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1 Introduction

There is still a large dislocation in the literature between equilibrium asset pricing models
and the real world. We would like to point out two major contributing factors for this lack
of realism. First, markets are neither complete nor frictionless. A large body of literature
has studied asset pricing under incomplete markets as well as under various frictions, such
as portfolio constraints. Much less work has been done when financial institutions are sub-
jected to risk-sensitive constraints. Risk sensitive regulation, where statistical risk models
are used to determine allowable levels of risk and of bank capital, has recently become
the cornerstone of international financial regulations. Given the compulsory nature of the
Basel-II prescriptions, asset prices, allocations and welfare will all be strongly affected by
risk sensitive regulation. As a result, standard frictionless asset pricing methodologies may
no longer be appropriate.

Second, very few, if any, equilibrium models provide micro-foundations for the risk under-
lying said risk-sensitive regulation. While some papers, for instance see Basak and Shapiro
(2001)1 and Cuoco and Liu (2005), model asset pricing in a risk-regulated world, that
world is by assumption first-best and would therefore not warrant any regulation in the
first place. The rationale for regulating risk must lie in the fear of what has been called a
systemic event. Empirically, such an event seems to be priced in the markets. For instance,
the implied distribution of post-’87 out-of-the money put options is substantially negatively
skewed (consult Bates (2000), Pan (2002) and Carr and Wu (2003) who argue that this is
due to the fear of substantial negative return jumps). While modelling a systemic crash
as an exogenous shock may be useful in practice, in the absence of any market failure it is
nevertheless not clear why this would require regulation. It is also not clear what a sys-
temic event is in the first place (see De Bandt and Hartmann, 2000, for a survey), and for
concreteness we provide a formal definition of a systemic event. We formalize the intuition
of Andrew Crockett (2000), the chairman of the BIS at the time of the elaboration of the
Basel-II criteria, and of Marshall (1998) who lays out the five main features of a systemic
crisis: 1) Systemic risk must originate in the process of financing, that is the capital needed
by a firm is provided by investors outside the firm. 2) A systemic crisis involves contagion.
3) In a crisis, investors cut back the liquidity they are willing to provide to firms. 4) A
systemic crisis involves substantial real costs, in terms of losses to economic output and/or
reductions in economic efficiency. Crises must hurt Main Street, not just Wall Street. 5)
A systemic crisis calls for a policy response.

Our task in this simple model with a continuum of agents (with varying coefficients of risk

1Basak and Shapiro are foremost interested in modelling the optimal dynamic portfolio process of a
regulated investor in complete Brownian markets and under various forms of constraints. They find for
instance that in the worst states, regulated investors may take on more risk than non-regulated investors
and consequently increase the stock market volatility in an economy with two log-utility agents, one of
which is regulated. We find a similar result driven by agent heterogeneity.
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aversion and heterogeneous in their regulatory status) is to formalize this intuition when
systemic events are due to an externality-induced free-riding market failure. Investors
disregard the effects of their actions on aggregate outcomes and as a result in equilibrium
an excessive fraction of total risk is concentrated on a small but significant number of
highly leveraged investors. In turn, it suffices that an unanticipated event transforms this
imbalance into a systemic crisis. More concretely, we model assets as rights to the output
stream of firms, as in (a static version of) Lucas (1978). Following Holmstrom and Tirole
(1998), we introduce an intermediate date at which firms may face a sudden (perfectly
correlated across firms, i.e. aggregate) liquidity need. In order to keep the production
process going, the existing shareholders are asked to provide liquidity to the firms by
lending them an amount of riskless assets proportional to their shares in the firms. This
sudden demand for additional working capital conveys no information as to the worth of
the firm. We can view this stage either as pre-bankruptcy deliberations or as a stylized
rights issue. The liquidity is reimbursed to them at date 1 with interest, provided that
the productive sector was able to raise sufficient liquidity. Refinancing may fail since
the holders of large equity positions may not themselves have the required incentives to
accumulate enough liquidity to lend to the firms. In this paper the frictions consist of the
assumptions that a) the productive sector must be refinanced as a whole (the outputs of
the various firms are also inputs into each other, say), and b) that markets are closed at the
intermediate date. This assumption is both theoretically and empirically reasonable. The
initial investors, much like venture capitalists, gather private information about the projects
they are investing in, or are at least perceived as doing so. This asymmetry might make
fire-selling the project and/or attracting short-term liquidity from third parties impossible.
The probability of a systemic crash increases along with imbalances in agents’ leverage
and risk taking. We measure systemic risk by the degree of imbalance of risk taking and
leverage among agents.

Systemic risk therefore arises due to externalities and does warrant regulation. How suc-
cessful are risk-sensitive regulations of the VaR type? Our model demonstrates that regu-
latory risk constraints lower the risk of a systemic event in equilibrium by preventing some
regulated investors from accumulating excessively levered risky positions. Even though in
equilibrium this means that more risk is held by risk-tolerant unregulated investors, equi-
librium prices adjust in a way as to guarantee that even the unregulated investors, while
holding more risk, also hold commensurately more of the safe asset.

But risk-sensitive regulations do impose social costs as well. First, risk-sensitive regulations
may prevent market clearing in some circumstances if all financial institutions are regulated.
The probability of markets not clearing increases with the tightness of the risk constraint.
The basic intuition is that in periods of stress, such as with large fire sales, the risk that
would have to be taken on by the buyers could violate all potential buyers’ regulatory
constraints. Since non-diversifiable aggregate risk needs to be held at an equilibrium, no
equilibrium can exist. This argument is similar to the one in Hellwig (1994) on capital

3



requirements.

Second, the feedback-effects of regulation on the behaviour of prices are also important in
and by themselves. We demonstrate that the equilibrium pricing function in a regulated
economy exhibits, as regulation becomes tighter, less depth and more volatility (the co-
variance matrix is more positive definite). The fundamental intuition behind these results
rests in the endogenous equilibrium level of risk-aversion in the market as a result of agent
heterogeneity. The regulatory constraint causes the pricing function to become more con-
cave for typical trades, since risk will have to be transferred from the more risk-tolerant
to the more risk-averse. In order for the more risk-averse to take on the additional risk,
the discount will have to be bigger the more risk-averse the marginal buyers are. Hence
for a given change in demand, prices move more with regulation than without, implying
higher (local) volatility and lower liquidity post regulation. This phenomenon is known
in the financial regulation literature2 as procyclicality. Concavity of the pricing function
in the innovation term also implies the well-known empirical effect of “going up by the
stairs and coming down by the elevator.”3 A well known source of major financial losses is
the fact that correlations or comovements of assets are amplified in times of stress. While
margin calls and wealth effects have been among the proposed explanations, as in Kyle and
Xiong (2001), we are not aware of any models that are able to generate increased comove-
ments in periods of stress from the regulatory constraints. Our model suggests that one of
the explanations for the observed state-dependent comovement may be the impact of risk
constraints on portfolio optimization, especially in times of stress. Even in the absence of
wealth effects and even if assets have independent payoffs and independent demand inno-
vations, sufficiently strict regulations will cause some agents to adjust their risk position
by scaling down their holdings in the risky assets, thereby introducing comovements. This
effect will be most pronounced during financial crises. As a result, a Basel style regulation
introduces the potential for an endogenous increase in correlation, thereby decreasing the
agents ability to diversify and increasing the severity of financial crises. Financial institu-
tions therefore require higher risk premia in equilibrium, which in turn may account for at
least part of the equity-premium puzzle.

2The term “procyclical” has different meanings in different literatures. Spurred by the Basel-II regula-
tions, there is by now a large literature on the reinforcing feedback effects of said regulations on market
prices.

3In the recent crises affecting Mexico, Thailand, Russia and Indonesia, crashes have been well shorter
than the respective booms of similar magnitude. Bond yields and lending rates in virtually all emerging
markets follow such an asymmetric pattern. Asset bubbles and speculative attacks conform to this pattern,
as does the buildup of carry trades followed by a rapid reversal. US stocks and indices seem to exhibit
such an asymmetry as well, as documented for instance in Bekaert and Wu (2000), Boldrin and Levine
(2001) and Hong and Stein (2003) (who report that nine of the ten largest one-day price movements in
the S&P 500 since 1947 were decreases). The results on implied distributions reviewed above also point in
that direction.
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2 The Model

Our economy is based upon a standard two-dates constant absolute risk–aversion model
without asymmetric information and with a stochastic asset supply. There are two families
of agents: regulated financial institutions (RFI) that are subjected to regulatory risk con-
straints (e.g. banks) and unregulated institutions (UFI) (e.g. hedge funds). The standard
two-dates model is extended by adding an intermediate date, date one, to it. At date
zero the UFIs and RFIs invest their (random) endowments in both risky and “riskless”
(the zero-coupon bond) assets. Consumption occurs at the date two. We follow common
modelling practice by endowing financial institutions with their own utility functions (such
as in Basak and Shapiro, 2001, for instance). At the intermediate date one, as further
explained below, a refinancing need may arise, which we refer to as a liquidity event.

There are N nonredundant risky assets that promise, in the absence of any liquidity event,

normally distributed payoffs d ∼ N
(

µ̂, Σ̂
)

at date two, independent of the random en-

dowments of assets.4 The hats indicate payoffs, returns (. . . , di/qi, . . . ) are distributed as
N(µ,Σ). Asset 0 is the “riskless asset” and promises to pay off the deterministic amount
d0, except in a systemic event, defined as a liquidity event at which refinancing fails due
to the actions taken by investors, when the payoff is zero. Asset payoffs and returns are
accordingly conditionally, but not unconditionally, normally distributed. The event tree
may be represented schematically as:

Insert figure 1 here

Each FI is characterized by its type h, which determines risk-aversion and endowments,
and by its regulation status t, which is either t = {r} if the FI is regulated, or t = {u} if
it is unregulated. Each type of financial institution h ∈ [ℓ, ℓ] is characterized by a constant
coefficient of absolute risk aversion (CARA) αh as well as an initial endowment of the

riskless asset θh
0 and of the risky assets θ̃

h
:= θh − ǫh, where ǫh represents the random

component of the endowments in the risky assets, with ǫ :=
∫ ℓ

ℓ
ǫhdh. For simplicity, we

assume that ǫh = ǫ

ℓ−ℓ
, that αh = h (but for clarity we still label agent h’s coefficient by

αh rather than by h only) and that all institutions are risk-averse, ℓ > 0. A fraction η of
agents of each type h are regulated, the remaining fraction is unregulated. A FI (h, t) invests

4Independence simplifies our analysis. If supply shocks were not independent of payoffs, then asset
prices would convey payoff-relevant information. The information extraction problem is easy to solve for
some parametric distributions, such as the normals, but contributes little to the issues at hand and does
require additional parametric assumptions. Normality of payoffs may be at odds with option-like derivative
securities and should be viewed as an approximation over shorter periods in the presence of such option-like
derivatives. In any Brownian model, derivative returns are normal over short horizons.
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its initial wealth W h
0 in a portfolio comprising both riskless and risky assets, (yh,t

0 , yh,t).
The time–zero wealth of an agent of type h (regulated or unregulated) comprises initial

endowments in the riskless asset, θh
0 , as well in risky assets, θ̃

h
, so that W h

0 ≡ q0θ
h
0 + q′θ̃

h
.

The price vector of risky assets is denoted by q. Since the time-zero budget constraint

q0θ
h
0 + q′θ̃

h ≥ q0y
h,t
0 + q′yh,t is homogeneous of degree zero in prices, we can normalize,

without loss of generality, the price of the riskless asset to q0 ≡ 1, i.e. the riskless asset
is used as the time–zero numéraire. We can write Rf := d0/q0 = d0 for the return on the
riskless asset in the absence of a systemic event. At date 2, the consumption commodity
plays the role of the numéraire.

The aggregate amount of outstanding risky assets owned by investors is θ̃
a

:=
∫ ℓ

ℓ
θ̃

h
dh.

The random component ǫ is assumed to be distributed on E ⊂ R
N according to the law

P
ǫ, for simplicity assumed to be independent of the law governing asset payoffs, P

d. In this
paper, we do not impose any assumptions upon the distribution of ǫ other than to assume
that its support E is open and convex, in order to occasionally apply differential calculus.
Instead of interpreting ǫ as noisy asset endowments, with the appropriate adjustments one
could interpret ǫ as noise trader supplies. Because the total endowment of risky assets
has to be absorbed by the UFIs and RFIs in equilibrium, prices depend upon ǫ. This is
the only role of stochastic asset endowments. In a dynamic version of our model where
dividends or news about the value of firms govern the resolution of uncertainty, they can
be dropped entirely, as in Danielsson et al. (2004).

The aim of the regulations for risk-taking is to control extreme risk-taking by individual
financial institutions. In theory, a large number of possible regulatory environments exist
for this purpose. In practice, we are not aware of any published research into the welfare
properties of alternative market risk regulatory methodologies,5 and as a result, we adopt
the standard market risk methodology, i.e., Value-at-Risk. The constraint takes the form:6

P
[

(E[W h] − W h) ≥ V aR
]

≤ p̄,

5Among those methodologies one could enumerate various schemes to explicitly limit risk-taking or
leverage, lending-of-last-resort practices, regulation of the admissible financial contracting practices with
a view of overcoming agency or free-riding problems, and so forth. Of course, we know from Artzner et al.
(1999) that VaR is not a desirable measure from a purely statistical point of view because it fails to be
subadditive. Furthermore, Ahn et al. (1999) show that the VaR measure may not be reliable because it
is easy for a financial institution to legitimately manage reported VaR through options. Alexander and
Baptista (2002) caution about using mean-VaR portfolio allocation as opposed to the standard mean-
variance analysis.

6We follow standard practice (as advocated by the Basel Committee on Banking Supervision (1996)
and by Jorion (2001) for instance) and use the relative VaR, i.e. the dollar loss relative to the mean (the
unexpected loss), rather than the absolute VaR, i.e. the dollar loss relative to the initial value. Over
short horizons the two coincide, but over longer horizons the relative VaR has proved more useful as it
appropriately accounts for the time value of money. Indeed, over large horizons, with many data-generating
processes calibrated to past data, the absolute VaR number would be swamped by the drift term.
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i.e. the probability of a loss larger than the uniform regulatory number V aR is no larger
than p̄. Each RFI maximizes the expected utility subject to both the budget constraint
and the VaR constraint by choosing the optimal asset holdings. In the next section, we go
into the details of how the liquidity events play out.

3 Modelling Systemic Crises

While many authors attribute systemic fragility to an excessive piling-on of debt (e.g.
Kindleberger (1978), Feldstein (1991)), those theories have relied explicitly or implicitly on
irrationality. In our model no such irrationality is required to generate excessive leverage,
which arises solely by the fact that the less risk-averse FIs are not bearing the full social
costs of their actions. Shares are rights to the output stream of firms. Firms may face a
sudden aggregate liquidity need (assumed to be independently distributed of payoffs and
demand innovations) which can only be satisfied by a further injection of capital (cash) from
the shareholders in proportion to the size of their existing share holdings. This liquidity
is reimbursed to them at date 1 with interest Rf , provided that the productive sector as
a whole was able to raise sufficient liquidity. Since each investor believes he is too small
to affect the aggregate allocation, and therefore whether the refinancing is successful or
not, he may therefore have an incentive to disregard the social cost of his actions and
accumulate an excessively risky and leveraged position.7 What is an “excessive” level for
a FI is specified within the model, and depends on the actions of all other FIs.

Formally, assume that a liquidity event L occurred, and that each shareholder is asked
during the emergency meetings with the firms’ stakeholders to contribute to firm i Ki units
of the riskless asset per unit of asset i held, with K := (. . . , Ki, . . . ). This is similar to the
fixed costs assumption in Marshall (1998). While shareholders do not have to come to the
rescue of the productive sector by contributing working capital, it is a weakly dominant
strategy to do so. The total amount of riskless assets lent by (h, t) to the productive sector
is therefore the full amount K′yh,t if h has the required liquidity, yh,t

0 ≥ K′yh,t, otherwise
yh,t

0 only:
Lh,t := min{yh,t

0 ,K′yh,t}
and the financing shortfall stemming from investor (h, t) is:

Sh,t := max{0,K′yh,t − Lh,t} = max{0,K′yh,t − yh,t
0 }

Aggregate shortfall S(ǫ, v̄) is defined as

S(ǫ, v̄) := η

∫ ℓ

ℓ

Sh,rdh + (1 − η)

∫ ℓ

ℓ

Sh,udh

7Even if the FI had an impact and was aware of it, it would nevertheless overaccumulate risk since most
of the benefits of holding liquidity accrue to society as a whole rather than to the FI in private.
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Aggregate output collapses if refinancing fails, i.e. if the proceeds are too low, and each
investor’s consumption is at the survival level. The event “refinancing fails” is the event
that in aggregate S(ǫ, v̄) > S̄ for some S̄. Implicit in this definition is the idea that even
if working capital can be reallocated across firms at date one, there just is not enough
to sustain all firms’ production plans. The event (viewed as a measurable subset of E)
whereby a latent refinancing imbalance S(ǫ, v̄) > S̄ exists at equilibrium is denoted by Fv̄.
When no ambiguity arises, we simply denote it by F.

The assumption that output completely collapses is made for simplicity only and reflects
a strongly interdependent production sector. While none of our main results depend on a
precise micro foundation for such an interdependent sector, for the sake of concreteness we
outline one such economy. Before nature chooses whether there will be a liquidity shock
or not, each firm i is in the process of producing a heterogeneous intermediate output.
We say that the production sector is strongly interdependent if the intermediate input-
output matrix is symmetric, indecomposable and if every intermediate input of any firm
i is crucial (meaning that the output of firm i is zero in case there is some intermediate
input in the input list Ii of firm i that is no longer supplied to i). Indecomposability is
a standing assumption in standard input-output analysis, see for instance Nikaido (1968).
Indecomposability and cruciality are equivalent here to requiring that for any two firms
i and j, there is a sequence of distinct firms {k1 = i, k2, . . . , kn−1, kn = j} such that a
minimal amount of intermediate output by j is required as an intermediate input in the
production of intermediate output kn−1, and a minimal amount of of intermediate output
kn−1 in turn is required as an intermediate input in the production of kn−2 and so forth
all the way up to i. Any two sectors are directly or indirectly linked in this way. If Ii is
the list of firms whose intermediate inputs are required in the production of intermediate
output i, then the output of intermediate output i is (here d = (. . . , di, . . . ) is the normally
distributed random payoff variable introduced above,

∏

is the product operator and 1event

stands for the indicator function which equals 1 if the event is true and zero otherwise):

intermediate outputi = edi1{Q

j∈Ii
intermediate outputj>0}

Before the intermediate outputs can be shipped, nature determines whether a liquidity
shock occurs or not. If the liquidity shock occurs and refinancing fails for at least some
firm j, then intermediate outputj = 0, and the intermediate outputs of all firms collapse.
We might interpret the aggregate nature of the liquidity shock as consisting of necessary
investments into the transportation network for inputs between firms. A shortfall larger
than S̄ then represents the event whereby at least one link of the transportation network is
no longer operational due to underinvestment. If refinancing succeeds, then intermediate
outputi = edi , all firms i. The intermediate output is then in a second production phase
transformed into the homogeneous consumable final output via the production function

final outputi = ln(intermediate outputi)
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If some firm fails to refinance itself (or if some transportation link fails to receive adequate
investments), then by strong interdependence all final outputs are −∞ and each investor’s
consumption is normalized to be equal to some arbitrarily small survival amount xh,t =
x > −∞, all h, t ∈ {u, r}.8 To summarize,

L and F ⇒ xh,t = x a.s., all h, t ∈ {u, r}

Definition 1 (Systemic Crash, Normal Market Conditions) We define a systemic
crash (or a systemic event or collapse) as the event L ∩ F. The ex-ante probability of a
systemic event is P(L ∩ F) = P(L)P(F).

Normal market conditions are defined as the event N := (L∩F)c which obtains with ex-ante
probability P(N) = 1 − P(L ∩ F).

Notice that probabilities depend on v̄ as well as on the chosen distribution of risk among
the agents.

4 Decision Problem of the Financial Institutions

The RFI’s programme consists in choosing demand schedules to solve the following pro-
gramme.

Problem 1 (Risk-Constrained Programme)

max
{(yh,yh

0
)}

P(L ∩ F|ǫ)uh(x) + (1 − P(L ∩ F|ǫ))E[uh(xh)‖N, ǫ]

subject to yh
0 + q′yh ≤ θh

0 + q′θ̃
h

xh = W h := d′yh + RfL
h + Rf (y

h
0 − Lh) = d′yh + Rfy

h
0

P
[

(E[W h|ǫ] − W h) ≥ V aR‖ǫ
]

≤ p̄

Since individual institutions are negligible, this formulation gives rise to the free-riding
externality mentioned above. Each financial institution chooses to neglect the effect of their
actions on P(L∩F|ǫ). Rationality on behalf of the investor requires that he correctly learns
from ǫh and from q at equilibrium. Of course, since ǫh fully reveals ǫ, q is uninformative
given ǫh. The investor therefore knows whether a critical latent imbalance is built up or
not. What he does not know is whether a liquidity event obtains that would turn the
known latent imbalance into a systemic crisis.

8As usual in the CARA-normal setting the consumption set is unbounded below and equals R ∪
{−∞, +∞}. The least desirable bundle (“collapse of the productive sector”) is therefore effectively −∞,
and x is an arbitrary small number, i.e. negative with |x| arbitrarily large).
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Consider the auxiliary programme where it is known that a systemic crash is impossible.
Payoffs and returns are then normally distributed, and a sufficient statistic for portfolio
risk is the volatility of W h. The VaR constraint can therefore be stated as an exogenous
upper bound v̄ on portfolio variance,9

yh′Σ̂yh ≤ v̄. (1)

The auxiliary programme can be written:

max
{(yh,yh

0
)}

E[uh(xh)|N, ǫ]

subject to yh
0 + q′yh ≤ θh

0 + q′θ̃
h

xh = W h ≡ d′yh + RfL
h + Rf (y

h
0 − Lh) = d′yh + Rfy

h
0

yh′Σ̂yh ≤ v̄

Now assume that at the equilibrium with the original programme the investor knows that
there is no global imbalance, Fc. Then whether or not a liquidity event obtains, no sys-
temic crash can occur, and the solution to programme 1 coincides with the solution to the
auxiliary programme. Next assume that F obtains. Since neither P(L∩ F|ǫ) nor uh(x) are
affected by the actions of investor h, his objective function coincides with the one in the
auxiliary programme. The same is true for the VaR constraint:

P
[

(E[W h|ǫ] − W h) ≥ V aR‖ǫ
]

= P(L) ·0+(1−P(L))Pd
[

(Ed[W h|ǫ] − W h) ≥ V aR‖ǫ
]

≤ p̄

The solution to programme 1 coincides with the solution to the auxiliary programme, with p̄
replaced by p̄

(1−P(L))
. In the analysis that follows we simply write p̄ with the understanding

that it should be p̄/(1 − P(L)) in case investors know there is a latent imbalance. The
solution to the investor’s problem is given by the following lemma:

Lemma 1 (Optimal Portfolio) The optimal portfolio of risky assets for RFI (h, t) has
the mean-variance form

yh,t =
1

αh + φh,t
Σ̂

−1
(µ̂ − Rfq) (2)

where φh,u := 0 and φh,r := 2λh,r

Ed[uh′(W h)|ǫ]
≥ 0, with λh,r being the Lagrange multiplier of

the VaR constraint. The effective degree of risk-aversion, αh + φh,r, is independent of the
initial wealth W h

0 and only depends on αh, q and v̄.

9Indeed, denoting the cumulative standard normal distribution function by N(·), the VaR constraint

can be reduced to a volatility constraint: P
d
[

(Ed[Wh|ǫ] − Wh) ≥ V aR‖ǫ
]

≤ p̄ iff N
(

−V aR
Stdd(W h|ǫ)

)

≤ p̄ iff

Stdd(Wh‖ǫ) ≤ V aR
−N−1(p̄) iff Vard(Wh|ǫ) ≤ v̄ :=

(

V aR
−N−1(p̄)

)2

.
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A binding risk-regulation affects the portfolio through the effective degree of risk-aversion,
αh +φh,r. Whereas the coefficient of absolute risk-aversion is constant for unrestricted FIs,
it is endogenous for the FIs subjected to the VaR regulations and larger than their utility-
based coefficient during volatile events, αh +φh,r ≥ αh. In volatile events RFIs shift wealth
out of risky assets into the safe haven provided by the riskless asset. This is one way of
capturing the often-heard expression among practitioners that “risk-aversion went up,” or
that there is a “flight to quality.” This is reminiscent of the effect of portfolio insurance on
optimal asset holdings found in Grossman and Zhou (1996). Also see Gennotte and Leland
(1990) and Basak (1995). As a matter of convention, we reserve the term risk-aversion to
the CARA coefficients αh. We call αh + φh,r the coefficient of effective risk-aversion, and
we call its inverse risk appetite. From here it can be easily shown that the FIs with risk
aversions close to ℓ are highly levered in that they borrow from the more risk averse and
invest that borrowed money in risky projects, thereby effectively acting as banks.

Market clearing prices require that the total excess demand by regulated and unregulated

institutions, η
∫ ℓ

ℓ
yh,rdh + (1− η)

∫ ℓ

ℓ
yh,udh− θ̃

a
must equal zero. Equivalently they satisfy

the relation:

q =
1

Rf

[

µ̂ − ΨΣ̂θ̃
a
]

(3)

where

Ψ−1 := η

∫ ℓ

ℓ

1

αh + φh,r
dh + (1 − η)

∫ ℓ

ℓ

1

αh
dh (4)

is the aggregate effective risk-tolerance. Prices equal to risk-neutral prices minus a risk
adjustment. Ψ can also be viewed as the reward-to-variability ratio (or a market-price of

risk scalar) of the market θ̃
a
, Ψ =

µ̂M−RfqM

σ̂2

M

. Compared to an economy without any VaR

constraints where the market-price of risk scalar is γ :=
(

∫ ℓ

ℓ
1

αh dh
)−1

, we have Ψ ≥ γ. But

the market price of risk is not only higher in a constrained economy than in an unconstrained
one, it also is endogenous and random through the additional risk aversion φh imposed by
the regulations.10 The sole pricing factor being the market portfolio θ̃

a
, it becomes apparent

10Equations (2, 3 and 4) remain valid if utility functions are not of the constant absolute risk-aversion

class. The only difference would be that αh = −Ed[uh′′

]

Ed[uh′]
, and therefore endogenous. While no closed-form

solutions exist in this more general case, Ψ ≥ γ would still hold and the rationale underlying our results
would survive with reasonable income effects. Since most results in the sequel are driven mainly by the
fact that risk-constraints effectively lower aggregate risk-tolerance, we feel comfortable as to the robustness
of the results derived here. This is strengthened by the fact that for small risks (such as in a continuous-
time framework) the CARA-normal model is essentially true without loss of generality, even if neither
preferences are of the CARA type nor returns are normal. In the event of “normal market conditions”
we can think of random payoffs as being a “small” risk. This strengthens the case for the CARA-normal
model since the events that may lead to non-normal distributions ex-ante are embodied in the systemic
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that assuming noise traders is equivalent to assuming a random aggregate endowment in
risky assets of θ̃

a
.

5 On Market Clearing

Our definition of a rational expectations competitive equilibrium as a pricing function Q
mapping noise trades ǫ to market clearing prices is entirely standard (see Radner (1979)):

Definition 2 A competitive equilibrium is a pricing function Q together with its do-
main, Q : E × R+ → R

N , an asset allocation (h ∈ [ℓ, ℓ], t ∈ {r, u}, ǫ ∈ E) 7→ (yh,t, yh,t
0 )(ǫ)

and a consumption allocation (h ∈ [ℓ, ℓ], t ∈ {r, u}, ǫ ∈ E) 7→ xh,t(ǫ) such that

(i) Given any (ǫ, v̄) ∈ E×R+ and q ∈ Q(ǫ, v̄), (yh,t, yh,t
0 , xh,t) solve FI (h, t)’s optimization

problem, and this is true for all FIs (h, t) ∈ [ℓ, ℓ] × {r, u}.

(ii) Markets for risky assets clear, η
∫ ℓ

ℓ
yh,rdh + (1 − η)

∫ ℓ

ℓ
yh,udh = θ̃

a
, for each ǫ ∈ E.

(iii) Expectations are confirmed: the pricing function under which investors optimize co-
incides with the equilibrium pricing function.

Proposition 1 solves for the equilibrium Ψ (see Equation (14) in the Appendix for an exact
expression) and prices. Most proofs are contained in the Appendix, and all figures are at
the end of the paper.

Proposition 1 (Existence) If η < 1, there exists a unique competitive equilibrium for
any (ǫ, v̄, ℓ) ∈ E × [0,∞) × (0, ℓ].

If η = 1, there exists an equilibrium for ℓ ∈ [0, ℓ] and for (v̄, ǫ) satisfying ǫ ∈ E(v̄, ℓ) :=
{

ǫ ∈ E : [(θa − ǫ)′Σ̂(θa − ǫ)]1/2 ≤ (ℓ − ℓ)
√

v̄
}

. For (v̄, ǫ) such that ǫ ∈ int E(v̄, ℓ), the
equilibrium is unique, while for (v̄, ǫ) such that ǫ ∈ ∂E(v̄, ℓ) asset prices and consumption
allocations are indeterminate (within a certain range of prices) but the allocation of risky
assets is not. No equilibrium exists for ǫ ∈ E := E \ E(v̄, ℓ).

Equilibria always exist if there are unregulated financial institutions (η < 1). If all in-
stitutions are regulated (η = 1), then there are combinations of regulatory levels v̄ and
asset endowment innovations −ǫ in which markets cannot clear. This happens precisely if
the endowment θ̃

a
that has to be absorbed by the regulated financial institutions is suffi-

ciently different from 0 so that the number of agents over which the risk needs to be evenly

event. We do not assume that payoffs or returns are ex-ante normally distributed, only that payoffs are
conditionally normally distributed.
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spread, κ(ǫ; v̄) :=

√

(θa−ǫ)′Σ̂(θa−ǫ)
v̄

, is larger than the population: κ > ℓ − ℓ. This defines
the non-existence event E. This feature is not a short-coming of our model. In fact, any
model would exhibit such a result as it relies solely on the universality of VaR constraints.
Figure 2 illustrates this phenomenon in an economy with two assets and different levels of
tightness v̄. Each level of tightness determines an ellipsoid set of noise supplies that can be
supported by a competitive equilibrium. For ǫ outside of this ellipsoid, FIs cannot absorb
the supply as described earlier, and markets break down. And for a tighter regulatory level
v̄2 < v̄1, the set of supportable supplies shrinks even further, E(v̄2) ⊂ E(v̄1). This suggests
the policy implication that if the supervisory authorities impose stringent risk limits (in the

sense that v̄ is small enough to lead to E(v̄) 6∋ 0, i.e. v̄ < θa′Σ̂θa

(ℓ−ℓ)2
), some agents need to be

exempted from those constraints for markets to clear, i.e. η < 1 is needed. For derivatives,
however, 0 ∈ E, and no exemptions are required as long as regulations are not too strict.

6 Equilibrium Pricing Function

The imposition of the VaR constraints affects the equilibria directly, with interesting results
on risk-taking, liquidity, and volatility. We present our main results about the equilibrium
pricing function during normal market conditions in a series of Propositions, with all proofs
relegated to the Appendix. We shall retain the following assumption in this section. Basi-
cally it requires that the set of possible stochastic asset supplies is such that for sufficiently
strict regulations, some agents face binding VaR constraints. Evidently, the problem is not
interesting otherwise.

Assumption [A]. For a given E assume that there is a v̄′ such that there is a compact
subset of E, call it E′, which is non-null, P

ǫ(E′) > 0, and which is such that ∀ǫ ∈ E′,
κ(ǫ) > ℓ(ln ℓ − ln ℓ) for all v̄ ≤ v̄′. Also, assume that the covariance matrix of the
stochastic asset supplies over E′, E[(ǫ−E[ǫ])(ǫ−E[ǫ])⊤1ǫ∈E′ ], exists and is positive
definite.

6.1 Prices and Risk Premia

From equations (3) and (4) we know that the equilibrium pricing function is

Q(ǫ, v̄) =
1

Rf

[

µ̂ − Ψ(κ(ǫ, v̄))Σ̂(θa − ǫ)
]

(5)

with κ(ǫ, v̄) :=

√

(θa−ǫ)′Σ̂(θa−ǫ)
v̄

. Since in economies where regulation is binding the reward-

to-variability ratio is higher than in unregulated economies, Ψ > γ, it follows from (5) that
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at equilibrium, a binding risk-regulation induces lower prices for a risky asset j compared
to the unconstrained economy iff the covariance of asset j’s payoff with the payoff of the
market portfolio θ̃

a
, equivalently the beta, is positive, (Σ̂)jthrowθ̃

a
> 0, and higher prices

otherwise. Therefore equity risk premia are higher the more tightly regulated the economy
is:

Proposition 2 (Equity Risk Premia) Let v̄2 < v̄1. Then µi(ǫ, v̄2)−Rf > µi(ǫ, v̄1)−Rf .

where µi(ǫ, v̄) := µ̂i/Qi(ǫ, v̄) is the conditional expected return on asset i. It is indeed easy
to see that the CAPM with respect to the market portfolio holds. For instance, the excess

return on asset i is µi − Rf = βM,i(µM −Rf ), where in turn µM − Rf =
Ψσ̂2

M

qM
. The tighter

the economy is regulated, the higher Ψ and the lower qM , generating higher expected excess
returns.11

Intuitively, a more tightly regulated economy transfers risk from the less risk-averse to the
more risk-averse investors for markets to clear. But the latter need to be induced to buy
into the risk by more advantageous prices, i.e. by higher expected returns. Clearly, our
static model is too simple to capture the complexity of the equity premium puzzle (as
outlined by Mehra and Prescott, 1985; Weil, 1989), but many proposed solutions (see e.g.
Constantinides, 1990; Epstein and Zin, 1990; Ferson and Constantinides, 1991; Benartzi
and Thaler, 1995; Campbell and Cochrane, 1999; Barberis et al., 2001) involve modifying
preferences in order to allow risk-appetite to play a larger role than in the time-separable
expected utility base model. In that sense we outline one further channel that could
be further exploited in a more general and explicitly dynamic version of this model. If
the stylized coefficients of risk-aversion are too low to match asset returns when using
frictionless models, maybe the additional degree of effective risk-aversion Ψ−γ due to risk-
taking constraints, such as the ones imposed by the regulatory environment, may account
for a fraction of the unexplained expected excess returns.

6.2 Depth

The risk constraint affects the depth of the markets directly. In our context, depth is an
appropriate measure of liquidity. The inverse of the depth of the entire market, shallowness
s(ǫ, v̄), is defined as the maximal extent to which an additional (unit-size) market order
for a portfolio impacts its price. Formally,

s(ǫ, v̄) := max
θ subject to ‖θ‖=1

|θ′dQ| = max
θ subject to ‖θ‖=1

|θ′(∂ǫQ)θ|

With this definition in mind, we can state:

11σ̂2
M is the variance of the payoff of the residual market portfolio, and therefore exogenous. The price

of the market portfolio, qM := q′θ̃
a

is given by R−1
f µ̂

′
θ̃

a − R−1
f Ψ(θ̃

a
)′Σ̂θ̃

a
, decreasing unambiguously in

Ψ.
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Proposition 3 (Depth) Depth is lower the tighter the constraint (i.e. the smaller v̄),
∂s(ǫ,v̄)

∂v̄
< 0 for all ǫ ∈ E. In particular, depth is lower in the regulated economy than in the

unregulated economy for any ǫ ∈ E.

Refer to Figure 4 for an illustration. No RFI’s risk taking constraint is binding for ǫ ∈
[θa(v̄), θ̄a(v̄)]. We have not made any assumptions regarding the distribution of ǫ. However,
in most cases we expect the market portfolio to be positive θ̃

a
> 0. If we assume that N = 1,

then the pricing function is concave over the relevant domain {ǫ : θ̃
a

> 0}, and in most
interesting cases (large positive shocks to the asset endowment that need to be absorbed,
or restrictive regulations) the pricing function is strictly concave. The same can be shown
for N > 1 given the proper restrictions on the domain of noise trades. If we assume that
regulations are sufficiently strict so that some agents are hitting the regulatory constraint

at ǫ = 0, v̄ <
(

σθa

ℓ(ln ℓ−ln ℓ)

)2

, and also that P
ǫ([θa,∞)) = 0, then an inflow raises prices less

than the corresponding outflow lowers them. This is the widespread phenomenon dubbed
by traders as “going up by the stairs and coming down by the elevator.”

6.3 Volatility, Diversification and Comovements

In the single asset case, inspection of Figure 4 reveals that the time zero asset price becomes
more volatile the stricter the VaR constraints are. In other words, uniform shallowness
implies ex-ante volatility. The single-asset intuition can then be extended to the general
case (a matrix M1 is more positive definite than a matrix M2 if M1 = M2 + N , with N
positive definite):

Proposition 4 (Volatility) Consider any two levels of regulation v̄ < v̄′, at least one
of them binding for some RFIs. The variance-covariance matrix of asset prices in the v̄
economy is more positive definite than the one in the v̄′ economy.

It follows that the equilibrium price of any portfolio (and therefore of any security) becomes
more volatile in the economy with tighter regulations, v̄, than in economy v̄′. In particular,
there is more volatility in the constrained economy than in the unconstrained economy.

The basic intuition behind these results is as follows. The endowment shocks which were
absorbed by the more risk neutral RFIs in economy v̄′ now have to be absorbed in the
economy with v̄ < v̄′ by the more risk averse. However, the more risk averse are less willing
to absorb these (additional) units than the less risk averse. Hence the imposition of the risk
constraint reduces market depth, and the market impact of a market order is larger. Since
the arrival of market orders (asset endowments) is random, this generates more volatile
asset prices.
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The fact that both individual assets and portfolios become necessarily more volatile suggests
to the very least that diversification does not improve sufficiently to counteract the increases
in the volatilities of the assets, since any portfolio, no matter how it is diversified, becomes
more volatile. In fact, by the multi-asset nature of our model, we can naturally show that
covariances between individual assets increase with stricter regulation:

Proposition 5 (Comovements) Assets that are intrinsically statistically independent
(i.e. the payoffs as well as the endowment shocks of the assets considered are statistically
mutually independent) become positively correlated due to risk-regulations.

Even if two asset classes are payoff-independent and hit by independent endowment or
noise trader shocks, if the regulations are strict enough to bind over a set of positive
measure, then a large liquidity shock hitting one asset class will induce the VaR regulation
to bind for some RFIs. These RFIs will subsequently need to adjust their global risk
position, thereby creating comovements in asset prices among classes that would seem to be
unrelated. Furthermore, these comovements would be detectable mostly in crisis situations
since the VaR constraints do not bind in subdued periods. It would therefore seem that
the VaR constraints bear one further seed of instability by not only creating asset price
volatility, but by inducing correlations during the exact periods where such correlations
are most dangerous. This phenomenon is often referred to as “contagion” in the finance
literature, e.g. in Kyle and Xiong (2001) and Kodres and Pritsker (2002). Without having
to resort to income effects, our result clarifies why these comovements occur especially
during crisis, and what the impact of risk-regulations on contagion could be.

7 How successful is the VaR constraint?

To make the regulatory problem interesting and transparent, we make the following as-
sumption in this section:

Assumption [B]. [B1]: (θh,t
0 , θh,t) = 1

ℓ−ℓ
(θa

0 , θ
a), all (h, t). [B2] and P({ǫ ∈ E : (K +

q)′θ̃
a ≤ 0}) = 0. [B3]: (E,K, v̄) are so that 0 < P(F) < 1.

Assumption [B1] insures a neutral distribution of endowments that is not biased in favour
or against the success of the VaR regulations. Assumption [B2] prevents pathological
cases whereby the value of the entire market is negative, and [B3] assumes that refinancing
conditions are not so strict (so weak) as to lead to failure almost surely (almost never).

Proposition 6 implies that if [B] holds, the VaR regulations are effective in reducing the
probability of a systemic crash.12

12If η = 1 and if ǫ is so that there is no market clearing price vector, then we assume that markets shut
and allocations coincide with endowments. In particular, E ⊂ Fc.
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Proposition 6 Assume that [B1] and [B2] hold.

Lowering v̄ reduces the probability of a systemic event P(L ∩ F) (but at the expense of a
lower probability of market clearing P(E) if η = 1), strictly so under [B3]. Furthermore, if
η = 1 and P(θa

0 ≥ K′θ̃
a
) = 1, then P(L ∩ F) = 0 for small enough v̄.

The reason why this policy is effective is as follows. The less risk-averse FIs hold large
amounts of the risky portfolio if regulation is weak, and therefore will have to borrow
at the riskless rate to finance such a risky holding, unless they are endowed with large
amounts of assets to start with, which we exclude by condition [B]. Stricter risk-limits
curb both the amount of risky assets held by the less risk-averse RFIs as well as their
required leverage, and therefore make it more likely that such institutions are able to take
part in the refinancing of the firms. The more subtle point is, however, that stricter VaR
limits reduce prices and thereby induce UFIs, and in particular the less risk-averse ones,
to purchase the risky assets sold by the RFIs. This effect may indicate that systemic risk
can increase with a tightening of regulations. But the non-trivial general equilibrium effect
on prices means that buyers (the UFIs and the more risk averse RFIs) can purchase their
larger holdings in risky assets at lower prices, with the net effect being that they leave in
equilibrium more of their wealth invested in the riskless asset, creating less of a systemic
imbalance despite holding riskier portfolios. This benefit must be balanced by the loss
of diversification and risk-sharing, by more shallow markets and the increased volatility
of prices during normal market conditions. If η = 1, the regulator faces a further cost
in that markets may not clear. For very strict levels of v̄ and very inclusive regulations
(η = 1), and provided the economy in aggregate does have enough of the risky asset, then
the probability of a systemic crash goes to zero, but the likelihood of market clearing is
reduced as well.

8 Conclusion

The aim of this paper is two-fold. First, we are interested in modelling the underlying
causes which generate systemic risk and lead a rationale for regulating risk. This is in
contrast with most models which impose risk regulation upon a first-best economy and
where the conclusions may not be meaningful or realistic. We then study why and to what
extent the current risk-regulation alleviates systemic risk. We show that risk-sensitive
regulations of the VaR type do reduce the probability of a systemic event and therefore do
alleviate some of the free-riding externalities. Such benefits do have to be balanced by the
social costs imposed by the regulations. Pricing risk is shown to be endogenous, and the
lesson here is similar to the Lucas critique (Lucas, 1976). We demonstrate that regulating
risk-taking changes the statistical properties of financial risk. Markets may not clear if
regulations are too all-encompassing. We also derive equity premia which are larger than
in standard models, going some way towards a resolution of the equity premium puzzle.
We show that illiquidity, volatility and covariations are all larger than in an unregulated
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world, and in particular they are especially large in periods of distress. It is well-known
that risk-modelling often fails in periods of stress due to the breakdown of established
historical comovements. Our model exhibits some of the nonlinearities at the heart of this
phenomenon.
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A Proofs

Proof of Lemma 1 The programme consists in solving (the superscript d indicates that
the expectation is computed with respect to the probability of the payoffs d)

max
{yh,yh

0
}
Ed

[

uh(d0[θ
h
0 + q′θ̃

h − q′yh] + d′yh)|ǫ
]

− λh
[

yh′Σ̂yh − v̄
]

The FOCs (the programme is strictly convex and constraint qualification holds), so the

FOCs are both necessary and sufficient) are Ed
[

uh′(W h)(d − d0q)|ǫ
]

= 2λhΣ̂yh, or equiv-

alently

Covd(uh′(W h), d|ǫ) + Ed
[

uh′(W h)|ǫ
]

E[d] − d0E
d
[

uh′(W h)|ǫ
]

q = 2λhΣ̂yh

Next, by Stein’s Lemma [recall that Stein’s Lemma asserts that if x and y are multivari-
ate normal, if g is everywhere differentiable and if E[g′(y)] < ∞, then Cov(x, g(y)) =
E[g′(y)]Cov(x, y)] and the fact that Covd(d, W h|ǫ) = Covd(d, d′yh|ǫ) = Σ̂yh we get that:

yh =
1

αh + φh
Σ̂

−1
[µ̂ − d0q]

where we also used the fact that in this CARA–Normal setup −Ed[uh′′
|ǫ]

Ed[uh′|ǫ]
= αh, and where

we defined φh := 2λh

Ed[uh′|ǫ]
.

Finally, we’ll derive the expression for αh + φh and show that it does not depend on the
wealth of the institution. In order to accomplish this, we first need to find an expression
for φh. To simplify expressions, define

ρ := (µ̂ − Rfq)′ Σ̂
−1

(µ̂ − Rfq) (6)

It can easily be established that

yh′Σ̂yh = v̄ (and λh ≥ 0) ⇒ αh + φh =

√

ρ

v̄
(7)

yh′Σ̂yh < v̄ (so λh = 0) ⇒ αh + φh = αh (8)

Indeed, assume that yh′Σ̂yh = v̄. Since yh = 1
αh+φh Σ̂(µ̂ − Rfq), this expression becomes

(

1
αh+φh

)2

ρ = v̄. Of course, if yh′Σ̂yh < v̄ then λh = 0 and thus φh = 0.

This implies that αh + φh is independent of W h
0 for given prices,

αh + φh = max

{

αh,

√

ρ

v̄

}

(9)
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Indeed, assume first that yh′Σ̂yh < v̄. Then by (8) we have that αh + φh = αh, so we need

to show that αh ≥
√

ρ
v̄
. Now since yh′Σ̂yh = αh−2

ρ, we know that αh−2
ρ < v̄, so that

indeed αh >
√

ρ
v̄
. Next, assume that yh′Σ̂yh = v̄. Then from (7) αh + φh =

√

ρ
v̄
. So we

need to establish that αh ≤
√

ρ
v̄
, which follows from φh ≥ 0.

Proof of Proposition 1 Before we proceed to the proof, notice that by Walras’ Law,
the markets for the riskless asset and for consumption clear if the market for risky assets
clears. Indeed, denote aggregated FIs quantities by a superscript a: for any quantity x,
∫ ℓ

ℓ
(ηxh,r + (1− η)xh,u)dh = xa. Walras’ Law at times 0 and 2 says that (ya

0 − θa
0) + q′(ya −

θa+ǫ) = 0 [W0] and xa = d0y
a
0 +d′ya [W2]. So assume that ya−θa+ǫ = 0. Then by [W0]

the market for the riskless asset clears as well, and by [W2] we immediately have clearing
of the commodities market, xa = d0θ

a
0 + d′(θa − ǫ), under “normal market conditions.”

We now exhibit a solution to the fixed-point problem of existence. Fix some ǫ ∈ E and
assume first that ℓ > 0. Recall from (4) that

Ψ−1 = η

∫ ℓ

ℓ

1

αh + φh,r
dh + (1 − η)

∫ ℓ

ℓ

1

αh
dh

= η

∫

I1

1

αh
dh + η

∫

I2

√

v̄

ρ
dh + (1 − η)

∫ ℓ

ℓ

1

αh
dh (10)

where I1 :=
{

h ∈ [ℓ, ℓ] : αh >
√

ρ
v̄

}

and I2 :=
{

h ∈ [ℓ, ℓ] : αh ≤
√

ρ
v̄

}

.

In order to solve for the equilibrium, we can either express Ψ (from (10)) as a function of
q and then solve (3) for q, or we can use (3) to express q as a function of Ψ and then solve
(10) for Ψ. We chose the latter approach for obvious reasons.

For convenience, we establish some preliminary calculations and notation. First, insert
the pricing relation (3) into the definition of ρ from (6) to get the expression

√
ρ =

Ψ

√

(θa − ǫ)′Σ̂(θa − ǫ). Second, define the relation

κ(ǫ) :=

√

(θa − ǫ)′Σ̂(θa − ǫ)

v̄
≡ Ψ−1

√

ρ

v̄
(11)

κ(ǫ) represents the ratio of the standard deviation of the dividends of the residual market
portfolio θa − ǫ to the maximal allowable standard deviation of the payoffs of individual
portfolios. By our assumption that αh = h, we can then define the ranges I1 := {h ∈ [ℓ, ℓ] :
αh = h > Ψκ(ǫ)} and I2 := {h ∈ [ℓ, ℓ] : αh = h ≤ Ψκ(ǫ)} to get the functional equation

Ψ−1 = η

∫

I1

h−1dh + η|I2|(Ψκ(ǫ))−1 + (1 − η)

∫ ℓ

ℓ

h−1dh (12)
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Notice that the term m := Ψκ is the marginal regulated investor. Any investor more risk
averse than m does not face a binding VaR constraint and any investor less risk averse than
m does. For simplicity, we drop the explicit dependence of κ upon ǫ wherever no confusion
arises. We have to distinguish 3 cases:

∫

I1

1

h
dh =















∫ ℓ

Ψκ
1
h
dh = ln ℓ − ln(Ψκ) ; Ψκ ∈ [ℓ, ℓ]

∫

∅
1
h
dh = 0 ; Ψκ > ℓ

∫ ℓ

ℓ
1
h
dh = ln ℓ − ln ℓ ; Ψκ < ℓ

; I2 =











[ℓ, Ψκ] ; Ψκ ∈ [ℓ, ℓ]

[ℓ, ℓ] ; Ψκ > ℓ

∅ ; Ψκ < ℓ

The equilibrium relations thus become

Ψ−1 =











ln ℓ − ln ℓ ; Ψκ < ℓ

ln ℓ − η ln(Ψκ) − (1 − η) ln ℓ + η(Ψκ − ℓ)(Ψκ)−1 ; Ψκ ∈ [ℓ, ℓ]

η(ℓ − ℓ)(Ψκ)−1 + (1 − η)(ln ℓ − ln ℓ) ; Ψκ > ℓ

(13)

There is a unique Ψ solving this system. Since ǫ affects Ψ only in as far as it affects κ,
it is useful to point out that the mapping κ 7→ Ψ(κ; η, ℓ) (we often drop the dependency
on η and ℓ if no ambiguity arises and write the mapping as Ψ(κ)), can be characterized as
follows: if η < 1 then

Ψ(κ) =















1
ln ℓ−ln ℓ

; κ ∈ [0, ℓ(ln ℓ − ln ℓ)]
−κ−ηℓ

ηκW−1(−(κη−1+ℓ) exp( 1−η
η

ln ℓ−1−η−1 ln ℓ))
; κ ∈ (ℓ(ln ℓ − ln ℓ), ℓ(1 − η)(ln ℓ − ln ℓ) + η(ℓ − ℓ))

1−(ℓ−ℓ)κ−1η

(1−η)(ln ℓ−ln ℓ)
; κ ≥ ℓ(1 − η)(ln ℓ − ln ℓ) + η(ℓ − ℓ))

(14)

where W−1(·) is the non-principal (lower) branch of the Lambert W -correspondence. Recall
that the Lambert W -correspondence is defined as the multivariate inverse of the function
w 7→ wew. In particular, the solution to ax + b ln x + c = 0 is given by x = b

a
W−1

(

a
b
e−

c
b

)

.
Notice that the mapping Ψ is continuous and that by construction the equilibrium Ψ
satisfies Ψ ≥ γ.

If η = 1, then

Ψ(κ) =



























1
ln ℓ−ln ℓ

; κ ∈ [0, ℓ(ln ℓ − ln ℓ)]

− κ+ℓ

κW−1(−(κ+ℓ) exp(−1−ln ℓ))
; κ ∈ (ℓ(ln ℓ − ln ℓ), ℓ − ℓ)

any number ≥ ℓ
ℓ−ℓ

; κ = ℓ − ℓ

undefined ; κ > ℓ − ℓ

Over the entire domain the function Ψ(κ) is illustrated in figure (3). In the case for η = 1
and κ = 1 − ℓ, which is equivalent to ǫ being on the boundary of E, the equilibrium can
be shown to exhibit real indeterminacy.
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Proof of Proposition 3 As preliminaries, let us record the following useful results:

J1 ∂κ
∂v̄

= −1
2

κ
v̄
, from the definition of κ, and ∂ǫκ = κ−1v̄−1Σ̂(ǫ − θa).

J2 ∂2
ǫ,v̄Ψ = − 1

2v̄

[

κ∂2Ψ
∂κ2 + ∂Ψ

∂κ

]

∂ǫκ. Indeed, since ∂v̄Ψ = ∂Ψ
∂κ

∂κ
∂v̄

, we know from J1 that ∂2
ǫ,v̄Ψ =

d
dǫ

(

∂Ψ
∂κ

∂κ
∂v̄

)

=∂κ
∂v̄

∂2Ψ
∂κ2 ∂ǫκ + ∂Ψ

∂κ
∂ǫ

(

−1
2

κ
v̄

)

.

J3 ∂ǫQ is positive definite (downward-sloping equilibrium inverse demand). Indeed, ∂ǫQ =

R−1
f

[

ΨΣ̂ − Σ̂(θa − ǫ)(∂ǫΨ)′
]

=R−1
f

[

ΨΣ̂ + Σ̂(θa − ǫ) (θa − ǫ)′Σ̂κ−1v̄−1 ∂Ψ
∂κ

]

, positive

definite.

J4 dΨ
dκ

= 1−Ψ(ln ℓ−ln(Ψκ))

κ(ln ℓ−ln(Ψκ))
, strictly positive for Ψκ > ℓ. Indeed, totally differentiate (13), and

use (13) to sign.

The idea of the proof is to show that ∂2
ǫ,v̄Q is negative definite. Intuitively, we want to

show that the market impact of a trade goes up as the regulation is tightened, i.e. that
∂
∂v̄
|(dq)′(dǫ)| = ∂

∂v̄
[(dq)′(dǫ)] < 0 since (dq)′(dǫ) > 0 as ∂ǫQ is positive definite by J3. Now

this expression equals ∂
∂v̄

[(dǫ)′∂ǫQ(dǫ)] = (dǫ)′∂2
ǫ,v̄Q(dǫ) < 0 for all dǫ 6= 0, but that’s the

definition of negative definiteness.

Before we show that ∂2
ǫ,v̄Q(dǫ) is negative definite, we want to relate this idea with the

definition of shallowness, s(ǫ, v̄) := maxθ |θ′(∂ǫQ)θ| such that ‖θ‖ = 1, namely that ∂s

∂v̄
< 0

iff ∂2
ǫ,v̄Q negative definite. Indeed, pick any θ such that ‖θ‖ = 1, then it is immediate that

∂(θ′∂ǫQθ)
∂v̄

= θ′ (−∂ǫ,v̄Q) θ, which proves the claim. A tighter v̄ makes ∂ǫQ more positive
definite.

The pricing function is Q(ǫ, v̄) = R−1
f

[

µ̂ − ΨΣ̂(θa − ǫ)
]

, from which we can deduce that

∂v̄Q = −R−1
f Σ̂(θa − ǫ)dΨ

dv̄
, and furthermore that ∂2

ǫ,v̄Q = R−1
f Σ̂dΨ

dv̄
− R−1

f Σ̂(θa − ǫ)∂2
ǫ,v̄Ψ.

This expression can be simplified, using J2, to

∂2
ǫ,v̄Q = −1

2
R−1

f

∂Ψ

∂κ

κ

v̄
Σ̂ − 1

2
R−1

f v̄−2

[

∂2Ψ

∂κ2
κ +

∂Ψ

∂κ

]

[

Σ̂(θa − ǫ)(θa − ǫ)′Σ̂
]

κ−1

The first term is negative definite, while the second one is negative semidefinite. In-

deed, it can be shown that the expression
[

∂2Ψ
∂κ2 κ + ∂Ψ

∂κ

]

is strictly positive, while the term
[

Σ̂(θa − ǫ)(θa − ǫ)′Σ̂
]

is clearly positive semidefinite. This concludes the proof that ∂2
ǫ,v̄Q

is negative definite.
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Proof of Proposition 4 The variance-covariance matrix of prices is given by

Ω := E[(Q − E[Q])(Q − E[Q])⊤]

=
1

R2
f

Σ̂E[Ψ2(θa − ǫ)(θa − ǫ)⊤]Σ̂ − 1

R2
f

Σ̂E[Ψ(θa − ǫ)]E[Ψ(θa − ǫ)⊤]Σ̂

Differentiation this matrix with respect to v̄ we get

∂v̄Ω =
1

R2
f

Σ̂E

[

2Ψ
∂Ψ

∂v̄
(θa − ǫ)(θa − ǫ)⊤

]

Σ̂−

1

R2
f

Σ̂

[

E[Ψ(θa − ǫ)]E

[

∂Ψ

∂v̄
(θa − ǫ)

]⊤

+ E

[

∂Ψ

∂v̄
(θa − ǫ)

]

E[Ψ(θa − ǫ)]⊤

]

Σ̂

In view of the nonpositive sign of ∂Ψ
∂v̄

, both matrices are NSD. We show next that the first
matrix is, in interesting economies at least where the VaR constraint does bind, in fact
ND. Write w := −Ψ∂Ψ

∂v̄
, a positive random variable. By assumption [A], there is a strictly

positive w := infǫ∈E′ w and furthermore

E[(θa − ǫ)(θa − ǫ)⊤1ǫ∈E′ ] is PD

It follows that

det wE[(θa − ǫ)(θa − ǫ)⊤1ǫ∈E′ ] > 0

⇒ det E[w(θa − ǫ)(θa − ǫ)⊤1ǫ∈E′ ] > 0

⇒ det E[w(θa − ǫ)(θa − ǫ)⊤] > 0

This shows that ∂v̄Ω is ND. It follows that stricter regulations (lower v̄) make the variance-
covariance matrix of prices more positive definite, and in particular each variance increases.
Since the variance of a portfolio θ ∈ R

N is θ⊤Ωθ, the variance of any portfolio increases
as (binding) regulations become stricter.

Proof of Proposition 5 Consider any two assets, say assets 1 and 2. Intrinsic inde-
pendence requires Σ̂ diagonal, ǫ1 and ǫ2 stochastically independent, and the absence of
regulations so that Ψ = ϕ. Then Q1(ǫ1) and Q2(ǫ2), so Q1 and Q2 are stochastically
independent.

Since Qi =
[

µ̂i − Ψ(ǫ)Σ̂i(θ
a − ǫ)

]

/Rf ,

Cov(Q1, Q2) = Σ̂11Σ̂22Cov(Ψθ̃1, Ψθ̃2)
1

R2
f

≥ 0

with Ψ(θ̃1, θ̃2). The last inequality follows from the fact that independent rvs are associated,
see Esary et al. (1967). Indeed, with θ̃1 stochastically independent of θ̃2, any increasing
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functions (φ1, φ2) satisfy Cov(φ1(θ̃1, θ̃2), φ2(θ̃1, θ̃2)) ≥ 0, i.e. (θ̃1, θ̃2) are associated. Since
the VaR constraint is binding over a subset of states for some level of regulation, a strict
inequality follows.

Proof of Proposition 6 Define by v∗(ǫ) the weakest level of regulation for which all
RFIs hit their VaR constraints and by v∗(ǫ) the weakest level of regulation for which there
is at least some RFI with a binding VaR constraint.13 In order to ascertain the probability
of failure in refinancing we need to study the mapping (we have used the fact that in
equilibrium yh,t = Ψ

h+φh,t θ̃
a
)

h 7→ Sh,t :=
Ψ

h + φh,t
(K + q)′θ̃

a − 1

ℓ − ℓ

[

q′θ̃
a
+ θa

0

]

and Sh := ηSh,r + (1 − η)Sh,u.

F1
∫ ℓ

ℓ
Shdh = K ′θ̃

a − θa
0 , irrespective of v̄.

F2 Sh is continuous in h.

Assume [B] holds and that for a given ǫ, v̄ ∈ (v∗(ǫ), v
∗(ǫ)), then Ψκ ∈ (ℓ, ℓ) and Sh satisfies:

F3 Sh,r = Sh′,r, all h, h′ ≤ Ψκ. For such h and h′ with a binding constraint, Ψ
h+φh = κ−1

(this is shown in the proof of Proposition 1), so Sh does not depend on h.

F4 Sh,r < Sh′,r for h > h′, h > Ψκ, and Sh,u < Sh′,u for h > h′. Pick for instance h > Ψκ
and h′ < Ψκ. Then Sh,r − Sh′,r =

(

Ψ
h
− κ−1

)

[(K + q)′θ̃
a
] < 0 by [B2] and by the

fact that Ψ
h
− κ−1 < 0 due to the assumption h > Ψκ.

F5 Consider either an arbitrary (h, u), or an (h, r) with h > κΦ. Then some algebra reveals

that ∂Sh,t

∂v̄
< 0 iff h > h̃(v̄) := Ψ(ℓ − ℓ) − (ℓ−ℓ)Rf (K+q)′θ̃

a

θ̃
a′

Σθ̃
a

. For (h, r) with h < Ψκ,

∂Sh,r

∂v̄
> 0 always holds true.

For a given v̄, recall that the event Fv̄ is defined as
{

ǫ ∈ E : S(v̄) :=

∫ ℓ

ℓ

[

η max{0, Sh,r(ǫ, v̄)} + (1 − η) max{0, Sh,u(ǫ, v̄)}
]

dh > S̄

}

Recall that for an ǫ ∈ E (which can occur only if η = 1) the autarky allocation results, and
by [B1] the autarky allocation can never lead to a critical imbalance, so we set Sh(ǫ, v̄) ≡ 0
for ǫ ∈ E. We now show that Fv̄ ⊂ Fv̄′ if v̄ < v̄′. So pick ǫ ∈ Fv̄. Then S(v̄) > S̄.

13It can be easily verified that v∗(ǫ) = (θa−ǫ)′Σ̂(θa−ǫ)

[ℓ(1−η)(ln ℓ−ln ℓ)+η(ℓ−ℓ)]2
and v∗(ǫ) = (θa−ǫ)′Σ̂(θa−ǫ)

[ℓ(ln ℓ−ln ℓ)]2
. Set both

terms equal to zero if η = 0.
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If ǫ is so that Sh as a function of h is either uniformly nonnegative or uniformly nonpositive,
then by F1 S(v̄) = S(v̄′). It follows that ǫ ∈ Fv̄′ .

Otherwise if Sh is neither nonnegative nor nonpositive for all h (and there must be a non-
null set of such ǫ by [B3]), then we have two cases. Consider first the case h̃ > Ψκ. If

Sh̃(v̄) = Sh̃(v̄′) > 0, then by F4 (the absolute value of) the integral of the negative part
of Sh(v̄′) is larger than the one of Sh(v̄). Since by F1 the overall areas must coincide, the
integral of the positive part of Sh(v̄′) is larger than the one of Sh(v̄), i.e. S(v̄′) > S(v̄). If

on the other hand Sh̃(v̄) = Sh̃(v̄′) < 0, then we can focus on the positive parts of the two
functions directly, since in that case Sh(v̄′) > Sh(v̄′) for h s.t. Sh(v̄) > 0, from which again
we can deduce that S(v̄′) > S(v̄).

Consider now the case h̃ < Ψκ. By the assumption that h̃ < Ψκ, Sh(v̄′) < Sh(v̄) for all
h > Ψκ. The area of the negative part of Sh(v̄′) is larger than the one of Sh(v̄), so (again
by F1) must be the positive areas, i.e. S(v̄′) > S(v̄).

It follows that ǫ ∈ Fv̄′ and that Fv̄ ⊂ Fv̄′ .

Now we show that if η = 1 and P(θa
0 ≥ K′θ̃

a
) = 1, then P(L ∩ F) = 0 for small enough

v̄. As long as E 6= {θa}, there is a nonempty set U := {(v̄, ǫ) ∈ R+ × E : v̄ = v∗(ǫ)}. By
definition, in each constellation in U all FIs face binding constraints, and κ = ℓ − ℓ and
Ψ = ℓ

ℓ−ℓ
. We see that Sh = 1

ℓ−ℓ
[K ′θ̃

a−θa
0 ] ≤ 0, irrespective of h, and S = 0 < S̄. Therefore

the result follows for all v̄ ≤ infǫ∈E v∗(ǫ).
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ǫ2

ǫ1

E(v̄1)E(v̄2)
θa

Figure 2: Equilibrium ellipsoids with increasingly restrictive risk con-

straints

In this scenario there are two assets, and in the absence of any regulations, equilibria

exist for ǫ ∈ R
2. When the risk constraint is v̄1, the set of ǫ that can be supported by

an equilibrium is the larger ellipsoid, and includes zero noise trader demand. However

a more restrictive constraint v̄2 does not include zero net demand, and hence equilibria

do not exist if noise trades are zero.
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Ψ(κ)

0 ℓ − ℓ

γ

1
ℓ−ℓ

ℓ(ln ℓ − ln ℓ)

Figure 3: Illustration of the reward-to-risk function Ψ(κ) when η = 1 and

ℓ > 0.
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No Constraint
Q(·,∞)

Weak Constraint
Q(·,v̄′)

Strict Constraint
Q(·,v̄)

θa
θ

a
θa

Q

ǫ

Figure 4: Pricing Function

The pricing function without constraints and with increasingly binding constraints,

∞ > v̄′ > v̄. The downside effects become more pronounced as the constraint becomes

stricter.
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