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1 Introduction

Value–at–risk (VaR) has become a central plank in banking regulations and
internal risk management in banks. While superior to volatility as a measure
of risk, VaR is often criticized for lack of subadditivity. VaR is much easier
to implement operationally than most other measures of risk, and is likely
to retain its preeminent practical status. Our objective is to explore VaR
subadditivity, to analyze which asset classes are likely to suffer from violations
of subadditivity, and examine the asymptotic and finite sample properties of
the VaR risk measure from the point of view of subadditivity.

Our main result is that the problem of subadditivity violations is not much
important for assets that meet the stylized facts of returns. Indeed, for most
assets and applications, we do not expect to see any violations of subadditiv-
ity. There are two main, but rare, exceptions to this: assets with super fat
tails, and probability levels that are in the interior of return distributions.
As a consequence, worries about subadditivity are in general not pertinent
for risk management applications relying on VaR. This applies especially to
stress tests, which rely on probabilities deep in tails.

Following the 1996 ‘amendment to incorporate market risk’, to the Basel
Accord, 99% VaR has become the primary risk measurement tool for deter-
mining capital charges against market risk. VaR has also become central to
internal risk management systems in banks. Its role is likely to be unchanged
under the Basel II Accord. Artzner et al. (1999) criticize VaR on the grounds
that it is not subadditive, i.e., that VaR of a portfolio can be higher than the
sum of VaRs of the individual assets in the portfolio. In other words, VaR
is not a “coherent” measure of risk. This problem is caused by the fact that
VaR is a quantile on the distribution of profit and loss and not an expecta-
tion, so that the shape of the tail before and after the VaR probability does
not have to have any bearing on the actual VaR number.

Unrecognized violations of VaR subadditivity can have serious consequences
for risk models. First, they can provide a false sense of security, so that
a financial institution may not be adequately hedged. Second, it can lead
a financial institution to make a suboptimal investment choice, if VaR, or
a change in VaR, is used for identifying the risk in alternative investment
choices.

In the specific case of normality of returns, a property at odds with stylized
facts of financial returns, VaR is known to be coherent below the mean.
However, it has been known at least since Mandelbrot (1963) and Fama
(1965) that returns are “fat tailed”, and in that case, it has hitherto not
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been generally known when subadditivity is violated. We demonstrate that
VaR is subadditive for the tails of all fat tailed distributions, provided the
tails are not super fat. For most asset classes we do not have to worry about
violations of subadditivity. The main exception are assets that are so fat
that the first moment is not defined, such as those that follow the Cauchy
distribution.

Central to the analysis is a precise notion of what constitutes fat tails. While
common usage might suggest that Kurtosis in excess of three indicates fat
tails, that is not necessarily so, as Kurtosis simply captures the relative mass
of the distribution towards the center compared to the tails. Indeed, it is
straightforward to construct a distribution with truncated tails, and hence
thin tails, which exhibit high Kurtosis. A common definition of a fat tailed
distribution requires the tails to be regularly varying.1 The thickness of the
tails is indicated by the tail index. The lower the tail index, the fatter the
tails. For most financial assets the tail index is between three and five, (see
e.g. Jansen and de Vries, 1991; Dańıelsson and de Vries, 1997, 2000).

We demonstrate below that for all assets with (jointly) regularly varying
non–degenerate tails, subadditivity holds in the tail region provided the tail
index is larger than 1. This includes, in particular, situations where different
assets are affected by different independent sources of fat tailed randomness,
which are market–wide, industry–wide, or idiosyncratic to different assets.

We are most likely to observe super fat tails for assets that most of the
time change very little in price, or at all, but are subject to the occasional
jumps. For example, an exchange rate that is usually pegged, but subject to
occasional devaluations, is likely to have super fat tails. Other assets might
be the short term higher risk bonds, which either give a steady income stream
or default. Options can also be constructed in a way to give super fat tails.
In such cases, subadditivity violations are likely to be a matter of serious
concern.

Our results only apply to the tail region, so that for probabilities in the in-
terior of the distributions we may see violations of VaR subadditivity. How-
ever, risk management, and especially stress tests, generally focus only on
tail probabilities so this is not likely to be a serious concern. We explore this
particular issue by means of Monte Carlo simulations. The simulation results
confirm the theoretical results. For very large sample sizes we do not observe
any violations of subadditivity when the tail index is less than or equal to
one, and for small sample sizes the number of violations is very small.

1A function is regularly varying if it has a Pareto distribution–like power expansion at
infinity.
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2 Subadditivity

Artzner et al. (1999) propose a classification scheme for risk measures whereby
a risk measure ρ(·) is said to be “coherent” if it satisfies certain conditions.
Let X and Y be two financial assets. A risk measure ρ(·) is coherent if the
following four axioms hold:

Subadditivity ρ (X + Y ) ≤ ρ (X) + ρ (Y )

Homogeneity For any number α > 0, ρ (αX) = αρ (X)

Monotonicity ρ (Y ) ≥ ρ (X) if X ≤ Y

Risk Free Condition ρ (X + k) = ρ (X) − k for any constant k.

Value–at–Risk2 (VaR) satisfies all but subadditivity. Artzner et al. (1999) ar-
gue that subadditivity is a desirable property for a risk measure e.g. because
“...a merger does not create extra risk”. Indeed, in most cases subadditiv-
ity is a desirable property for a risk measure, even if exceptions exist, as
discussed below. Subadditivity ensures that the diversification principle of
modern portfolio theory holds since a subadditive measure would always gen-
erate a lower risk measure for a diversified portfolio than a non–diversified
portfolio. In terms of internal risk management, subadditivity also implies
that the overall risk of a financial firm is equal to or less than the sum of the
risks of individual departments of the firm.

A key question when assessing the relative importance of subadditivity is
whether a violation of subadditivity is an artifact of the chosen risk measure,
or caused by a particular combination of assets.

Violations of subadditivity can cause a number of problems for financial
institutions. Suppose a financial institution is employing a VaR measure
without realizing it is actually violating subadditivity, e.g. by using VaR
to rank investment choices or impose limits on traders. In this case, the
financial institution is likely to assume too much risk, or not hedge when
needed.

From the point of view of financial regulations, subadditivity violations might
lead financial institutions to hold less capital than desired.

In response to the lack of coherence for the VaR risk measure, several alter-
natives have been proposed. Of these the most common is expected shortfall,

2Let X be the return, then for the probability p, VaR is the loss level such that
Pr(X ≤ −VaR) ≤ p.
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proposed by Acerbi et al. (2001), the tail conditional expectation and worst
conditional expectation proposed by Artzner et al. (1999). These risk mea-
sures are often considered superior to VaR because they are coherent, but
they have not gained much traction, not the least because of problems with
back testing. See e.g. Yamai and Yoshiba (2001) for more on the practical
problems with alternative risk measures.

However, while coherence is an appealing mathematical property of risk mea-
sures, from a financial theoretic point of view it is less attractive. Dhaene
et al. (2003) argue that “imposing subadditivity for all risks (including de-
pendent risks) is not in line with what could be called best practice”. They
further state that the axioms of coherence lead to a very restrictive set of
risk measures that cannot be used in practical situations. The measure of
global risk may not be a priori smaller than the sum total of local risks such
that diversification does not necessarily lead to a reduction in the global risk.
From this point of view subadditivity may not depict the complex nature of
the financial markets.

2.1 Statistical Violations of Subadditivity

It is easy to demonstrate that VaR violates subadditivity.3 A simple example
is:

Example 1 Consider two assets X and Y that are usually normally distrib-
uted, but subject to the occasional independent shocks:

X = ε + η, ε ∼ IIDN (0, 1), η =

{
0 with probability 0.991

−10 with probability 0.009

In this case the 1% VaR is 3.1, since the probability that η is -10 is less than
1%. Suppose that Y has the same distribution independently from X, and
that we formulate an equally weighted portfolio of X and Y . In that case,
the 1% portfolio VaR is 4.9, because for 0.5(X +Y ) the probability of getting
the −10 draw for either X or Y is much higher.

3See e.g. Artzner et al. (1999); Acerbi and Tasche (2001); Acerbi et al. (2001).
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3 Heavy Tailed Asset Returns and Regular

Variation

Empirical studies have established that the distribution of speculative asset
returns tends to have heavier tails than the normal distribution, at least
since Mandelbrot (1963) and Fama (1965). Heavy tailed distributions are
often defined in terms of higher than normal kurtosis. However, the kurtosis
of a distribution may be high if either the tails of the cumulative distribution
function (cdf) are heavier than the normal or if the center is more peaked, or
both. Further, it is not only the higher than normal kurtosis, but also failure
of higher moments that defines heavy tails.

Informally, heavy tails are characterized as distributions where it is not pos-
sible to calculate one or more moments of order m (> 0) or higher. Such
distributions have tails which exhibit a power type behavior like the Pareto
distribution, as commonly observed in finance. Mathematically, a certain
tail regularity is also required, formally defined as:

Definition 1 Definition: A cdf F (x) varies regularly4 at minus infinity with
tail index α > 0 if

lim
t→∞

F (−tx)

F (−t)
= x−α ∀x > 0 (1)

This implies that, to a first order approximation, a regular varying distribu-
tion has a tail of the form

F (−x) = x−αL(x)[1 + o(1)], x > 0, for α > 0

where L is a slowly varying function (e.g. a logarithm). An often used
particular class of such distributions has a tail comparable to the Pareto
distribution:

F (−x) = Ax−α[1 + o(1)], x > 0, for α > 0 and A > 0 . (2)

A regularly varying density implies Pareto type tails. If (2) holds, then for
large x,

f(−x) ≈ αAx−α−1 x > 0, for α > 0 and A > 0 . (3)

This means that the density declines at a power rate x−α−1 far to the left
of the centre of the distribution which contrasts with the exponentially fast

4For an encyclopedic treatment of regular variation, see Bingham et al. (1987); Resnick
(1987).
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declining tails of the Gaussian distribution. The power is outweighed by the
explosion of xm in the computation of moments of order m ≥ α. Thus, mo-
ments of order m ≥ α are unbounded. The power α is called the tail index
it determines the number of bounded moments; A is the scale coefficient.
It is readily verified that Student–t distributions, vary regularly at infinity,
have degrees of freedom equal to the tail index and satisfy the above approx-
imation. Likewise, the stationary distribution of the popular GARCH(1,1)
(Bollerslev, 1986), process has regularly varying tails, see de Haan et al.
(1989).

4 Subadditivity of VaR in the Tail

In order to address whether the VaR risk measure is subadditive, we focus
only on the case where returns are fat tailed, i.e. are regularly varying. If
returns are normal we know subadditivity holds, so it is sufficient to focus on
the fat tailed case. We focus only on the lower tail, but a short selling agent
would focus on the other tail, and the theoretical results apply equally to
the upper tail since we can turn into the other by multiplying returns with
minus one. In general, the lower and upper tails of return distributions may
have different tail thickness, but is irrelevant for the analysis below.

As before, let X and Y be two asset returns, each having a regularly varying
tail with the same tail index α > 0. We consider the effect of combing
the assets into one portfolio, which requires estimating the simultaneous
(joint) tails. The corresponding mathematical definition of jointly regularly
varying tails is given in the Appendix. The non–degeneracy assumption in
our main result below means, that in the extreme region the two returns are
not deterministically proportional to each other. This is, of course, the case
for most models of interest. One such model is in (4) below. The following
proposition, which is our main result, allows arbitrary dependence between
the returns. If the tail indices of the two assets are different, a sligthly weaker
form of subadditivity holds; see the Appendix.

Proposition 1 Suppose that X and Y are two asset returns having jointly
regularly varying non–degenerate tails with tail index α > 1. Then VaR is
subadditive in the tail region.

Proof. See the Appendix

Thus the result says that at sufficiently low probability levels, the VaR of a
portfolio position is lower than the sum of the VaRs of the individual posi-
tions, if the return distribution exhibits fat tails. For example, this applies to
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a multivariate Student–t distribution with degrees of freedom larger than 1.
Note that X and Y are allowed to be dependent. This further implies that
diversification will not work for super fat tails, i.e. α < 1, a result already
established by Fama and Miller (1972, page 270).

Data falling into this category would be characterized by a large number
of very small outcomes interdispersed with very large outcomes. While such
assets do exist they are hard to find. An example could be a pegged exchange
rate subject to the occasional devaluation, or a portfolio of fixed income assets
providing a steady income stream most of the time, but with potential bond
defaults, resulting in large negative outcomes. Such anomalous cases are easy
to identify and require special treatment in risk models.

Example 2 As an example, suppose X and Y have independent unit Pareto
loss distributions, Pr{X < −x} = Pr{Y < −x} = x−α, x ≥ 1. By inversion,
VaRp(X) = VaRp(Y ) = p−1/α. Using Feller’s convolution theorem (Feller,
1971, page 278), we have

p = Pr{X + Y ≤ VaRp(X + Y )} ≈ 2[VaRp(X + Y )]−α.

Hence

VaRp(X + Y ) − [VaRp(X) + VaRp(Y )] ≈ p−1/α[2
1
α − 2] < 0.

4.1 More on Dependent Returns

Proposition 1 establishes that subadditivity is not violated for fat tailed data
regardless of dependent structure. We can illustrate this result by an example
of assets with linear dependence, via a factor structure.

Suppose that X1 and X2 are two assets, which are dependent via a common
market factor R:

Xi = βi R + Qi, i = 1, 2 (4)

where R denotes the return of the market portfolio, βi the market risk and Qi

the idiosyncratic risk of asset Xi. Qi’s and R are independent of each other;
further, individual Qis are independent of each other. Thus, the only source
of cross–sectional dependence between X1 and X2 is the common market risk.
The security specific risks Qi are independent of each other and therefore can
be diversified away.

Since R and Qi are independent, we can use Feller (1971)’s convolution theo-
rem to approximate the tails of X1 and X2, depending upon the tail behaviour
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of R, Q1 and Q2. We can further use it to approximate the tail of X1 + X2.
Thus, under such a model, we can proceed in a similar manner as in the
case of independent asset returns. To illustrate this, we present below one
particular case, viz., the case where R, Q1 and Q2 have regularly varying
tails with the same tail index α, but with different tail coefficients A, see (2).

Suppose R, Q1 and Q2 have Pareto-like tails with the same tail index α,
but with potentially different scale coefficients. In that case, the following
corollary follows from Proposition 1:

Corollary 1 Suppose that asset returns X1 and X2 can be modelled by the
single index market model, where R, Q1 and Q2 all have Pareto–like tails
with tail index α > 1, and scale coefficients Ar > 0, A1 > 0 and A2 > 0
respectively, as in (2). Then VaR is subadditive in the tail region.

In general, the single index market model (4) may not describe the true
nature of the dependence between X1 and X2 since Qi’s may not be cross
sectionally independent, although each one of them may be independent from
the common market factor R. For example, apart from the market risk, the
assets X1 and X2 may be dependent on an industry specific risk, depicted by
the movement of an industry specific index S, also known as “sectoral index”
in finance. Such industry specific factors may lead to dependence between
Q1 and Q2. We may model cross sectional dependence by generalising the
model (4) by incorporating a sector specific factor S.

Xi = βi R + τi S + Qi, i = 1, 2 (5)

where R is the market factor, S is the industry specific factor and Qi is the
idiosyncratic risk of the asset Xi. In this model Qi is independent of R and S.
Further, Qi is cross sectionally independent. In this model, τi is the industry
specific risk of the asset Xi. If S has Pareto–like tails with scale coefficient
As and tail index α, then under the assumption of Proposition 1:

VaRp(X1 + X2) ≤ VaRp(X1) + VaRp(X2)

5 Simulation Results

The theoretical results presented above can only be expected to hold in the
tails, leaving open the question of whether these results hold in practice. In
order to establish the finite sample properties of these results, we simulate
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from three categories of bivariate distributions, across a range of probabilities
and sample sizes.

The distributions chosen are Student–t for both super fat tails as well as
tails usually obtained from return distributions. The second class of models is
jump processes. In both cases we consider both correlated and non–correlated
draws. Finally, we estimate a bivariate GARCH model in order to provide
parameters so that the GARCH model can be simulated.

The number of simulations is chosen to represent both very large sample sizes
expected to give asymptotic results as well as a smaller sample representing
typical applications. The larger sample size is 106 and a smaller is 103. The
probability levels are chosen to capture those typically used in practice, i.e.,
5% and 1%. Finally, the number of simulations is 103 for the larger sample
size and 104 for the smaller sample size.

In the simulations, p denotes the significance level of VaR and n denotes
the relative number of cases where subadditivity is violated, i.e. number of
violations/number of simulations, expressed as a percentage.

5.1 Student–t Distribution

The Student–t distribution has widespread applications in risk modelling. It
has a number of desirable properties, and for our purpose the fact that it’s
degrees of freedom equal the tail index, and is regularly varying, makes it
especially convenient for the purpose of establishing a small sample properties
of subadditivity.

We consider bivariate cases where the degrees of freedom ν are in the range
of one to six, and consider both cases where the degrees of freedom of the
first random variable X1, ν1 equals that of the second random variable, and
also allow for the case where the degrees of freedom of the second distribution
ν1 < ν2 are larger.

Furthermore, consider the case where both random samples are independent
and are linearly correlated with correlation coefficient 0.5.

The results from simulating this data are presented in Tables 1 and 2.

As shown in these tables, n, the number of times when subadditivity fails is
very high when ν1 = 1. In these cases the first moments are not well defined.

When the degrees of freedom is higher than 1, then the first moment is
well defined. As shown in Tables 1 and 2 for well defined first moment, the
violation of subadditivity is negligible or zero.
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5.2 Jump Process

In addition to the student–t, jump processes has seen widespread applica-
tions. As a consequence, our second case is a jump process whereby with
probability 1 − p the random variable X1 is IID standard normal, and with
probability p it experiences a negative jump.

First we let the second random variable X2 have the same distribution, but
independently.

Xi, i = 1, 2 is drawn from :

Xi ∼
{

IIDN (0, 1) with probability p
b − c, c ∼ U (0, d) with probability 1 − p

in our case

Xi ∼
{

IIDN (0, 1) with probability 0.995
−10 − c, c ∼ U (0, 0.2) with probability 0.005

Finally, we allow for dependent probabilities for jumps, i.e. the joint event
probability denoted by q, which is the probability that on days when the X1

jumps, X2 also jumps.

Table 3 presents the results of the simulation from the jump process. They
confirm the results in Example 1.

5.3 BEKK GARCH

The final simulation is based on estimating a bivariate volatility model and
use that to generate random samples. In particular, we use the bivariate
BEKK model (see Engle and Kroner, 1995), which is one of the most common
multivariate volatility models. The data we use to estimate the BEKK model
is daily return data from Microsoft and Goldman Sachs over June 1, 1999 to
December 31, 2003, or 1155 observations.

We then simulate from this model. Using these simulated results, we estimate
VaRs of the individual returns and their sum. In Table 4 we present the
results from the simulation. It is seen from this table that the number of
subadditivity failure is close to zero.
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6 Conclusion

VaR has been criticized because of its lack of subadditivity. We take a fresh
look at the issue of subadditivity of VaR, focusing on the tails of heavy tailed
assets, that are most commonly observed in financial applications. We find
that for such distributions, VaR is subadditive in the tails, at probabilities
that are most relevant for practical applications. We further identify the
specifications when VaR may fail subadditivity. The results suggest that
there is a strong case for using VaR, and it is usually not necessary to consider
other risk measures, solely for reasons of coherence.
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Appendix

Proposition 1 deals with left tails, but for notational simplicity the argument
below treats right tails. Recall the following definition.

Definition 2 A random vector (X,Y ) has regularly varying right tails with
tail index α if there is a function a(t) > 0 that is regularly varying at infinity
with exponent 1/α and a nonzero measure µ on (0,∞)2 \ {0} such that

t P ((X,Y ) ∈ a(t)·) → µ (6)

as t → ∞ vaguely in (0,∞]2 \ {0} (see e.g. Resnick, 1986).

The measure µ has a scaling property

µ(cA) = c−αµ(A) (7)

for any c > 0 and Borel set A. The non-degeneracy assumption in Proposition
1 means that the measure µ is not concentrated on a straight line {ax = by}
for some a, b ≥ 0.

Proof of Proposition 1.

For p > 0 small,

VaRp(X) ∼
(
µ
{

(1,∞) × (0,∞)
})1/α

a

(
1

p

)
,

VaRp(Y ) ∼
(
µ
{

(0,∞) × (1,∞)
})1/α

a

(
1

p

)

and

VaRp(X + Y ) ∼
(
µ
{

x ≥ 0, y ≥ 0 : x + y > 1
})1/α

a

(
1

p

)

as p → 0.

The scaling property (7) means that there is a finite measure η on B1 = {x ≥
0, y ≥ 0 : x + y = 1} such that

µ(A) =

∫
B1

∫ ∞

0

1((u, v)r ∈ A) αr−(1+α) dr η(du, dv) . (8)

Then

µ
{

(1,∞) × (0,∞)
}

=

∫
B1

uα η(du, dv) ,
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µ
{

(0,∞) × (1,∞)
}

=

∫
B1

vα η(du, dv) ,

and

µ
{

x ≥ 0, y ≥ 0 : x + y > 1
}

=

∫
B1

(u + v)α η(du, dv) .

Since by the triangle inequality in Lα(η)

(∫
B1

(u + v)α η(du, dv)

)1/α

<

(∫
B1

(u)α η(du, dv)

)1/α

+

(∫
B1

(v)α η(du, dv)

)1/α

,

with the strict inequality under the non-degeneracy assumption, we conclude
that

VaRp(X + Y ) − VaRp(X) − VaRp(Y ) < 0

holds for all p > 0 small enough.

Remark 1 From the proof above we see that, even without the non-degeneracy
assumptions (and, in particular, if the two assets have different tail indices)
we still have

lim sup
p→0

VaRp(X + Y )

VaRp(X) + VaRp(Y )
≤ 1 ,

which is a weaker form of subadditivity in the tails.
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Table 1: Simulation from Student’s t-distribution. 1000 observations, 10,000
simulations

This is 10,000 draws, of vectors of size 1000 from Student–t, first vector with degrees

of freedom ν1, the other with ν2. ρ is the linear correlation coefficient. There are 2

VaR probability levels 1% and 5%. Last 2 columns record the percentage number of

subadditivity violations.

Fraction of Subadditivity violations for
Degrees of freedom Correlation VaR probability

ν1 ν2 ρ 1% 5%

1 1 0.0 40.9% 46.1%
1 1 0.5 43.1% 45.8%

2 1 0.0 6.1% 0.8%
2 1 0.5 13.6% 12.6%

2 2 0.0 0.9% 0.0%
2 2 0.5 8.7% 1.3%

3 3 0.0 0.0% 0.0%
3 3 0.5 1.7% 0.1%

4 4 0.0 0.0% 0.0%
4 4 0.5 0.5% 0.0%

15



Table 2: Simulation from Student’s t-distribution. 1,000,000 observations,
1,000 simulations

This is 1,000 draws, of vectors of size 1,000,000 from Student–t, first vector with degrees

of freedom ν1, the other with ν2. ρ is the linear correlation coefficient. There are 2

VaR probability levels 1% and 5%. Last 2 columns record the percentage number of

subadditivity violations.

Fraction of Subadditivity violations for
Degrees of freedom Correlation VaR probability

ν1 ν2 ρ 1% 5%

1 1 0.0 51.2% 51%
1 1 0.5 50.8% 48.5%

2 1 0.0 0.0% 0.0%
2 1 0.5 0.0% 0.0%

2 2 0.0 0.0% 0.0%
2 2 0.5 0.0% 0.0%

3 3 0.0 0.0% 0.0%
3 3 0.5 0.0% 0.0%

4 4 0.0 0.0% 0.0%
4 4 0.5 0.0% 0.0%
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Table 3: Simulation from Jump processes
This is simulations from a Jump process, see Section 5.2. There are 2 VaR probability

levels 1% and 5%, and both independent and dependent jumps. Last 2 columns record

the percentage number of subadditivity violations.

(a) 1000 observations, 10,000 simulations

Joint event Fraction of Subadditivity violations for
probability VaR probability

q 1% 5%

q
0.00 25% 0.0%
0.05 48.1% 0.0%

(b) 1,000,000 observations, 1,000 simulations

Joint event Fraction of Subadditivity violations for
probability VaR probability

q 1% 5%

q
0.0 43.8% 0.0%
0.05 0.2% 0.0%
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Table 4: Simulation from a BEKK bivariate GARCH processes
This is simulations from a BEKK bivariate GARCH, parameters estimated with daily

return data from Microsoft and Goldman Sachs over June 1, 1999 to December 31, 2003,

or 1155 observations. process, see Section 5.3. There are 2 VaR probability levels 1% and

5%. Last 2 columns record the percentage number of subadditivity violations.

Fraction of Subadditivity violations for
Observations Simulations VaR probability

N S 1% 5%

1000 10,000 0.0% 0.0%
1,000,000 1000 0.0% 0.0%
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