.25%, I set the equity premium at 4.00%. I therefore

deduct 4.25% from the realised real equity return to create a corrected series for the real equity

return. As discussed in Section 2, I assume independent identically distributed capital returns.

I generate a large series of 20-year log returns with a bootstrap procedure. Specifically, each

20-year log return is the sum of 20 randomly chosen yearly log returns. For comparison I also

report figures for yearly log stock returns. The yearly mean log stock return is 2.34%, and the

mean 20-year log stock return is 47%. Since log stock returns add up this is just 20 times the

yearly mean log stock return. The standard deviation for the yearly log stock return is 22%,

while as for the 20-year log stock return it is
√
20 times bigger at 97%. For the coefficient of

skewness I find a large negative −0.71 for the yearly log stock returns. Due to the manifestation
of the Central Limit Theorem it is a much smaller −0.14 for the 20-year log stock return.

I calibrate the labor income process to US GNP per capita data. To this end I simulate from

Diebold and Senhadji’s (1996) estimated best-fitted trend-stationary model for the log annual

US GNP per capita using data from 1869 to 1993.5

yt = −1.07 + 0.0031t+ 1.33yt−1 − 0.51yt−2 + εt (20)

where εt is iid with zero mean and standard deviation σε = 0.043. I will assume εt is normal.

Since I focus on stationary processes, I abstract from the deterministic trend. Moreover, the

results I report will not depend on the unconditional mean log labor income. This is a direct

4The author would like to thank Kenneth R. French for making this data available at his website.
5 In fact, they use two different assumptions regarding the pre-1929 data. The assumptions originate from

Romer (1989) and Balke and Gordon (1989). I will report and use figures based on data with Romer’s assumption

only. With Balke and Gordon’s assumption I find very similar estimates for my model parameters.
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consequence of the well-known separability of wealth in a power utility framework. Using Monte

Carlo simulation I generate a large series of 20-year (detrended) log labor income, and for

comparison also a large series of 1-year (detrended) log labor income. For the autocorrelation

in the 1-year log labor income I find a considerable 0.88, but for the 20-year log labor income

it is only 0.04. The standard deviation for the 1-year log labor income is 0.11, and for the

20-years it is 0.05. Notice that for labor income not the logs but the levels add up over time.

This means that the standard deviation of the labor income level when measured relative to the

mean decreases in period length and consequently that the standard deviation of the log labor

income decreases in period length.6 Without loss of generality (in the power utility setting) I

will normalise the labor income level to one. In fact, the standard deviation of the normalised

labor income level approximately equals 0.11 for a one year period and 0.05 for a 20-year period

as well. I find a coefficient of skewness of 0.00 for the 1-year log labor income and −0.02 for the
20-year log labor income.

Bohn (2003) provides estimates for the correlation between the log capital return and the

log labor income ranging from 0.16 to 0.69. In the base case I choose 0.3, but I will provide

comparative statics for different values. See Table I (Panel A) for an overview of the estimated

moments of the joint log process for capital return and labor income. Table I (Panel B) provides

the implied model parameter values.

Table I. Calibrated model parameters

Panel A provides values for the first moments of the joint stochastic process for the log capital

return and the log labor income. Panel B provides the implied values for the four-state Markov

process as presented in Section 2.

Panel A Panel B

r̄ 0.47 RH 3.88

σr 0.96 RL 0.57

csr −0.16 p 0.54

ȳ 0.00 Y H 1.05

σy 0.05 Y L 0.95

csy −0.02 q 0.51

ρry 0.30 κ 0.35

ρrr− 0.00 λ 5.4 ∗ 10−3
ρyy− 0.04 µ 4.6 ∗ 10−3

6For iid labor income the decrease would be a factor
√
20 ≈ 0.45, but due to the high positive autocorrelation

it is less.
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The subjective discount factor is set at β = 0.8. In Section 5 I assume there is a risk free asset

with a gross 20-year return of Rf = 1.13, which is based on an average yearly 0.62% real return

on three-months U.S.Treasury Bills over the 1927 to 2003 period.

4 Optimal transfer policy without a risk free asset

In this section I solve the model presented in section 2 when no risk free asset is present. I use

both the iterative and the direct solution technique.

4.1 The optimal transfer scheme

Figure I shows the optimal consumption as function of the old’s pre-transfer wealth for different

states of the world and a coefficient of relative risk aversion (γ) of four. Panel A plots consump-

tion for the young and Panel B for the old. Lines correspond to the solution using the iterative

solution technique. Points correspond to the direct solution technique with K = 3.

I first discuss the lines in Figure I. The old generation may end up with low pre-transfer

wealth for various reasons. It may have received low labor income or paid a high PAYG transfer

when it was young. It may also have received a low return on savings. As we can see in Panel B,

the young provide imperfect downside risk insurance to the old. Since cot = st+xt, the distance

to the diagonal gives the transfer from the young to the old. In particular, we do not see perfect

downside risk insurance in the sense that the transfer equals the payoff of a protective put on

the pre-transfer wealth. Such perfect insurance would have resulted in a constant cot over the

lower range of st. The reason is that risk sharing with future generations is effectively limited

to generations not too far apart in time. Therefore, to maximize unconditional expected utility

it is optimal to let the old bear part of the risk on their invested capital themselves. To see this

point notice that for e.g. generation t− 2 to pay generation t an amount z, generation t− 1 has
to act as intermediary. More precisely, generation t − 1 would have to prepay z when young,

to be compensated by receiving the opportunity cost Rtz when old. So this transfer reduces

generation t − 2 his wealth when young by Rtz. In contrast, a transfer from generation t − 1
to generation t− 2 would reduce generation t− 1 his wealth when young just by z. In general,
the further two generations are apart in time, the more risk is born by the younger, paying,

generation. I will further illustrate this point when discussing Figure II.

Another interesting point to notice is that the transfer does not only depend on the old’s pre-

transfer wealth (i.e. desirability of a transfer), but also on the young’s labor income (affordability

of a transfer). Ceteris paribus we see that the transfer is lower when the young received low

labor income. Also notice from Panel B that for large st there is a zero transfer. This is a direct

consequence of restricting transfers to go from the young to the old (PAYG), and therefore
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making sharing the upside potential of the old’s pre-transfer wealth impossible. In Panel A we

see the intuitive result that the young consume less when they received low labor income or

when they transferred much wealth to the old.

Next I discuss the points in Figure I, which correspond to the direct solution technique with

K = 3. We have that cyt and xt depend on the last three states of the world, i.e. (ωt, ωt−1, ωt−2).

Therefore st =
¡
Y (ωt−1)− cyt−1 − xt−1

¢
R (ωt) and cot = st + xt depend on the past four states

of the world, i.e. (ωt, ωt−1, ωt−2, ωt−3). Figure I plots the solution for all 44 = 256 different

4-histories. I use different symbols for the four possible most recent states of the world, ωt.

Generally we see that results are very much in line with the results obtained using the iterative

solution technique. Theoretically it is optimal for the central planner to condition his transfer

on either the endogenous st together with ωt or alternatively on infinite history of the state of

the world. Figure I provides a first illustration that conditioning on the past few states of the

world only provides a very good approximation of the fully optimal transfer scheme. The points

provide some information on the distribution of the endogenous st under the transfer scheme,

even though the probability of occurrence differs across the 4-histories. First, after a low return

for the old there is always a strictly positive transfer. Perhaps more surprising at first sight is

that the transfer is often also strictly positive after a high return for the old. The reason is that

in the absence of a risk free asset even constant transfers facilitate intergenerational risk sharing

by substituting for the absent risk free asset. In autarky a γ = 4 generation with a unit gross

return risk free asset in the investment opportunity set would invest a positive amount in this

risk free asset. Second, we see transfers up to around 0.4 when Rt = RL. This is a large value

considering the labor income for the young is either 0.95 or 1.05.

Figure II shows the wealth equivalence as a function of γ for transfers conditional on different

subsets of available information. Wealth equivalence,W eq, is defined as the proportional increase

in the young’s labor income under autarky required to make the young equally well off as under

the optimal transfer scheme:

E [u (cy) + βu (co) |Y = Y (ω)] = E
h
u
³
cyautarky

´
+ βu

¡
coautarky

¢ |Y =W eqY (ω)
i

(21)

The upper line corresponds to the situation where the central planner conditions the transfer

on the past three realised states of the world (K = 3). Graphs for K > 3 are indistinguishable

from the K = 3 graph, so the upper line can be considered as showing the wealth equivalence

associated with the fully optimal transfer scheme. The wealth equivalence steeply increases with

the coefficient of relative risk aversion γ. For the log investor the gain is only 3%, while as for the

more risk averse γ = 7 investor it is 38%. The second-from-above, dashed, line shows the wealth

equivalence from conditioning on the past two realised states of the world. The third-form-

above, dot-dashed, line corresponds to the wealth equivalence when conditioning on the single
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Figure I: Consumption as function of the old’s pre-transfer wealth for different

states of the world (γ = 4)

Lines correspond to the solution using the iterative solution technique. Points correspond to the

direct solution technique with K = 3.
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past realised state of the world, ωt, only. We see that conditioning on ωt only captures already

the most of the wealth equivalent gain. Adding ωt−1 to the information conditioning set increases

the wealth equivalence somewhat. Further adding ωt−2 has almost negligible effect on the wealth

equivalence. This again illustrates that effectively risk sharing is restricted to generations not

too far apart in time. The third-from-below, solid, line shows the wealth equivalence when only

information on the old’s capital return, Rt, is taken into account. It is close to the line for ωt

indicating that it is mainly the risk in the capital return that provides valuable risk sharing

possibilities. The second-from-below, dashed, line and the lowest, dot-dashed, line correspond

to the case where Yt respectively no conditioning information is used by the central planner.

The lines are almost indistinguishable from each other and well above 1. This indicates that the

role of transfers to substitute for a risk free asset is important, but that there is little additional

gain from the risk sharing contingent on the realised labor income.

Table II presents the optimal transfer for γ = 4 when the transfer depends on ωt, Rt, Yt and

when it is a fixed amount. That is, it shows the optimal contract associated with the wealth

equivalence of the lower four lines in Figure II at γ = 4.

Table II. Transfers conditional on different subsets of available information in dif-

ferent states of the world for γ = 4
xt = x (ωt) xt = x (Rt) xt = x (Yt) xt = x

Rt = RH , Yt = Y H 0.00 0.00 0.37 0.38

Rt = RH , Yt = Y L 0.00 0.00 0.38 0.38

Rt = RL, Yt = Y H 0.36 0.33 0.37 0.38

Rt = RL, Yt = Y L 0.32 0.33 0.38 0.38

As can be seen in the last two columns of Table II, the role of intergenerational transfers to

substitute for an absent risk free asset comprises of a transfer of approximately 0.38. The transfer

is slightly lower (0.37) after a high labor income when it depends on the past labor income.7

This is due to the positive correlation between the capital return and the labor income. When

the transfer is conditional on the past return we see positive transfers after a low return. This

is consistent with the imperfect downside risk protection for the old by the young. When the

transfer is conditional on the past state of the world, both the desirability of a transfer by the

old and the affordability by the young is taken into account. The highest transfer occurs after a

low capital return and a high labor income. Finally notice that transfers in the last two columns

7The assumption of a constant PAYG tax rate, like in De Menil and Sheshinsky (2004), is a special case of

xt = x (Yt).
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Figure II: Wealth equivalence as function of γ for transfers conditional on different

subsets of available information
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are higher than in the first two. The reason is that risk is shared less well resulting in a lower

optimal investment in the risky asset and therefore a higher optimal transfer (which basically

substitutes for a missing risk free asset).

Figure III presents the wealth equivalence for different 3-histories of the state of the world

for γ = 4. Wealth equivalence is defined similar to (21), but with expectations taken conditional

on the available information at time t. That is, for all 3-histories (ωt, ωt−1, ωt−2), 43 = 64 in

total, the wealth equivalence is determined for the young generation at time t. We see that the

transfer scheme is most welfare improving for the young after a high return for the old. In this

case they have to transfer little wealth to the old while having some downside risk protection

on their savings when they are old themselves. This particularly holds when in addition the

young received low labor income, represented by the squares in Figure III. The transfer scheme

is less welfare improving for the young when the old realised a low return on savings and a large

transfer is called for. Still we see that the wealth equivalence is greater than 1 irrespective of

the circumstances when young. I will show in Subsection 4.3 that this holds for all but very low

degrees of risk aversion.

4.2 Determinants of the utility gain

The second column of Table III shows the wealth equivalent gain when the input parameter

given in the first column is changed for a γ = 4 investor. Results are obtained using either

the iterative solution technique or the direct solution technique for K ≥ 3. The third column
presents the change in the wealth equivalent gain relative to the wealth equivalent gain in the

base case, being 32.88%. First focus on Panel A. Parameter values 10% larger than in the base

case are considered. As is clear for from the table, the standard deviation on the capital return

is an important determinant of the wealth equivalent gain. The higher it is, the bigger the

potential for intergenerational risk sharing, the larger the wealth equivalent gain. The mean

capital return is also important. The larger r̄, the smaller the role of the central planner to

substitute for a risk free asset with unit gross return. The risk in labor income is too small in

my calibration to play an important role. The subjective discount factor plays only a minor role

as well when utility is evaluated relative to autarky with the same β. This is comforting given

that choosing a value for β is not trivial.
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Table III. Wealth equivalent gain with alternative parameter values for γ = 4

Results based on either the iterative solution technique or the direct solution technique with

K ≥ 3. The wealth equivalent gain in the base case equals 32.88%.
Panel A: 10% increase in r̄, σr, σy and β

10% increase in wealth equivalent gain % change wrt base case

mean log risky ret. r̄ 30.64% −6.81%
st. dev. log risky ret. σr 40.56% 23.36%

st. dev. log labor inc. σy 32.83% −0.15%
subjective discount rate β 33.28% 1.22%

Panel B: zero value for csr, csy, ρyy− and ρry

zero value for wealth equivalent gain % change wrt base case

coef. skewness log risky ret. csr 28.61% −12.99%
coef. skewness log labor inc. csy 32.88% 0.00%

autocorr. log labor inc. ρyy− 32.90% 0.06%

corr. log risky ret. and log labor inc. ρry 33.96% 3.28%

In Panel B I show the input parameters for which I consider a zero value the most interesting

alternative specification. We see that in particular the skewness of the capital return is impor-

tant. The wealth equivalent gain in the presence of negative skewness in the capital return is

considerably higher than without skewness. This is intuitive considering the PAYG transfers

provides a means to share downside risk on the old’s saving and the concavity of the utility func-

tion u. The skewness and autocorrelation in labor income are of negligible importance. This is

a direct consequence of the labor income being relatively little risky in the calibration. Finally,

notice that changing the correlation between the log capital return and the log labor income

from 0.3 in the base case to 0 increases the wealth equivalent gain. In general the smaller this

correlation the larger are the intergenerational risk sharing possibilities. However, again because

labor income is not very risky in my calibration the increase in the wealth equivalent gain is

only 3.28%.

4.3 Adding an incentive constraint for the young

Up to now the only restriction on transfers was that they are in the direction from the young to

the old, i.e. x ≥ 0. In this Subsection I investigate the additional restriction that the young are
at least as well off in expected utility terms under the transfer scheme than under autarky for

all states of the economy. Notice that the old are always at least as well off in expected utility

terms because x ≥ 0. In fact, it is straightforward to show that transfer schemes that satisfy the
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two restrictions are exactly those that are sustainable as a subgame-perfect equilibrium.8 By

imposing an incentive constraint for the young the implementation of the transfer scheme will

be enhanced. I consider this a first step towards more advanced modeling of the political voting

system. To summarize, the transfer scheme should be such that the young voluntarily decide

to cooperate knowing their realised labor income and the old’s realised capital return. This is

quite a large information set to use for the decision and will therefore result in a conservative

estimate for the wealth equivalent gain.9

As was clear from Figure III, cooperation is not an issue for γ = 4. In fact for my parameter

values it is only an issue for investors with low risk aversion. Table IV shows the wealth equivalent

gain for when the only restriction on transfer is x ≥ 0 and for when we have the additional

incentive constraint. For γ = 2.5 and higher cooperation is satisfied in the first-best solution

and the wealth equivalent gains are therefore equal. On the other hand, for the log investor the

whole transfer scheme collapses in the sense that only the zero transfer scheme satisfies both

the x ≥ 0 and the cooperation restriction. To understand why especially for low γ cooperation

is an issue, recall that in the absence of a risk free asset the intergenerational transfers serve

dual purposes. The transfer can be considered as being the sum of a zero-mean, state-dependent

component and a constant component. The first provides downside risk insurance to the old on

their savings and the second substitutes for the missing risk free asset. A young generation might

anticipate that the state-dependent component of the transfer is a bad deal given his information,

but still rationally choose to cooperate due to the substitution component. However, for low risk

aversion the substitution component is not very important. See e.g. the lowest line in Figure

II, which shows that the wealth equivalence with a fixed transfer is close to one for low γ. This

causes the first-best state-contingent risk sharing to be unsustainable when cooperation in the

defined manner is required.

Table IV. Wealth equivalent gain with and without additional incentive constraint

for the young
γ weq gain weq gain (cooperation)

1 3.34% 0.00%

1.5 10.61% 9.06%

2.0 17.31% 17.30%

2.5 23.23% 23.23%

8See e.g. Rangel (2003) for a treatment of subgame-perfect equilibria with intergenerational transfers in a

non-stochastic setting.
9 Ideally one would like to have a model with more than two periods. However, this involves such an increase

in the computational burden that it can only be handled by simplyfying the stochastic environment considerably.
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γ = 1.5 is an intermediate case. As can be deducted from Table IV, 89% of the wealth equivalent

gain under first-best solution can be attained with the cooperation restriction. Figure IV shows

the wealth equivalence for the different 3-histories of the state of the world for the γ = 1.5

investor without (Panel A) and with (Panel B) the additional incentive constraint for the young.

Notice in Panel A that the transfer scheme is a bad deal for young generations when the old

realised a low return on capital. Under the first-best transfer scheme they transfer a substantial

amount to the old. They might not receive such a large transfer themselves when they are old,

because they might realise a high capital return themselves. In Panel B we see that exactly the

generations in this situation when young are made just as well off, i.e. a wealth equivalence of

1. This generally does not mean however that the transfer is zero for them. They just get a

better deal compared to Panel A to make them indifferent with respect to cooperation.

5 Introduction of a risk free asset

In Section 4 we have seen that in the absence of a risk free asset the intergenerational transfers

serve dual purposes. They provide downside risk insurance to the old on their savings and they

substitute for the absent risk free asset. In this Section I investigate optimal intergenerational

risk sharing when a risk free asset (in real terms) is present. As shown by Campbell and Viceira

(2002) nominal bonds are quite risky at such horizons and inflation-indexed assets might not

be available at a reasonable price. However, the markets for inflation-indexed products might

further develop in the future and this analysis explores the implications for intergenerational

risk sharing.

As in Section 2 I assume that the central planner can credibly commit to transfers in terms

of the history of exogenous states of the world. This means that there is no conflict of interest

between the young and the central planner regarding the young’s consumption and asset allo-

cation choice. So equivalently the central planner sets not only transfers, but also the young’s

consumption and asset allocation. Denoting the fraction allocated to the risky asset by α, (6)

becomes

V̄ = max
cy(ω,s),x(ω,s),α(ω,s)

ω∈Ω,s≥0
E [u {cy (ωt, st)}+ βu {st+1 + x (ωt+1, st+1)}] (22)

st+1 = [Y (ωt)− x (ωt, st)− cy (ωt, st)] [α (ωt, st)R (ωt+1) + (1− α (ωt, st))Rf ]

I will assume no short-sale possibilities for either asset, so we have α ∈ [0, 1].
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Figure IV: Wealth equivalence for different 3-histories of the state of the world

(γ = 1.5)

Results for the direct solution technique with K = 3.
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5.1 The optimal transfer scheme

Figure V shows the model solution for γ = 4 in a similar manner as Figure I did for the case

where a risk free asset was absent. Panel A and B show consumption for the young and old

respectively as a function of the old’s pre-transfer wealth. Panel C shows the fraction invested in

the risky asset as function of the old’s pre-transfer wealth. As in Figure I, points correspond to

the direct solution technique and the solid and dashed lines correspond to the iterative solution

technique. Also depicted in Panel C as dot-dashed line is the autarkian risky asset allocation

which by the scale independency of power utility is state independent.

Qualitatively both the young and old’s consumption look similar to consumption in the

absence of a risk free asset. Again the young provide imperfect downside risk insurance to the

old. Again the central planner takes into account both the desirability for the old (i.e. value

for st) and the affordability for the young (i.e. value for Yt). As before, in Panel B of Figure

V, the transfer is given by the vertical distance to the diagonal. For a given value for the old’s

pre-transfer wealth, st, the size of the transfer is very similar to the size in the absence of a

risk free asset as depicted in Panel B of Figure I. However, with a risk free asset low values

for st occur less often and therefore nonzero transfers occur less often and transfers are smaller

conditional on being nonzero. So with a risk free asset the old are provided very similar downside

risk protection by the young, but they need it less often.

Now focus on Figure V, Panel C. First consider the young’s optimal risky asset allocation

when they transferred zero wealth to the old. This is for st more than approximately 0.7.

Risk taking is larger than under autarky because the young will receive some downside risk

protection when they are old. It is particular large when the young received low labor income

since downside risk protection is means tested. This also explains why risk taking is even larger

when st is less than 0.7 and the young transferred a nonzero amount to the old.

Figure VI plots wealth equivalence as a function of γ for different conditioning informa-

tion sets. The upper line corresponds to the situation where the central planner conditions

the transfer on the past three realised states of the world (K = 3). Graphs for K > 3 are

indistinguishable from the K = 3 graph, so the upper line can be considered as showing the

wealth equivalence associated with the fully optimal transfer scheme. In contrast to Figure II,

which is the counterpart of Figure VI when no risk free asset is present, wealth equivalence is

hump-shaped in γ. For low γ, the non-negativity constraint on the risk free asset, i.e. α ≤ 1, is
binding in most states of the world. This means that in this range for γ the wealth equivalence

is increasing in γ because the benefits from sharing risk are higher for a higher degree of risk

aversion. For yet higher γ the non-negativity constraint on the risk free asset is not binding and

the risky asset allocation decreases in γ. This means that the risk sharing potential decreases
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Figure V: Consumption as function of the old’s pre-transfer wealth for different

states of the world (γ = 4)

Lines correspond to the solution using the iterative solution technique. Points correspond to

direct solution technique with K = 3.
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Panel C: allocation for the young
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in γ and therefore the wealth equivalence decreases in γ.

The second-from-above, dashed, line and the third-from-above, dot-dashed line, correspond

to the situation where the transfer is conditional on the past two respectively one state of the

world. The two lines are quite far apart indicating that in the presence of a risk free asset

a relatively large part of the gains are effectively due to risk sharing between non-subsequent

generations. As in Figure II, conditioning on the past return only implies values close to those

realised when conditioning on the past state of the world. This again illustrates that mainly

capital risk is shared intergenerationally for my parameter values.

Finally notice in Figure VI that I did not add the wealth equivalence for xt = x (Yt) and

xt = x, as I did in Figure II. The reason is that they coincide with the horizontal axis. When

a risk free asset with gross return greater or equal to one is present, the substitution role for

intergenerational transfers disappears.

5.2 Determinants of the utility gain

In the second column of Table V I present the wealth equivalent gain when the input parameter

given in the first column is changed for a γ = 4 investor. Results are obtained using either

the iterative solution technique or the direct solution technique for K ≥ 3. The third column
presents the change in the wealth equivalent gain relative to the wealth equivalent gain in the

base case, being 5.14%. First focus on Panel A. Parameter values 10% larger than in the base case

are considered. Again the mean capital return is important. In contrast to Table III where the

substitution role of transfers figured prominently, now the larger r̄, the larger the allocation to

the risky asset, the larger the role of the central planner to facilitate intergenerational risk sharing

by providing downside risk insurance. Also the standard deviation on the capital return affects

the wealth equivalent gain considerably. The higher it is, the lower the risky asset allocation but

also the larger the potential of intergenerational risk sharing for a given allocation. Per saldo we

see that the larger the standard deviation on the capital return, the larger the wealth equivalent

gain. Again the risk in labor income is too small in my calibration to play an important role

and also the subjective discount factor β plays only a minor role. The effect of an increase in

the risk free rate rf is opposite to that of an increase in r̄. The higher it is, the smaller the

allocation to the risky asset, the smaller the wealth equivalent gain.
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Table V. Wealth equivalent gain with alternative parameter values for γ = 4

Results based on either the iterative solution technique or the direct solution technique with

K ≥ 3. The wealth equivalent gain in the base case equals 5.14%.
Panel A: 10% increase in r̄, σr, σy, β and rf = log (Rf )

10% increase in wealth equivalent gain % change wrt base case

mean log risky ret. r̄ 5.53% 7.59%

st. dev. log risky ret. σr 5.38% 4.67%

st. dev. log labor inc. σy 5.14% 0.00%

subjective discount rate β 5.18% 0.78%

log risk free rate rf = log (Rf ) 4.79% −6.81%
Panel B: zero value for csr, csy, ρyy− and ρry

zero value for wealth equivalent gain % change wrt base case

coef. skewness log risky ret. csr 4.84% −5.84%
coef. skewness log labor inc. csy 5.14% 0.00%

autocorr. log labor inc. ρyy− 5.16% −0.39%
corr. log risky ret. and log labor inc. ρry 5.72% 11.28%

In Panel B I show the input parameter for which I consider a zero value as alternative speci-

fication the most interesting. The skewness of the capital return is important. As in the case

without risk free asset, the wealth equivalent gain in the presence of negative skewness in the

capital return is considerably higher than without skewness. The skewness and autocorrelation

in labor income are of negligible importance. Finally, notice that changing the correlation be-

tween the log capital return and the log labor income from 0.3 in the base case to 0 increases

the wealth equivalent gain by 11.28%.

5.3 Adding an incentive constraint for the young

Again I discuss the impact of adding an incentive constraint for the young. That is, the transfer

scheme must be such that the young generation would voluntarily choose cooperation over

autarky. In the absence of a risk free asset we saw that a young generation might anticipate

that the transfer called for by the downside risk insurance component of the transfer scheme

is a bad deal given the state of the economy, but still rationally chooses to cooperate due

to the substitution component. Only for very low risk aversion the substitution role was too

unimportant to sustain the first-best transfer scheme in an incentive compatible setting.

In the presence of a risk free asset the incentive constraint has a larger impact. In fact, the

transfer scheme collapses to the zero-transfer scheme for all γ. So for downside risk insurance
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to be sustainable in an incentive compatible setting of the kind introduced, it is crucial whether

intergenerational transfers also play a role as substitute for a missing risk free asset.

6 Concluding remarks

I used a stylized two-period overlapping-generations model to investigate intergenerational risk

sharing. I calibrated the model parameters to U.S. data. Some important features of the optimal

intergenerational transfer scheme were identified. The young generation provides imperfect

downside risk insurance to the old on their savings. The size of the transfers and the associated

utility gain depend heavily on the capital return risk and not so much on the labor income risk.

An implication for Social Security design is that to exploit intergenerational risk sharing to the

fullest the transfer and therefore the Social Security payment should not so much depend on the

labor income of the workers, but should optimally take into account the return the retirees have

made on their retirement savings (for example measured as the return on a world index).

Furthermore, whether a risk free asset is present or not is found to be crucial for two reasons.

First, when not present the transfers substitute for the missing risk free asset. Second, when not

present cooperation by the young is only a minor issue. When present, imposing an incentive

constraint for the young leads to the collapse of the transfer scheme to the zero scheme. That is,

for the fully optimal state-contingent transfer scheme to be sustainable in an incentive compatible

setting of the kind introduced, it is crucial that the transfers also play the role of substitute for

a missing risk free asset. A natural and important question that arises is to what extent a risk

free asset is present in the free market. For this it is important to stress that in this set-up this

represents a long-term investment (say 20 years) that provides a fixed real return (i.e. inflation

corrected). Nominal bonds do not qualify for such an asset and inflation-indexed bond markets

are just recently starting to develop. Further maturing of the inflation-indexed bond markets will

depend on the inflationary policy of the government. A practical implication is that inflationary

policy and Social Security policy are related and should therefore be considered simultaneously. I

consider the impact of the political system on the sustainability of transfer schemes an important

topic for future research. The analysis on the impact of an incentive constraint for the young in

this paper is a first step in this direction.

The model developed in this paper could be extended to investigate some related interesting

issues. Depending on the particular extension one of the two presented solution techniques might

be more suitable than the other. The iterative solution technique is suitable to analyse a closed

economy where transfers influence future labor income and capital return. It is also suitable

to investigate optimal out-of-equilibrium transfers, which is relevant for initiating the transfer

scheme. On the other hand the direct solution technique might be better for handling issues
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related with cooperation, like the impact of investor heterogeneity on the optimal incentive

compatible transfer scheme.
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