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Abstract

In this paper we compare overall as well as downside risk mea-
sures with respect to the criteria of first and second order stochastic
dominance. While the downside risk measures, with the exception of
tail conditional expectation, are consistent with first order stochastic
dominance, overall risk measures are not, even if we restrict ourselves
to two-parameter distributions. Most common risk measures preserve
consistent preference orderings between prospects under the second
order stochastic dominance rule, although for some of the downside
risk measures such consistency holds deep enough in the tail only. In
fact, the partial order induced by many risk measures is equivalent to
sosD. Tail conditional expectation is not consistent with respect to
second order stochastic dominance.
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1 Introduction

The stylized fact that financial returns exhibit fat tails, implies that variance
(or “volatility”) is not an ideal measure of risk for many applications. Volatil-
ity is an overall risk measure, with outperformance risk treated the same as
underperformance risk. In applications depending on risk, such as pension
portfolio choice, risk management and regulatory capital, more sophisticated
risk measures than variance are needed since the upward potential is of lesser
relevance. An alternative approach would be to model the distribution re-
turns parametrically, but as a practical matter this is often not feasible be-
cause of the difficulties in identifying the appropriate distribution. For this
reason risk measures are often used. Of such risk measures, Value-at-risk
(VAR) has, for better or worse, become a central plank in bank regulations
and internal bank risk management. While VAR is in some aspects superior
to volatility as a measure of risk, VAR has come under considerable criti-
cism, not the least because of its lack of subadditivity. It is therefore not a
coherent risk measure as defined by Artzner et al. (1999), but as Danielsson
et al. (2005) argue, VAR is still subadditive in the tail region. Other risk
measures have been advocated instead.

In general, one can view risk measures as belonging to one or more cate-
gories, such as coherent (see Artzner et al. (1999)), consistent (with respect
to stochastic dominance), practical (as in easy to implement) and so forth.
An unresolved issue is the complete characterization of the respective inter-
sections. In this paper we focus on the consistency property. It is known for
instance that coherent risk measures need not be consistent and vice versa.'

Our objective in this paper is to examine whether the most commonly used
risk measures are consistent from a decision point of view, i.e. consistent with
respect to first and second order stochastic dominance (FOSD, SOSD, respec-
tively). Wherever possible, we shall provide the converses, i.e. statements of
the sort: if a risk measure always attaches less risk to X than to Y, then X
stochastically dominates Y (to some order). In classical utility theory, the
notion of stochastic dominance is intrinsically related to the concept of max-
imisation of non—decreasing or concave expected Von Neumann-Morgenstern
(VNM) utility functions. In particular, the first order stochastic dominance
of a risky asset X over a risky asset Y is equivalent to saying that any
expected utility maximising investor preferring more to less always weakly

!See the example in De Giorgi (2005) for an example of a probability space on which
two random variables and a coherent risk measure are defined, but where the risk measure
is not consistent. As to the converse, examples can easily be constructed based on results
in this paper whereby VAR for instance is consistent but not coherent.



prefers X to Y. Similarly, saying that X dominates Y in the sense of second
order stochastic dominance is equivalent to saying that all risk averse in-
vestors with an expected concave utility function would always weakly prefer
X to Y. The question we pose is therefore the following: if X stochastically
dominates Y to some order, so that all investors within the class of either
non decreasing or concave utility functions prefer X to Y, does the given risk
measure provide the same ordering? If the answer is affirmative for all non
decreasing utility functions, the risk measure is said to be consistent with
respect to FOSD. If the answer is affirmative for all concave utility functions,
we call the risk measure consistent with respect to SOSD, or simply consistent.
We answer this question for arbitrary distribution functions. Since stochastic
dominance is a partial order only, and consistency with stochastic dominance
is therefore inherently a weak statement, we believe consistency is a minimal
desirable requirement for any risk measure to satisfy.

Dhaene et al. (2003) classify risk measures based on whether they consider
the entire set of outcomes, referred to as overall risk measures, or only the
tails, the so-called downside risk measures. Of the former, second-moment
based risk measures such as volatility and beta are the most common, but we
also consider the interquartile range (which is for instance a useful measure
in circumstances where the first two moments do not exist). Of the downside
risk measures, we consider value-at-risk (VAR), tail conditional expectation
(TCE), expected shortfall (ES), lower partial moments (LPM) of the ze-
roth, first and second order (see Bawa, 1975), as well as the Omega function
(Keating and Shadwick, 2002).

Fishburn (1977) shows that LPM retains a preference ordering of assets con-
sistent with the first order stochastic dominance rule (FOSD). Kaplanski
and Kroll (2000) demonstrates under simplifying conditions this also holds
for VAR. This implies that an investment choice based on LPM and VAR
is consistent with the choice of an expected utility maximising rational in-
vestor. We extend these results by also considering the overall risk measures
and some downside measures such as TCE, ES and 2. We find that all
the common downside risk measures considered are consistent with FOSD,
with the notable exception of TCE. Furthermore, we show that overall risk
measures do not preserve the same preference ordering of assets as under
the FOSD rule, even under the additional simplifying assumption of belong-
ing to a two-parameter family of distributions. The intuition is that even
if a prospect Y has overall a higher risk than X, Y could still be preferred
by some non satiated expected utility maximiser over X, since less overall
risk typically means both less downside risk and less upside risk. Downside
risk measures are not affected by this tradeoff by definition and are therefore



bound to be more consistent with FOSD.

Regarding the SOSD criterion, wee show that most common risk measures
studied herein are consistent. Fishburn (1977) has shown consistency of the
LPMs with sosD. For some, such as VAR and IQR, we show this is true over
a range of quantiles defined by crossing properties of distribution functions,
for others (variance, beta, Omega, ES) consistency holds overall.

In fact, we also derive the converse for FLPM, ES and €2 in the sense that for
equal means, the ordering induced by those three risk measures implies SOSD.
The consistency found in the tails implies that at least in the most relevant
regions of the asset returns, all measures of risk provide investment guidance
which is consistent with the utility based selection of a risk averse investor.
For instance, VAR is both consistent and coherent in the tails. We further
strengthen those consistency relationships if the distribution functions belong
to the same two-parameter family of distributions. For instance, SOSD is
shown in fact to be equivalent to the ordering induced by any of the overall
risk measures considered.

The intuitive and common sense measure TCEx := —FE[X|X < —VARy]|
is neither consistent with FOSD nor with SOSD in general, unless distribu-
tion functions satisfy certain continuity conditions. In other words, TCE
may not be consistent when returns can have point masses such as those
occurring naturally in case of assets that are subjected to defaults, or as-
sets whose returns are modelled discretely (e.g. those based on binomial
steps), or portfolio returns whose distributions are mixtures of continuous
and discrete distributions due to derivatives such as options or path depen-
dent derivatives. Expected Shortfall is defined as TCE plus a correction
term for discontinuities in the distribution function. In view of the fact that
TCE is what many practitioners call “expected shortfall,” caution must be
applied since this measure of risk is in general neither coherent (see Artzner
et al. (1999)), nor consistent in our sense. The variant of TCE which is ES
(following Acerbi et al. (2001)), is known to be coherent (Acerbi and Tasche
(2002)). We show ES also is consistent.

2 Risk measures

This paragraph introduces the notation. Suppose that X and Y are two risky
asset returns with distribution functions Fly and Fy respectively. A point of
discontinuity corresponds to a point with strictly positive mass. The upper
p—quantile gx(p) is defined as sup{x : Fx(z) < p}. The lower p-quantile
is the generalized inverse function Fig!(p) := inf{z : Fx(z) > p}. Thus if
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Fx is strictly increasing at level p (has no flats, but can be discontinuous),
then gx(p) = Fx'(p). While if Fy is continuous but has a flat stretch
at p, then Fy'(p) < qx(p). It follows that whenever Fy is continuous,

Fx(gx(p)) = F&(Fgl(p)) = p, and if Flx is strictly increasing and continuous,
then Fiy'(p) = Fx'(p) = ax(p)-

Further, X and Y have expected values py := E[X] := [, 2dFx(z) and
py = E[Y] := [, zdFy(z) (if the integrals exist). If second moments exist,
we denote by oy and oy the standard deviations of X and Y respectively.

We consider two sets of risk measures, viz., overall risk measures and down-
side risk measures. We use the definitions of Dhaene et al. (2003):

e An owerall risk measure is a measure of the “distance” between the
risky situation and the corresponding risk-free situation when both
favourable and unfavourable discrepancies are taken into account.

e A downside risk measure is a measure of the “distance” between the
risky situation and the corresponding risk-free situation when only un-
favourable discrepancies contribute to the “risk”.

The various risk measures considered in each category are as follows.

2.1 Overall risk measures

1. Variance 0% (provided it exists), is given by

o2 = /Oo (z — E[X])%dFx (z)

—00

2. Market risk Bx is given by (assume that 0% < 00, 0 < 0% < o)

0x
Bx = PX R ——
OR

where px g is the correlation coefficient between X and R, the market
portfolio, and o and ox are the standard deviations of R and X
respectively.

3. The interquartile range (IQR) measure reads

IQR = ¢x(3/4) — qx(1/4)



The IQR measure is sometimes used as a measure of overall risk when the
second moment is not bounded. For example, for symmetric a-stable distri-
butions with 1 < o < 2 the standard deviation does not exist, but the scale
can be captured by IQR (Fama and Roll, 1968).

2.2 Downside risk measures

Risk measures considered under this category are lower partial moments of
second, first and zeroth orders, Value-at-Risk, tail conditional expectation
and expected shortfall. We also include Omega. Lower partial moment
of order n is computed at some fixed quantile ¢, and defined as the n'*
moment below ¢q. Bawa (1975) developed the lower partial moment concept.
Subsequently these measures were studied rigorously by Fishburn (1977).

1. Second Lower Partial Moment or Semi-variance (SLPM) is defined as?
q q
SLPM(q) := / (¢ —2)%dFx(x) = 2 / (¢ — 2)Fx (x)dz
assuming that fi)oo r?dFx(r) < oo.

2. First Lower Partial Moment (FLPM)
q q
FLPM(q) := / (g —x)dFx(x) = / Fx(z)dx
The equality follows again from integration by parts, provided [ f]oo xdFx >

—0OQ.

3. Zeroth Lower Partial Moment (ZLPM)

q

ZLPM(q) ::/ dFx = Fx(q)

—0o0

4. Value-at-Risk (VAR): If the ZLPM(q) is fixed at p, then the negative
of the upper quantile gives the Value-at-Risk as

VAR (p) :== —qx(p)

VAR is defined as the maximum potential loss to an investment with
a pre-specified confidence level (1 — p).

2The second equality follows from integrating by parts, using the fact that
f_ooo 22dFx (z) < oo implies lim,_, _ o 22 Fx (x) = 0 and the fact that ffoo 22dFx(z) <

implies that fi}o xdFx > —oo, which in turn implies that lim,_, ., xFx(z) = 0.

6



5. Tail Conditional Expectation (or “TailVAR”): TCE at the confidence
level (1 —p) < 1 is defined as

TCEx(p) := —E[X|X < —VARx(p)]

o ax(p) dFX(z) - 1 ax (p) N
B /oo : Fx(qx(p)) QX(p)+FX(QX(p))/oo Fx(z)d

The last equality (provided p > 0 and ff)oo xdFx > —o0) follows from
integration by parts. Some authors and most practitioners call this risk
measure “expected shortfall” (ES). We follow Artzner et al. (1999) by
calling it TCE and follow Acerbi et al. (2001) by reserving the term
ES for the following variant.

6. Expected Shortfall: ES at the confidence level (1 —p) < 1 is defined as

ax (p)
BSx(p) = — ([ dFx(2) = ax(p)|Fx(ax(r)) ~ 1)

 TCEx(p) + FX<qX]<j’>> ~PITCEx(p) — VARx(p)
IR
= _]—9/0 Fi(2)dz

The last equality is due to Acerbi and Tasche (2002)* who also show
that ESx is in fact identical to the risk measure known as “Con-
ditional Value-at-Risk.” Notice that when F'x is continuous, then
Fx(gx(p)) = p and ES and TCE coincide.* If on the other hand
Fx is not continuous and p ¢ Fx(R), then by definition of ¢x(p) the
event {X < ¢x(p)} has probability Fix(¢x(p)) > p, in which case TCE
might violate subadditivity. To ensure subadditivity (and consistency,
as we show later), the relevant amount has been substracted, and some
authors (e.g. Acerbi and Tasche (2002)) reserve the term ES for this
subadditive transformation of TCE, as we do here. Also, notice that
ESX(p) Z TCEx(p>

3These authors also show that ES is not quantile dependent in the sense that in the
definition of ES, the upper quantile gx(p) can be replaced by any a € [F)zl(p%qx ()]
without affecting the function ES.

4More generally, ES and TCE coincide iff for each p € [0, 1], either Fx(qx(p)) = p or
P(X < gx(p)) = 0.



7. Omega: (x is a risk measure® defined as

[?. Fx(z)dz
T - B

Qx(q) =

3 Stochastic dominance and consistency

One of the basic properties any risk measure ought to satisfy is second order
stochastic dominance, SOSD. Whether investors do or do not act according
to the axioms of expected utility, it nevertheless does not seem satisfactory
for a risk measure to indicate that Y is riskier than X if all risk averse
expected utility maximizers believe otherwise. The case for a risk measure to
satisfy first order stochastic dominance, FOSD, is much weaker since FOSD is
a much stronger concept that goes beyond risk and is also a statement about
expected returns. In fact, in Proposition 1 we show for instance that for X
and Y belonging to a two parameter distribution family, if X dominates Y
to the first order then we must have ux > uy and ox = oy. If the prospects
belong to a two-parameter family, FOSD cannot therefore be a meaningful risk
ordering. Nevertheless we briefly review FOSD and some connections between
FOSD and risk measures. We do this not least because below the first crossing
point of the distribution functions of X and Y, one of the two must dominate
the other to the first order, and tails do matter for risk analysis.

3.1 First Order Stochastic Dominance (FOSD)

We say that asset X First Order Stochastically Dominates asset Y, denoted
by XFospY if Fx(z) < Fy(z) Vz, where z € S C R, the common support
of the random variables. This means that the probability of asset return
X falling below a specified level z is smaller than that of asset return Y
falling below the same level. Define the following families of utility functions.
Und := {u : R — R| u non decreasing } and U¢ := {u : R — R| u concave}.
Notice that elements in U¢ need not be non decreasing.

If S is compact, first order stochastic dominance of X on Y gives rise to the
following equivalent statements:

°Due to Keating and Shadwick (2002), Omega has originally been designed as the
[ (1-Fx (2))dz

T e balancing upside potential and risks.

performance measure



1. XFospY
2. XLy ¢ €, € > 0, where 2 denotes distributional equivalence.

3. E[u(X)] > E[u(Y)] for all u € U™,

The equivalence 1 < 3 is due to Quirk and Saposnik (1962) and Hanoch and
Levy (1969).

Since this paper is concerned with risk measures and tail risk, we are also in-
terested in the general case for which S = R. The previous relationships still
hold, provided some integrability conditions are met. The equivalence 1 < 3
applies for utility functions in {u : R — R| u non-decreasing, continuous
and [udFy — [ udFy well defined}. Well defined means that it is not of the
form oo —oo. This result is in Brumelle and Vickson (1975) and in Tesfatsion
(1976). Strict results (i.e. where there is a point zy s.t. Fx(20) < Fy(20))
can also be reported.

In the equivalence statement above, the second equality (2.) implies that
lx > ly, but the converse is not true in general. It follows that ranking
random variables according to FOSD is not a pure risk ranking.

3.2 Second order stochastic dominance (SOSD)

We say that asset X Second Order Stochastically Dominates asset Y, denoted
by X sosp Y, iff

Ux = My (1)
/ Fy(2)dz < / Fy(2)dz Vg (2)

—00 —00

Assume that S is compact (or that S = R and that X and Y are essentially
bounded). The following equivalent statements arise from the definition of
second order stochastic dominance of X on Y:

1. X sosp Y

2. X 2Y +v, where Ev|X]=0

6We follow the standard textbook definition (e.g. Huang and Litzenberger (1988)).
There is, however, no unanimous agreement in the literature. Sometimes our SOSD partial
ordering goes under the name of “Increasing Risk” or “more risky than” following Roth-
schild and Stiglitz (1970) (who do not use the term “second order stochastic dominance”),
with the term SOSD defining the inequality (2).



3. Elu(X)] > E[u(Y)] for all u € U°.

The equivalence 1 < 3 is due to Hadar and Russell (1969) (in fact, they also
impose u € C') and Hanoch and Levy (1969). Equivalences 1 < 2 and 2 < 3
are due to Rothschild and Stiglitz (1970).

Consider the general case with possibly unbounded support S = R. We have
1 < 3 for all utility functions in {u : R — R| uw non decreasing and concave,
fudFX —fudFy well defined, ffoo udFx > —oo and ffoo udFy > —o0}, see
Tesfatsion (1976). The equivalence 2 < 3 holds for all functions in U°, see
Brumelle and Vickson (1975) for a statement based on a result by Strassen
(1965). Strict results can also be reported.

If second moments exist for X, then a direct implication of statement (2) is
that 0% < o%. Thus if 0% < oo and X soSD Y then px = py, and 0% < 0%;
however the converse is not necessarily true. Classes of distributions for
which it is true will be outlined in the sequel (Proposition 3).

In this paper, we always assume that the integrability conditions that warrant
these equivalences hold.

3.3 Consistency

Let M be any one of the risk measures defined before, and let Mx(7) be
the risk measure for prospect X at the parameter value = € II (7 is typically
a quantile or a probability).

Definition 1 We say that M is consistent with stochastic dominance (SD)

if
XspY

then
fo./\/ly ( 1.€. Mx(ﬂ)ﬁ./\/ly(ﬂ), CL”’/TEH)

Stmilarly, we say that M is partially consistent with SD if XSDY implies
Mx < My over a subset of 11.

As we have argued before, consistency is a desirable property of a risk mea-
sure. For instance, a measure inconsistent with sosD would indicate, for
some pair of prospects X and Y, that X is riskier than Y while each and
every risk-averter would rather have X than Y. This would make it an un-
suitable risk measure. In fact, for many of the risk measures studied in this
paper we shall prove equivalence with sosDp, XsospY iff My < My.
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4 Comparing risk measures when X domi-
nates Y in the sense of first order stochastic
dominance

For the overall risk measures considered in this paper, it is easy to observe
that for unknown F'y and Fy, the first order stochastic dominance of X over
Y does not lead to an unambiguous ordering between assets with respect
to any of the overall risk measures. However, as shown in Proposition 1
below, the special assumption that X and Y belong to the same family of
two parameter distributions (e.g Gaussian) allows us to establish that FOSD
only leads to equivalence relationships between assets with respect to the
overall risk measures. In other words, FOSD is not a useful criterion by
which to judge risk measures. The fact that overall risk measures are not
consistent (even if we restrict distributions to two-parameter families) is not
in itself so surprising, for XFOSDY is equivalent to the statement that any
nonsatiated investor prefers X over Y, whether risk averse or not. One
would, however expect to be able to say something about the consistency
of downside measures because less downside risk tends to mean more upside
risk, which is of relevance to a nonsatiated investor.

Some results on downside measures already exist in the literature. From
Fishburn (1977) and Kaplanski and Kroll (2000), we know that regardless
of the distribution of X and Y, assets can be unambiguously ordered with
respect to SLPM, FLPM, ZLPM and VAR. Furthermore, the ordering is
consistent with the FOSD rule. We complement these results by establishing
new results on ES. We list all these results in Proposition 1. Asset X is
said to dominate asset Y under a specific risk measure p if px < py. Notice
that the orderings below are pointwise orderings of functions. For instance
ESx < ESy means ESx(p) < ESy(p) for all p € (0, 1] and Qx < Qy means
Qx(q) < Qy(q) for all ¢ € R. The statement TCEx ? TCEy means that for
arbitrary distribution functions we are neither assured that TCEx < TCEy
nor the other way around, and that there are cases of F'y and Fy whereby
TCEx(p) < TCEy(p) for some p and TCEx(p) > TCEy (p) for other p.

Proposition 1 If X FosSD Y, then regardless of the distributions of X and
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Y, the following relationships hold:

SLPMy < SLPMy (3)

FLPMy < FLPMy (4)

ZLPMy < ZLPMy (5)

VARx < VaRy (6)

ESxy < ESy (7)

Oy < Q (8)

TCEy ? TCEy 9)

Assume moreover that X and Y are such that Fx(z) = Fy(y) whenever

% = % If X FOSD Y, then the following relationships hold as well:

ox = oy, py < px (10)

Proof :

Rela’{ionships (3), (4) and (5) follow from Fishburn (1977). Relationship (6)
follows from the observation that because F'x(q) < Fy(q), all ¢ € R, we have
{z: Fy(z) < p} C{z: Fx(z) < p}, and therefore that the suprema satisfy
qx(z) > qv(2), Vz € R.

Notice that if Fy(z) > Fx(z) all 2, then {2 : Fx(2) > p} C {2 : Fy(2) > p},
so that the infima satisfy Fi'(p) > Fy''(p). Therefore ESy(p) — ESx(p) =
—]l) JEIFy H(2) = Fx'(2)]dz > 0, as required for (7).

As to (8), Omega is consistent since Qx < Qy iff

[/qoo[l—FX(z)]dz} U; Fy(z)dz} > [/qoo[l—Fy(z)]dz} U; FX(z)dz].

By FosD, the first term on LHS is larger than the first term on the RHS,
and the same holds for the second term.

In order to prove (9), it is sufficient to provide an example whereby XFOSDY
and yet TCEx(p) > TCEy (p) for a range of p’s and TCEx(p) < TCEy (p)
over some other range. Obviously, the example must be based upon discontin-
uous distributions, so we choose trinomial random variables with realizations
in {0, ¢, 1}. Consider the parameters 0 <n <7 <land 0 < g <1. Fy(z) =
lococqh+1.50 and Fix(2) = Lo<zcgn+ Locpg)m+ 1.1, S0 XFOSDY (strictly).
First, pick p € (n,m). We have gx(p) = gv(p) = ¢, Fx(gx(p)) = 7 and
Fy(gv(p)) = 1. TCEy(p)~TCEx(p) = —q+q+qn—rqn = (1—7"")gn < 0.

12



Now choose p € (m,1). We have gx(p) = 1, gv(p) = ¢, Fx(qx(p)) = 1 an
Fy(qy(p)) = 1. TCEy(p) = TCEx(p) = —q+1+aqn— (gn+ (1 —q)7 )
(1—-m)(1—¢q)>0.

Finally, we prove (10) and (11). Due to the first order stochastic dominance

of X over Y, for any z € R,
ox(z — py)

Oy

Fx(2) < Fy(2) = Fx(2') ; with 2/ := ux +Z
Thus for any z € R it holds that z < 2’ which is equivalent to

[1——)1 <px — Xy
Oy oy

Since this must hold for all z € R, we have ox = 0y and puy < px. From
here, equality (11) follows. [

Proposition (1) indicates that the preference ordering of assets with respect
to the downside risk measures (other than TCE) is consistent with that
under FOSD in the sense indicated. Thus, the choices made using the lower
partial moments of second, first and zeroth order and VAR are consistent
with the choice made under the utility theory framework.” The fact that the
ES ordering follows from the FOSD ordering is interesting. One might have
thought that while Y could have a larger expected shortfall than X given a
tail event of probability p, there could be Y such that a non-satiated investor
might nevertheless prefer Y ex-ante to X, which is FOSD. It is known since
Artzner et al. (1999) that TCE may violate coherence. We further show the
drawbacks of this popular measure by showing that when distributions are
not continuous (for instance if there are point masses attributed to default
events or to derivatives payoffs), then TCE may not be consistent with FOSD
either, and therefore cannot be consistent with respect to SOSD.

5 Comparing risk measures when X domi-
nates Y in the sense of second order stochas-
tic dominance

If asset X dominates asset Y in the sense of second order stochastic domi-
nance, then for unknown Fx and Fy, the risk measure IQR does not provide

It is also clear that we have the following converse: if VAR x(p) < VARy (p) for all
p € [0,1], then XFoSDY'.
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any unambiguous ordering of assets. As far as the other measures are con-
cerned, the ordering of assets by these measures is possible under the SOSD
rule. Such an ordering, however , may only be partial for some of the mea-
sures. We present these observations in Proposition 2 below.

Comparing two betas is useful only if the market return plays a meaningful
role. We have two interpretations in mind. First, assume that the market
with return R is held by a well-diversified risk averse investor who then ranks
the prospects R+ X versus R+Y. We say that XsospgY if (X +R)sosp(Y +
R) and if ox = oy. For the second interpretation, assume that prospects X
and Y have equally volatile idiosyncratic components ex and ey respectively,
where X = ax + xR+ ex, FlexR| = Flex] = 0, and similarly for Y. Then
we say that XsospjY if XsospY and if 0. = o, .

Denote the first crossing quantile of the two distribution functions by gq.
More precisely, g satisfies Fx(z) < Fy(z) for z < ¢, Fx(q) > Fy(q) and
Fx(z) > Fy(z) for z € (¢,q + ¢€) for some € > 0, and there is no smaller such
crossing quantile. If there is no crossing, the results of FOSD apply and we
set ¢ = oo. If there are multiple crossings but no first crossing,® set ¢ = —o0.
Define p := Fy(q).

Proposition 2 Suppose that XsosSDY . Then regardless of the distribution
of X and Y, the following relationships hold (if the respective integrals exist):

ox < oy (12)
SLPMy < SLPMy (13)
FLPMy < FLPMy (14)

ZLPMy(q) < ZLPMy(q), ¥q<q (15)
VARx(p) < VARy(p), Vp<p (16)

ESy < ESy (17)

Qx < Qy (18)
TCEy ? TCEy (19)

Assume that XsosDY, that p € [1/4,3/4] and that no other crossing point
is in [1/4,3/4]. Then

IQRy < IQRy (20)
Assume either that XS0SDgY or that XSOSD’ﬁY, then
Bx < By (21)

8We thank Simon Polbennikov for pointing out that there might be infinitely many
crossing quantiles, in which case ¢ might not be defined.
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Assume X andY are such that Fx(x) = Fy(y) whenever ¥ X = 20 - [f
XsospY, then § = pu:= pux = py and p = Fy(u). Also, always

IQR, < IQR, (22)

Proof :
Relationship (12) is an implication of the definition of SOSD. Fishburn (1977)
has established relationships (13) and (14).

Inequalities (15) and (16) follow from the fact that below the first cross-
ing quantile Fx(q) < Fy(q), and hence X FOsD Y below the first crossing
quantile so that Proposition 1 can be applied below ¢q. For instance we
show (16). For p < p, {z : Fy(2) < p} = {z < ¢ : Fy(2) < p}. The
inclusion D is obvious, while the inclusion C follows from Fy(q) = p >
p > Fy(2), so by non-decreasingness of Fy we must have z < ¢. Simi-
larly, we show {z : Fx(z) < p} = {z < ¢ : Fx(2) < p}. The inclusion
D is again obvious, while the inclusion C follows from the fact that any
Zst. Fx(2) < p <p=F(7 < Fx(q), and so Z < ¢. Finally, no-
tice that {z < ¢ : Fy(2) < p} € {# < ¢ : Fx(2) < p}: pick Z such
that p > Fy(Z) > Fx(Z) since Z < ¢. The suprema must therefore satisfy
gy (p) < gx(p)-

As to (17) recall the result (see Levy (1998) for instance) that if XSOSDY
then fo z)dz > [ Fy'(z)dz, all p € (0,1], and so —1 fo 2)dz >

fo dz for all p € (0 1].
Omega (18) is consistent, since Qx < Qy iff

[/qoo[l—FX(z)]dz] U_: Fy(z)dz} > quu—Fy(z)uZ} U_: FX(z)dz].

The second term on the LHS dominates the second term on the RHS by
definition of sosD. The same is true as to the first terms on each side.
Indeed, a repeated application of integration by parts shows that E[X] =
q+ fqoo[l — Fx(2)|dz — [ Fx(z)dz for any ¢ € R. Since by definition of
sosp E[X| = E[Y], [T Fx(z)dz < [* Fy(z)dz iff [7[1 — Fx(2)]dz <
fqoo[l — Fy(2)]dz, which shows that the first term on LHS dominates the first
term on RHS and establishes the consistency of Omega with SOSD.

Relationship (19) can be shown in a similar vein to (9). We augment the ex-
ample given in that proof in order to ensure ux = py. The two random vari-
ables are now quadrinomial with distribution functions Fy (z) = lo<.<qn +
l.cigqyk + Lisg and Fx(2) = Lo<zcql) + licigq)T™ + 1.>¢, With parameters
satisfying 0 < 7 < m < kK < 1 and realizations 0 < ¢ < ¢ < 1. First, we
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choose « to ensure that pux = py, equivalently that fol [Fy(2)—Fx(2)]dz =0,

ie. Kk = (1_‘1)_(11__;)(‘1/_‘1). It can be checked that always x € (m, 1). Clearly,
XsospY. Now we show that for p € (n, 7) we have TCEy (p)—TCEx(p) < 0
while for p € (7, k) we have TCEy (p) — TCEx(p) > 0. Pick any p € (n, 7).
Then gx(p) = av(p) = ¢, Fx(ax(p)) = 7 and Fy(qv(p)) = k. It follows
that TCEy(p) — TCEx(p) = (k™! — 77 1)gn < 0. Finally, pick p € (7, k).
Then gx(p) = ¢, gv(p) = ¢, Fx(gx(p)) = Fy(gv(p)) = 1. It follows that
TCEy(p) — TCEx(p) = (¢ —q)(1 —7) > 0.

Inequality (20) is immediate. Inequality (21) for the first interpretation fol-
lows from the fact that if (X + R)S0SD(Y + R), then oxyr < oy g, which in

2 9

turn is equivalent to Gx < ﬁy—F% = By. As to the second interpretation,
R

XsospY implies that 0% < oy, i.e. B30} + 02 < fyof + o2, . With equal

idiosyncratic variances, the result follows.

Inequality (22) is shown as follows. For g < @, Fx(q) < Fy(q) = Fy (M—I—

oy

[Lx), ie. iff q(l — ‘;—;‘) < u(l — ‘;—)Y‘) If ox = oy, then both distribu-
tion functions coincide, and the result follows since all inequalities hold with
equality. If they do not coincide (0x < oy), then the inequality becomes
q < pi=py = pix. Then p = Fy(p).

Recall that IQRy — IQRy = qx(3/4) — qx(1/4) — qv(3/4) + qv(1/4). Also,
by the assumption of belonging to the same two-parameter family, gy (p) =
py + (gx(p) — ,ux)g—)’;. Substituting this into the difference equation, we get

IQRy —IQRy = (1 — 2)[gx(3/4) — qx(1/4)] < 0since ox < oy by SOSD.

ox

Thus, under the second order stochastic dominance of X over Y, we can
order random variables under the overall risk measure o and the downside
risk measures SLPM, FLPM, ES and 2 consistently without any explicit
distributional assumption.

Market beta risk also leads to an unambiguous ordering. As to the first
interpretation, we show that for two equally volatile prospects, if any well-
diversified risk averse investor prefers X to Y, then X has less systematic
risk than V.9 As to the second interpretation, if any risk averse investor (not

9The role of ox = oy is as follows. Assume first that we do not impose ox = oy. Then

the ordering implied by (X + R)sosD(Y + R) is fx < fy + U%;ﬁf . A risk averter might
prefer the prospect X to Y even if the diversification benefits as encapsulated in Sx are
less than the ones provided by By if in return X is by itself sufficiently less volatile than
Y. So the real test should be the following: for two prospects X and Y with equal means

and equal standard deviations, if XS0SDgY, i.e. if any representative risk averter prefers
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necessarily well-diversified) prefers prospect X to Y, with both prospects
having equally volatile idiosyncratic shocks, then X has lower systematic
risk than Y.

As far as the other measures are concerned, the downside risk measures
ZLPM and VAR retain partial SOsD-consistent ordering of assets under ar-
bitrary (not known) asset returns distributions, partial meaning below the
first crossing quantile of the two distributions. VAR is therefore both coher-
ent and consistent in the tail, provided there is a first crossing point. For
ZLPM and VAR, we have a reversal of the ordering immediately to the right
of the first crossing points. In that sense, the results reported in Proposition
2 are tight. As observed before, TCE is not in general consistent with SOSD,
unless more is known about distributions, such as continuity.

If asset returns are distributed according to the same two-parameter family
(with different parameters), then we can show that on top of the preservation
of the orderings as spelled out in Proposition 2, IQR also preserves the
same preference ordering as under the sosD rule for the entire range of the
distributions.

Furthermore, the following converses and equivalences can be shown:
Proposition 3 The following are equivalent:

1. XsospY

2. ESx < ESy and ESx(1) = ESy(1).

3. Qx < Qy and Q3 (1) = Q. (1).

4. FLPMx < FLPMy and lim,_,[FLPMy(¢) — FLPMx(¢)]=0

Assume for the remainder of the proposition that X and Y are such that
Fx(z) = Fy(y) whenever = 1% = 25 and that || < co. The following are
also equivalent:

a. XSosSDY
b. ox <oy and pux = py

c. IQRy <IQRy and pux = py

Finally, are equivalent:

X to Y, then it must be that X provides better diversification than Y, i.e. Bx < By.
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i. XS0SDgY
. Bx < By, px = py and ox = oy
as well as
i’. X'sosDRY
i Bx < By, px = py and o = 0,

Proof :
First we show 1 < 2. The implication = has been shown in Proposition
2. The implication <: can be shown as follows. By a change of variables

one shows that F[X fo p)dp = —ESx(1). Finally, we know from
Levy (1998 ) that fq Fx(z dz g [? Fy(z)dz for all ¢ iff [} Fy'(z)dz >
fo z)dz, all p € (0,1]. Both facts together establish the equwalence.

Now turn to 1 < 3. The implication = has been shown in Proposition
2. The implication < can be shown as follows. It is easy to see that the
Omega function is strictly increasing and satisfies Qx(E[X]) = 1. So as-
suming that Q3'(1) = Q3'(1) is equivalent to saying E[X] = E[Y]. Second,
argue by contradiction and assume that 37 s.t. fio Fx(z)dz > ffoo Fy(2)dz,
equivalently that [[1 — Fx(2)ldz > [[1 — Fy(2)]dz. Then by definition
Qx(q) > Qy(q), which proves the assertion.

Asto 1 < 4, the only thing to check is that lim, . [FLPMy (¢)—FLPMx(q)]
0 is equivalent to E[X] = FE[Y], which is true in view of the fact that
EIX] - E[Y] = [7 [Fy(2) — Fx(2)]d2.

The results for the two parameter families are shown as follows. The proof
that ox < oy is both necessary and sufficient for SOsD if there is a crossing
point is due to Hanoch and Levy (1969). This fact also implies the sufficiency
of the IQR ranking, combined with the observation above that IQRy <
IQRy iff ox < oy. The fact that both XS0SDgY and XSOSD:@Y iff Bx < By
and respective variances are equal follows from this also. [

The risk measures ES, 2 and FLPM generate an ordering of prospects equiv-
alent to sOsSD, provided the means are set equal. The relative usefulness of
the various risk measures then lies in their orderings of prospects where nei-
ther sOSD the other and where a chosen cutoff point reflects the behaviour
of some relevant utility function. For instance in the case of €2, this involves
choosing a critical threshold point ¢ above which the investor considers out-
comes to be gains and below which outcomes are considered to be losses.

18



Since in practice p is way smaller than Fy (i), for two prospects from the same
two-parameter distribution, the ordering based on SOSD implies a consistent
ordering of all the risk measures studied herein in all practical circumstances.
Conversely, the ordering of SOSD is, within such two parameter families,
equivalent to the one induced by any of the overall risk measures as well as
by any of the downside measures with the exception of ZLPM, VAR and
TCE.

6 Conclusion

In this paper we compare the partial orderings induced by a set of commonly
used risk measures with the one given by stochastic dominance of first and
second orders. We show that the overall risk measures do not always display
a consistent preference ordering under the FOSD condition, even after im-
posing the simplifying assumption of two-parameter distributions. However,
regardless of the asset return distributions, the ordering displayed by all the
downside risk measures is consistent with FOSD, with the exception of TCE.

We observe that regardless of the asset return distributions, all risk measures
display consistent preference ordering of assets under the SOSD rule, at least
over the relevant quantile regions, again with the exception of TCE. For
FLPM, ES and 2 the converse holds as well. Under the assumptions of two-
parameter distributions and the existence of a crossing quantile, we show the
converse for the overall risk-measures, so that overall risk measures generate
the same ordering as SOSD.
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