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1 Introduction

The e¢ cient market hypothesis (EMH) suggests that at any given time prices fully re�ect all available

information on a particular stock market. Thus, according to the (weak form) EMH, no investor can

gain an advantage in predicting the return on a stock using publicly available information. However,

there is a lot of evidence against the EMH in the real world of investment. There is an extensive

literature on anomalies in �nancial markets including size e¤ects, stock split e¤ects, and monthly

seasonals, see for example the recent volume of Keim and Ziemba (2000) for a general discussion.

It is well documented that some predictable patterns exist in the day-of-the-week returns. The

phenomenon that the Monday (close Friday to close Monday) stock returns, on average, are less

than returns on any other day of the week and indeed nett returns are negative has been called

the Monday e¤ect (or weekend e¤ect) in the literature. There are other de�nitions of the �Monday

e¤ect�, and we will examine a number of di¤erent hypotheses capturing the general spirit of this

phenomenon.

The Monday e¤ect in the US stock market is extensively documented during the 1980�s, see

e.g., French (1980), Gibbons and Hess (1981), Rogalski (1984), and Keim and Stambaugh (1984).

On the other hand, some recent papers present evidence that the Monday e¤ect in the US and

UK stock markets has gradually disappeared. For example, Fortune (1998) shows that after 1987

there is no evidence of a negative weekend return. Mehdian and Perry (2001) show that in the

1987-1998 period Monday returns are not signi�cantly di¤erent from returns during the rest of the

week for the SP500, DJCOMP and NYSE (large-cap) indexes. Coutts and Hayes (1999) also show

empirically that the Monday e¤ect exists but is not as strong as has been previously documented for

the UK stock indexes, see also Steeley (2001). Wang, Li, and Erickson (1997) show that the Monday

e¤ect (negative returns) occurs primarily in the last two weeks of the month for a number of stock

indexes consistently over the period 1962-1993, while returns for the �rst part of the month are not

statistically signi�cantly di¤erent from zero.

What are the explanations for di¤erences in expected returns across days of the week? There are

four types of explanation. First, that this is a statistical artifact obtained by data-snooping. Recently,

Sullivan, Timmerman, and White (2001) made this critique of the calendar e¤ects literature. They

applied a statistical procedure that controls for data-mining in testing for calendar e¤ects. They

found that the Monday e¤ect was much less statistically signi�cant than in previous studies. Their

results were obtained on the DJIA over the period 1896-1996. Hansen, Lunde, and Nason (2005) have

extended this work. Both these papers compare expected returns or Sharpe ratios. The second class

of explanations involve market microstructure, speci�cally, issues about settlement, dividends, and

taxes. For example, French (1980) proposed the calendar time hypothesis, which would suggest that
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expected returns be actually larger over the weekend (Friday to Monday) because of the three calendar

days in-between versus the usual one calendar day for other days of the week. This hypothesis is at

odds with the data. Lakonishok and Levi (1982) suggest that expected returns should be di¤erent

across days due to the 5-day settlement period, which has the e¤ect of making expected returns higher

on Fridays and lower on Mondays relative to either a trading or calendar time model. The general

consensus appears to be that the data does not support the precise predictions of their hypothesis,

see Pettengill (2003). The third class of explanations involve di¤erent rates of �ow of micro and

macro information. Basically, the release of bad news tends to be delayed until the weekend, French

(1980). Steeley (2001) argues that the Monday e¤ect in the UK stock market is related to the

systematic pattern of market wide news arrivals that concentrates between Tuesdays and Thursdays.

However, a number of studies have found that this does not explain the whole e¤ect, see Pettengill

(2003). The fourth class of explanations invokes the di¤erential trading patterns of various market

participants. Individuals are net sellers on Mondays, and individuals behave di¤erently on Mondays

versus other days of the week. Or else, it could also be due to short selling activity -short sellers

close their position on Fridays as it is di¢ cult to monitor over weekends (perhaps most of them go

on holiday). They sell the stocks on Monday leading to a fall in prices. There are some studies that

have documented di¤erent behaviour of individuals on Mondays versus other days. For example,

Pettengill (1993) �nds that individuals were much more likely to invest in risky assets when the

experiments were conducted on Fridays than when they were on Mondays.1 There are a wide range

of views on the signi�cance of this e¤ect in explaining stock market anomalies. Finally, others have

questioned the magnitude of the Monday e¤ect and whether it is su¢ ciently large to generate pro�ts

based on simple trading rules, French (1980).

The purpose of this paper is to investigate empirically the existence of the Monday e¤ect in

major stock markets using the stochastic dominance (hereafter SD) criterion. The above approaches

have all been based on a comparison of expected returns or Sharpe ratios. The validity of these

approaches can be questioned on many grounds. Comparison of expected returns is questionable

because there may always be omitted risk factors that account for the di¤erences in mean returns.

Mean variance analysis can be formally justi�ed on economic grounds only under either normal

returns or quadratic utility. Both of these hypotheses are questionable on logical and empirical

1Interestingly, there appear to be �weekend�e¤ects in a wide range of other social and physical phenomena. Ozone

and other particulate concentrations appear to be higher at weekends than during the week contrary to expectations.

Similarly, diurnal temperature range is known to be di¤erent at the weekend, mostly higher, Forster and Solomon

(2003). Mortality from murder, by SIDS, and in hospital patients is also subject to a weekend e¤ect Wiersema (1996),

Spiers and Guntheroth (2005), and Washington Post (2004). Many of these phenomena have only partial explanations.
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grounds, as is well explained in Levy (2006), see also Post (2003). According to Levy (2006),

the criterion of stochastic dominance is the natural economic criterion to apply to investors who

follow the expected utility paradigm. In this approach, there are a hierarchy of criteria: First

order dominance applies to non-satiable individuals, Second order dominance applies to non-satiable

and risk averse individuals. Third and higher order dominance can be de�ned for individuals with

additional restrictions on their utility functions. The second order dominance criterion is perhaps

the most central concept for �nancial applications as risk aversion seems natural. In our context, if

Monday returns are second order stochastically dominated by the other weekday returns, then no

risk averse individual (who is also a maximizer of expected utility) would prefer Monday returns

to the other weekday returns. In this case, we shall say that the Monday e¤ect exists in the sense

of the second order SD. The traditional notion of the Monday e¤ect is based on comparing mean

returns by dummy regression analysis. However, given the considerable evidence of non-normality

of stock returns, relying purely on expected returns to assess investment strategies may not be

appropriate because those large di¤erence in expected returns may be compensated by di¤erences

in risk. This view was taken by Seyhun (1993) in his exploration of the January e¤ect. He argues

that the SD approach provides a clearer test of the market e¢ ciency hypothesis by taking account

of omitted risk factors. Therefore, we believe that our general notion of the Monday e¤ect based on

the SD criterion is more powerful than the traditional notion. Note that a necessary condition for

�rst order and second order stochastic dominance is majorization in mean, but this is not generally

su¢ cient. Even if domination of the mean is found this does not imply that all non-satiable risk

averse investors would prefer not to choose that asset. Seyhun (1993) provides an analysis of �rst,

second, and third order stochastic dominance of January returns, and �nds that January returns

generally stochastically dominate the returns from other months. However, he did not provide a

statistical basis for interpreting his results other than a small simulation study.

We consider observations on US, UK, and Japanese major stock indexes during the period

1/1/1970 - 12/31/2004. In particular, we consider the Dow Jones Industrial Average (DJIA), the

S&P 500, the NASDAQ, the Russell 2000, the FTSE 100, and the Nikkei 225. We also consider the

CRSP indexes, value and equal weighted, with and without dividend payments over the same period.

This covers both small cap and large cap indexes. The time period covers more recent events than

earlier studies. To test the general notion of the Monday e¤ect, we shall employ modi�ed versions of

the test of Linton, Maasoumi and Whang (2005) (hereafter LMW). This is a consistent test of the

hypothesis according to the usual de�nitions, and indeed has non trivial power against a large class

of local alternatives.

The main �ndings of this paper can be summarized as follows. We �nd strong evidence of a

Monday e¤ect under this stronger criterion in some cases. Speci�cally, we �nd evidence of the
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second order dominance of Monday by other days for the full sample of DJIA and S&P500. There is

strong evidence of �rst order dominance in the CRSP indexes, especially for the equal weighted ones.

There is less evidence of dominance in the subsample from 1988 -2004 for the DJIA and S&P500

as well as the value weighted CSRP indexes. However, there is evidence of second order dominance

in the later period for the NASDAQ and the Nikkei 225. The very small cap Russell 2000 shows

evidence of �rst order domination for the later period. We also �nd evidence that the e¤ect is even

stronger in the second half of the month and on days when the previous Friday return was negative.

This is consistent with the �ndings of Wang, Li, and Erickson (1997) and Mehdian and Perry (2001).

Our defence against the data snooping critique of Sullivan, Timmerman, and White (2001) and

Hansen, Lunde, and Nason (2005) is that we are using a di¤erent economic criterion that is more

acceptable from a theoretical point of view than theirs. We are therefore using a di¤erent statistical

technique quite unrelated to the regression and Sharpe ratio approaches they looked at and that

others have followed. Indeed, our hypothesis is stronger than theirs since it concerns the whole

distribution. Also, we are using a large number of di¤erent indexes, large cap and small cap, domestic

and international, and over a more recent period than they did. So the combination of evidence

seems quite strong. There is also a question as to what is the relevant universe to de�ne for the

data snooping test, and whether in practice statisticians really are searching over so many obviously

absurd potential anomalies.

The rest of this paper is organized as follows. Section 2 de�nes the hypotheses of interest and

de�nes the test statistics. Section 3 presents the empirical results and Section 4 concludes.

2 Monday E¤ect and Stochastic Dominance

The theory of stochastic dominance o¤ers a decision-making rule under uncertainty provided the

decision-maker�s utility function share certain properties. It was �rst established by Hadar and

Russell (1969), Hanoch and Levy (1969), and Rothschild and Stiglitz (1970). The stochastic dom-

inance rule is more satisfactory from an economic theory point of view than the commonly used

mean-variance rule since it is de�ned with reference to a much larger class of utility functions/return

distributions.2 We �rst brie�y de�ne the criteria of stochastic dominance.

2.1 Concepts of Stochastic Dominance

Let X1 and X2 be two random variables (or returns/prospects). Let U1 denote the class of all von

Neumann-Morgenstern type utility functions, u, such that u0 � 0; (increasing). Also, let U2 denote
2Levy (2006) is an excellent reference for further details on stochastic dominance.
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the class of all utility functions in U1 for which u00 � 0 (concavity), and let U3 be the set of functions
in U2 for which u000 � 0. Let F1(x) and F2(x) be the cumulative distribution functions of X1 and X2,

respectively. Then, we de�ne

De�nition 1 X1 First Order Stochastic Dominates X2, denoted X1 �FSD X2, if and only if either:

(1) E[u(X1)] � E[u(X2)] for all u 2 U1; with strict inequality for some u; Or
(2) F1(x) � F2(x) for all x with strict inequality for some x.

De�nition 2 X1 Second Order Stochastic Dominates X2, denoted X1 �SSD X2, if and only if either:

(1) E[u(X1)] � E[u(X2)] for all u 2 U2, with strict inequality for some u; Or
(2)

R x
�1 F1(t)dt �

R x
�1 F2(t)dt for all x with strict inequality for some x:

The third order dominance criteria is de�ned likewise. Any ordering of outcomes derived from

a speci�c utility function in U1; U2, and U3 will not enjoy general acceptance. This is a major
reason for adopting the SD criterion. Levy (2006) gives the following simple example. Suppose that

X1 2 f1; 2g with equal probability on each outcome and X2 2 f2; 4g likewise. Then E(X1) < E(X2)

but var(X1) < var(X2) so that there exists a mean/variance optimizer who would prefer X1 over X2:

However, this cannot make economic sense because X1 � X2 with probability one.

Let D(1)
k (x) = Fk(x) and then recursively de�ne

D
(s)
k (x) =

Z x

�1
D
(s�1)
k (t)dt; s � 2

for each k:We say that X1 Stochastically Dominates X2 at order s, if D
(s)
1 (x) � D

(s)
2 (x) for all x with

strict inequality for some x, see LMW for a further discussion on the di¤erent concepts of stochastic

dominance. Davidson and Duclos (2000) o¤er a very useful characterization of any SD order and

tests.

In our case we have k = 1; 2; 3; 4; 5 days of the week, and so we need a slight generalization of the

above de�nition designed for two variables, and we shall adopt the stochastic maximality approach

initiated by McFadden (1989) and Klecan, McFadden, and McFadden (1991).

2.2 The Hypotheses of Interest and Test Statistics

LetX1 denotes the Monday returns andX2; : : : ; X5 denote the other weekday (i.e., Tuesday,..., Friday,

respectively) returns. The hypothesis that is usually tested in the literature is that E(Xj) = E(Xk)

for j; k = 1; : : : ; 5 against the alternative that E(Xj) 6= E(Xk) for some j; k 2 f1; : : : ; 5g: This is
usually performed by a Wald or F test from a regression of daily returns on daily dummies. Another

test that is commonly used is of the hypothesis that E(X1) = 0 against the one-sided alternative
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that E(X1) < 0; which can be done with a t-test on the Monday coe¢ cient.3 Neither approach really

captures the essence of the Monday e¤ect as either the alternative is too general or the null is too

strong. We think that the hypothesis of a Monday e¤ect the literature has in mind is that

E(X1) � E(Xj); j = 2; : : : ; 5; (1)

i.e., mean returns on Monday are lower than mean returns on other days of the week. Wolak (1987)

develops a statistic suitable for testing this hypothesis against its general alternative in a regression

context. Our purpose is to test the following related hypothesis

H1
0 : Monday is (stochastically) dominated by all other weekdays, (2)

with alternative the negation of the null. This hypothesis is stronger than (1), i.e., (1) is necessary

but not su¢ cient for (2). Therefore, if (2) is true, then so is (1).

To provide a more nuanced investigation of the Monday e¤ect, we consider the following additional

null hypotheses: H2
0 :Monday dominates at least one of the other weekdays; H

3
0 :Monday dominates

all other weekdays; H4
0 :Monday is dominated by at least one of the other weekdays; H

5
0 :There

exists at least one day that dominates all others; H6
0 :There exists at least one day that is dominated

by all others; H7
0 :Either Monday or the rest of the weekdays dominates the other. The alternative

hypotheses are negations of the null hypotheses. Note that the Monday e¤ect is compatible with the

null hypotheses H1
0 ; H

4
0 ; H

6
0 ; and H

7
0 : On the other hand, the reverse Monday e¤ect is compatible

with H2
0 ; H

3
0 ; H

5
0 ; and H

7
0 : For completeness we also include the (rather strong) hypothesis of equal

distributions, which is consistent with the EMH and therefore inconsistent with either the Monday

or the reversed Monday e¤ects, i.e., H8
0 : All days have the same distribution of returns. We consider

these di¤erent null hypotheses because they provide additional shades of meaning. Hypothesis H1
0 is

the main focus, H4
0 is a weaker form, while H

6
0 and H

7
0 contain ambiguity about which day is special,

likewise with H2
0 ; H

3
0 ; H

5
0 ; and H

7
0 :
4

We next express the above hypotheses using functionals of the distribution functions of the

returns. Let X denote the support of X 0
ks for k = 1; : : : ; 5; and let s = 1; 2; 3 represent the order of

stochastic dominance. For each k; l = 1; : : : ; 5; s = 1; 2; 3; and x 2 X ; let �(s)
k;l (x) = D

(s)
k (x)�D

(s)
l (x):

3Kamara (1997) and Mehdian and Perry (2001) also test the hypothesis E(X1) =
P5

j=2E(Xj)=4 versus E(X1) <P5
j=2E(Xj)=4.
4This ambiguity can capture other day of the week e¤ects as have been found in some international markets,

Martikainen and Puttonen (1996).
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Then de�ne:

d�1s = max
k 6=1

sup
x2X

�
(s)
k;1(x); d

�
2s = min

k 6=1
sup
x2X

�
(s)
1;k(x) (3)

d�3s = max
k 6=1

sup
x2X

�
(s)
1;k(x); d

�
4s = min

k 6=1
sup
x2X

�
(s)
k;1(x) (4)

d�5s = min
k
max
l 6=k

sup
x2X

�
(s)
k;l (x); d

�
6s = min

k
max
l 6=k

sup
x2X

�
(s)
l;k (x) (5)

d�7s = min
k

�
max
k 6=1

sup
x2X

�
(s)
k;1(x);max

k 6=1
sup
x2X

�
(s)
1;k(x)

�
; d�8s = max

k 6=1
sup
x2X

����(s)
1;k(x)

��� (6)

The null and alternative hypotheses in H1
0-H

8
0 can now be stated as:

Hj
0 : d

�
js � 0 vs: H

j
1 : d

�
js > 0 for j = 1; : : : ; 8: (7)

We next discuss how to compute test statistics based on a data set fXkt : t = 1; : : : ; N; k =

1; : : : ; 5g: The test statistics we consider are based on the empirical analogues of (3)-(6). For example,
for the null hypothesis H1

0 ; we de�ne the test statistic to be

D1
(s)
N = max

k 6=1
sup
x2X

p
N
h
�D
(s)
N (x;

�Fk)� �D
(s)
N (x;

�F1)
i
; (8)

where

�D
(s)
N (x;

�Fk) =
1

N(s� 1)!

NX
i=1

1(Xki � x)(x�Xki)
s�1 for k = 1; : : : ; 5: (9)

The other test statistics D2(s)N ; : : : ; D8
(s)
N are de�ned analogously. The supremum in (8) can be

approximated by the maximum over a dense grid, see LMW for further discussion.

Rejection of each hypothesis is based on large positive values of the test statistic: Under suitable

regularity conditions as in LMW (Assumptions 1-3), we can show that the test statistics converge

weakly to functionals of a Gaussian process. However, since the limiting distributions depend on

unknown true distributions of X 0
ks; the asymptotic critical values can�t be tabulated once and for

all. Therefore, as in LMW, we suggest to estimate the asymptotic p-values using resampling schemes

such as bootstrapping and subsampling. See Horowitz (2000) for a discussion of the general issues

involved in resampling time series.

First, we describe the subsampling procedure. Let WN denote any of the test statistics Dj
(s)
N for

j = 1; : : : ; 8, s � 1: Then,

(i) Calculate the test statistic WN using the original full sample WN = fZi = (X1i; : : : ; X5i)
> :

i = 1; : : : ; Ng:

(ii) Generate subsamples (or blocks) WN;b;i = fZi; : : : ; Zi+b�1g of size b for i = 1; : : : ; N � b+ 1.
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(iii) Compute test statistics WN;b;i using the subsamples WN;b;i for i = 1; : : : ; N � b+ 1:

(iv) Approximate the asymptotic p-value by

pS;b =
1

N � b+ 1

N�b+1X
i=1

1(WN;b;i > WN): (10)

The choice of the subsample size can be data-dependent and should satisfy b!1 and b=N ! 0

as N !1; see LMW for details.

On the other hand, the (re-centered overlapping) bootstrap procedure can be described as follows:

(i) Same as Step (i) above.

(ii) Same as Step (ii) above.

(iii) Generate the bootstrap sampleW�
N = fZ�i : i = 1; : : : ; Ng by sampling theN�b+1 overlapping

blocks and laying them end-to-end in the order sampled. Repeat this M -times, where M is

the number of the bootstrap samples.

(iv) Compute the recentred test statistic W �
N using the bootstrap sampleW�

N : For example, for the

test D1(s)N de�ne

W �
N =: D1

(s)�
N = max

k 6=1
sup
x2X

p
N
h
�D
(s)�
N (x; �Fk)� �D

(s)�
N (x; �F1)

i
;

where

�D
(s)�
N (x; �Fk) =

1

N(s� 1)!

NX
i=1

�
1(X�

ki � x)(x�X�
ki)

s�1 � !(i; b; N)1(Xki � x)(x�Xki)
s�1	 ;

!(i; b; N) =

8>><>>:
i=b

1

(N � i+ 1)=b

if i 2 [1; b� 1]
if i 2 [b;N � b+ 1]
if i 2 [N � b+ 2; N ] :

Repeat this M -times.

(v) Approximate the asymptotic p-value by calculating the proportion of W �
N �s that exceeds WN

in the M repetitions.

Instead of this overlapping block bootstrap, we can also use the non-overlapping block bootstrap

of Carlstein (1986) or the stationary bootstrap of Politis and Romano (1994), see Lahiri (1999) for

a recent survey. As in subsampling, the length b of the blocks should satisfy b!1 and b=N ! 0 as

N !1: LMW prove that subsampling provides consistent critical values under very weak conditions
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allowing for cross-sectional dependence amongst the outcomes and weak temporal dependence. LMW

also provide simulation evidence on the small sample performance of their test statistics in a variety

of sampling schemes. They show that the �nite sample performance is quite good even for sample

sizes of 500. In our empirical work below we use both the bootstrap and the subsampling algorithms

to compute critical values.

3 Empirical Results

3.1 Data

We use a number of end of the day indexes. The Dow Jones Industrial Average (DJIA) and the S&P

500 cover the period 1/1/1970 to 12/31/2004. The sample period for the NASDAQ and the Russell

2000 is from 1/1/1988 to 12/31/2004. The CRSP indexes, EWX (equal weighted without dividends),

VWX (value weighted without dividends), EWD (equal weighted with dividends), and VWD (value

weighted with dividends) cover exactly the same period. We also examine the Nikkei 225 and the

FTSE 100 during the period 1/1/1990 to 12/31/2004. This extends the period of Steeley (2001) who

analyzed the FTSE 100 over 1/4/1991 - 1/8/1998. To investigate the structural change e¤ect after

the 1987 crash (see Fortune (1998), Median and Perry (2001), and Brusa, Liu and Schulman (2003)),

we analyze the DJIA, S&P 500, and CRSP indexes for two sub-periods, i.e. pre-1988 and post-1988.

We excluded weeks containing holidays in order to accommodate general dependence amongst the

returns in each week. The number of observations are: DJIA, S&P 500, EWX, EWD, VWX, and

VWD (793, pre-1988; 744, post-1988), NASDAQ and Russell 2000 (744), FTSE 100 (677) and Nikkei

225 (613). Daily returns are calculated as: Ri = ln(Pi=Pi�1); where Ri is the daily return on day i,

Pi and Pi�1 are closing values of stock index on days i and i� 1 respectively. The CRSP EWD and
VWD data include dividends in the de�nition of returns, whereas the EWX and VWX exclude them.

Lakonishok and Smidt (1989) included dividend returns in the DJIA and found that for example in

1981 42% of dividend returns occurred on a Monday. However, they later found that adjusting for

dividend returns makes very little di¤erence to the analysis. Steeley (2001) found something similar

in the FTSE. We include both with and without dividend indexes for the CRSP data to check this.
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3.2 Results

3.2.1 Regression Analysis

To compare our methods with the existing results, we �rst consider the traditional method that has

been frequently used in the literature. That is, consider the linear regression

Ri = �1D1i + �2D2i + �3D3i + �4D4i + �5D5i + "i; (11)

where Ri is the stock return, D1i is a dummy variable which takes the value 1 if day i is a Monday,

and 0 otherwise, D2i is a dummy variable which takes the value 1 if day i is a Tuesday, and 0

otherwise; and so forth.

Table 1.1 provides the OLS estimates for all indexes and subperiods. The standard errors are

Newey-West (1987)�s HAC estimates with data dependent truncation. W1 is the Wald test statistic

for the null hypothesis H0 : �1 = �2 = �3 = �4 = �5; and W2 is that for H0 : �1 � �2; �1 �
�3; �1 � �4; �1 � �5: The alternatives are just the negations. The test of W2 is due to Wolak (1987)
and our use appears new in this literature. The apparent Monday e¤ect based on mean returns

exists in DJIA (1970-1987), S&P 500 (1970-1987), and Russell 2000 (1988-2004), which is consistent

with the literature. Note that the post-1988 DJIA Monday returns are signi�cantly positive as

was documented elsewhere. However, since W1 is not signi�cant, this does not support the reverse

Monday e¤ect in this period, contrary to Median and Perry (2001) and Brusa, Liu and Schulman

(2003). Also, unlike the Russell 2000, the Monday e¤ect does not seem to exist on the NASDAQ. The

Nikkei 225 shows that Monday returns are signi�cantly negative on average but the W1 indicates

that they are not signi�cantly di¤erent from the other weekday returns. As in Steely (2001), the

Monday e¤ect is not signi�cant for the FTSE.5 Regarding the CRSP indexes, the equal weighted

series show the stronger evidence of Monday e¤ect for the full sample as well as both subsamples:

in all such cases W1 is rejected but W2 is not rejected. Furthermore, the coe¢ cient on Monday is

always negative. The value weighted CRSP series show less evidence since W1 is not rejected for

1988-2000. The coe¢ cient on Monday in those cases is also positive; however, it is still lower than

the coe¢ cient on all other days of the week.

***Table 1.1 here***

Daily stock return data are known to have quite heavy tails and so the linear regression results

may be suspect.6 Speci�cally, least squares methods do not have bounded in�uence and so outliers

or heavy tails can make the estimator inconsistent. Even when the estimator itself is consistent,

5See Steeley (2001, Table 2) for comparison.
6All the data series strongly fail Kolmogorov-Smirnov and Jarque-Bera tests for normality.
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the standard errors require even higher moments to exist, especially in the dependent heterogeneous

environments that we would like to accommodate here, for consistency. This is a particularly salient

issue here as the 1987 crash produced a very large negative return, and on a Monday. Therefore, we

redid the analysis using the quantile regression techniques due to Koenker and Bassett (1978) that

are robust to heavy tailed errors and outliers. In Table 1.2 we report the results of linear quantile

regressions for quantiles q = 0:25; 0:5; 0:75 for the CRSP indexes; in the unpublished appendix, Cho,

Linton and Whang (2006) we give the results for the other indexes: The results at the median are

generally similar to those of the mean regression. Monday generally has the smallest coe¢ cient except

in the 1988-2004 period for the DJIA and SP500 when the reverse phenomenon is observed. This

�nding also holds for the q = 0:25 quantile, but is reversed in many cases for the q = 0:75 quantile -

then the Monday coe¢ cient is actually largest for the Nikkei, the FTSE, S&P500 for 1988-2004, and

the DJIA for 1970-2004 and 1988-2004 (this is not true for the CRSP indexes, although the value

weighted series show a high but not highest coe¢ cient in this case). For the equal weighted CRSP

indices the hypothesis of equal coe¢ cients is strongly rejected at all quantiles and for all subperiods.

For the other series the p values are highest for the later subperiod and q = 0:75; and generally the

pattern is similar to that for the least squares estimates. This is supportive of the idea that the

calendar e¤ect is not just a phenomenon about the mean of returns.

***Table 1.2 here***

To continue the theme of the last paragraph we investigated whether volatility is subject to a

calendar e¤ect. In Table 1.3 we report the results of linear regression using the squared residuals from

the basic linear regression (11) as the dependent variable, here we just report the results for the CRSP

indexes, the full results are found in the unpublished appendix, Cho, Linton and Whang (2006). The

coe¢ cient on the Monday dummy is always the highest, sometimes signi�cantly so, indicating that

the weekend is associated with higher volatility. This may be as expected from the calendar time

hypothesis of French (1980). However, the level of volatility is never three times that of the other

days: for the DJIA 1970-1987 and the CRSP indexes it is twice the level of the other days, whereas

for the NASDAQ there seems to be almost no di¤erence in the level of volatility over the weekend

versus other days (the Wald test of the calendar time hypothesis is rejected for all series). The Wald

tests for equality of variance indicate some statistical signi�cance to these di¤erences especially for

the CRSP equally weighted indexes. For both the DJIA and the S&P500, the volatility e¤ect seems

to decline in the later period relative to the earlier period.

***Table 1.3 here***
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Many studies have found a January e¤ect and other monthly level di¤erences in stock returns, see

Seyhun (1993) for example. Therefore, it is important to test whether the Monday e¤ect is a¤ected

by controlling for month e¤ects. In the unpublished appendix, Cho, Linton and Whang (2006), we

report results of a regression where we add in monthly dummies to the basic linear speci�cation

(11). The results for the Wald tests of the main hypothesis are almost identical to those in Table

1.1., so that there is evidence of a Monday e¤ect in many cases. Interestingly, apart from the DJIA,

1988-2004 and the CRSP equal weighted indexes, there appears to be little evidence of a monthly

seasonal after controlling for days of the week. The goodness of �t of the regression does rise although

not substantially so after accounting for the number of parameters. We also ran a regression where

we add in year dummies as well to the basic linear speci�cation (11). Again the results for the main

Wald test are similar. Apart from the Nikkei (and then only at 0.06), there does not appear to be

evidence of a year e¤ect. The goodness of �t is worse after accounting for the number of parameters.

In conclusion, there appears to be evidence for a Monday e¤ect in some of the stock indexes

at least for some of the time, but it is somewhat sensitive to period and the overall e¤ect is more

complex than can be captured in a simple mean regression speci�cation. This is one reason why

we turn to the distributional analysis involved in the SD criteria. The other reason is of course the

economic case we laid out earlier.

3.2.2 The Stochastic Dominance Approach

In the unpublished appendix, Cho, Linton and Whang (2006), we report a full set of results involving

p-values for tests of 1st, 2nd, and 3rd order dominance corresponding to the eight di¤erent hypotheses

for each of the series in the full sample and subsample and cut according to various parts of the month

etc.7 We give results for bootstrap and subsampling implementations. Here, we focus on a subset

of the results and provide a summary of the more detailed work. Speci�cally, in Table 2 we give

the subsampling results.8 As noted by LMW, the choice of the subsample size b is important but

rather di¢ cult. They propose a number of practical criteria for choosing b. In our application, we

report the median of the p-values from 30 di¤erent subsample sizes in the range [N0:3; N0:7]. We

do not have space here to discuss the results for each individual hypothesis: our summary of the

results informally aggregates across these separate results. We �nd strong evidence of a Monday

e¤ect under this stronger criterion in most cases. Speci�cally, we �nd evidence of the second order

dominance of Monday by other days for the full sample of DJIA and S&P500. The CRSP data

provides even stronger evidence of �rst order dominance for the same period for all four indexes.

7Note that the Monday e¤ect is compatible with the null hypotheses H1
0 ;H

4
0 ;H

6
0 ; and H

7
0 : On the other hand, the

reverse Monday e¤ect is compatible with H2
0 ;H

3
0 ;H

5
0 ; and H

7
0 : H

8
0 is compatible with neither.

8The results using bootstrapping agree quite closely with those based on subsampling.
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The evidence of dominance in the subsample from 1988 -2004 for the S&P500 and Dow Jones is

much weaker and there is even some evidence of reversal. However, the CRSP data still support the

hypothesis of dominance in the later subsample although the evidence is much weaker especially for

the value weighted series without dividends. During the same period there is evidence of second order

dominance for the NASDAQ and the Nikkei 225. The very small cap Russell 2000 shows evidence of

�rst order domination for this later period. Finally, the FTSE (which is over the later period) shows

only weak evidence of dominance at the third order.

***Table 2 here***

The p-values do not give any idea of the economic magnitude of the di¤erences in outcomes. We

show in Figure 1 the empirical c.d.f.�s and s.d.f.�s (integrated c.d.f.�s) of the �ve days for the equal

weighted without dividends CRSP data. The Monday c.d.f. lies above the c.d.f.�s for the other days

until a very high level of returns is reached, when the Tuesday distribution crosses it. The other

distributions are always well below the Monday distribution. None of the other s.d.f.�s cross the

Monday s.d.f. at all. This shows that bad news tends to be much worse on Mondays than on other

days. Furthermore, the magnitude of the di¤erence, measured by the horizontal distance between

the distribution functions, is quite large.

Motivated by work of Wang, Li, and Erickson (1997) and Mehdian and Perry (2001), we report,

in Cho, Linton and Whang (2006), additional results for: the �rst three weeks of the month; the

second half of the month; a positive preceding Friday; a negative preceding Friday. We summarize

these results along with those of Table 2 in a table below. We �nd evidence that the e¤ect is

even stronger when the previous Friday return was negative. This e¤ect generally persists across

subsamples although the evidence is inconclusive for the Dow Jones and S&P 500 during the later

period on days when the previous Friday return was negative. This is broadly in agreement with

earlier work, for example Mehdian and Perry (2001) who also found strong e¤ects but e¤ects that

did not persist for large cap indexes. We also �nd that the e¤ect is very strong in the second half

of the month and that this e¤ect does persist for both large cap and small cap indexes in the later

period. We �nd that when returns on Friday were positive the ordering in many cases reverses

(although not for the CRSP series). On the other hand, the �rst half of the month continues to

show predominantly that Monday returns are dominated by other days of the week although the

evidence on this is weaker than for the full sample. This is generally consistent with the �ndings of

Wang, Li, and Erickson (1997) and Mehdian and Perry (2001). Since we have used more data and a

di¤erent criterion, we �nd this compelling con�rmation of their �ndings. We remark, however, that

these results are statistically harder to support because the implicit sample sizes are less and so small

sample e¤ects may make these results a bit questionable.
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Summary of Tables
stock indexes whole month weeks 1-3 2nd half + Friday - Friday

a. DJIA (pre-1988) FSD SSD FSD FSD rev FSD

b. DJIA (post-1988) FSD rev FSD rev FSD FSD rev inconclusive

c. DJIA (full sample) SSD inconclusive FSD FSD rev SSD

d. S&P 500 (pre-1988) FSD FSD FSD FSD rev FSD

e. S&P 500 (post-1988) inconclusive FSD rev FSD FSD rev inconclusive

f. S&P 500 (full sample) SSD inconclusive FSD FSD rev FSD

g. NASDAQ (1988-2004) SSD inconclusive FSD FSD rev FSD

h. RUSSELL 2000 (1988-2004) FSD inconclusive FSD inconclusive FSD

i. FTSE 100 (1990-2004) TSD FSD rev FSD FSD rev FSD

j. NIKKEI 225 (1990-2004) SSD SSD SSD FSD rev FSD

k. VWD (1970-1987) FSD FSD FSD FSD rev FSD

l. VWD(1988-2004) inconclusive FSD rev FSD FSD rev FSD

m. VWD (1970-2004) FSD inconclusive FSD FSD rev FSD

n. VWX (1970-1987) FSD FSD FSD inconclusive FSD

o.VWX (1988-2004) inconclusive FSD rev FSD FSD rev FSD

p. VWX (1970-2004) FSD inconclusive FSD FSD rev FSD

q. EWD (1970-1987) FSD SSD FSD inconclusive FSD

r. EWD (1988-2004) FSD SSD FSD inconclusive FSD

s. EWD (1970-2004) FSD FSD FSD weak rev FSD

t. EWX (1970-1987) FSD SSD FSD inconclusive FSD

u. EWX (1988-2004) FSD SSD FSD inconclusive FSD

v. EWX (1970-2004) FSD FSD FSD inconclusive FSD
Notes. + (-) Friday means positive (negative) returns on previous Friday. FSD (SSD) [TSD] means First,

(Second), [Third] order dominance of Monday returns. rev abbreviates reverse.

In conclusion, our methodology supports the view that there is a Monday e¤ect in many indexes,

and in some cases quite a strong one. This evidence should be considered quite convincing because

the null hypothesis is very strong and the result is obtained on many di¤erent series. Of course it

is strongest in those indexes that are more broadly based like the CRSP indexes, suggesting that

capitalization plays an important role in the magnitude and persistence of the e¤ect. The fact that

the e¤ect is reversed or weakened for some large cap and international series is also interesting and

needs explanation. Note that our evidence is robust to a small number of large observations unlike

the previously reported regression results.
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4 Concluding Remarks

The results using stochastic dominance criteria con�rm earlier �ndings of a Monday e¤ect for many

series over the full sample. This e¤ect has weakened for some large cap series like the DJIA and

the S&P500 post 1987, but remains strong for more broadly based indexes. The a¤ect is attenuated

or enhanced by other conditioning variables but still represents a puzzle to advocates of EMH. Our

analysis is based on a more generally acceptable approach to ranking investments than just looking

at the mean as was implicit in the earlier regression approach. The hypothesis we test is stronger

than the usual one and our results suggest that regardless of investors�attitudes to risk, degree of risk

aversion, or seasonal variations in risk premia, Monday returns were too low to be equilibrium returns.

This cannot be attributed to omitted risk factors. However, we caution that the methodology we

have used generally requires quite large sample sizes and so there are grounds for caution regarding

the main �ndings in terms of the statistical signi�cance.

What are the implications for Asset Pricing? As Fama (1991) puts it, �market e¢ ciency per se

is not testable. It must be tested jointly with some model of equilibrium, an asset-pricing model.�

Therefore, when we �nd anomalous evidence on the behaviour of returns, the way it should be split

between market ine¢ ciency or a bad model of market equilibrium is not clear.

The evidence of stochastic dominance of Monday returns by other weekdays could be combined

with behavioral theories from the psychology literature to create new asset-pricing theories that

combine economic equilibrium concepts with psychological concepts to create an improved asset-

pricing model. For instance, the summary table reveals that there is strong evidence of a Monday

e¤ect on days when the previous Friday return was negative. Market e¢ ciency asserts that apparent

overreaction to information is about as frequent as underreaction, a statement that seems to be

refuted by the above evidence. This underreaction of stock prices is consistent with the behavioural

model proposed by Barberis, Shleifer, and Vishny (1998), to explain how the judgment biases- the

representativeness bias of Kahneman and Tversky (1982) and conservatism attributed to Edwards

(1968)- of investors can produce overreaction to some events and underreaction to others. This

model, however, performs poorly in explaining the other anomalies reported in the literature. This

suggests the need for an alternative model that speci�es biases in information processing that cause

the same investors to under-react to some types of events and over-react to others and also explains

the range of observed results better than the simple market e¢ ciency story.
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Table 1-1. OLS Estimates#

 
 
 
 
 
 
 
 

  Mon.  Tue.  Wed.  Thu.  Fri.   W1 W2 2R  2R  

a. DJIA   
 

 
 

 
 

 
 

 
 

  
   

1970 - 1987 Mean (%) -0.116 
 

0.027 
 

0.073 
 

0.015 
 

0.033 
 

value 9.172 0.000 0.0036 0.0026 

(NO: 793) t-value -2.144 
**

0.801 
 

2.161 
**

0.460 
 

1.079 
 

prob. 0.057 0.876   

1988 - 2004 Mean (%) 0.092 
 

0.055 
 

0.032 
 

-0.016 
 

-0.010 
 

value 5.578 5.056 0.0015 0.0005 

(NO: 744) t-value 2.423 
**

1.608 
 

0.893 
 

-0.435 
 

-0.256 
 

prob. 0.233 0.255   

1970 - 2004 Mean (%) -0.015 
 

0.041 
 

0.053 
 

-0.000 
 

0.012 
 

value 3.557 0.000 0.0005 0.0001 

(NO: 1537) t-value -0.455 
 

1.685 
*

2.164 
**

-0.005 
 

0.502 
 

prob. 0.469 0.849   

b. S&P 500   
 

 
 

 
 

 
 

 
 

     

1970 - 1987 Mean (%) -0.133 
 

0.041 
 

0.092 
 

0.020 
 

0.048 
 

value 15.226 0.000 0.0058 0.0048 

(NO: 793) t-value -2.622 
**

1.259 
 

2.848 
**

0.639 
 

1.628 
 

prob. 0.004 0.878   

1988 - 2004 Mean (%) 0.046 
 

0.043 
 

0.044 
 

-0.003 
 

0.001 
 

value 1.761 1.071 0.0004 -0.0005 

(NO: 744) t-value 1.250 
 

1.241 
 

1.231 
 

-0.085 
 

0.030 
 

prob. 0.780 0.475   

1970 - 2004 Mean (%) -0.046 
 

0.042 
 

0.069 
 

0.009 
 

0.025 
 

value 8.321 0.000 0.0014 0.0009 

(NO: 1573) t-value -1.448 
 

1.774 
*

2.861 
**

0.359 
 

1.059 
 

prob. 0.081 0.624   

c. NASDAQ   
 

 
 

 
 

 
 

 
 

     

1988 - 2004 Mean (%) -0.072 
 

0.013 
 

0.111 
 

0.068 
 

-0.006 
 

value 7.241 0.000 0.0018 0.0007 

(NO: 744) t-value -1.356 
 

0.263 
 

2.071 
**

1.243 
 

-0.130 
 

prob. 0.124 0.939   

d. Russell 2000   
 

 
 

 
 

 
 

 
 

     

1988 - 2004 Mean (%) -0.086 
 

0.027 
 

0.082 
 

0.050 
 

0.042 
 

value 12.467 0.000 0.0032 0.0021 

(NO: 744) t-value -2.181 
**

0.809 
 

2.293 
**

1.327 
 

1.207 
 

prob. 0.014 0.877   

e. FTSE 100   
 

 
 

 
 

 
 

 
 

     

1990 - 2004 Mean (%) -0.005 
 

0.020 
 

-0.035 
 

0.046 
 

0.016 
 

value 2.546 0.277 0.0006 -0.0004 

(NO: 677) t-value -0.121 
 

0.547 
 

-0.984 
 

1.089 
 

0.398 
 

prob. 0.636 0.567   

f. Nikkei 225   
 

 
 

 
 

 
 

 
 

     

1990 - 2004 Mean (%) -0.142 
 

0.005 
 

-0.021 
 

-0.023 
 

-0.038 
 

value 2.836 0.000 0.0011 -0.0001 

(NO: 613) t-value -2.054 
**

0.105 
 

-0.360 
 

-0.379 
 

-0.656 
 

prob. 0.586 0.784   

g.VWD   
 

 
 

 
 

 
 

 
 

  
   

1970 - 1987 Mean (%) -0.124 
 

0.033 
 

0.111 
 

0.054 
 

0.091 
 

value 24.701 0.000 0.0081 0.0071 

(NO: 793) t-value -2.755 
**

1.105 
 

3.542 
**

1.794 
*

3.258 
**

prob. 0.000 0.939   

1988 - 2004 Mean (%) 0.024 
 

0.047 
 

0.066 
 

0.027 
 

0.026 
 

value 1.007 0.000 0.0003 -0.0008 

(NO: 744) t-value 0.693 
 

1.415 
 

1.928 
*

0.731 
 

0.732 
 

prob. 0.909 0.864   

1970 - 2004 Mean (%) -0.052 
 

0.040 
 

0.089 
 

0.041 
 

0.060 
 

value 16.110 0.000 0.0025 0.0020 

(NO: 1537) t-value -1.793 
*

1.792 
*

3.854 
**

1.726 
*

2.674 
**

prob. 0.003 0.590   



h. VWX   
 

 
 

 
 

 
 

 
 

     

1970 - 1987 Mean (%) -0.152 
 

0.017 
 

0.101 
 

0.043 
 

0.075 
 

value 27.872 0.000 0.0093 0.0083 

(NO: 793) t-value -3.384 
**

0.566 
 

3.229 
**

1.433 
 

2.699 
**

prob. 0.000 0.421   

1988 - 2004 Mean (%) 0.012 
 

0.040 
 

0.055 
 

0.019 
 

0.019 
 

value 0.979 0.000 0.0003 -0.0008 

(NO: 744) t-value 0.336 
 

1.181 
 

1.618 
 

0.522 
 

0.538 
 

prob. 0.913 0.854   

1970 - 2004 Mean (%) -0.073 
 

0.028 
 

0.079 
 

0.032 
 

0.048 
 

value 18.587 0.000 0.0029 0.0024 

(NO: 1573) t-value -2.506 
**

1.251 
 

3.412 
**

1.332 
 

2.160 
**

prob. 0.001 0.578   

i. EWD   
 

 
 

 
 

 
 

 
 

     

1970 - 1987 Mean (%) -0.144 
 

-0.054 
 

0.110 
 

0.106 
 

0.219 
 

value 118.01 0.000 0.0287 0.0277 

(NO: 793) t-value -3.930 
**

-2.050 
**

4.097 
**

4.137 
**

8.896 
**

prob. 0.000 0.304   

1988 - 2004 Mean (%) -0.040 
 

0.054 
 

0.126 
 

0.134 
 

0.204 
 

value 63.123 0.000 0.0133 0.0122 

(NO: 744) t-value -1.386 
 

2.234 
**

4.753 
**

4.856 
**

8.012 
**

prob. 0.000 0.734   

1970 - 2004 Mean (%) -0.094 
 

-0.002 
 

0.118 
 

0.120 
 

0.212 
 

value 173.33 0.000 0.0206 0.0201 

(NO: 1573) t-value -3.936 
**

-0.101 
 

6.214 
**

6.287 
**

12.023 
**

prob. 0.000 0.302   

j. EWX   
 

 
 

 
 

 
 

 
 

     

1970 - 1987 Mean (%) -0.164 
 

-0.064 
 

0.105 
 

0.101 
 

0.210 
 

value 123.22 0.000 0.0304 0.0294 

(NO: 793) t-value -4.465 
**

-2.425 
**

3.890 
**

3.916 
**

8.530 
**

prob. 0.000 0.878   

1988 - 2004 Mean (%) -0.048 
 

0.049 
 

0.117 
 

0.129 
 

0.199 
 

value 64.306 0.000 0.0136 0.0125 

(NO: 744) t-value -1.677 
*

2.017 
**

4.424 
**

4.661 
**

7.800 
**

prob. 0.000 0.734   

1970 - 2004 Mean (%) -0.108 
 

-0.010 
 

0.111 
 

0.114 
 

0.205 
 

value 180.08 0.000 0.0215 0.0210 

(NO: 1573) t-value -4.529 
**

-0.519 
 

5.840 
**

5.996 
**

11.610 
**

prob. 0.000 0.287   

                                            
# The t-values of the table are corrected using Newey-West’s (1987) heteroskedasticity and autocorrelation consistent 
covariance matrix. W1 is the Wald (chi-square) statistic for the null hypothesis Ho: α₁=α2  =α₃=α₄=α5. W2 is the 
Wald test for the null hypothesis Ho: α₁≤ α2 and α₁≤ α₃and α₁≤ α₄and α₁≤ α5 (Wolak, 1987). NO is the number 
of observations per weekday. 
* Significant at the 10% level. 
** Significant at the 5% level. 



Table 1-2.  Linear Quantile Regression Estimates#

 

 

(unit: %) 

  q Mon. Tue. Wed. Thu. Fri. W p 

a.VWD 0.25 -0.625** (0.045) -0.478** (0.040) -0.394** (0.041) -0.366** (0.035) -0.379** (0.035) 26.35 0.000 

 0.5 -0.075** (0.034) 0.031    (0.034) 0.129** (0.030) 0.042   (0.027) 0.055*   (0.030) 20.88 0.000 

 

1970- 

1987 
0.75 0.431** (0.039) 0.527** (0.036) 0.539** (0.034) 0.465** (0.035) 0.529** (0.035) 6.71 0.152 

 0.25 -0.387** (0.042) -0.417** (0.041) -0.383** (0.042) -0.441** (0.045) -0.427** (0.045) 1.36 0.850 

 0.5 0.094** (0.031) 0.051*   (0.030) 0.106** (0.029) 0.036    (0.031) 0.088** (0.032) 3.89 0.421 

 

1988- 

2004 
0.75 0.535** (0.038) 0.520** (0.041) 0.511** (0.036) 0.539** (0.043) 0.517** (0.037) 0.38 0.984 

 0.25 -0.495** (0.032) -0.453** (0.030) -0.384** (0.029) -0.391** (0.027) -0.390** (0.027) 10.72 0.030 

 0.5 0.011    (0.023) 0.044** (0.022) 0.116** (0.021) 0.039*   (0.020) 0.075** (0.022) 13.92 0.008 

 

1970- 

2004 
0.75 0.490** (0.028) 0.526** (0.027) 0.534** (0.025) 0.495** (0.027) 0.527** (0.026) 2.32 0.678 

b.VWX 0.25 -0.651** (0.045) -0.502** (0.040) -0.403** (0.041) -0.383** (0.035) -0.387** (0.034) 29.93 0.000 

 0.5 -0.093** (0.034) 0.020    (0.034) 0.119** (0.030) 0.034    (0.027) 0.043    (0.030) 22.69 0.000 

 

1970- 

1987 
0.75 0.394** (0.038) 0.503** (0.035) 0.533** (0.034) 0.452** (0.035) 0.513** (0.035) 9.37 0.052 

 0.25 -0.389** (0.040) -0.430** (0.041) -0.397** (0.043) -0.445** (0.045) -0.433** (0.044) 1.33 0.857 

 0.5 0.080** (0.031) 0.043    (0.030) 0.091** (0.029) 0.026    (0.031) 0.084** (0.032) 3.51 0.477 

 

1988- 

2004 
0.75 0.524** (0.038) 0.513** (0.041) 0.499** (0.036) 0.530** (0.043) 0.511** (0.037) 0.39 0.983 

 0.25 -0.518** (0.032) -0.465** (0.029) -0.397** (0.029) -0.404** (0.028) -0.398** (0.027) 12.66 0.013 

 0.5 -0.014    (0.023) 0.031    (0.022) 0.106** (0.021) 0.030    (0.020) 0.065** (0.022) 17.06 0.002 

 

1970- 

2004 
0.75 0.468** (0.028) 0.511** (0.027) 0.526** (0.025) 0.482** (0.027) 0.513** (0.025) 3.28 0.513 

c.EWD 0.25 -0.483** (0.036) -0.380** (0.029) -0.219** (0.030) -0.174** (0.028) -0.082** (0.027) 109.2 0.000 

 0.5 -0.073** (0.025) -0.020    (0.026) 0.125** (0.023) 0.158** (0.022) 0.254** (0.022) 124.5 0.000 

 

1970- 

1987 
0.75 0.295** (0.030) 0.351** (0.026) 0.451** (0.025) 0.459** (0.023) 0.555** (0.024) 59.97 0.000 

 0.25 -0.345** (0.033) -0.225** (0.028) -0.148** (0.032) -0.157** (0.031) -0.070** (0.029) 42.92 0.000 

 0.5 0.026    (0.025) 0.088** (0.022) 0.183** (0.022) 0.181** (0.023) 0.264** (0.021) 65.24 0.000 

 

1988- 

2004 
0.75 0.383** (0.027) 0.390** (0.025) 0.494** (0.025) 0.490** (0.023) 0.529** (0.022) 29.12 0.000 

 0.25 -0.413** (0.025) -0.309** (0.021) -0.194** (0.022) -0.166** (0.021) -0.080** (0.020) 136.2 0.000 

 0.5 -0.029    (0.018) 0.042** (0.017) 0.156** (0.016) 0.168** (0.016) 0.258** (0.015) 187.8 0.000 

 

1970- 

2004 
0.75 0.333** (0.020) 0.366** (0.017) 0.480** (0.018) 0.476** (0.016) 0.542** (0.016) 94.99 0.000 

d.EWX 0.25 -0.503** (0.036) -0.387** (0.029) -0.222** (0.029) -0.182** (0.028) -0.092** (0.027) 112.4 0.000 

 0.5 -0.098** (0.025) -0.024    (0.025) 0.120** (0.023) 0.155** (0.022) 0.248** (0.022) 136.2 0.000 

 

1970- 

1987 
0.75 0.279** (0.030) 0.343** (0.026) 0.446** (0.025) 0.453** (0.023) 0.550** (0.024) 63.92 0.000 

 0.25 -0.349** (0.033) -0.235** (0.028) -0.159** (0.032) -0.161** (0.030) -0.074** (0.029) 43.93 0.000 

 0.5 0.014    (0.025) 0.085** (0.022) 0.178** (0.022) 0.176** (0.023) 0.261** (0.021) 68.53 0.000 

 

1988- 

2004 
0.75 0.372** (0.027) 0.386** (0.025) 0.486** (0.025) 0.486** (0.023) 0.525** (0.022) 30.13 0.000 



 0.25 -0.428** (0.025) -0.318** (0.021) -0.200** (0.022) -0.171** (0.021) -0.084** (0.020) 145.2 0.000 

 0.5 -0.039** (0.018) 0.034** (0.017) 0.151** (0.016) 0.163** (0.016) 0.256** (0.015) 198.9 0.000 

 

1970- 

2004 
0.75 0.321** (0.020) 0.357** (0.017) 0.469** (0.018) 0.470** (0.016) 0.539** (0.016) 100.8 0.000 

                                            
# Standard errors are in parentheses. They are obtained through kernel density estimation. We select (sample size)^(-0.1) for 
the band width. W is the Wald (chi-square) statistic for the null hypothesis Ho: α₁=α2  =α₃=α₄=α5, and p is p-value of W. 
* Significant at the 10% level. 
** Significant at the 5% level.  



Table 1-3. OLS Estimates# (Dependent variable: 2ε ) 

 

 

  Mon.  Tue.  Wed.  Thu.  Fri.   W Wc 2R  2R  

a.VWD                 

1970 - 1987 Mean (%) 1.339  0.702  0.830  0.701  0.644  value 6.264 16.802 0.0025 0.0015 

(NO: 793) t-value 3.218 ** 14.206 ** 7.225 ** 10.547 ** 11.782 ** prob. 0.180 0.002   

1988 - 2004 Mean (%) 1.063  0.876  0.830  0.939  1.009  value 5.757 97.080 0.0012 0.0002 

(NO: 744) t-value 8.616 ** 11.159 ** 11.449 ** 11.547 ** 9.686 ** prob. 0.218 0.000   

1970 - 2004 Mean (%) 1.211  0.786  0.830  0.816  0.822  value 4.137 55.124 0.0016 0.0010 

(NO: 1537) t-value 5.338 ** 16.665 ** 11.864 ** 15.160 ** 13.739 ** prob. 0.388 0.000   

b. VWX                 

1970 - 1987 Mean (%) 1.341  0.702  0.828  0.700  0.642  value 6.407 16.813 0.0026 0.0015 

(NO: 793) t-value 3.229 ** 14.202 ** 7.214 ** 10.555 ** 11.758 ** prob. 0.171 0.002   

1988 - 2004 Mean (%) 1.062  0.876  0.830  0.939  1.010  value 5.800 97.206 0.0012 0.0002 

(NO: 744) t-value 8.616 ** 11.152 ** 11.438 ** 11.547 ** 9.705  ** prob. 0.215 0.000   

1970 - 2004 Mean (%) 1.213  0.786  0.829  0.816  0.821  value 4.209 54.954 0.0016 0.0011 

(NO: 1573) t-value 5.351 ** 16.657 ** 11.850 ** 15.164 ** 13.745 ** prob. 0.379 0.000   

c. EWD                 

1970 - 1987 Mean (%) 0.855  0.485  0.578  0.479  0.451  value 9.725 34.740 0.0029 0.0019 

(NO: 793) t-value 4.529 ** 5.696 ** 5.722 ** 7.545 ** 7.733 ** prob. 0.045 0.000   

1988 - 2004 Mean (%) 0.641  0.427  0.477  0.500  0.492  value 8.330 58.679 0.0022 0.0012 

(NO: 744) t-value 8.342 ** 10.281 ** 11.151 ** 8.871 ** 7.104 ** prob. 0.080 0.000   

1970 - 2004 Mean (%) 0.754  0.460  0.529  0.490  0.471  value 16.542 82.977 0.0024 0.0018 

(NO: 1573) t-value 7.075 ** 9.333 ** 9.300 ** 11.231 ** 10.266 ** prob. 0.002 0.000   

d. EWX                 

1970 - 1987 Mean (%) 0.855  0.485  0.578  0.479  0.450  value 9.724 34.700 0.0029 0.0019 

(NO: 793) t-value 4.535 ** 5.707 ** 5.720 ** 7.541 ** 7.718 ** prob. 0.045 0.000   

1988 - 2004 Mean (%) 0.641  0.427  0.477  0.500  0.492  value 8.329 58.649 0.0022 0.0012 

(NO: 744) t-value 8.342 ** 10.285 ** 11.142 ** 8.873 ** 7.112 ** prob. 0.080 0.000   

1970 - 2004 Mean (%) 0.755  0.460  0.529  0.490  0.470  value 16.527 82.829 0.0024 0.0019 

(NO: 1573) t-value 7.084 ** 9.347 ** 9.300 ** 11.230 ** 10.264 ** prob. 0.002 0.000   

                                            
# The t-values of the table are corrected using Newey-West’s (1987) heteroskedasticity and autocorrelation consistent 
covariance matrix. W is the Wald (chi-square) statistic for the null hypothesis Ho: α₁=α2  =α₃=α₄=α5. Wc is the Wald 
statistic for the null hypothesis Ho: α₁=3α2  =3α₃=3α₄=3α5. NO is the number of observations per weekday. VWD is the 
value-weighted CRSP index including dividends. VWX is the value-weighted CRSP index excluding dividends. EWD is the 
value-weighted CRSP index including dividends. EWX is the value-weighted CRSP index excluding dividends. 
* Significant at the 10% level. 
** Significant at the 5% level. 



 
 

Table 2. Median of P-Values*

(Subsampling, subsample range: 7030 .. N~N , number of p-values = 30) 
 
 
 
 

 Period Order I II III IV V VI VII VIII 

a. DJIA 1970 1st 0.4574 0.0026 0.0032 0.4541 0.0978 0.1289 0.2800 0.0032 

 -1987 2nd 0.8185 0.0048 0.0104 0.5630 0.0937 0.7262 0.8185 0.0104 

  3rd 0.7211 0.0107 0.0107 0.5235 0.0483 0.5558 0.7211 0.0107 

 1988 1st 0.1556 0.8008 0.7105 0.0036 0.4273 0.1971 0.6570 0.1556 

 -2004 2nd 0.1478 0.5061 0.4435 0.1241 0.0000 0.1919 0.1885 0.1610 

  3rd 0.0498 0.4283 0.4069 0.2224 0.0530 0.4284 0.1693 0.1078 

 1970 1st 0.2570 0.1947 0.3137 0.2848 0.1626 0.1279 0.0108 0.5008 

 -2004 2nd 0.8361 0.0976 0.0981 0.6003 0.7347 0.7001 0.8361 0.1773 

  3rd 0.7578 0.0559 0.0559 0.5632 0.6333 0.5402 0.7578 0.0559 

b. S&P 500 1970 1st 0.4178 0.0329 0.0000 0.8650 0.8660 0.1587 0.2608 0.0000 

 -1987 2nd 0.7125 0.0027 0.0081 0.5035 0.1128 0.6519 0.7125 0.0081 

  3rd 0.6178 0.0107 0.0107 0.4848 0.1703 0.4986 0.6178 0.0107 

 1988 1st 0.2944 0.6223 0.8446 0.0733 0.4904 0.4420 0.8023 0.3126 

 -2004 2nd 0.4102 0.5202 0.5641 0.2723 0.4580 0.2598 0.2921 0.6383 

  3rd 0.1614 0.4356 0.4345 0.6878 0.7563 0.4656 0.1470 0.3990 

 1970 1st 0.4735 0.1437 0.0873 0.5118 0.6428 0.0329 0.1737 0.1696 

 -2004 2nd 0.7272 0.0383 0.0413 0.5432 0.8844 0.6342 0.7272 0.0415 

  3rd 0.6782 0.0559 0.0559 0.5310 0.8291 0.4881 0.6782 0.0559 

c. NASDAQ 1988 1st 0.2647 0.0884 0.0587 0.8937 0.3181 0.0027 0.1066 0.0587 

 -2004 2nd 0.8535 0.0034 0.0788 0.3709 0.0888 0.7439 0.8488 0.0788 

  3rd 0.7275 0.0000 0.0370 0.3695 0.0262 0.4768 0.7051 0.0370 

d. Russell 2000 1988 1st 0.9596 0.0852 0.0545 0.3984 0.4884 0.8920 0.9588 0.0545 

 -2004 2nd 0.8560 0.0000 0.0201 0.4832 0.2934 0.8102 0.8560 0.0201 

  3rd 0.6889 0.0000 0.0056 0.4750 0.0707 0.5556 0.6797 0.0056 

e. FTSE 100 1990 1st 0.5413 0.0159 0.3944 0.2527 0.2494 0.0068 0.1747 0.7713 

 -2004 2nd 0.5340 0.0293 0.3516 0.6388 0.0941 0.0198 0.3086 0.6133 

  3rd 0.8225 0.0609 0.1430 0.6244 0.0270 0.6714 0.8225 0.2797 

f. Nikkei 225 1990 1st 0.2943 0.0000 0.1613 0.0964 0.0025 0.0000 0.0331 0.2182 

 -2004 2nd 0.7599 0.0101 0.0986 0.6397 0.8776 0.6984 0.7599 0.1046 

  3rd 0.6935 0.0000 0.0389 0.6052 0.7837 0.5519 0.6935 0.0389 

g.VWD 1970 1st 0.7947 0.0508 0.0000 0.9554 0.3001 0.7481 0.7940 0.0000 



 -1987 2nd 0.6763 0.0000 0.0000 0.5007 0.0285 0.6274 0.6763 0.0000 

  3rd 0.5929 0.0096 0.0094 0.4761 0.0100 0.4960 0.5929 0.0094 

 1988 1st 0.5186 0.3525 0.7921 0.4001 0.4279 0.6181 0.6449 0.7459 

 -2004 2nd 0.8116 0.4148 0.4913 0.4580 0.8286 0.4917 0.7280 0.6410 

  3rd 0.8633 0.3119 0.1806 0.4488 0.7678 0.5569 0.8621 0.2722 

 1970 1st 0.7990 0.0981 0.0151 0.5195 0.2088 0.5803 0.7594 0.0151 

 -2004 2nd 0.7365 0.0004 0.0010 0.5559 0.7799 0.6370 0.7365 0.0010 

  3rd 0.6845 0.0197 0.0303 0.5405 0.7626 0.4968 0.6845 0.0303 

h. VWX 1970 1st 0.7712 0.0273 0.0000 0.9524 0.3462 0.7322 0.7675 0.0000 

 -1987 2nd 0.6424 0.0000 0.0000 0.4540 0.0102 0.6108 0.6424 0.0000 

  3rd 0.5547 0.0094 0.0093 0.4370 0.0106 0.4649 0.5547 0.0093 

 1988 1st 0.4860 0.3756 0.7068 0.4530 0.2918 0.6209 0.4760 0.7212 

 -2004 2nd 0.8980 0.3975 0.5007 0.4522 0.7825 0.7366 0.8943 0.6316 

  3rd 0.8627 0.1729 0.1668 0.4488 0.7592 0.5547 0.8604 0.2493 

 1970 1st 0.8042 0.0920 0.0069 0.4558 0.3327 0.6143 0.7711 0.0069 

 -2004 2nd 0.7237 0.0000 0.0000 0.5406 0.7834 0.6312 0.7237 0.0000 

  3rd 0.6609 0.0139 0.0222 0.5210 0.7554 0.4851 0.6609 0.0222 

i. EWD 1970 1st 0.4567 0.1003 0.0000 0.4859 0.9846 0.3331 0.4567 0.0000 

 -1987 2nd 0.7109 0.0000 0.0000 0.5675 0.8780 0.7056 0.7109 0.0000 

  3rd 0.6520 0.0000 0.0000 0.5675 0.7642 0.6371 0.6520 0.0000 

 1988 1st 0.6195 0.0158 0.0000 0.4298 0.5004 0.3795 0.6186 0.0000 

 -2004 2nd 0.6024 0.0000 0.0000 0.2547 0.1165 0.5334 0.6024 0.0000 

  3rd 0.4431 0.0000 0.0000 0.2044 0.0041 0.3755 0.4431 0.0000 

 1970 1st 0.3693 0.0027 0.0000 0.5697 0.9993 0.2181 0.3626 0.0000 

 -2004 2nd 0.5969 0.0000 0.0000 0.4812 0.4717 0.5831 0.5969 0.0000 

  3rd 0.5328 0.0000 0.0000 0.4812 0.1447 0.4840 0.5328 0.0000 

j. EWX 1970 1st 0.3885 0.0701 0.0000 0.4773 0.9805 0.2608 0.3791 0.0000 

 -1987 2nd 0.6977 0.0000 0.0000 0.5675 0.7714 0.6909 0.6977 0.0000 

  3rd 0.6493 0.0000 0.0000 0.5675 0.7532 0.6378 0.6493 0.0000 

 1988 1st 0.6042 0.0237 0.0000 0.4234 0.4925 0.3701 0.6042 0.0000 

 -2004 2nd 0.6031 0.0000 0.0000 0.2547 0.1039 0.5421 0.6031 0.0000 

  3rd 0.4452 0.0000 0.0000 0.2044 0.0041 0.3786 0.4452 0.0000 

 1970 1st 0.3192 0.0031 0.0000 0.5636 0.9993 0.1566 0.3116 0.0000 

 -2004 2nd 0.5931 0.0000 0.0000 0.4812 0.4631 0.5776 0.5931 0.0000 

  3rd 0.5314 0.0000 0.0000 0.4812 0.1468 0.4845 0.5314 0.0000 

 

                                            
*Null hypotheses are as follows. I : All other weekdays s-th order SD Monday, II : Monday s-th order SDs at least one weekday, III : 
Monday s-th order SDs all other weekdays, IV : At least one weekday s-th order SDs Monday, V : At least one weekday s-th order 



                                                                                                                                  
SDs all others, VI : At least one weekday is s-th order SDed by all others, VII : Either rest of weekdays or Monday s-th order SDs the 
other, VIII : The distributions are all identical. 



Figure 1.  (EWX, 1970 - 2004 )
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