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Abstract

The estimation of the profit and loss distribution of a loan portfolio requires the modelling of the
portfolio’s multivariate distribution. This describes the joint likelihood of changes in the credit-risk
quality of the loans that make up the portfolio. A significant problem for portfolio credit risk mea-
surement is the greatly restricted data that are available for its modelling. Under these circumstances,
convenient parametric assumptions are frequently made in order to represent the nonexistent informa-
tion. Such assumptions, however, usually do not appropriately describe the behaviour of the assets that
are the subject of our interest, loans granted to small and medium enterprises (SMEs), unlisted and
arm’s-length firms. This paper proposes the Consistent Information Multivariate Density Optimizing
Methodology (CIMDO), based on the cross-entropy approach, as an alternative to generate probability
multivariate densities from partial information and without making parametric assumptions. Using
the probability integral transformation criterion, we show that the distributions recovered by CIMDO
outperform distributions that are used for the measurement of portfolio credit risk of loans granted to
SMEs, unlisted and arm’s-length firms.
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1 Introduction
The credit risk of a bank’s portfolio of loans is reflected in its profit and loss distribution (PLD). This
distribution shows the possible gains and losses in the value of the portfolio and the related likelihood of
such events, which are of prime importance for banks’ economic capital decisions and their risk management
strategies. Therefore, the proper measurement of the PLD has become a key objective in financial risk
management. The PLD is a function of the changes in the credit risk quality of the loans that make up
the portfolio. The credit risk quality of such loans depends on the value of the assets of the borrowing
firms. Thus, modelling the PLD requires modelling the marginal and portfolio multivariate distributions
that describe the individual and joint likelihood of changes in the value of the assets of the borrowing firms;
this is equivalent to the marginal and portfolio multivariate distributions that describe the individual and
joint likelihood of changes in the credit risk quality of the loans that make up the portfolio.1

Although, in recent years credit risk measurement has been improving rapidly, especially for market-
traded instruments, information constraints still impose severe limitations when trying to measure portfolio
credit risk. Information restrictions and thus, modelling limitations exist because either credit risk mod-
ellers have arm’s-length relationships with the firms, i.e. arm’s-length firms - and as a consequence those
modellers2 do not have access to the market and/or financial information that is necessary for the firms’
risk assessment - or simply because there are certain variables that do not exist for the type of firms in
which modellers are interested. The latter is the case when the modelling interest lies in the credit risk
of loans granted to small and medium size enterprises (SMEs) and unlisted firms, i.e. closely held firms.
Portfolio credit risk modelling under any of these restrictions constitutes the focus of our research interest.
The approaches that have been developed for the measurement of portfolio credit risk, the reduced

form approach and the structural approach,3 rely on assumed parametric distributions that, for proper
calibration, need data that are not available to modellers or non-existent to closely held firms for reasons
stated above.
The structural approach is one of the most common approaches to the modelling of loan portfolio credit

risk, and therefore for modelling the PLD.4 Under this approach, the change in the credit risk quality of
a firm is a function of changes in the value of its assets. The basic premise of this approach is that a
firm’s underlying asset value evolves stochastically over time and default is triggered (i.e. the firm falls in
the default state) by a drop in the firm’s asset value below a threshold value, the latter being modelled
as a function of the firm’s financial structure. In its most basic version (Merton, 1974), the structural
approach assumes that the firm’s logarithmic asset returns are normally distributed; thus, the credit risk of
a portfolio is described by a multivariate normal distribution with a dependence structure that is usually
fixed through time. However, it has been empirically observed that both the normal distribution and
the fixed dependence structure assumptions are not appropriate for financial instruments; therefore, risk
managers and regulators have proposed different parametric and dependence modelling assumptions in
order to improve the measurement of portfolio credit risk under the structural approach. Among these, we
can find multivariate t-distributions with marginals containing the same or different degrees of freedom,
historical simulation, mixture models and, more recently, copula functions.5

For any of these parametric assumptions, the availability of variables, or proxies, indicating the evolution
of the firm’s underlying asset value is of crucial importance for their proper calibration and implementation.

1Note that in this paper we make the assumption that the credit risk quality of a loan is the same as the credit risk quality
of the borrowing firm to whom the loan is granted (debtor). Sometimes assets used as collateral can make the credit risk
quality of the loan differ from the credit risk quality of the borrowing firm.

2Those modellers are usually financial regulators, or any authority that does not have direct relationships with the analysed
firms, for example, IMF economists trying to assess credit risk in Financial Stability Assessment Programs (FSAPs).

3Reduced form models have been used to model the behavior of credit spreads. This approach treats default as a jump
process with exogenous intensity (Duffie and Singleton, 1999). These models rely on variables that are only available for
market-traded companies (e.g. bond yield spreads) to calibrate the intensity function for each obligor. Therefore, to our
knowledge, reduced form models can only be applied to a small part of the fixed income market. Structural models are
explained below.

4Widely known applications include the CreditMetrics framework (Gupton et al, 1997) and the KMV framework (Crosbie
et al, 1998).

5Empirical support for modelling univariate returns with t-like tails can be found in Danielsson and de Vries (1997) and
Hoskin et al (2000). Glasserman et al (2000) present the multivariate modeling framework. Historical simulation for portfolio
credit risk is presented by Mina et al (2001) and Butler et al (1998). For mixture models see McLachlan et al (1987) and
Zangari (1996).
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Hence, any attempt to apply the structural approach - assuming the parametric distributions that have
been proposed in its basic or improved versions - becomes a challenging prospect when focusing in closely
held or arm’s-length firms. In these restricted data environments, the frequency of loan defaults (PoDs) for
a given classification of loans, e.g., loans classified under sectoral activities or credit risk qualities (ratings),
is the only information that is usually available.
PoDs represent partial information on the marginal distribution of each type of loan within a portfolio.

Nor, at the portfolio level, is it possible to observe the joint likelihood of changes in the asset value of
the borrowing firms, nor variables indicating the joint likelihood of credit risk quality changes of the loans
making up a portfolio. As a result, when modellers try to specify portfolio multivariate distributions
from the incomplete set of information provided by the PoDs, they face an under-identified mathematical
problem. When problems of under-identification arise, parametric assumptions, representing information
that is not available, are typically used to convert under-identified problems into well-identified problems.
However, this course of action is not an appropriate framework when attempting to model portfolio credit
risk under the information restrictions that constitute the focus of our research interest. The lack of data
makes it impossible to adequately calibrate the assumed parametric distributions; thus, these distributions
may not be consistent with the analyzed assets’ data-generating processes. As a consequence, erroneous
statistical inferences and incorrect economic interpretations may result.6

Therefore, rather than imposing convenient distributional assumptions, this paper proposes an alterna-
tive route to recover portfolio multivariate distributions from the incomplete set of information available
for the modelling of the portfolio credit risk of loans granted to SMEs, unlisted and arm’s-length firms.
We refer to this procedure as the Consistent Information Multivariate Density Optimizing methodology
(CIMDO). CIMDO is based on the Kullback (1959) cross-entropy approach. This approach reverses the
process of modelling data information. Instead of assuming parametric probabilities to characterize the
information contained in the data, the entropy approach uses the data information to infer values for
the unknown probability density. Because the information requirements necessary for the implementation
of CIMDO are less stringent than those necessary for the proper calibration of parametric distributions,
the implementation of CIMDO becomes straightforward.7 CIMDO also seems to reduce the risk of den-
sity misspecification because it recovers densities that are consistent with empirical observations. This is
evident when we present a simulation exercise, which provides evidence showing that CIMDO-recovered
distributions outperform widely used distributions in portfolio credit risk modelling under the Probability
Integral Transformation (PIT) criterion.
The implementation of CIMDO has the potential for wider relevance. In some countries, SMEs and

unlisted firms represent the backbone of the economy, making a significant contribution to their GDP and
to the sustainability of their employment levels. Moreover, loans granted to SMEs and unlisted companies
usually represent an important percentage of the assets held by banks in most developed and developing
economies.8 Improvements in the methodologies used to measure the portfolio credit risk of these types of
financial assets can have important implications for individual banks’ risk management and for a system’s
financial stability.9 The latter can be further enhanced by the ability of regulators - or any other authority
with arm’s-length relationships with the firms - to improve the measurement of credit risk in the system.
The remainder of this paper is structured as follows. In Section 2, we develop the CIMDO methodology.

We provide its motivation by describing the structural approach (SA) to modelling credit risk. The descrip-
tion of the structural approach is not only useful to depict the intuition behind CIMDO. It is also helpful
to shed light on the limitations embedded in the information that is available for the modelling of credit
risk of loans granted to closely held and arm’s-length firms. We continue by presenting the major results
behind the principle of minimum cross-entropy, which is the theoretical framework on which CIMDO is

6Koyluoglu (2003) presents an interesting analysis of the consequences of the improper calibration of credit risk models.
7The empirical frequency of default (PoD) of each type of loan making up a portfolio is the only information necessary

to recover CIMDO multivariate distributions. Information of the dependence structure of a multivariate distribution is not
necessary to recover it. However, if available, such information can easily be incorporated into the modelling framework.

8For example, Saurina and Trucharte (2004) report that, in Spain, exposures to SMEs represent, on average, 71.4% of
total bank exposures to firms. Similar results have been reported in the case of Germany. The Comision Nacional Bancaria y
de Valores (Financial Regulatory Agency in Mexico) reports that the percentage of this type of firm is about 85% in Mexico.

9While we restrict our attention to loans, the proposed procedure can easily be extended to measure the portfolio credit
risk of baskets, credit derivatives, mortgage backed securities, or any other synthetic instrument that holds underlying assets
with similar data constraints to those of closely-held and arm’s-length firms.
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built. We then provide the CIMDO modelling framework and present a detailed mathematical develop-
ment of the methodology. We end the section by discussing the CIMDO-inferred distribution. Section 3
presents the theoretical background and proofs behind the PIT, the criterion selected to perform density
evaluations. In Section 4 we explore the robustness of CIMDO-recovered distributions. Section 5 presents
an empirical implementation exercise. This section describes the data employed in this exercise and shows
in detail how CIMDO is implemented to recover a portfolio distribution. It also shows how credit risk
modellers would usually calibrate parametric portfolio distributions when faced with a similar information
set. Density evaluations are performed and results are presented. Section 6 discusses the results obtained
in the previous Section. Section 7 concludes.

2 Consistent InformationMultivariate Density OptimizingMethod-
ology

2.1 CIMDO: motivation

The structural approach is one of the most common approaches to the modelling of loan portfolio credit
risk and loan portfolios’ profit and loss distributions.10 The CreditMetrics methodology (Gupton, Finger
and Bhatia, 1997) and Moody’s-KMV methodology (Crosbie, 1998) are widely known applications of this
approach.
The basic premise of the structural approach is that a firm’s underlying asset value evolves stochastically

over time and default is triggered by a drop in the firm’s asset value below a pre-specified barrier, henceforth
called the default-threshold, which is modelled as a function of the firm’s leverage structure. Therefore,
once the parametric distribution driving the firm’s underlying asset value and the default-threshold are
defined, the firm’s probability of default, which indicates the probability of the firm’s asset value falling
below the default-threshold, can be calculated.
The consistent information multivariate density optimizing methodology assumes that the basic premise

of the structural approach holds; however, CIMDO reverses this process. Following a cross-entropy decision
rule, from the observed probabilities of default of the loans making up a portfolio, CIMDO recovers the
multivariate distribution followed by the underlying asset value of the firms making up the portfolio. In
order to formalize these ideas, we find it useful to describe the structural approach.

The structural approach

In its most basic version (Merton,1974), the structural approach assumes that the firms’ logarithmic
asset values are normally distributed. Under this version of the structural approach, if it is assumed
that a loan portfolio is composed of two types of borrowers with different credit risk qualities, we can
describe the processes driving the borrowing firms’ asset values as, dSxt = µxSxt dt+ Sxt σ

xdWx
t and dSyt =

µySyt dt + Syt σ
ydW y

t , where ln [Sxt ] and ln [Syt ] are normally distributed and Wx
t and W y

t are Brownian
motions with dependence structure dWx

t dW
y
t = ρdt. If it is also assumed that the initial logarithmic

asset values are ln [Sxt ] = 0, ln [S
y
t ] = 0, then ln [SxT ] ∼ N

h³
µx − 1

2σ
x2
´
(T − t), σx

√
T − t

i
and ln [SyT ] ∼

N
h³
µy − 1

2σ
y2
´
(T − t), σy

√
T − t

i
. Therefore, we can represent the standardized logarithmic asset values

of these borrowers at time T , as x(T ) =
ln[SxT ]− µx− 1

2σ
x2 (T−t)

σx
√
T−t and y(T ) =

ln[SyT ]− µy− 1
2σ

y2 (T−t)
σy
√
T−t . As a

result, x(T ) ∼ Φ (0, 1) and y(T ) ∼ Φ (0, 1) . Then each borrower defaults at some time T > t, if the firm’s
value falls below its default-threshold Xx

d and Xy
d , i.e. x(T ) ≤ Xx

d , y(T ) ≤ Xy
d . Therefore, at time t, the

firm’s marginal probabilities of default, can be represented by

PoDx
t = Φ (Xx

d ) , (1)

PoDy
t = Φ (Xy

d ) ,

10 In order to generate the PLD using the structural approach, first, a portfolio multivariate distribution is specified; second,
Monte Carlo simulation algorithms are used to generate simulated asset values from the specified distribution. With the
simulated values, the PLD is estimated.
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where Φ(·) is the standard normal cumulative distribution function (cdf ).
Consequently, the joint default probability of these borrowers is

PoDxy
t = Φρ (X

x
d ,X

y
d ) , (2)

where Φρ(·) stands for the bivariate standard normal distribution function with a time independent
instantaneous correlation structure ρ.
In this case, due to the assumption of the correlation structure between the Brownian motions, the

dependence structure between the firms’ asset values is described by11

Corr (dSxt , dS
y
t ) =

Cov (dSxt , dS
y
t )p

V ar (dSxt )
p
V ar (dSyt )

=
Sxt σ

xSyt σ
ydWx

t dW
y
tp

V ar (dSxt )
p
V ar (dSyt )

=
Sxt σ

xSyt σ
yρdt

Sxt σ
x
√
dtSyt σ

y
√
dt

(3)

= ρ.

More recently, different parametric distributions have been proposed to improve the modelling of the
stochastic behavior of the asset values in the structural approach. Among these, those which are most com-
monly used to measure loan credit risk are the t-distribution and mixture of normals. These distributions
have been justified by the fact that financial assets’ returns exhibit heavier tails than would be predicted
by the normal distribution. It is common to observe large events, e.g. extreme asset price movements,
more frequently than the normal distribution predicts.
Irrespective of the parametric assumptions that the modeler decides to take, the availability of variables,

or proxies, indicating the evolution of the firms’ underlying asset value, is of crucial importance for the
proper specification of the assumed distributions.
Thus, the implementation of the structural approach to model the credit risk of SMEs and unlisted

firms is a difficult task, since there is usually only very limited information to model the portfolio credit
risk of these firms.12 In the majority of cases, the empirical frequencies of default (PoD) for specific loan
groups, e.g., loan credit-risk classes (ratings) or loans aggregated by sectors, are the only information that
is available.

11For listed firms, it has become common practice to use bond yield spreads or proxies like equity returns and equity
return correlations as proxies for asset returns and asset returns correlations. This is because, even for listed firms, the asset
return and asset return correlations are not observed in practice. Theoretically, it can be proved that the local correlation
between share prices should be equal to the local correlation between the underlying firm’s value processes. Unfortunately,
empirically there is mixed evidence about this theoretical result. While common practice in the industry is to use equity
return correlations as proxies for asset return correlations, Servigny and Renault (2002) and Schonbucher (2003) document
the fact that equity return correlations tend to be significantly higher than asset return correlations. There is no resolution
to this contradiction, whatever explanation is preferred; the fact remains that caution has to be exercised when using equity
correlations as a proxy for asset correlations. Nonetheless, although the lack of data is in general a significant problem for the
measurement of credit risk, for listed firms, in some cases, there might be sufficient information available to make reasonable
calibrations of the parametric distributional assumptions that are usually taken.
12For bank regulators, modelers who do not have direct relationships with the firms or secondary banks who did not

originate the loans, restrictions on information are even tougher, since they lack access to proprietary data on the financial
structure of these borrowers.
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Figure 1: The structural approach

Empirical frequencies of default

Loans granted to SMEs and unlisted firms are usually classified and aggregated according to their
sectoral activity or credit risk quality (rating).13 For loans classified under a given sector or rating14, the
frequency of loan defaults, henceforth referred as the empirical probability of default (PoD) at different
points in time, usually represents the only statistic that is available for the modelling of credit risk.15 Time
series of PoDs are also restricted through time, since, commonly, it is only possible to obtain very few
observations with quarterly or yearly frequencies.
At a given period of time t, once a loan is grouped under a given classification m, the probability of

default for that group is characterized as

PoDm
t =

nmtdef
nmt

, (4)

where nmt represents the total number of firms that are classified under the category m and nmtdef repre-
sents the number of firms that are classified under the category m that defaulted on their loan obligations
during period t. Most commonly, the proportion PoDm

t is the variable that is reported; therefore, not even
information on the numerator or denominator is usually known.
13Loans granted to SMEs and unlisted firms are sometimes classified and aggregated according to other loan characteristics.

These include the geographical location of the firms holding them, type of collateral of the loan etc. It is important to point
out that our methodology can easily be applied under any of these types of aggregations.
14Credit risk quality classification statistics (ratings) classify loans according to their credit default risk. Ratings are usually

produced by public rating agencies or by internal rating models. The most well known rating agencies include Standard and
Poor’s, Moody’s and Fitch. Most ratings given to SMEs and unlisted companies are produced by internal rating models. The
latter include models à la Altman (1989) or different applications based on the structural approach. For example, Moody’s-
KMV has derived a classification statistic known as the distance to default (DD). The DD measures the standardized distance
(i.e. by the asset standard deviation) of a firm’s value from its default-threshold. Thus, the larger the DD, the better the
credit risk quality of a borrower. This statistic is assumed to contain all the relevant default information of the borrower.
Once the DD have been obtained, they are used to classify firms that have similar DDs, as firms with a similar credit risk
quality.
15For loans granted to SMEs and unlisted firms, it is possible, although only very rarely, to obtain frequencies of credit risk

quality changes (rating transitions). However, for agents with arms-length relationships with the firms, it is difficult to verify
the quality of these statistics, except for the default state, which is a state that cannot be “disguised” or hidden.
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Why is information embedded in the PoDs not adequate for the proper calibration of
parametric assumptions?

The PoDs represent merely indirect and partial information on the borrowing firms’ asset value dis-
tributions. In order to make this claim clearer, first we assume that the structural approach holds and
that the probability of default is characterized in the upper part of the distribution. Then, instead of
assuming the normality assumption, as in equation (1) and (2), we allow the stochastic processes driving
the borrowers’ asset values to be represented by any multivariate distribution. Therefore, we can generalize
the representation of the borrowers’ marginal default probabilities as16

Z ∞
−∞

Z ∞
Xx
d

p(x, y)dxdy = PoDx
t , (5)Z ∞

−∞

Z ∞
Xy
d

p(x, y)dydx = PoDy
t ,

and, equally, we can generalize the representation of the borrowers’ joint default probability asZ ∞
Xy
d

Z ∞
Xx
d

p(x, y)dxdy = PoDxy
t , (6)

where Xx
d ,X

y
d represent the default thresholds, p(x, y) represents the portfolio multivariate distribution

driving the borrowers’ asset values, PoDx
t , PoD

y
t represent the marginal empirical probabilities of default

and PoDxy
t represents the empirical joint default probability.

Note that the information provided by the empirical marginal probabilities of default, as described in
equation (4), represents only indirect information on the portfolio marginal distributions, and as a result
on the portfolio multivariate distribution, as can be appreciated in equation (5).
Moreover, the PoDs only provide information on the region of default of the marginal distributions of

each type of loan in the portfolio. The latter can be represented by the interval of the borrower’s asset
value distribution, where the default state is triggered. If we set the region of default for each obligor in
the upper part of a distribution, the regions of default for each borrower in the portfolio can be formalized
mathematically with an indicating function as follows:

χ
[Xxd,∞)

=

½
1 if x > Xx

d

0 if x < Xx
d

and χ
[Xyd,∞)

=

½
1 if y > Xy

d

0 if y < Xy
d

, (7)

where the indicating function χ
[Xxd,∞)

and χ
[Xyd,∞)

take the value of one in the region of default of each
borrower in the portfolio, Xx

d and Xy
d represent the default-threshold values that delimit their regions of

default. The region of default for an specific type of borrower can be appreciated in Figure 2 as the region
where x > Xd under an assumed distribution.
Equivalently, if one assumes that the basic premise of the structural approach holds, the marginal

probability of default for each type of borrower in the portfolio only provides information on the frequency
of firms whose asset value has crossed the default-threshold. However, apart from knowing that a given
frequency of firms had asset values (the random variable in the model) that crossed the default threshold
and moved into the default interval of the distributions’ domain, we do not have any information on the
specific values taken by the random variable nor the probabilities of the specific values of the random
variable, neither in the region of default nor in any other region of the probability distribution’s domain.
Even worse, at the portfolio level, it is not possible to observe any variable representing the joint likelihood
of asset value changes of the borrowers whose loans make up a portfolio, nor even indirect observations
representing the joint likelihood of default of such borrowers.
Therefore, if from the incomplete and indirect information provided by the marginal empirical proba-

bilities of default one tries to define the specification of the portfolio multivariate distribution p(x, y) the
problem is under-identified, since the possible specifications of p(x, y) that satisfy equation (5) are infi-
nite. Thus, when under-identified problems arise, it is necessary to define a basis for selecting a particular
solution.
16 In this representation, we assume that the portfolio consists of two types of loans.
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Figure 2: The region of default

The traditional route is to impose parametric distributional assumptions, representing information that
we do not have. As we have already explained, the most common parametric distributions assumed under
the SA are the Conditional Normal distribution, the t-distribution and the mixture of normals.17

However as we claimed above, for SMEs and unlisted firms, parametric assumptions do not provide
an appropriate framework since it is not possible to observe variables or proxies indicating the evolution
of the underlying asset value of these firms. Nor, at the portfolio level, is it possible to observe the joint
likelihood of credit risk quality changes; nor, to observe variables indicating the dependence structure of
the loans making up a portfolio.
As a result, it becomes impossible to calibrate adequately the assumed parametric distributions, as

shown in Section 5; thus, these distributions may not be consistent with the analyzed assets’ data-generating
processes.
Consequently, rather than imposing parametric distributional assumptions, we follow an alternative

route, using the entropy selection criteria embedded in CIMDO.

2.2 CIMDO: modelling foundation, the cross entropy approach

In order to recover a density p(x), we propose a procedure based on the Kullback (1959) cross-entropy
approach. When under-identified problems arise, this approach provides a rationale for selecting a solution
out of the infinite possible ones. This procedure reverses the process of modelling data information. Rather
than assuming parametric density functions, the cross-entropy approach uses the available information to
infer the unknown probability density.
In order to formalize these ideas, we start with the exposition of the “entropy of the distribution of

probabilities”, an axiomatic method used by Shannon (1948) to define a unique function to measure the
uncertainty of a collection of events.18

17We refer to the term “Conditional” because as explained in Section 3.4.3, the most common assumption made by risk
modellers is that firms’ logarithmic asset values follow a normal or t-distribution conditioned on the period’s level of volatility.
18The origins of the entropy concept go back to the XIXth century with the work developed by Boltzman and continued

subsequently by Maxwell, Gibbs, Bernoulli and Laplace.
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In developing this approach, Shannon (1948) supposed that an experiment with N trials (repetitions)
was carried out. This experiment had K possible outcomes (states). He assumed that N1,N2, ....., NK

represented the number of times that each outcome occurs in the experiment of lengthN , where
P

Nk = N ,
Nk > 0, and k = 1, 2, ....,K.
In this setting there are N trials and each trial has K possible outcomes; therefore, there are KN

conceivable outcomes in the sequence of N trials. Of these, a particular set of frequencies

pk =
Nk

N
or Nk = Npk for k = 1, 2, ...,K,

can be realized in a given number of ways as measured by the multiplicity factor (possible permutations).
Thus, the number of ways that a particular set of Nk is realized, can be represented by the multinomial
coefficient

W =
N !

Np1!Np2!....Npk!
=

N !Q
kNk!

,

or its monotonic function

lnW = lnN !−
KX
k=1

lnNk! (8)

Shannon (1948) manipulated equation (8), as presented in Appendix A.1, to obtain the Shannon (1948)
entropy measure, which is defined as

E(pk) = −
X
k

pk ln pk, (9)

where X is a random variable with possible outcome values xk, k = 1, 2, ...,K and probabilities pk such
that

P
k

pk = 1 and where pk ln pk = 0 for pk = 0.

Jaynes (1957) proposed to make use of the entropy concept to choose an unknown distribution of
probabilities when only partial information is available. He proposed to maximize the function presented
in equation (9), subject to the limited available data, in order to obtain the probability vector p that can
be realized in the greatest number of ways consistent with the known data.
The rationale provided by Jaynes (1957) for choosing a particular solution, i.e. probability vector p

from partial information, is known as the principle of Maximum Entropy (MED). Let

L = −
KX
k

pk ln pk +
TX
t=1

λt

"
yt −

KX
k

pkft(xk)

#
+ µ

"
1−

KX
k

pk

#
, (10)

be the Lagrange function. Then, the problem of Maximum Entropy is to maximize L.
In this function, the information contained in the data has been formalized in 1 ≤ t ≤ T moment-

consistency constraints of the form
KP
k=1

p
k
ft(xk) = yt. These moment-consistency-constraints are formu-

lated with T functions {f
1(x), f2(x),..., fT (x)} representing the information contained in the data and

with a set of observations (averages or aggregates) {y
1(x), y2(x),...,yT (x)} that are consistent with the

distribution of probabilities {p1 , p2,...,pk} . Note that the problem is under-identified if T < K.

In this function, the additivity restriction
KP
k=1

pk = 1 has to be fulfilled as well, since p represents a

probability distribution. Note also that λt represents the Lagrange multiplier of each of the 1 ≤ t ≤ T
moment-consistency constraints and µ represents the Lagrange multiplier of the probability additivity
constraint.
Using the method of Lagrange multipliers, the Maximum Entropy solution is given by

bpk = 1
KP
k=1

exp

∙
−

TP
t=1

bλtft(xk)¸ exp
"
−

TX
t=1

bλtft(xk)# . (11)
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An extension to the rationale provided by Jaynes is the Minimum Cross Entropy Distribution (MXED)
developed by Kullback (1959) and Good (1963). Under the MXED, it is assumed that, in addition to the
T moment constraints, some form of conceptual knowledge exists about the properties of the system and
that this knowledge can be expressed in the form of a prior probability vector q. In contrast to the MED
pure inverse problem framework, the objective may be reformulated as being to minimize the cross entropy
distance between the posterior p and the prior q.19 The cross-entropy objective function is defined as
follows:

C [pk, qk] =
KX
k

pk ln

∙
pk
qk

¸
, (12)

subject to T moment-consistency constraints
KP
k=1

p
k
ft(xk) = yt, and the additivity restriction

KP
k=1

pk = 1.

Consequently, the probability vector p may be recovered by minimizing the Lagrangian function

L =
KX
k

pk ln

∙
pk
qk

¸
+

TX
t=1

λt

"
yt −

KX
k

pkft(xk)

#
+ µ

"
1−

KX
k

pk

#
, (13)

where λt and µ represent Lagrange multipliers. Using the method of Lagrange multipliers, the optimal
solution to the cross-entropy problem is

bpk = qk
KP
k=1

qk exp

∙
TP
t=1

bλtft(xk)¸ exp
"

TX
t=1

bλtft(xk)# . (14)

Shannon’s entropy measure E(pk), presented in equation (9), can be interpreted as a measure of the
degree of uncertainty in the distribution of probabilities, representing the extent to which the distribution is
concentrated on specific points as opposed to being dispersed over many points. E(pk) takes its maximum
value lnK, when the distribution is maximally dispersed and thus uniformly distributed on the range of
the distribution, in other words, when p1 = p2 =...= pk =

1
K . E(pk) takes its minimum value 0, when

the distribution is maximally informative in that p degenerates on one particular xk value, in other words,
pk = 1 and pj = 0, ∀k 6= j.
The objective of maximizing E(pk) in the absence of any constraints, other than the additivity restriction

KP
k=1

pk = 1, can be interpreted as choosing pk to be the maximally uniform distribution. This is because,

as mentioned above, E(pk) takes its maximum value when p1 = p2 = ... = pk =
1
K .

However, in the presence of T moment constraints, as suggested by Jaynes, the objective can be in-
terpreted as choosing the pk’s to be as maximally uninformative as the moment constraints allow. This
objective is consistent with the goal of not wanting to assert more of the distribution pk, than is known.
In other words, irrelevant information is “minimized out”.
When, in addition to the T moment constraints, supplementary information in the form of a prior

probability is incorporated into the optimization framework, the Kullback cross entropy framework recovers
the density that could have been generated in the greatest number of ways consistent with these constraints
and that has the smallest entropic distance from the prior distribution.
The entropic distance between pk and qk is not a metric distance20 but it does satisfy C [pk, qk] = 0

for pk = qk and C [pk, qk] > 0, whenever pk 6= qk. Note that the definition of C [pk, qk] does not contain a
negative sign, so cross entropy is minimized rather than maximized. Note also that equation (14) reduces
to equation (11) when q(x) is constant, i.e. a uniform distribution indicating no prior information about
X.
19 See Appendix 2.A.3 for the meaning of the prior q.
20This is because C [p(x), q(x)] 6= C [q(x), p(x)], however, for our objective, this property is not particularly important

because the prior distribution is taken to be fixed in estimation problems. Our interest centers on choosing the posterior
distribution that solves the moment equations and that is as close as possible to the prior distribution.
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2.3 CIMDO: modelling framework

Based on the Kullback (1959) cross-entropy approach, CIMDO provides a rationale to infer the unknown
multivariate distribution of a loan portfolio containing M different credit-risk-quality (rating) categories
of loans, p(l1, .., lM ) ∈ RM , henceforth referred to as the posterior distribution, from the observed PoDs of
the loans making up the portfolio.21

For this purpose, under an initial hypothesis, it is assumed that the multivariate distribution driving the
stochastic process of the portfolio follows a parametric distribution q(l1, .., lM ) ∈ RM , henceforth referred
to as the prior distribution. It is important to point out that the initial hypothesis is taken in accordance
with economic intuition (default is triggered by a drop in the firm’s asset value below a threshold value)
and with theoretical models (structural approach) but not necessarily with empirical observations. Thus,
constraint equations are formulated with the information provided by the empirically observed PoDs of the
loans making the portfolio.
Lastly, following the minimum-cross entropy principle embedded in CIMDO, the posterior density is

recovered. This is the distribution that is closest to the prior distribution but that is consistent with the
empirically observed probabilities of default of the loans making up the portfolio.
Mathematically, the problem is converted from one of deductive mathematics to one of inference in-

volving an optimization procedure. In order to formalize these ideas, we proceed by defining the objective
function and the moment-consistency constraints that are necessary to set up the optimization procedure
used by CIMDO.

2.3.1 Objective function

For a loan portfolio, containing loans given to M different classes of borrowers, whose logarithmic returns
are characterized by the random variables l1, .., lM , we define the objective function to be used as

C [p, q] =

Z
lM

..

Z
l1

p(l1, .., lM ) ln

∙
p(l1, .., lM )

q(l1, .., lM )

¸
dl1..dlM ,

where q(l1, .., lM ) the prior distribution and p(l1, .., lM ) the posterior distribution ∈ RM .
In the interest of parsimony, from now on, we develop the multivariate case as a bivariate problem,

although, all the results presented for the bivariate case are directly applicable for RM when M ≥ 2.
We focus on a portfolio containing loans given to two different classes of borrowers, whose logarithmic

returns are characterized by the random variables x and y, where x, y ∈ li s.t. i = 1, ..,M. Therefore, the
objective function can now be defined as:

C [p, q] =

Z Z
p(x, y) ln

∙
p(x, y)

q(x, y)

¸
dxdy, (15)

where q(x, y) the prior distribution and p(x, y) the posterior distribution ∈ R2.22
The intuition behind this objective function is heuristically discussed in Section 2.5.

The prior distribution

As already mentioned, CIMDO assumes that a default is triggered by a drop in the firm’s asset value
below a threshold value. Therefore, taking the structural approach as a departing point for our modelling,
and assuming that its basic premise and economic intuition are correct, we set as an initial hypothesis that
the portfolio follows a multivariate distribution, q(x, y) ∈ R2 that is Normal N(0, I), where I is the identity
matrix.
The justification for this parametric distribution is based on the parametric assumption behind the

basic version of the structural approach (Merton,1974). The dependence assumption on this distribution
comes from the fact that, as explained in Section 2.1, for the type of loans that are the subject of our

21CIMDO is built on the consistent information density optimising Methodology (CIDO), which recovers univariate densi-
ties. CIDO is presented in Chapter 2 of this thesis.
22This objective function is to be minimised in the argument p(x, y) subject to a set of contraints, as indicated in equation

(20).
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interest, we only get partial information represented by the PoDs of each type of loan in the portfolio, and
the time series of PoDs are usually very short, thus making it very difficult to define a specific dependence
structure.
We emphasize that the initial hypothesis seems reasonable before to analyzing the information provided

by the sample of loans included in the portfolio. Of course, after this information is considered, the prior
distribution q(x, y) may be found to be incompatible with the sample information.

2.3.2 Moment-consistency constraints

As we mentioned above, the prior distribution is chosen due to its consistency with theoretical arguments
and economic intuition but not necessarily with empirical observations. Thus, the information provided
by the frequencies of default of each type of loan making up the portfolio is of prime importance for the
recovery of the posterior distribution. In order to incorporate this information into the recovered posterior
density, we formulate the moment-consistency constraint equations.
Intuitively, we would like to update the shape of the portfolio multivariate distribution at each pe-

riod of time, such that the posterior multivariate distribution is consistent with the empirically observed
probabilities of default. In other words, the posterior multivariate distribution fulfils a set of restrictions
imposed on its marginal distributions. These restrictions imply that, at each period of time, the region of
default defined in equation (7) for each of the borrowers’ marginals are equalized to each of the borrowers’
empirically observed frequencies of default, which, at each period of time, change due to numerous factors
affecting the underlying asset value of the firm, for example, macroeconomic shocks and variations in the
business cycle.
Therefore, we fixed the threshold delimiting the region of default for each marginal. Once this threshold

is fixed, we allow the shape of the posterior distribution to vary according to the empirical frequencies of
default of each of the borrowers at each period of time.23 Consequently, we characterize the default-
threshold as follows.

Default-threshold

In order to fix the default-threshold, we define a “through-time-average default-threshold”. For this
purpose, for each type of borrower, we define the “through-time-average probability of default” as the
historical average probability of default, PoD

m
.24

Given the assumed prior distribution, we characterize the “through-time-average default threshold” for
each borrower as

Xx
d = Φ

−1 (αx) and Xy
d = Φ

−1 (αy) , (16)

where we defined αx = 1 − PoD
x
and αx = 1 − PoD

x
since, in our model, the region of default for each

obligor is described in the upper part of a distribution, and Φ(·) is the standard normal cdf.
Hence, information on the empirical probabilities of default for each type of borrower allows us to find

their particular default thresholds without the need of variables indicating the evolution of their underlying
asset values and their financial structures.

23Equivalently, the optimization procedure embedded in CIMDO changes the shape of the posterior multivariate distribution
in a way that ensures the satisfaction of the restrictions imposed on its marginals at each period of time.
24Depending of the way that PoDm

t are reported, the PoD
m
can be defined in different ways. Ideally, we would like to be

able to define it as PoD
m

=
T
t=1 n

m
tdef

T
t=1 n

m
t

where nmt represents the total number of firms classified under the rating category

m and nmtdef is the number of firms classified under the rating category m that defaulted on their loan obligations during
period t, and t = {1, 2, ...T}, represents the number of periods for which PoDm

t are available. However, if information of
the numerator and denominator is not available, PoD

m
can be computed as a through-time average. In this case, modellers

should be careful with the weights assigned to each observation.
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Moment-consistency constraints

Once the default-thresholds are defined, we proceed to formalize the definition of the moment-consistency
constraints as25 Z ∞

Xx
d

dPx(x) = PoDx
t , (17)Z ∞

Xy
d

dPy(y) = PoDy
t ,

where Px(x), Py(y) are the posterior cdf ’s and PoDx
t , PoD

y
t are the empirically observed probabilities

of default for each borrower in the portfolio. Equivalently, we define the constraints in terms of their pdfs
as

Z
p(x)χ

[Xx
d
,∞)

dx = PoDx
t , (18)Z

p(y)χ
[X
y
d
,∞)

dy = PoDy
t ,

where p(x), p(y) are the posterior pdfs, χ
[Xx
d
,∞)
, χ

[X
y
d
,∞)

are the indicating functions as defined in

equation (7) and PoDx
t , PoD

y
t are the empirically observed probabilities of default for each borrower in

the portfolio.
Nonetheless, our objective is to recover the portfolio multivariate distribution. Therefore, the restric-

tions on the pdfs of each of the borrowers holding the loans making up the portfolio are expressed as
restrictions on the marginals of the portfolio multivariate distribution,

Z ∞
−∞

Z ∞
Xx
d

p(x, y)dxdy = PoDx
t ,Z ∞

−∞

Z ∞
Xy
d

p(x, y)dydx = PoDy
t ,

or, equivalently, as

Z Z
p(x, y)χ

[Xx
d
,∞)

dxdy = PoDx
t , (19)Z Z

p(x, y)χ
[X
y
d
,∞)

dydx = PoDy
t ,

where p(x, y) is the posterior multivariate distribution that represents the unknown to be solved.
Note that the moment-consistency constraints embed all the available information for each type of

borrower. This information is included in the constraints via the default-threshold and the empirically
observed probabilities of default at each period of time. Imposing these constraints on the optimization
problem guarantees that the posterior multivariate distribution contains marginal densities that in the
region of default, as defined in equation (7), are equalized to each of the borrowers’ empirically observed
probabilities of default.

25We refer to this constraint as the moment-consistency constraint, based on the definition of partial moments. Using
definition 3.A.1.2 in Appendix 3.A.1, we set Z = Xm

d and r = 0. Then, the probability that lm ≥ Xm
d can be expressed as

the partial moment M 0, Xm
d = ∞

Xm
d
dFlm .
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2.4 CIMDO: methodology set up

The Consistent Information Multivariate Density Optimizing methodology recovers the posterior multi-
variate density p(x, y) ∈ R2 by minimizing the objective function defined in equation (15) subject to the
moment-consistency constraints defined in equation (19). In order to ensure that p(x, y) represents a valid
density, the conditions that, p(x, y) > 0 and the probability additivity constraint,

R R
p(x, y)dxdy = 1, also

need to be satisfied.
The CIMDO density is recovered by minimizing the functional

L [p, q] =

Z Z
p(x, y) ln p(x, y)dxdy −

Z Z
p(x, y) ln q(x, y)dxdy

+λ1

∙Z Z
p(x, y)χ

[Xx
d
,∞)

dxdy − PoDx
t

¸
(20)

+λ2

∙Z Z
p(x, y)χ

[X
y
d
,∞)

dydx− PoDy
t

¸
+µ

∙Z Z
p(x, y)dxdy − 1

¸
,

where, p(x, y) is the posterior multivariate distribution, the unknown to be recovered, and q(x, y) is
the prior multivariate distribution as defined in equation (15). λ1, λ2 represent the Lagrange multipliers
of the moment-consistency constraints defined in equation (19) and µ represents the Lagrange multiplier
of the probability additivity constraint.26

This functional can be re-written as follows

L [p, q] =

Z Z
p(x, y) [ln p(x, y)− ln q(x, y)] dxdy

+

Z Z
p(x, y)

∙
λ1χ[Xx

d
,∞)
+ λ2χ

[X
y
d
,∞)
+ µ

¸
dxdy (21)

−λ1PoDx
t − λ2PoD

y
t − µ.

By using the calculus of variations, the optimization procedure can be performed by computing the
following variation,

δL =
dL [p(x, y) + γ(x, y), q(x, y)]

d

¯̄
=0
= 0,

where is a small quantity and γ(x, y) is an arbitrary continuous function with a value of zero at the
end points (boundary) of integration and with finite variance. Without loss of generality, we can assume
that γ(x, y) is bounded.
The optimal solution is represented by the following posterior multivariate density as

\p(x, y) = q(x, y) exp

½
−
∙
1 + bµ+µbλ1χ

[Xx
d
,∞)

¶
+

µbλ2χ
[X
y
d
,∞)

¶¸¾
. (22)

2.5 CIMDO: intuition

Analyzing the functional defined in equation (20), it is clear that the consistent multivariate density op-
timizing methodology recovers the distribution that minimizes the probabilistic divergence; i.e. “entropy
distance”, from the prior distribution and that is consistent with the information embedded in the moment-
consistency constraints. Thus, out of all the distributions satisfying the moment-consistency constraints,
the proposed procedure provides a rationale by which we select the posterior that is closest to the prior,

26Like all optimization problems, the Lagrange multipliers reflect the change in the objective function’s value as a result of
a marginal change in the constraint set.
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thereby, solving the under-identified problem that was faced when trying to determine the unknown mul-
tivariate distribution from the partial information provided by the PoDs.
The intuition behind this optimization procedure can be understood by analyzing the cross-entropy

objective function defined in equation (15). This objective function is an extension of the pure-entropy
function presented in Section 2.2. The pure-entropy function described in equation (9) is a monotonic
transformation of the multiplicity factor shown in equation (8). The multiplicity factor indicates the
number of ways that a particular set of frequencies can be realized (i.e. this set of frequencies corresponds to
the frequencies of occurrence attached to specific values of a random variable, Shannon, 1948). Therefore,
when maximizing the entropy function subject to a set of constraints, we obtain the set of frequencies
(frequency distribution) that can be realized in the greatest number of ways and that is consistent with
the constraints (Jaynes, 1957). However, if an initial hypothesis of the process driving the behavior of the
stochastic variable can be expressed in the form of a prior distribution, now, in contrast to the maximum
entropy pure inverse problem, the problem can be reformulated to minimize the probabilistic divergence
between the posterior and the prior. Out of all the distributions of probabilities satisfying the constraints,
the solution is the posterior closest to the prior (Kullback, 1959). Although a prior distribution is based on
economic intuition and theoretical models, it is usually inconsistent with empirical observations.27 Thus,
using the cross-entropy solution, one solves this inconsistency, reconciling it in the best possible way by
recovering the distribution that is closest to the prior but consistent with empirical observations.
When we use CIMDO to solve for p(x, y), the problem is converted from one of deductive mathemat-

ics to one of inference involving an optimization procedure. This is because the cross-entropy approach
embedded in CIMDO reverses the process of modelling data information. Instead of assuming parametric
probabilities to characterize information contained in the data, this approach uses the data information
to infer values for the unknown probability density. The recovered probability values can be interpreted
as inverse probabilities. Using this procedure, we look to make the best possible predictions from the
scarce information that we have. This feature of the methodology not only makes implementation simple
and straightforward, it also seems to reduce model and parameter risks of the recovered distribution, as
indicated by the PIT criterion.28 This is because in order to recover the posterior density, only variables
that are directly observable for the type of loans that are the subject of our interest are needed. And
because, once the posterior density is recovered, there is no need to calibrate it, since, by construction, the
recovered posterior is consistent with the empirically observed probabilities of default. In this sense, the
proposed methodology represents a more flexible approach to modelling multivariate densities, making use
of the limited available information in a more efficient manner.

3 CIMDO: density evaluation criterion
The evaluation framework, used to assess whether CIMDO-recovered distributions provide improvements
over the most commonly assumed parametric distributions for the measurement of loan portfolio credit
risk is extremely important. In order to evaluate these densities, we follow the Probability Integral Trans-
formation (PIT) approach developed by Diebold et al (1999). In what follows in this section, we provide
detailed theoretical results supporting the chosen evaluation criterion.

The Probability Integral Transformation (PIT) Approach

Density evaluation is not a trivial problem, since there is no way to rank two incorrect density forecasts
such that all users will agree with the ranking. Ranking depends on the specific loss functions of the
users29 . However, Diebold et al (1998) assert that “if a forecast coincides with a random variable true
Data Generating Process (DGP), then it will be preferred by all forecast users, regardless of loss function”.
Thus this proposition implies that, regardless of the users’ loss function, the correct density is weakly

27Note that if the information included in the prior q is consistent with the data (moment-consistency constraints), then
p = q. This would be reflected in a multiplier with value equal to zero; i.e. the constraint is redundant and has no optimal
informational value.
28We present evidence of the improvements of the distribution recovered by CIMDO in Section 5.
29The result is analogous to Arrow’s celebrated impossibility theorem. The ranking effectively reflects a social welfare

function, which does not exist.
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superior to all forecasts. As a result, Diebold et al (1998) suggest evaluating forecasts by assessing whether
the forecast densities are correct, though the task of determining whether a forecast equals the true DGP
appears to be difficult because the true DGP is never observed. Moreover, the true density may exhibit
structural changes at every point in time. To overcome this difficulty, they developed a method based on
the Rosenblatt (1952) PIT approach.
Diebold et al (1998) prove that the Probability Integral Transformations of a series of density forecasts

are distributed iid U(0,1) if the density forecasts coincide with the true DGP. Thus, to assess whether a
series of density forecasts coincides with the corresponding series of true conditional densities, it is only
necessary to test whether the sequence of density forecast PITs are iid U(0,1).
Diebold et al (1999) extend their results to the Mth-multivariate case. Suppose there is a series of T,

Mth-multivariate density forecasts. They factorize each period’s t, joint forecast density into the product
of their conditionals:30

pt−1(l
1
t , .., l

M
t ) = pt−1(l

M
t |lM−1t , ..l1t ).. · pt−1(l2t |l1t ) · pt−1(l1t ). (23)

This procedure produces a set of (M − 1) conditionals and (1) marginal density. The PITs of the lm
random variable realizations under these M series will be iidU(0,1), individually and also when taken
as a whole, if the multivariate density forecasts are correct. The proof of this assertion in a time series
framework can be found in Diebold et al (1999). The results of the univariate can be extended in a time
series framework to show that there are M vectors (of dimension T ) of PIT’s that are iid U(0,1).
However, we need to develop a slightly different test. This is because CIMDO recovers densities with

information at each period of time t, in other words, it updates period by period. Thus, the density
evaluation needs to be done at specific periods of time t. Alternatively, rather than evaluating a time-series
as Diebold et al (1999) do, we evaluate cross-sectionally the multivariate distribution. As a result, we
need to prove that at each point in time t, the product of the conditionals and marginal PITs on which
a multivariate distribution can be decomposed is iid U(0,1). This proof is not explicitly presented in
Diebold et al (1999); therefore, we develop the proof for the bivariate case in what follows.
Recall that we focus on a portfolio containing loans of two different credit-risk-quality categories (rat-

ings), whose logarithmic returns are characterized by the random variables x and y, where x, y ∈ li s.t.
i = 1, ..,M.
The portfolio bivariate density can be decomposed into

p(x, y) = p(x) · p(y|x), (24)

p(x, y) = p(y) · p(x|y). (25)

We start by analyzing the first case presented in equation (24). Under the PIT, two new variables are
defined as

u = P (x)⇐⇒ x = P (−1)(u),

v = P (y|x)⇐⇒ y = P (−1)(v|x).

First we prove that u, v are distributed U(0,1), then we prove that they are independent.

Theorem 1 Probability Integral Transformation

Let x be a random vector with absolute continuous cdf F . Define a new random variable, the “Probability
Integral Transformation” (PIT) as

U = F (x). (26)

Then, U ∼ U(0,1) regardless of the original distribution F.31

30Note that the Mth multivariate density can be factorized into M ! ways at each period of time t.
31 In this case, U = F (x) is a generalization of u = P (x) and v = P (y/x).
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Proof. U ∼ U(0,1)
For u on [0, 1], we have:
P [U ≤ u] = P [F (x) ≤ u]

= P
£
F−1 [F (x)] ≤ F−1 (u)

¤
= P

£
x ≤ F−1 (u)

¤
= F

£
F−1 (u)

¤
= u ¥

For u < 0, P [U < u] = 0 and for u > 1, P [U > u] = 0 since the range of a cdf is [0, 1]. Thus

Proposition. u, v are independent.
Proof.
In order to prove the independence assumption, we know that the joint density c [u, v] is defined under

the distribution of transformations of random variables as (Cassella and Berger, 1990)

c [u, v] = p
h
P (−1)(u), P (−1)(v|x)

i
·
¯̄̄̄

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

¯̄̄̄
.

Since in this case

u = P (x)⇐⇒ x = P (−1)(u) =⇒ ∂x

∂u
= p

h
P (−1)(u)

i−1
,

v = P (y|x)⇐⇒ y = P (−1)(v|x) =⇒ ∂y

∂v
= p

h
P (−1)(v|x)|x

i−1
,

∂x

∂v
=

∂y

∂u
= 0,

we get

c [u, v] = p
h
P (−1)(u), P (−1)(v|x)

i
· 1

p [x] · p [y|x] ,

= p [x, y] · 1

p [x] · p [y|x] , (27)

= p(x) · p(y|x) · 1

p [x] · p [y|x] ,

= 1.

which proves that u, v are independent. ¥
In time series frameworks, empirical tests for iid U(0,1) are usually done in two stages. First inde-

pendence is tested and then, conditional on the series being independent, uniformity is tested. In our
particular case, independence is proved and therefore, it is not necessary to empirically test for it.
Finally, on the basis of these results, when we empirically compare different multivariate densities, we

are able to determine that the specification of a given multivariate density will be better than alternative
specifications, the closer the PITs of its marginals and conditionals are to iid U(0,1). Given the data
limitations, we expect the “true distribution” to be unattainable, i.e., none of the compared distributions
will be significantly close to U(0,1). Therefore, we focus on the relative improvements of the different
distribution specifications.

4 CIMDO: robustness
We considered it interesting to explore the robustness of the CIMDO-recovered distributions with respect
to two aspects.

1. Robustness with respect to changes (errors) in the optimal density, which represents the optimal
solution to the CIMDO optimization framework.
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2. Robustness with respect to perturbations in the assumed prior density.

In the interest of parsimony, we develop these proofs in a univariate setting, although all the results
presented for the univariate case are directly applicable for RM when M ≥ 2.
These results offer an interesting perspective to compare the CIMDO-recovered density to other opti-

mization frameworks.

4.1 Robustness w.r.t changes in the optimal solution

Because CIMDO is based on an optimization procedure, there is already an implicit robustness, i.e. sta-
bility, feature within the methodology. We formalize this concept mathematically by means of a Taylor
series expansion.

We start this analysis by recalling that given a prior q(x), and a posterior p(x) the objective function
can be defined by

C [p, q] =

Z
p(x) ln

∙
p(x)

q(x)

¸
dx. (28)

If, as is the case, there are additional restrictions on p(x) of the form

R [p] ≡
Z

f [p (x)] dx = ct, (29)

the problem we are solving is to minimize C [p, q] subject to R [p].
Using the Lagrange multiplier method we know that the problem is equivalent to finding suitable critical

points of
L [p, q] = C [p, q] + λR [p] . (30)

Substituting equation (28) and equation (29) into equation (30), we get

L [p, q] =

Z
{p(x) [ln p (x)− ln q (x)] + λR [p (x)]} dx. (31)

In order to analyze the Taylor series expansion, we compute the first variation of equation (31) for a fixed
q (x) . By the calculus of variations this is equal to

δL =
dL [p(x) + γ(x), q(x)]

d

¯̄
=0
= 0,

Therefore we get

δL =

Z ∙
γ(x)(ln

µ
p(x)

q(x)

¶
+ 1) + λδR(p(x))γ(x)

¸
dx (32)

= δC(p(x))γ(x) + λδR(p(x))γ(x).

Note that, for a fixed q(x), we write the Taylor series expansion as:

L(p+ ) = L(p) + δL(p) +O( 2). (33)

Substituting equation (30) for a fixed q(x) and equation (32) into equation (33) we get

L(p+ ) = C(p) + λR(p) + δC(p) + λδR(p) +O( 2). (34)

However, for a solution of the problem, i.e. a minimizer p∗ of L(p)

dL(p∗) = δC(p∗) + λδR(p∗) = 0.

As a result, changes (errors) in computing the minimum should affect computations up to second order;
i.e., O( 2).
Notice that this is not a particular characteristic of CIMDO but common to any other estimation

method based on optimization techniques, i.e. least squares.
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4.2 Robustness w.r.t. changes in the prior distribution

When CIMDO-recovered distribution variations are computed with respect to perturbations in the prior
density, we claim that CIMDO-recovered distributions are more robust. We define robustness in the
sense that CIMDO-recovered density variations to perturbations in the prior density are smaller than the
variations of other standard methods to perturbations in the prior density.
In order to formalize these ideas, recall that CIMDOs functional is expressed in equation (31) as

L [p, q] =

Z
{p(x) [ln p (x)− ln q (x)] + λR [p (x)]} dx.

In order to compute the variations of the CIMDO-recovered distribution with respect to perturbations
in the prior density, we compute the first variation of equation (31) with respect to q (x) for a fixed p (x).
By the calculus of variations this is equal to

δL [p, q]

δq
=

dL [p(x), q(x) + γ(x)]

d

¯̄
=0
= 0,

therefore, we get,32

δL [p, q]

δq
=

d

d

Z
−p(x) ln(q(x) + γ(x))dx (35)

=

Z
−
µ
p(x)

q(x)

¶
γ(x)dx.

In order to compare the previous result with other optimization frameworks, consider, instead of the
entropy formulation, the following measure of deviation from the prior distribution33

Er [p, q] =

Z
|p(x)− q(x)|r dx. (36)

Assuming that restrictions of the form expressed in equation (29) are imposed on this measure of deviation,
we get the functional

Lr(p, q) =

Z
[|p(x)− q(x)|r + λR(p(x))] dx. (37)

In order to compute the variations of the alternative optimization frameworks with respect to pertur-
bations in the prior density, we compute the first variation of equation (37) with respect to q (x) , for a
fixed p (x). By the calculus of variations, this is equal to

δLr [p, q]

δq
=

dLr [p(x), q(x) + γ(x)]

d

¯̄
=0
= 0,

therefore, we get

¯̄̄̄
δLr [p, q]

δq

¯̄̄̄
=

¯̄̄̄
dLr
d

[p(x), q(x) + γ(x)]
¯̄
=0

¯̄̄̄
(38)

≤
Z

γ
h
r |p(x)− q(x)|r−1

i
dx.

Note that in this formulation we are considering the absolute value since we are only interested in
comparing the magnitude of the deviations.
32Since the restriction does not depend on q, it plays no role when computing this variation using the Euler-Lagrange

equation, so in this case d
dq(x)

C(p(x), q(x)) = d
dq(x)

L(p(x), q(x)).
33 In this measure of deviation, we assume that r > 2 is a natural choice, that is consistent with common utility (loss)

functions. r < 1 would lead to unnatural situations. By unnatural we mean that r < 1 is not a well defined norm; e.g., the
triangle innequality is not valid anymore. However, for values 1 ≤ r < 2 a direct comparison is not possible and more detailed
analysis of the constants appearing in the estimates would be required. Therefore in the range 1 ≤ r < 2 the proof presented
is not conclusive.
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In order to demonstrate that CIMDO is more robust than alternative optimization frameworks with
respect to perturbations in the prior distribution, we prove that the result presented in equation (38) is
greater than or equal to the result presented in equation (35).

Proof. δLr[p,q]
δq ≥ δL[p,q]

δq .

Equation (35) can be expressed as

E =
δL [p, q]

δq
=

Z ¯̄̄̄µ
p(x)

q(x)

¶
γ(x)1/2

¯̄̄̄
γ(x)1/2dx. (39)

By Hölder’s inequality, we get,34

E 6
"Z

γ(x)
r−1
2

¯̄̄̄
p(x)

q(x)

¯̄̄̄r−1
dx

# 1
r−1 ∙Z

γ(x)
r−1
2r dx

¸ r
r−1

. (40)

Recall that it is assumed that is γ(x) is bounded and has compact support; therefore, all the integrals
are taken effectively on finite intervals and not in (−∞,∞). As a result, the second integration on the right
hand side of inequality (40) is 6 C0.

E 6 C0

"Z
γ(x)

r−1
2

¯̄̄̄
p(x)

q(x)

¯̄̄̄r−1
dx

# 1
r−1

.

Due to the fact that γ(x) is bounded and has compact support, we get for some constant eC, that
E 6 eC "Z ¯̄̄̄

p(x)

q(x)

¯̄̄̄r−1
dx

# 1
r−1

= eC "Z ¯̄̄̄
p(x)

q(x)
− 1 + 1

¯̄̄̄r−1
dx

# 1
r−1

.

By the triangle inequity, we get,35

E 6 eC "Z ∙¯̄̄̄
p(x)

q(x)
− 1
¯̄̄̄
+ 1

¸r−1
dx

# 1
r−1

.

Finally, by Minkowsky’s inequality, we get,36

E 6 eC "Z ∙¯̄̄̄
p(x)

q(x)
− 1
¯̄̄̄¸r−1

dx

# 1
r−1

+

Z £
1r−1

¤
dx

1
r−1 ,

Recall that all the integrals are effectively performed in a compact set. Therefore the second integral
on the right hand side is equal to Č, thus we get,

= eC "Z ∙¯̄̄̄
p(x)

q(x)
− 1
¯̄̄̄¸r−1

dx

# 1
r−1

+ Č. (41)

Equivalently, equation (38) can be expressed as

34Hölder’s inequality establishes that ab 6 am
1/m

bn
1/n where 1

m
+ 1

n
= 1. If we set m = r − 1, then 1

m
= 1

r−1

and 1
n

= 1− 1
r−1

=⇒ n = r−1
r

35The triangle inequality establishes |a + b| 6 |a|+ |b| and |a− b| > |a|− |b| .
36Minkowsky’s inequality establishes that (a+ b)n

1/n ≤ an
1/n

+ bn
1/n

.
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δLr [p, q]

δq
=

Z "
r |q(x)|r−1

¯̄̄̄
p(x)

q(x)
− 1
¯̄̄̄r−1

γ(x)

#
dx. (42)

By the triangle inequality, we get,

>
Z

r |q(x)|r−1
∙¯̄̄̄
p(x)

q(x)

¯̄̄̄
− 1
¸r−1

γ(x)dx,

Since |q(x̄)|r−1 γ(x̄) is a positive value, by the mean value theorem for integrals, where x̄ is the value
guaranteed by this theorem, see Courant and John (1965), we get,

= |q(x̄)|r−1 γ(x̄)
Z

r

∙¯̄̄̄
p(x)

q(x)

¯̄̄̄
− 1
¸r−1

dx.

> C

Z
r

∙¯̄̄̄
p(x)

q(x)

¯̄̄̄
− 1
¸r−1

dx, (43)

where 0 < C ≤ |q(x̄)|r−1 γ(x̄).
From these results, we can see that the expression in equation (42) is greater than or equal to the

expression in equation (43). We can also see that the expression in equation (43) is greater than the
expression in equation (41) and that the expression in equation (41) is greater than the expression in
equation (39). Therefore we get

δLr [p, q]

δq
> C

Z
r

∙¯̄̄̄
p(x)

q(x)

¯̄̄̄
− 1
¸r−1

dx

> eC "Z ∙¯̄̄̄
p(x)

q(x)
− 1
¯̄̄̄¸r−1

dx

# 1
r−1

+ Č

> δL [p, q]

δq
¥

Recall that this proof is valid when r > 2. Note that this difference becomes larger with r. 37

5 CIMDO: empirical application
In this section, we present an empirical exercise that shows how the CIMDO methodology is implemented
in order to recover a portfolio distribution containing two types of loans held by unlisted firms with different
ratings.
Using the same information set, we calibrate the multivariate normal distribution, multivariate t-

distribution and a mixture of normals, which are the most common parametric distributions assumed
under the structural approach to model loans credit risk.
Although the calibration procedures that we apply in this section are in line with common practice by

risk modelers, we would like to emphasize that we believe that such procedures are not adequate. This is
because we consider that the parametric distributions used under the structural approach cannot possibly
be calibrated correctly under the data limitations binding the portfolio credit risk modelling of SMEs and
unlisted firms.
This claim is proved at the end of this section when under the PIT criterion the CIMDO-recovered

density outperforms the competing parametric distributions.

37Note that the term 1
r−1

is by definition < 1 and that the constant Č does not depend on r.
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5.1 Information set

In our dataset, loans given to SMEs and unlisted firms are classified and aggregated according to their
credit-risk rating. For a given risk-rating, the empirical probabilities of default are recorded at each period
of time. Thus, the probabilities of default reflect the percentage of borrowers, classified under a given
risk-rating, that defaulted at a given point in time.
This database was provided by the Comision Nacional Bancaria y de Valores (CNBV), the Mexican

Financial Regulatory Agency. Banks operating in Mexico, on the basis of a rating system set out by the
regulatory authority, determine ratings internally and then report them to the CNBV.38

In order to infer the CIMDO-recovered distribution, we use the annual probabilities of default of two
types of Mexican unlisted firms, classified with different credit-risk ratings. These ratings belong to two
different “below-investment grade” classes, according to the rating system defined by the CNBV. Our
dataset covers the period 1993-2000, and we use the PoDs corresponding to 1996, the peak of the Mexican
financial crisis.
Note that, since classification and aggregation of loans can be carried out according to other loan

characteristics, such as sectoral activity of borrowers, geographical location of borrowers, type of collateral
backing up the loan etc., the proposed procedure can easily be implemented using the PoDs of loans
aggregated under any of these classification schemes.
With this database, it was possible to compute the through-time-average probability of default and,

as a result, the through-time-average default-threshold as indicated in equation (16) for each type of loan.
The probabilities of default and the default-thresholds that were used are presented in Table 1.

Table 1: Information set

Variable\Asset Type Loan x Loan y
Through-time-average probability of default (PoDm) .15 .19

Default-threshold (Xm
d ) 1.0364 .8779

Annual Probability of Default 1996 (PoDm
96) .22 .29

Note that this is the information set that is usually available for modelling loan portfolio multivariate
distributions for bank regulators and other modelers working for institutions with arm-length relationships
with firms.

5.2 CIMDO: density recovery

In order to obtain the values of the Lagrange multipliers that define the CIMDO-recovered multivari-
ate density, we solve the system of equations composed by the restrictions imposed on the constrained
optimization problem presented in equation (20). This system of equations was set as followsZ ∞

−∞

Z ∞
1.0364

\p(x, y)dxdy = .22, (44)Z ∞
−∞

Z ∞
.8779

\p(x, y)dydx = .29,Z ∞
−∞

Z ∞
−∞

\p(x, y)dxdy = 1,

where we make use of the default thresholds Xx
d , X

y
d and the empirical probabilities of default PoD

x
96,

PoDy
96 for each type of borrower, and where \p(x, y) is defined as in equation (22).
Solving numerically for the Lagrange multipliers bµ, bλ1, bλ2, we recover CIMDOs distribution. The

solution to the Lagrange multipliers is presented in Table 2.

38The Mexican rating methodology is described in: http://www.cnbv.gob.mx
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Table 2: Lagrange multipliers

Lagrange multipliers Valuebµ -.4765bλ1 -.5627bλ2 -.7783

5.3 Common parametric distributions used in the structural approach

As already explained in Section 2.1, in its most basic version, the structural approach assumes that the firms’
logarithmic asset values are normally distributed (Merton,1974). However, the multivariate t-distribution
and mixture models have also been widely used.
The t-distribution has been justified by the fact that financial assets’ returns exhibit heavier tails than

would be predicted by the normal distribution. It is common to observe large events, e.g. extreme asset
price movements, more frequently than the normal distribution predicts. Empirical support for modelling
univariate returns with t-distributions can be found in Danielsson and de Vries (1997) and Hoskin, Bonti and
Siegel (2000), while Glasserman, Heidelberger and Shahabuddin (2000) present the multivariate modelling
framework. When it is assumed that the logarithmic asset values of the assets making up a portfolio follow
marginal t-distributions with the same degrees of freedom, the modelling of dependence and portfolio
credit risk is very similar to the basic version of the structural approach (which assumes a multivariate
normal distribution). Still, the modelling of multivariate t-distributions with marginals containing the
same degrees of freedom has proved to be too inflexible. Extensions of multivariate t-distributions that
allow for different degrees of freedom in their marginals are possible; but, under these assumptions, the
multivariate t-distributions are no longer from the elliptical family of distributions.39 When multivariate
distributions abandon the elliptical family of distributions, variance-covariance matrices are no longer
sufficient to describe them. In these cases, different paths have been proposed.
One possible path to follow is to infer the dependence structure from historical data; yet, in practice,

this is a difficult task, because historical simulation only incorporates information about extreme returns
as long as they are included in the sample period. This fact represents a drawback for the use of this
methodology, since sufficiently long time horizons of data are necessary to include different stages of the
economic cycles (Mina and Xiao, 2001 and Butler and Schachter, 1998).
Mixture models provide an alternative option that has been used for the modelling of loan credit risk.

These models assume that a firm’s logarithmic asset values are generated from a mixture of two different
normal distributions: the distribution of the quiet state and the distribution of the volatile state. Under
the first, logarithmic asset values are assumed to follow a normal distribution with mean µ1 and variance
σ1, x ∼ N1(µ1, σ1) with probability pro1. Under the latter, logarithmic asset values are assumed to follow
a normal distribution with mean µ2 and variance σ2, x ∼ N2(µ2, σ2) with probability pro2. Therefore, the
probability density function (pdf ) of the firm’s logarithmic asset values is generated as follows:

PDFMixture = pro1 [N1(µ1, σ1)] + pro2 [N2(µ2, σ2)] . (45)

The resulting distributions under these models exhibit heavy tails due to the random nature of the
volatility.40 The calibration of this model is difficult. Note that, in the univariate case, it is necessary
to estimate five parameters, two variances, two means and the probability of being in a volatile state.
Moreover, the calibration in the multivariate case becomes more difficult, as it is necessary to calibrate
two covariance matrices corresponding to the quiet and volatile states for the multivariate distributions.
(McLachlan and Basford, 1987 and Zangari, 1996).

39A multivariate distribution belongs to the elliptical family of distributions, if its marginal distributions are assumed to
be Normal or t distributions with the same degrees of freedom. Elliptical distributions are distributions whose density is
constant on ellipsoids. In two dimensions the contour lines of the density surface are ellipses. Therefore, their variance-
covariance matrices describe their dependence structure. See Embrechs, McNeil and Straumann (1999).
40These distributions decay at a lower speed than the normal distribution, although they are still exponential.
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5.4 Empirical calibration of parametric distributions

Using empirical frequencies of default, we proceed to calibrate the parametric distributions described above.
As argued throughout the document, empirical frequencies of default represent only partial information
on the marginal distributions of portfolio multivariate distributions, so they do not represent an adequate
dataset for proper calibration of multivariate parametric distributions. However, given that PoDs are the
only statistic available for SMEs and unlisted companies, risk modelers usually have no other choice than
to calibrate parametric distributions in a way that ensures that empirical probabilities of default “fit” into
the default region of the marginal distributions of the chosen multivariate distribution.
The most common assumption is that firms’ logarithmic asset values conditioned on the period’s level

of volatility are independent across time and follow a normal distribution or a t-distribution (Mina and
Xiao, 2001). Modelers in the industry usually calibrated these distributions by adjusting the volatility
parameter in order to ensure that the region of default of the assumed parametric distributions equals the
empirically observed probabilities of default.41 Following this procedure, we found the volatility values by
fitting the following equations for each type of loan.

Z
f(x|σt)χ[Xx

d
,∞)

dx = PoDx
96, (46)Z

f(y|σt)χ
[X
y
d
,∞)

dy = PoDy
96,

where f(x|σt) represents the conditional normal or the non-standard t-distribution, calibrated with
their respective volatility (standard deviation) parameters σt.We assumed a t-distribution with degrees of
freedom v=6. Empirical evidence presented in Hansen (1994) indicates that this is a reasonable assumption.
Volatility values are presented in Table 3.

Table 3: Volatility values

Distribution\Asset Type Asset x Asset y
Normal Distribution σt 1.3422 1.5864
tv=6 -distribution σt 1.5353 1.8386

The univariate restrictions, defined in equation (46), can be expressed as restrictions imposed on the
multivariate densities’ marginals. Mathematically, we formalize this as

Z Z
f(x, y|σt)χ[Xx

d
,∞)

dxdy = PoDx
96, (47)Z Z

f(x, y|σt)χ
[X
y
d
,∞)

dydx = PoDy
96,

where f(x, y|σt) represents the bivariate conditional normal distribution or the bivariate non-standard t-
distribution. Covariances are set equal to zero because in the case of SMEs and non-listed firms, information
constraints usually prevent modelers from defining a dependence structure.
In the case of the mixture model, the assumed probability density function is defined in equation (45).

In order to calibrate this distribution in the bivariate case, we fitted the following equation

PdfMixture =

Z ∞
Xy
d

Z ∞
Xx
d

{pro1 [N1(µ1,Σ1)] + pro2 [N2(µ2,Σ2)]} dxdy = PoD96.

Where PoDM
96 is a vector containing the frequency of default for the borrowers in the portfolio, pro1,

pro2 are the values indicating the probabilities of the quiet and volatile states, N1, N2 are bivariate normal
41Due to the lack of data to compute dependence structures for SME’s and non-quoted firms, most of the times, it is

assumed that the random variables in the calibrated multivariate distributions are independent. This has been observed in
my experience as a banking regulator and a modeller in the private sector.
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distributions under the quiet and volatile states, µ1, µ2 are the mean borrowers’ asset values under the
quiet and volatile states and Σ1, Σ2 are variance covariance matrices for the bivariate distribution under
the quiet and volatile states. The values of these parameters are presented in Table 4.

Table 4: Mixture model parameters

Parameter\State Quiet Volatile
Probability pro1= .7817 pro2= .2183

µ1
µ2

∙
0
0

¸ ∙
.3000
.3000

¸
Σ

∙
1.0000 0
0 1.5104

¸ ∙
100.0000 0

0 109.1398

¸

When fitting the parameters of this equation we tried to get values as close as possible to the assump-
tions that are usually made for the specification of this type of model (McLachlan and Basford, 1987).
Furthermore, when calibrating these parameters, we remain consistent with the fact that asset y is riskier
than asset x under both the quiet and volatile states.

5.5 Density evaluation under the PIT

As we discussed above, for measurement of loan credit risk, common practice involves the calibration of
parametric distributions in a way that ensures that empirical probabilities of default “fit” into the default
region of the distribution in use. We show that, under the PIT criterion, the CIMDO-recovered distributions
improve over these parametric distributions. We claim that this fact provides evidence to assert that
CIMDO reduces the distribution’s specification risks, when data limitations binding the portfolio credit
risk measurement of loans granted to SMEs and unlisted firms do not allow for a proper calibration of the
parametric distributions that are usually assumed in portfolio credit risk.
As we proved in Section 3, the series of Probability Integral Transformations of a series of density

forecasts are distributed iid U(0,1) if the density forecast coincides with the true DGP. Thus, to assess
whether a series of density forecasts coincides with the corresponding series of true conditional densities,
it is only necessary to test whether the sequence of density forecast PITs are iid U(0,1).
However, given the highly restrictive data sets for SMEs and unlisted firms, one would not expect to

obtain a series of PITs that are iid U(0,1). We therefore focused on the relative improvements of one
specification versus another by analyzing how close their series of probability integral transformations are
to iid U(0,1). We followed this procedure to compare CIMDO-recovered densities versus the competing
parametric densities that were calibrated in the previous section, i.e. the conditional normal distribution,
the conditional t-distribution and the mixture model.
We also compared CIMDO with the standard normal distribution. This comparison was carried out in

order to envisage the degree of misspecification that could be reached when the probability of default under
the prior is completely inconsistent with empirical probabilities of default at each period of time. This
could be the case if information restrictions completely preclude any form of calibration, even the imperfect
calibration procedures that are undertaken currently. Interestingly, the same type of misspecification could
be reached if it is assumed that through-time probabilities of default are the statistics that should be used
for the computation of portfolio multivariate densities that are used to calculate the PLD distribution of
a loan portfolio.
To perform the density evaluation, under the PIT criterion, we proceeded as follows.

1. Simulation of data generating process (DGP)

Given that for SMEs and unlisted firms we just have information on the probabilities of default and not
on the actual realizations of their underlying asset values, it was necessary to assume the data generating
that was driving the firms’ asset prices. There is an infinite number of specifications that could have been
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chosen;42 nonetheless, we chose a data generating process that was consistent with the empirically observed
probabilities of default but also which mimic, in the best possible way, the behavior of asset returns in
emerging markets in periods of economic distress (recall that we are using information related to 1996,
which was a time of financial distress in Mexico). The specification that we chose was

f(x,y) ∼ tv=6

½∙
.3613
.4004

¸
,

∙
1 0
0 1

¸¾
, (48)

where f(x,y) is the bivariate t-distribution with υ = 6 and non-central parameter ωx = .3613 and
ωy = .4004.43

The justification of the appropriateness of this distributional assumption for financial data is presented
in Hansen (1994). Of course, for the specific case of SMEs and unlisted firms in reality we have no
information which would enable us even to attempt to mimic in an adequate manner the behavior of the
asset returns of these types of firms. Nonetheless, this specification seems reasonable,44 and is consistent
with empirical evidence provided by Bekaert et al (2002), who analyze the empirical behavior of the prices
of different types of financial assets in periods of financial distress in emerging markets.45

Under this specification, we simulated a bivariate series of 10,000 observations.

2. Decomposition of multivariate distribution

Once the DGP was simulated, we proceeded to decompose the bivariate distribution in two different
ways, as we stated in equations (24) and (25). Note that each case can be factorized into the product of
its conditional and marginal distributions, therefore we end up with 1 series of conditional and 1 series of
marginal distributions (2 series) for each case.

3. Computation of probability integral transformations (PITs)

We then computed the probability integral transformation (PIT’s) of the random variable realizations
under the following conditional and marginal distributions,

zx|y = P (x|y), zy = P (y), zy|x = P (y|x), zx = P (x).

where P represents the cdf of each of the evaluated distributions.
We henceforth refer to the PITs of the random variable realizations under the conditional/marginal

densities as: z-variables.
We obtained the z-variables for each of the distributional specifications that we evaluated and compared;

these being the standard normal, the conditional normal, the conditional t-distribution, the mixture model
and CIMDO. We henceforth refer to the PITs obtained under each of these parametric distributions as:
NStd, NCon, TCon, NMix and CIMDO respectively.

4. Testing for iid U(0,1)

Following Diebold et al (1999), our aim is to assess whether a bivariate density specification is correct
by testing whether the series zx/y, zy, zy/x, zx is iid U(0,1) individually and also when taken as a whole.
Testing for iid U(0,1) is usually done in two stages. First the iid assumption is tested and then, conditional
on the series being iid, the uniform distribution is tested.
42Recall that in contrast to the simulation excercise presented in Segoviano 2005a, where our interest focused on testing the

entropy-derived density under alternative assumptions of the data generating processes driving the firms’ asset values, in this
chapter, our interest focused on comparing the entropy-derived density with the distributions that are most commonly used
for portfolio credit risk modelling. Thus, in order to make the excercise manageable, we fixed the data generating process
that was assumed to drive the firms’ asset values. We tried to choose the assumption that seemed the most appropriate.
43The univariate t-distribution is defined as t(υ) = z√

x/υ
where z is a N (0, 1) variable and x is a χ2 (υ) independent of z.

If the mean of the normal distribution is not 0, then the ratio has the noncentral t-distribution with non-central parameter
ω. The most general representation of the noncentral t-distribution is quite complicated. Johnson and Kotz (1970) give a
formula for this distribution.
44Because, as previously noted, the t-distribution is justified due to the fact that it has been observed that the distributions

of financial assets’ prices show heavier tails than would be predicted by the normal distribution.
45 In additional Monte Carlo experiments that we performed, the t-distribution with ν = 6 represented the “toughest

assumption” to be outperformed by the CIMDO-recovered distributions. This was an additional reason why we were interested
in performing density evaluation under this assumption.
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Test for the iid assumption

As we proved in Section (3), the PITs of the marginal and conditional densities in which a multivariate
distribution can be decomposed, i.e. the series zx/y, zy, zy/x, zx, are independent at a given period of time;
therefore, there is no need to test for independence.46

Test for the uniform distribution assumption

Conditional on the series being independent, we proceeded to test for the uniform distribution assump-
tion.
Note that if F (z) ∼ U(0,1) and z ∈ [0, 1], then F (z) = z for z ∈ [0, 1] . Thus the cdf of z is a 45◦ degree

line. Equivalently, the cdf of the PITs of the random variable realizations under the true DGP will be a
45◦ degree line if they are uniformly distributed. Thus, in order to assess the correctness of a given density
specification, we plotted the empirical cdf’s of their z-variables and checked how closely these were to the
45◦ degree line. Then we proceeded to compute Kolmogorov-Smirnov (K-S) tests with H0: F = U(0,1) ,
Ha: F 6= U(0,1) at the 5% significance level. K-S tests results are presented in Appendix 4.

5. Results:

Results showing the empirical cdf ’s of the z-variables are presented in Figures 3 to 14.

46 In time series frameworks, auto-correlation coefficients (ACFs) and Ljung-Box-Q-statistics of the z-variables are used to
test for independence. At a given period of time, the z-variables are independent, as was proved in Section (3). Therefore, it
is not necessary to test for independence.
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Figure 3: Empirical CDF Zx|y: CIMDO, NStd, NCon

In this figure, we compare the empirical cdf’s of the zx|y variables corresponding to CIMDO, NStd, NCon
and the true-DGP (45◦ degree line). It is clear that CIMDOs distribution outperforms NStd and NCon along
the whole integration domain of the distribution. However, it is in the region of default (upper right corner)
where improvements are the best.
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Figure 4: Empirical CDF Zy: CIMDO, NStd, NCon

In this figure, we compare the empirical cdf’s of the zy variables corresponding to CIMDO, NStd, NCon
and the true-DGP (45◦ degree line). It is clear that CIMDOs distribution outperforms NStd and NCon
along the whole integration domain of the distribution. However, it is in the region of default (upper right
corner) where improvements are the best.
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Figure 5: Empirical CDF Zx|y: CIMDO, NStd, TCon

In this figure, we compare the empirical cdf’s of the zx|y variables corresponding to CIMDO, NStd, TCon
and the true-DGP (45◦ degree line). It is clear that CIMDOs distribution outperforms NStd and TCon along
the whole integration domain of the distribution. However, it is in the region of default (upper right corner)
where improvements are the best.
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Figure 6: Empirical CDF Zy: CIMDO, NStd, TCon

In this figure, we compare the empirical cdf’s of the zy variables corresponding to CIMDO, NStd, TCon
and the true-DGP (45◦ degree line). It is clear that CIMDOs distribution outperforms NStd and TCon
along the whole integration domain of the distribution. However, it is in the region of default (upper right
corner) where improvements are the best.
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Figure 7: Empirical CDF Zx|y: CIMDO, NStd, NMix

In this figure, we compare the empirical cdf’s of the zx|y variables corresponding to CIMDO, NStd, NMix
and the true-DGP (45◦ degree line). It is clear that CIMDOs distribution outperforms NStd and NMix along
the whole integration domain of the distribution. However, it is in the region of default (upper right corner)
where improvements are the best.
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Figure 8: Empirical CDF Zy: CIMDO, NStd, NMix

In this figure, we compare the empirical cdf’s of the zy variables corresponding to CIMDO, NStd, NMix
and the true-DGP (45◦ degree line). It is clear that CIMDOs distribution outperforms NStd and NMix
along the whole integration domain of the distribution. However, it is in the region of default (upper right
corner) where improvements are the best.
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Figure 9: Empirical CDF Zy|x: CIMDO, NStd, NCon

In this figure, we compare the empirical cdf’s of the zy|x variables corresponding to CIMDO, NStd, NCon
and the true-DGP (45◦ degree line). It is clear that CIMDOs distribution outperforms NStd and NCon along
the whole domain of the distribution. However, it is in the region of default (upper right corner) that the
improvements are the best.
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Figure 10: Empirical CDF Zx: CIMDO, NStd, NCon

In this figure, we compare the empirical cdf’s of the zx variables corresponding to CIMDO, NStd, NCon
and the true-DGP (45◦ degree line). It is clear that CIMDOs distribution outperforms NStd and NCon
along the whole domain of the distribution. However, it is in the region of default (upper right corner) that
the improvements are the best.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Zy/x

F
(Z

y/
x)

Empirical CDF Zy/x

TCon
CIMDO
NStd
True DGP

Figure 11: Empirical CDF Zy|x: CIMDO, NStd, TCon

In this figure, we compare the empirical cdf’s of the zy|x variables corresponding to CIMDO, NStd, TCon
and the true-DGP (45◦ degree line). It is clear that CIMDOs distribution outperforms NStd and TCon along
the whole integration domain of the distribution. However, it is in the region of default (upper right corner)
that the improvements are the best.
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Figure 12: Empirical CDF Zx: CIMDO, NStd, TCon

In this figure, we compare the empirical cdf’s of the zx variables corresponding to CIMDO, NStd, TCon
and the true-DGP (45◦ degree line). It is clear that CIMDOs distribution outperforms NStd and TCon
along the whole integration domain of the distribution. However, it is in the region of default (upper right
corner) that the improvements are the best.
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Figure 13: Empirical CDF Zy|x: CIMDO, NStd, NMix

In this figure, we compare the empirical cdf’s of the zy|x variables corresponding to CIMDO, NStd, NMix
and the true-DGP (45◦ degree line). It is clear that CIMDOs distribution outperforms NStd and NMix along
the whole integration domain of the distribution. However, it is in the region of default (upper right corner)
that the improvements are the best.
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Figure 14: Empirical CDF Zx: CIMDO, NStd, NMix

In this figure, we compare the empirical cdf’s of the zx variables corresponding to CIMDO, NStd, NMix
and the true-DGP (45◦ degree line). It is clear that CIMDOs distribution outperforms NStd and NMix
along the whole integration domain of the distribution. However, it is in the region of default (upper right
corner) that the improvements are the best.



6 CIMDO: density evaluation results under the PIT criterion
We present the empirical cdf’s of the z-variables corresponding to CIMDO, NStd, NCon, TCon and NMix
in Figures 3 to 14. From these figures, we can observe the following:

1. As we proved in Section 3, the cdf’s of the PITs of the random variable realizations under the correct
specification should always be represented by a 45◦ degree line, irrespective of knowing the true-
DGP or not. Thus, the cdf’s of the PITs of the random variables realizations, x and y under the
specification that was assumed to represent the true-DGP, and that is indicated in equation (48), is
a 45◦ degree line. This confirms that the realizations of the random variables x and y came from the
assumed true-DGP.

Therefore, the 45◦ degree line can be taken as a benchmark to rank how good a particular distributional
specification is, the closer to the 45◦ degree line, the better the specification.

2. In Figures 3 to 14, it is clear that the CIMDO-recovered distribution outperforms the standard normal
distribution under the PIT criterion. This is obviously not surprising, since the assumption that the
multivariate distribution followed by the assets in a portfolio is the standard normal might appear
to be naive and not consistent with the empirical facts. However, we make this comparison in order
to get an idea of the degree of misspecification that could be reached when probabilities of default
under the prior are completely inconsistent with the empirical probabilities of default.

3. When comparing the CIMDO-recovered distribution with the conditional normal distribution, the
conditional t-distribution and the mixture model distribution, the CIMDO-derived distribution out-
performs all of the competing distributions, including the mixture model which produces distributions
that decay at a lower speed than the normal distribution (although it is still exponential). See that the
improvement of the CIMDO-recovered distribution is evident along the whole domain of integration
of the distribution.

4. Note though, that it is in the region of default of the CIMDO-derived distribution (upper right corner)
that the improvement is best. This result is consistent with the fact that the information embedded in
the CIMDO-derived density, via the moment-consistency constraints, relates to the region of default.

5. Above, we claimed that the specification of the CIMDO-derived density is closer to the correct specifi-
cation than the specifications of the competing distributions along the whole domain of integration of
the distribution, but especially in the region of default (upper right corner). However, when looking
at the empirical cdf’s of the z-variables it is apparent that outside the region of default, even the
CIMDO-derived density is far from the 45◦ degree line. These discrepancies cause the Null hypothesis
taken in the K-S test, H0: F = U(0,1), to be rejected for all the distribution specifications. This
is not surprising because the K-S test considers the whole domain of integration of the distributions
that are evaluated. Note, however, that our objective is to rank the relative correctness of their
specifications. Given the data limitations at hand, we did not expect that either the distribution
recovered by CIMDO, or the other distributions would be U(0,1). Equivalently, the true distribution
is unattainable given the information restrictions, therefore we focus on the relative improvements of
the CIMDO-recovered distribution over the competing distributions.

6. Finally, notice that achievement of better accuracy in the upper right corner of the empirical cdf is
important. This is because this is the range of the distribution’s domain that has greatest relevance
when computing the PLD of a portfolio of loans, since it represents, for each of the assets making up
the portfolio, the probability of going into default.

Data limitations frequently represent a challenge for the proper calibration of the parametric distri-
butions that are usually employed for the modelling of the portfolio credit risk of SMEs and unlisted
firms. In the most extreme cases, information restrictions do not allow any form of calibration. How-
ever, as we have already discussed, most of the time, although imperfectly, some sort of calibration
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is performed. The use of the empirically observed probabilities of default to “fit” parametric distri-
butions is common practice47. The evaluation exercise presented in this chapter, although far from
being exhaustive, provides preliminary evidence that CIMDO-derived densities outperform the con-
ditional normal distribution, the conditional t-distribution and the mixture model distribution under
the probability integral transformation criterion, when data restrictions do not allow their correct
calibration. Nonetheless, studies using a more comprehensive number of assumed data generating
processes driving the firms’ underlying asset values and comparisons with a wider range of distribu-
tions are needed before one can make definite conclusions about the performance of CIMDO-derived
densities.

7 Conclusions
Outstanding loans to non-publicly traded companies represent an important percentage of commercial
banks’ assets in developed and developing economies. However, the accurate modelling of the credit
risk of the portfolios of these loans or loans given to arm’s-length firms has been a major problem for
financial institutions and regulators, due to the limited data available for their modelling. Current credit
risk measurement methodologies incorporate convenient parametric assumptions in order to represent the
unavailable information. But data restrictions may not allow for the proper calibration of the adopted
assumptions and, as a result, significant uncertainty with respect to the correct distributional specifications
may be introduced. Improvements in the methodologies used to measure the credit risk of portfolios of
such assets can have important implications for banks’ risk management and systems’ financial stability.
CIMDO allows the recovery of multivariate distributions from the incomplete set of information available

for the modelling of the credit risk of portfolios of loans granted to SMEs, unlisted and arm’s-length firms;
e.g., the frequencies of default of the marginal distributions of the loans making up the portfolio. This
is possible without explicitly including information about the dependence structure between the assets
comprising the portfolio. However, if such dependence structure information is available, it can be easily
incorporated into the modelling framework. This is an important feature of the proposed methodology
that makes its empirical implementation feasible and straightforward, because for portfolios of non-traded
assets or arm’s-length firms, dependence structure information is usually not accessible.
CIMDO is based on the cross-entropy formalism, which through an optimization framework, recov-

ers distributions that are consistent with empirical observations, formulated as moment-consistency con-
straints. The entropy formalism seeks to make the “best” predictions possible from the information that
is available and provides a basis for transforming the latter into a distribution of probabilities describing
our state of knowledge.
Although far from being exhaustive, the exercise presented in Section 5.5 shows that CIMDO-recovered

densities outperform the most commonly used parametric distributions for portfolio credit risk modelling
of SMEs and unlisted firms, under the PIT criterion, when data restrictions do not allow their correct
calibration.
The impact of economic shocks that affect the frequencies of default (which are used for the recovery

of CIMDO-distributions) is embedded in CIMDO-inferred densities. As a result, the impact of economic
shocks is passed onto the dependence structure embedded in such distributions. Therefore, CIMDO offers
the possibility of improving the modelling of dependence through time; e.g. as business cycle conditions
change. The CIMDO-copula modelling is not further developed in this paper; it is a line of research that
constitutes a major project in itself, and one that we will be presenting in the near future.

47The use of proxy variables of listed or publicly-rated companies with similar credit risk classifications is some times
practiced. However, using listed-firms’ information as a proxy for non-listed firms is compeltely incorrect. Among theoretical
considerations regarding continuous trading assumptions, different liquidity premiums apply to these markets. (Jarrow and
Turnbull, 2000 and Longstaff et al, 2003).
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Appendix

A.1. The entropy function

Using the entropy concept developed in the XIXth century by Boltzman and continued lately by Maxwell,
Gibbs, Bernoulli, Laplace, Shannon (1948) developed the “entropy of the distribution of probabilities” to
measure the uncertainty of a collection of events.
In developing this approach, Shannon (1948) supposed that an experiment with N trials (repetitions)

was carried out. This experiment had K possible outcomes (states). He assumed that N1,N2, ....., NK

represented the number of times that each outcome occurs in the experiment of lengthN , where
P

Nk = N ,
Nk > 0, and k = 1, 2, ....,K.
In this setting there are N trials and each trial has K possible outcomes; therefore, there are KN

conceivable outcomes in the sequence of N trials. Of these, a particular set of frequencies

pk =
Nk

N
or Nk = Npk for k = 1, 2, ...,K,

can be realized in a given number of ways as measured by the multiplicity factor (possible permutations).
Thus, the number of ways that a particular set of Nk is realized, can be represented by the multinomial
coefficient

W =
N !

Np1!Np2!....Npk!
=

N !Q
kNk!

,

or its monotonic function

lnW = lnN !−
KX
k=1

lnNk! (A.1.1)

Stirling’s approximation lnx! ≈ x lnx− x as 0 < x→∞ is used to approximate each component on the
right hand side of (A.1.1). Then, for large N , we have

lnW ≈ N lnN −N −
KX
k=1

lnNk lnNk +
KX
k=1

Nk

since
PK

k=1Nk = N, we get

lnW ≈ N lnN −
KX
k=1

Nk lnNk. (A.1.2)

The ratio Nk

N represents the frequency of the occurrence of the possible K outcomes in a sequence of length
N and Nk

N → pk as N →∞. Consequently (A.1.2) yields,

lnW ≈ N lnN −
KX
k=1

Npk ln (Npk)

= N lnN −
KX
k=1

Nk lnN −N
KX
k=1

pk ln pk

= −N
KX
k=1

pk ln pk.

Finally,

N−1lnW ≈ −
KX
k=1

pk ln pk

H(p) = −
KX
k=1

pk ln pk
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Which is the Shannon entropy measure, where pk ln pk = 0 for pk = 0.

A.2. The prior distribution

In this paper, the posterior p and prior q distributions, to which we refer to in the Minimum Cross
Entropy Distribution MXED, are different from the Bayesian context. This is because the posterior p
in the MXED is obtained via an optimization rule. However, we use this terminology because it is the
standard terminology in the entropy literature. This might be the case because although not the same,
there is a close connection between the two efficient information processing rules.
As noted by Lee and Judge (1996), in Bayes’ rule, given initial information I, there are two inputs

and two outputs. The two inputs are π (θ|I), the prior density for the parameter θ, and the data density
f (y|θ, I). The two outputs are the post data posterior density g (θ|y, I) and h (y|I) the marginal density
for y. In terms of these pieces, Bayes’ rule to transform prior and sample information into posterior
information is:

g (θ/y, I) =
π (θ|I) f (y|θ, I)

h (y|I) . (A.2.1)

Contrasting (A.2.1) and (14), we note in (14) that dp(x) corresponds to the posterior g (θ|y, I), that q(x)
corresponds to the prior π (θ|I), that the factor exp

∙
TP
t=1

bλtft(x)¸ corresponds to the data density f (y|θ, I)
and the numerator of equation (14) corresponds to the marginal density h (y|I), that serves to convert the
relative probabilities into absolute ones.

A.3. Definitions

Definition A.3.1: Quasi-inverse of a distribution function

Given a non-decreasing function G: R→ R. The generalized inverse of G is defined by:

G←(y) = inf {x ∈ R : G (x) ≥ y} . (A.3.1)

Where the convention that the infimum of an empty set is ∞. Note that G←(y) = G−1(y), the usual
inverse of G, when G is strictly increasing.

Definition A.3.2: Partial Moment of a Distribution Function

Partial moments are measures of risk based on the lower or upper part of a distribution. Given an
exponent r ≥ 0 and a reference point Z, the upper partial moment UPM(r, Z) is defined as:

UPM (r, Z) =

Z ∞
Z

(x− Z)rdFX(x), (A.3.2)

for a r.v. x with cumulative density function (cdf ) FX .

A.4. K-S test results

We computed the Kolmogorov-Smirnov (K-S) tests with H0: F = U(0,1) , Ha: F 6= U(0,1) at the 5%
significance level. H=1 if H0 is rejected. K-S tests results are as follows:
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Table 5: K-S test: Zy|x

K-S test: zy/x
CIMDO NStd NCon TCon NMix

H 1 1 1 1 1
K-Statistic 0.1281 0.1875 0.2246 0.2179 0.2003
Critical Value 0.0136 0.0136 0.0136 0.0136 0.0136

Table 6: K-S test: Zx

K-S Test: zx
CIMDO NStd NCon TCon NMix

H 1 1 1 1 1
K-Statistic 0.1301 0.1664 0.1933 0.1902 0.1854
Critical Value 0.0136 0.0136 0.0136 0.0136 0.0136

Table 7: K-S test: Zx|y

K-S Test: zx/y
CIMDO NStd NCon TCon NMix

H 1 1 1 1 1
K-Statistic 0.1296 0.1654 0.1932 0.1834 0.1700
Critical Value 0.0136 0.0136 0.0136 0.0136 0.0136

Table 8: K-S test: Zy

K-S test: zy
CIMDO NStd NCon TCon NMix

H 1 1 1 1 1
K-Statistic 0.1287 0.1883 0.2251 0.2237 0.2218
Critical Value 0.0136 0.0136 0.0136 0.0136 0.0136
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